| //===-- SchedPriorities.h - Encapsulate scheduling heuristics -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Strategy: |
| // Priority ordering rules: |
| // (1) Max delay, which is the order of the heap S.candsAsHeap. |
| // (2) Instruction that frees up a register. |
| // (3) Instruction that has the maximum number of dependent instructions. |
| // Note that rules 2 and 3 are only used if issue conflicts prevent |
| // choosing a higher priority instruction by rule 1. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SchedPriorities.h" |
| #include "../../Target/SparcV9/LiveVar/FunctionLiveVarInfo.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include <iostream> |
| |
| namespace llvm { |
| |
| std::ostream &operator<<(std::ostream &os, const NodeDelayPair* nd) { |
| return os << "Delay for node " << nd->node->getNodeId() |
| << " = " << (long)nd->delay << "\n"; |
| } |
| |
| |
| SchedPriorities::SchedPriorities(const Function *, const SchedGraph *G, |
| FunctionLiveVarInfo &LVI) |
| : curTime(0), graph(G), methodLiveVarInfo(LVI), |
| nodeDelayVec(G->getNumNodes(), INVALID_LATENCY), // make errors obvious |
| earliestReadyTimeForNode(G->getNumNodes(), 0), |
| earliestReadyTime(0), |
| nextToTry(candsAsHeap.begin()) |
| { |
| computeDelays(graph); |
| } |
| |
| |
| void |
| SchedPriorities::initialize() { |
| initializeReadyHeap(graph); |
| } |
| |
| |
| void |
| SchedPriorities::computeDelays(const SchedGraph* graph) { |
| po_iterator<const SchedGraph*> poIter = po_begin(graph), poEnd =po_end(graph); |
| for ( ; poIter != poEnd; ++poIter) { |
| const SchedGraphNode* node = *poIter; |
| cycles_t nodeDelay; |
| if (node->beginOutEdges() == node->endOutEdges()) |
| nodeDelay = node->getLatency(); |
| else { |
| // Iterate over the out-edges of the node to compute delay |
| nodeDelay = 0; |
| for (SchedGraphNode::const_iterator E=node->beginOutEdges(); |
| E != node->endOutEdges(); ++E) { |
| cycles_t sinkDelay = getNodeDelay((SchedGraphNode*)(*E)->getSink()); |
| nodeDelay = std::max(nodeDelay, sinkDelay + (*E)->getMinDelay()); |
| } |
| } |
| getNodeDelayRef(node) = nodeDelay; |
| } |
| } |
| |
| |
| void |
| SchedPriorities::initializeReadyHeap(const SchedGraph* graph) { |
| const SchedGraphNode* graphRoot = (const SchedGraphNode*)graph->getRoot(); |
| assert(graphRoot->getMachineInstr() == NULL && "Expect dummy root"); |
| |
| // Insert immediate successors of dummy root, which are the actual roots |
| sg_succ_const_iterator SEnd = succ_end(graphRoot); |
| for (sg_succ_const_iterator S = succ_begin(graphRoot); S != SEnd; ++S) |
| this->insertReady(*S); |
| |
| #undef TEST_HEAP_CONVERSION |
| #ifdef TEST_HEAP_CONVERSION |
| std::cerr << "Before heap conversion:\n"; |
| copy(candsAsHeap.begin(), candsAsHeap.end(), |
| ostream_iterator<NodeDelayPair*>(std::cerr,"\n")); |
| #endif |
| |
| candsAsHeap.makeHeap(); |
| |
| nextToTry = candsAsHeap.begin(); |
| |
| #ifdef TEST_HEAP_CONVERSION |
| std::cerr << "After heap conversion:\n"; |
| copy(candsAsHeap.begin(), candsAsHeap.end(), |
| ostream_iterator<NodeDelayPair*>(std::cerr,"\n")); |
| #endif |
| } |
| |
| void |
| SchedPriorities::insertReady(const SchedGraphNode* node) { |
| candsAsHeap.insert(node, nodeDelayVec[node->getNodeId()]); |
| candsAsSet.insert(node); |
| mcands.clear(); // ensure reset choices is called before any more choices |
| earliestReadyTime = std::min(earliestReadyTime, |
| getEarliestReadyTimeForNode(node)); |
| |
| if (SchedDebugLevel >= Sched_PrintSchedTrace) { |
| std::cerr << " Node " << node->getNodeId() << " will be ready in Cycle " |
| << getEarliestReadyTimeForNode(node) << "; " |
| << " Delay = " <<(long)getNodeDelay(node) << "; Instruction: \n" |
| << " " << *node->getMachineInstr() << "\n"; |
| } |
| } |
| |
| void |
| SchedPriorities::issuedReadyNodeAt(cycles_t curTime, |
| const SchedGraphNode* node) { |
| candsAsHeap.removeNode(node); |
| candsAsSet.erase(node); |
| mcands.clear(); // ensure reset choices is called before any more choices |
| |
| if (earliestReadyTime == getEarliestReadyTimeForNode(node)) { |
| // earliestReadyTime may have been due to this node, so recompute it |
| earliestReadyTime = HUGE_LATENCY; |
| for (NodeHeap::const_iterator I=candsAsHeap.begin(); |
| I != candsAsHeap.end(); ++I) |
| if (candsAsHeap.getNode(I)) { |
| earliestReadyTime = |
| std::min(earliestReadyTime, |
| getEarliestReadyTimeForNode(candsAsHeap.getNode(I))); |
| } |
| } |
| |
| // Now update ready times for successors |
| for (SchedGraphNode::const_iterator E=node->beginOutEdges(); |
| E != node->endOutEdges(); ++E) { |
| cycles_t& etime = |
| getEarliestReadyTimeForNodeRef((SchedGraphNode*)(*E)->getSink()); |
| etime = std::max(etime, curTime + (*E)->getMinDelay()); |
| } |
| } |
| |
| |
| //---------------------------------------------------------------------- |
| // Priority ordering rules: |
| // (1) Max delay, which is the order of the heap S.candsAsHeap. |
| // (2) Instruction that frees up a register. |
| // (3) Instruction that has the maximum number of dependent instructions. |
| // Note that rules 2 and 3 are only used if issue conflicts prevent |
| // choosing a higher priority instruction by rule 1. |
| //---------------------------------------------------------------------- |
| |
| inline int |
| SchedPriorities::chooseByRule1(std::vector<candIndex>& mcands) { |
| return (mcands.size() == 1)? 0 // only one choice exists so take it |
| : -1; // -1 indicates multiple choices |
| } |
| |
| inline int |
| SchedPriorities::chooseByRule2(std::vector<candIndex>& mcands) { |
| assert(mcands.size() >= 1 && "Should have at least one candidate here."); |
| for (unsigned i=0, N = mcands.size(); i < N; i++) |
| if (instructionHasLastUse(methodLiveVarInfo, |
| candsAsHeap.getNode(mcands[i]))) |
| return i; |
| return -1; |
| } |
| |
| inline int |
| SchedPriorities::chooseByRule3(std::vector<candIndex>& mcands) { |
| assert(mcands.size() >= 1 && "Should have at least one candidate here."); |
| int maxUses = candsAsHeap.getNode(mcands[0])->getNumOutEdges(); |
| int indexWithMaxUses = 0; |
| for (unsigned i=1, N = mcands.size(); i < N; i++) { |
| int numUses = candsAsHeap.getNode(mcands[i])->getNumOutEdges(); |
| if (numUses > maxUses) { |
| maxUses = numUses; |
| indexWithMaxUses = i; |
| } |
| } |
| return indexWithMaxUses; |
| } |
| |
| const SchedGraphNode* |
| SchedPriorities::getNextHighest(const SchedulingManager& S, |
| cycles_t curTime) { |
| int nextIdx = -1; |
| const SchedGraphNode* nextChoice = NULL; |
| |
| if (mcands.size() == 0) |
| findSetWithMaxDelay(mcands, S); |
| |
| while (nextIdx < 0 && mcands.size() > 0) { |
| nextIdx = chooseByRule1(mcands); // rule 1 |
| |
| if (nextIdx == -1) |
| nextIdx = chooseByRule2(mcands); // rule 2 |
| |
| if (nextIdx == -1) |
| nextIdx = chooseByRule3(mcands); // rule 3 |
| |
| if (nextIdx == -1) |
| nextIdx = 0; // default to first choice by delays |
| |
| // We have found the next best candidate. Check if it ready in |
| // the current cycle, and if it is feasible. |
| // If not, remove it from mcands and continue. Refill mcands if |
| // it becomes empty. |
| nextChoice = candsAsHeap.getNode(mcands[nextIdx]); |
| if (getEarliestReadyTimeForNode(nextChoice) > curTime |
| || ! instrIsFeasible(S, nextChoice->getMachineInstr()->getOpcode())) |
| { |
| mcands.erase(mcands.begin() + nextIdx); |
| nextIdx = -1; |
| if (mcands.size() == 0) |
| findSetWithMaxDelay(mcands, S); |
| } |
| } |
| |
| if (nextIdx >= 0) { |
| mcands.erase(mcands.begin() + nextIdx); |
| return nextChoice; |
| } else |
| return NULL; |
| } |
| |
| |
| void |
| SchedPriorities::findSetWithMaxDelay(std::vector<candIndex>& mcands, |
| const SchedulingManager& S) |
| { |
| if (mcands.size() == 0 && nextToTry != candsAsHeap.end()) |
| { // out of choices at current maximum delay; |
| // put nodes with next highest delay in mcands |
| candIndex next = nextToTry; |
| cycles_t maxDelay = candsAsHeap.getDelay(next); |
| for (; next != candsAsHeap.end() |
| && candsAsHeap.getDelay(next) == maxDelay; ++next) |
| mcands.push_back(next); |
| |
| nextToTry = next; |
| |
| if (SchedDebugLevel >= Sched_PrintSchedTrace) { |
| std::cerr << " Cycle " << (long)getTime() << ": " |
| << "Next highest delay = " << (long)maxDelay << " : " |
| << mcands.size() << " Nodes with this delay: "; |
| for (unsigned i=0; i < mcands.size(); i++) |
| std::cerr << candsAsHeap.getNode(mcands[i])->getNodeId() << ", "; |
| std::cerr << "\n"; |
| } |
| } |
| } |
| |
| |
| bool |
| SchedPriorities::instructionHasLastUse(FunctionLiveVarInfo &LVI, |
| const SchedGraphNode* graphNode) { |
| const MachineInstr *MI = graphNode->getMachineInstr(); |
| |
| hash_map<const MachineInstr*, bool>::const_iterator |
| ui = lastUseMap.find(MI); |
| if (ui != lastUseMap.end()) |
| return ui->second; |
| |
| // else check if instruction is a last use and save it in the hash_map |
| bool hasLastUse = false; |
| const BasicBlock* bb = graphNode->getMachineBasicBlock().getBasicBlock(); |
| const ValueSet &LVs = LVI.getLiveVarSetBeforeMInst(MI, bb); |
| |
| for (MachineInstr::const_val_op_iterator OI = MI->begin(), OE = MI->end(); |
| OI != OE; ++OI) |
| if (!LVs.count(*OI)) { |
| hasLastUse = true; |
| break; |
| } |
| |
| return lastUseMap[MI] = hasLastUse; |
| } |
| |
| } // End llvm namespace |