| //===- FunctionResolution.cpp - Resolve declarations to implementations ---===// |
| // |
| // Loop over the functions that are in the module and look for functions that |
| // have the same name. More often than not, there will be things like: |
| // |
| // declare void %foo(...) |
| // void %foo(int, int) { ... } |
| // |
| // because of the way things are declared in C. If this is the case, patch |
| // things up. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Module.h" |
| #include "llvm/SymbolTable.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Pass.h" |
| #include "llvm/iOther.h" |
| #include "llvm/Constants.h" |
| #include "Support/Statistic.h" |
| #include <algorithm> |
| |
| using std::vector; |
| using std::string; |
| using std::cerr; |
| |
| namespace { |
| Statistic<>NumResolved("funcresolve", "Number of varargs functions resolved"); |
| Statistic<> NumGlobals("funcresolve", "Number of global variables resolved"); |
| |
| struct FunctionResolvingPass : public Pass { |
| bool run(Module &M); |
| }; |
| RegisterOpt<FunctionResolvingPass> X("funcresolve", "Resolve Functions"); |
| } |
| |
| Pass *createFunctionResolvingPass() { |
| return new FunctionResolvingPass(); |
| } |
| |
| // ConvertCallTo - Convert a call to a varargs function with no arg types |
| // specified to a concrete nonvarargs function. |
| // |
| static void ConvertCallTo(CallInst *CI, Function *Dest) { |
| const FunctionType::ParamTypes &ParamTys = |
| Dest->getFunctionType()->getParamTypes(); |
| BasicBlock *BB = CI->getParent(); |
| |
| // Keep an iterator to where we want to insert cast instructions if the |
| // argument types don't agree. |
| // |
| BasicBlock::iterator BBI = CI; |
| assert(CI->getNumOperands()-1 == ParamTys.size() && |
| "Function calls resolved funny somehow, incompatible number of args"); |
| |
| vector<Value*> Params; |
| |
| // Convert all of the call arguments over... inserting cast instructions if |
| // the types are not compatible. |
| for (unsigned i = 1; i < CI->getNumOperands(); ++i) { |
| Value *V = CI->getOperand(i); |
| |
| if (V->getType() != ParamTys[i-1]) // Must insert a cast... |
| V = new CastInst(V, ParamTys[i-1], "argcast", BBI); |
| |
| Params.push_back(V); |
| } |
| |
| // Replace the old call instruction with a new call instruction that calls |
| // the real function. |
| // |
| Instruction *NewCall = new CallInst(Dest, Params, "", BBI); |
| |
| // Remove the old call instruction from the program... |
| BB->getInstList().remove(BBI); |
| |
| // Transfer the name over... |
| if (NewCall->getType() != Type::VoidTy) |
| NewCall->setName(CI->getName()); |
| |
| // Replace uses of the old instruction with the appropriate values... |
| // |
| if (NewCall->getType() == CI->getType()) { |
| CI->replaceAllUsesWith(NewCall); |
| NewCall->setName(CI->getName()); |
| |
| } else if (NewCall->getType() == Type::VoidTy) { |
| // Resolved function does not return a value but the prototype does. This |
| // often occurs because undefined functions default to returning integers. |
| // Just replace uses of the call (which are broken anyway) with dummy |
| // values. |
| CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); |
| } else if (CI->getType() == Type::VoidTy) { |
| // If we are gaining a new return value, we don't have to do anything |
| // special here, because it will automatically be ignored. |
| } else { |
| // Insert a cast instruction to convert the return value of the function |
| // into it's new type. Of course we only need to do this if the return |
| // value of the function is actually USED. |
| // |
| if (!CI->use_empty()) { |
| // Insert the new cast instruction... |
| CastInst *NewCast = new CastInst(NewCall, CI->getType(), |
| NewCall->getName(), BBI); |
| CI->replaceAllUsesWith(NewCast); |
| } |
| } |
| |
| // The old instruction is no longer needed, destroy it! |
| delete CI; |
| } |
| |
| |
| static bool ResolveFunctions(Module &M, vector<GlobalValue*> &Globals, |
| Function *Concrete) { |
| bool Changed = false; |
| for (unsigned i = 0; i != Globals.size(); ++i) |
| if (Globals[i] != Concrete) { |
| Function *Old = cast<Function>(Globals[i]); |
| const FunctionType *OldMT = Old->getFunctionType(); |
| const FunctionType *ConcreteMT = Concrete->getFunctionType(); |
| |
| assert(OldMT->getParamTypes().size() <= |
| ConcreteMT->getParamTypes().size() && |
| "Concrete type must have more specified parameters!"); |
| |
| // Check to make sure that if there are specified types, that they |
| // match... |
| // |
| for (unsigned i = 0; i < OldMT->getParamTypes().size(); ++i) |
| if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) { |
| cerr << "Parameter types conflict for: '" << OldMT |
| << "' and '" << ConcreteMT << "'\n"; |
| return Changed; |
| } |
| |
| // Attempt to convert all of the uses of the old function to the |
| // concrete form of the function. If there is a use of the fn that |
| // we don't understand here we punt to avoid making a bad |
| // transformation. |
| // |
| // At this point, we know that the return values are the same for |
| // our two functions and that the Old function has no varargs fns |
| // specified. In otherwords it's just <retty> (...) |
| // |
| for (unsigned i = 0; i < Old->use_size(); ) { |
| User *U = *(Old->use_begin()+i); |
| if (CastInst *CI = dyn_cast<CastInst>(U)) { |
| // Convert casts directly |
| assert(CI->getOperand(0) == Old); |
| CI->setOperand(0, Concrete); |
| Changed = true; |
| ++NumResolved; |
| } else if (CallInst *CI = dyn_cast<CallInst>(U)) { |
| // Can only fix up calls TO the argument, not args passed in. |
| if (CI->getCalledValue() == Old) { |
| ConvertCallTo(CI, Concrete); |
| Changed = true; |
| ++NumResolved; |
| } else { |
| cerr << "Couldn't cleanup this function call, must be an" |
| << " argument or something!" << CI; |
| ++i; |
| } |
| } else { |
| cerr << "Cannot convert use of function: " << U << "\n"; |
| ++i; |
| } |
| } |
| } |
| return Changed; |
| } |
| |
| |
| static bool ResolveGlobalVariables(Module &M, vector<GlobalValue*> &Globals, |
| GlobalVariable *Concrete) { |
| bool Changed = false; |
| assert(isa<ArrayType>(Concrete->getType()->getElementType()) && |
| "Concrete version should be an array type!"); |
| |
| // Get the type of the things that may be resolved to us... |
| const Type *AETy = |
| cast<ArrayType>(Concrete->getType()->getElementType())->getElementType(); |
| |
| std::vector<Constant*> Args; |
| Args.push_back(Constant::getNullValue(Type::LongTy)); |
| Args.push_back(Constant::getNullValue(Type::LongTy)); |
| ConstantExpr *Replacement = |
| ConstantExpr::getGetElementPtr(ConstantPointerRef::get(Concrete), Args); |
| |
| for (unsigned i = 0; i != Globals.size(); ++i) |
| if (Globals[i] != Concrete) { |
| GlobalVariable *Old = cast<GlobalVariable>(Globals[i]); |
| if (Old->getType()->getElementType() != AETy) { |
| std::cerr << "WARNING: Two global variables exist with the same name " |
| << "that cannot be resolved!\n"; |
| return false; |
| } |
| |
| // In this case, Old is a pointer to T, Concrete is a pointer to array of |
| // T. Because of this, replace all uses of Old with a constantexpr |
| // getelementptr that returns the address of the first element of the |
| // array. |
| // |
| Old->replaceAllUsesWith(Replacement); |
| // Since there are no uses of Old anymore, remove it from the module. |
| M.getGlobalList().erase(Old); |
| |
| ++NumGlobals; |
| Changed = true; |
| } |
| return Changed; |
| } |
| |
| static bool ProcessGlobalsWithSameName(Module &M, |
| vector<GlobalValue*> &Globals) { |
| assert(!Globals.empty() && "Globals list shouldn't be empty here!"); |
| |
| bool isFunction = isa<Function>(Globals[0]); // Is this group all functions? |
| bool Changed = false; |
| GlobalValue *Concrete = 0; // The most concrete implementation to resolve to |
| |
| assert((isFunction ^ isa<GlobalVariable>(Globals[0])) && |
| "Should either be function or gvar!"); |
| |
| for (unsigned i = 0; i != Globals.size(); ) { |
| if (isa<Function>(Globals[i]) != isFunction) { |
| std::cerr << "WARNING: Found function and global variable with the " |
| << "same name: '" << Globals[i]->getName() << "'.\n"; |
| return false; // Don't know how to handle this, bail out! |
| } |
| |
| if (isFunction) { |
| // For functions, we look to merge functions definitions of "int (...)" |
| // to 'int (int)' or 'int ()' or whatever else is not completely generic. |
| // |
| Function *F = cast<Function>(Globals[i]); |
| if (!F->isExternal()) { |
| if (Concrete && !Concrete->isExternal()) |
| return false; // Found two different functions types. Can't choose! |
| |
| Concrete = Globals[i]; |
| } else if (Concrete) { |
| if (Concrete->isExternal()) // If we have multiple external symbols...x |
| if (F->getFunctionType()->getNumParams() > |
| cast<Function>(Concrete)->getFunctionType()->getNumParams()) |
| Concrete = F; // We are more concrete than "Concrete"! |
| |
| } else { |
| Concrete = F; |
| } |
| ++i; |
| } else { |
| // For global variables, we have to merge C definitions int A[][4] with |
| // int[6][4] |
| GlobalVariable *GV = cast<GlobalVariable>(Globals[i]); |
| if (Concrete == 0) { |
| if (isa<ArrayType>(GV->getType()->getElementType())) |
| Concrete = GV; |
| } else { // Must have different types... one is an array of the other? |
| const ArrayType *AT = |
| dyn_cast<ArrayType>(GV->getType()->getElementType()); |
| |
| // If GV is an array of Concrete, then GV is the array. |
| if (AT && AT->getElementType() == Concrete->getType()->getElementType()) |
| Concrete = GV; |
| else { |
| // Concrete must be an array type, check to see if the element type of |
| // concrete is already GV. |
| AT = cast<ArrayType>(Concrete->getType()->getElementType()); |
| if (AT->getElementType() != GV->getType()->getElementType()) |
| Concrete = 0; // Don't know how to handle it! |
| } |
| } |
| |
| ++i; |
| } |
| } |
| |
| if (Globals.size() > 1) { // Found a multiply defined global... |
| // We should find exactly one concrete function definition, which is |
| // probably the implementation. Change all of the function definitions and |
| // uses to use it instead. |
| // |
| if (!Concrete) { |
| cerr << "WARNING: Found function types that are not compatible:\n"; |
| for (unsigned i = 0; i < Globals.size(); ++i) { |
| cerr << "\t" << Globals[i]->getType()->getDescription() << " %" |
| << Globals[i]->getName() << "\n"; |
| } |
| cerr << " No linkage of globals named '" << Globals[0]->getName() |
| << "' performed!\n"; |
| return Changed; |
| } |
| |
| if (isFunction) |
| return Changed | ResolveFunctions(M, Globals, cast<Function>(Concrete)); |
| else |
| return Changed | ResolveGlobalVariables(M, Globals, |
| cast<GlobalVariable>(Concrete)); |
| } |
| return Changed; |
| } |
| |
| bool FunctionResolvingPass::run(Module &M) { |
| SymbolTable *ST = M.getSymbolTable(); |
| if (!ST) return false; |
| |
| std::map<string, vector<GlobalValue*> > Globals; |
| |
| // Loop over the entries in the symbol table. If an entry is a func pointer, |
| // then add it to the Functions map. We do a two pass algorithm here to avoid |
| // problems with iterators getting invalidated if we did a one pass scheme. |
| // |
| for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I) |
| if (const PointerType *PT = dyn_cast<PointerType>(I->first)) { |
| SymbolTable::VarMap &Plane = I->second; |
| for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end(); |
| PI != PE; ++PI) { |
| GlobalValue *GV = cast<GlobalValue>(PI->second); |
| assert(PI->first == GV->getName() && |
| "Global name and symbol table do not agree!"); |
| if (GV->hasExternalLinkage()) // Only resolve decls to external fns |
| Globals[PI->first].push_back(GV); |
| } |
| } |
| |
| bool Changed = false; |
| |
| // Now we have a list of all functions with a particular name. If there is |
| // more than one entry in a list, merge the functions together. |
| // |
| for (std::map<string, vector<GlobalValue*> >::iterator I = Globals.begin(), |
| E = Globals.end(); I != E; ++I) |
| Changed |= ProcessGlobalsWithSameName(M, I->second); |
| |
| // Now loop over all of the globals, checking to see if any are trivially |
| // dead. If so, remove them now. |
| |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ) |
| if (I->isExternal() && I->use_empty()) { |
| Function *F = I; |
| ++I; |
| M.getFunctionList().erase(F); |
| ++NumResolved; |
| Changed = true; |
| } else { |
| ++I; |
| } |
| |
| for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ) |
| if (I->isExternal() && I->use_empty()) { |
| GlobalVariable *GV = I; |
| ++I; |
| M.getGlobalList().erase(GV); |
| ++NumGlobals; |
| Changed = true; |
| } else { |
| ++I; |
| } |
| |
| return Changed; |
| } |