| //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements sparse conditional constant propagation and merging: |
| // |
| // Specifically, this: |
| // * Assumes values are constant unless proven otherwise |
| // * Assumes BasicBlocks are dead unless proven otherwise |
| // * Proves values to be constant, and replaces them with constants |
| // * Proves conditional branches to be unconditional |
| // |
| // Notice that: |
| // * This pass has a habit of making definitions be dead. It is a good idea |
| // to to run a DCE pass sometime after running this pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "sccp" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Type.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/hash_map" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| #include <set> |
| using namespace llvm; |
| |
| // LatticeVal class - This class represents the different lattice values that an |
| // instruction may occupy. It is a simple class with value semantics. |
| // |
| namespace { |
| Statistic<> NumInstRemoved("sccp", "Number of instructions removed"); |
| Statistic<> NumDeadBlocks ("sccp", "Number of basic blocks unreachable"); |
| |
| class LatticeVal { |
| enum { |
| undefined, // This instruction has no known value |
| constant, // This instruction has a constant value |
| overdefined // This instruction has an unknown value |
| } LatticeValue; // The current lattice position |
| Constant *ConstantVal; // If Constant value, the current value |
| public: |
| inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} |
| |
| // markOverdefined - Return true if this is a new status to be in... |
| inline bool markOverdefined() { |
| if (LatticeValue != overdefined) { |
| LatticeValue = overdefined; |
| return true; |
| } |
| return false; |
| } |
| |
| // markConstant - Return true if this is a new status for us... |
| inline bool markConstant(Constant *V) { |
| if (LatticeValue != constant) { |
| LatticeValue = constant; |
| ConstantVal = V; |
| return true; |
| } else { |
| assert(ConstantVal == V && "Marking constant with different value"); |
| } |
| return false; |
| } |
| |
| inline bool isUndefined() const { return LatticeValue == undefined; } |
| inline bool isConstant() const { return LatticeValue == constant; } |
| inline bool isOverdefined() const { return LatticeValue == overdefined; } |
| |
| inline Constant *getConstant() const { |
| assert(isConstant() && "Cannot get the constant of a non-constant!"); |
| return ConstantVal; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| |
| //===----------------------------------------------------------------------===// |
| // |
| /// SCCPSolver - This class is a general purpose solver for Sparse Conditional |
| /// Constant Propagation. |
| /// |
| class SCCPSolver : public InstVisitor<SCCPSolver> { |
| std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable |
| hash_map<Value*, LatticeVal> ValueState; // The state each value is in... |
| |
| // The reason for two worklists is that overdefined is the lowest state |
| // on the lattice, and moving things to overdefined as fast as possible |
| // makes SCCP converge much faster. |
| // By having a separate worklist, we accomplish this because everything |
| // possibly overdefined will become overdefined at the soonest possible |
| // point. |
| std::vector<Instruction*> OverdefinedInstWorkList;// The overdefined |
| // instruction work list |
| std::vector<Instruction*> InstWorkList;// The instruction work list |
| |
| |
| std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list |
| |
| /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not |
| /// overdefined, despite the fact that the PHI node is overdefined. |
| std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; |
| |
| /// KnownFeasibleEdges - Entries in this set are edges which have already had |
| /// PHI nodes retriggered. |
| typedef std::pair<BasicBlock*,BasicBlock*> Edge; |
| std::set<Edge> KnownFeasibleEdges; |
| public: |
| |
| /// MarkBlockExecutable - This method can be used by clients to mark all of |
| /// the blocks that are known to be intrinsically live in the processed unit. |
| void MarkBlockExecutable(BasicBlock *BB) { |
| DEBUG(std::cerr << "Marking Block Executable: " << BB->getName() << "\n"); |
| BBExecutable.insert(BB); // Basic block is executable! |
| BBWorkList.push_back(BB); // Add the block to the work list! |
| } |
| |
| /// Solve - Solve for constants and executable blocks. |
| /// |
| void Solve(); |
| |
| /// getExecutableBlocks - Once we have solved for constants, return the set of |
| /// blocks that is known to be executable. |
| std::set<BasicBlock*> &getExecutableBlocks() { |
| return BBExecutable; |
| } |
| |
| /// getValueMapping - Once we have solved for constants, return the mapping of |
| /// LLVM values to LatticeVals. |
| hash_map<Value*, LatticeVal> &getValueMapping() { |
| return ValueState; |
| } |
| |
| private: |
| // markConstant - Make a value be marked as "constant". If the value |
| // is not already a constant, add it to the instruction work list so that |
| // the users of the instruction are updated later. |
| // |
| inline void markConstant(LatticeVal &IV, Instruction *I, Constant *C) { |
| if (IV.markConstant(C)) { |
| DEBUG(std::cerr << "markConstant: " << *C << ": " << *I); |
| InstWorkList.push_back(I); |
| } |
| } |
| inline void markConstant(Instruction *I, Constant *C) { |
| markConstant(ValueState[I], I, C); |
| } |
| |
| // markOverdefined - Make a value be marked as "overdefined". If the |
| // value is not already overdefined, add it to the overdefined instruction |
| // work list so that the users of the instruction are updated later. |
| |
| inline void markOverdefined(LatticeVal &IV, Instruction *I) { |
| if (IV.markOverdefined()) { |
| DEBUG(std::cerr << "markOverdefined: " << *I); |
| // Only instructions go on the work list |
| OverdefinedInstWorkList.push_back(I); |
| } |
| } |
| inline void markOverdefined(Instruction *I) { |
| markOverdefined(ValueState[I], I); |
| } |
| |
| // getValueState - Return the LatticeVal object that corresponds to the value. |
| // This function is necessary because not all values should start out in the |
| // underdefined state... Argument's should be overdefined, and |
| // constants should be marked as constants. If a value is not known to be an |
| // Instruction object, then use this accessor to get its value from the map. |
| // |
| inline LatticeVal &getValueState(Value *V) { |
| hash_map<Value*, LatticeVal>::iterator I = ValueState.find(V); |
| if (I != ValueState.end()) return I->second; // Common case, in the map |
| |
| if (Constant *CPV = dyn_cast<Constant>(V)) { |
| if (isa<UndefValue>(V)) { |
| // Nothing to do, remain undefined. |
| } else { |
| ValueState[CPV].markConstant(CPV); // Constants are constant |
| } |
| } |
| // All others are underdefined by default... |
| return ValueState[V]; |
| } |
| |
| // markEdgeExecutable - Mark a basic block as executable, adding it to the BB |
| // work list if it is not already executable... |
| // |
| void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { |
| if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) |
| return; // This edge is already known to be executable! |
| |
| if (BBExecutable.count(Dest)) { |
| DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName() |
| << " -> " << Dest->getName() << "\n"); |
| |
| // The destination is already executable, but we just made an edge |
| // feasible that wasn't before. Revisit the PHI nodes in the block |
| // because they have potentially new operands. |
| for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| visitPHINode(*PN); |
| } |
| |
| } else { |
| MarkBlockExecutable(Dest); |
| } |
| } |
| |
| // getFeasibleSuccessors - Return a vector of booleans to indicate which |
| // successors are reachable from a given terminator instruction. |
| // |
| void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); |
| |
| // isEdgeFeasible - Return true if the control flow edge from the 'From' basic |
| // block to the 'To' basic block is currently feasible... |
| // |
| bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); |
| |
| // OperandChangedState - This method is invoked on all of the users of an |
| // instruction that was just changed state somehow.... Based on this |
| // information, we need to update the specified user of this instruction. |
| // |
| void OperandChangedState(User *U) { |
| // Only instructions use other variable values! |
| Instruction &I = cast<Instruction>(*U); |
| if (BBExecutable.count(I.getParent())) // Inst is executable? |
| visit(I); |
| } |
| |
| private: |
| friend class InstVisitor<SCCPSolver>; |
| |
| // visit implementations - Something changed in this instruction... Either an |
| // operand made a transition, or the instruction is newly executable. Change |
| // the value type of I to reflect these changes if appropriate. |
| // |
| void visitPHINode(PHINode &I); |
| |
| // Terminators |
| void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ } |
| void visitTerminatorInst(TerminatorInst &TI); |
| |
| void visitCastInst(CastInst &I); |
| void visitSelectInst(SelectInst &I); |
| void visitBinaryOperator(Instruction &I); |
| void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } |
| |
| // Instructions that cannot be folded away... |
| void visitStoreInst (Instruction &I) { /*returns void*/ } |
| void visitLoadInst (LoadInst &I); |
| void visitGetElementPtrInst(GetElementPtrInst &I); |
| void visitCallInst (CallInst &I); |
| void visitInvokeInst (TerminatorInst &I) { |
| if (I.getType() != Type::VoidTy) markOverdefined(&I); |
| visitTerminatorInst(I); |
| } |
| void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } |
| void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } |
| void visitAllocationInst(Instruction &I) { markOverdefined(&I); } |
| void visitVANextInst (Instruction &I) { markOverdefined(&I); } |
| void visitVAArgInst (Instruction &I) { markOverdefined(&I); } |
| void visitFreeInst (Instruction &I) { /*returns void*/ } |
| |
| void visitInstruction(Instruction &I) { |
| // If a new instruction is added to LLVM that we don't handle... |
| std::cerr << "SCCP: Don't know how to handle: " << I; |
| markOverdefined(&I); // Just in case |
| } |
| }; |
| |
| // getFeasibleSuccessors - Return a vector of booleans to indicate which |
| // successors are reachable from a given terminator instruction. |
| // |
| void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, |
| std::vector<bool> &Succs) { |
| Succs.resize(TI.getNumSuccessors()); |
| if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { |
| if (BI->isUnconditional()) { |
| Succs[0] = true; |
| } else { |
| LatticeVal &BCValue = getValueState(BI->getCondition()); |
| if (BCValue.isOverdefined() || |
| (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) { |
| // Overdefined condition variables, and branches on unfoldable constant |
| // conditions, mean the branch could go either way. |
| Succs[0] = Succs[1] = true; |
| } else if (BCValue.isConstant()) { |
| // Constant condition variables mean the branch can only go a single way |
| Succs[BCValue.getConstant() == ConstantBool::False] = true; |
| } |
| } |
| } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) { |
| // Invoke instructions successors are always executable. |
| Succs[0] = Succs[1] = true; |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { |
| LatticeVal &SCValue = getValueState(SI->getCondition()); |
| if (SCValue.isOverdefined() || // Overdefined condition? |
| (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { |
| // All destinations are executable! |
| Succs.assign(TI.getNumSuccessors(), true); |
| } else if (SCValue.isConstant()) { |
| Constant *CPV = SCValue.getConstant(); |
| // Make sure to skip the "default value" which isn't a value |
| for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { |
| if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... |
| Succs[i] = true; |
| return; |
| } |
| } |
| |
| // Constant value not equal to any of the branches... must execute |
| // default branch then... |
| Succs[0] = true; |
| } |
| } else { |
| std::cerr << "SCCP: Don't know how to handle: " << TI; |
| Succs.assign(TI.getNumSuccessors(), true); |
| } |
| } |
| |
| |
| // isEdgeFeasible - Return true if the control flow edge from the 'From' basic |
| // block to the 'To' basic block is currently feasible... |
| // |
| bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { |
| assert(BBExecutable.count(To) && "Dest should always be alive!"); |
| |
| // Make sure the source basic block is executable!! |
| if (!BBExecutable.count(From)) return false; |
| |
| // Check to make sure this edge itself is actually feasible now... |
| TerminatorInst *TI = From->getTerminator(); |
| if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| if (BI->isUnconditional()) |
| return true; |
| else { |
| LatticeVal &BCValue = getValueState(BI->getCondition()); |
| if (BCValue.isOverdefined()) { |
| // Overdefined condition variables mean the branch could go either way. |
| return true; |
| } else if (BCValue.isConstant()) { |
| // Not branching on an evaluatable constant? |
| if (!isa<ConstantBool>(BCValue.getConstant())) return true; |
| |
| // Constant condition variables mean the branch can only go a single way |
| return BI->getSuccessor(BCValue.getConstant() == |
| ConstantBool::False) == To; |
| } |
| return false; |
| } |
| } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { |
| // Invoke instructions successors are always executable. |
| return true; |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| LatticeVal &SCValue = getValueState(SI->getCondition()); |
| if (SCValue.isOverdefined()) { // Overdefined condition? |
| // All destinations are executable! |
| return true; |
| } else if (SCValue.isConstant()) { |
| Constant *CPV = SCValue.getConstant(); |
| if (!isa<ConstantInt>(CPV)) |
| return true; // not a foldable constant? |
| |
| // Make sure to skip the "default value" which isn't a value |
| for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) |
| if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... |
| return SI->getSuccessor(i) == To; |
| |
| // Constant value not equal to any of the branches... must execute |
| // default branch then... |
| return SI->getDefaultDest() == To; |
| } |
| return false; |
| } else { |
| std::cerr << "Unknown terminator instruction: " << *TI; |
| abort(); |
| } |
| } |
| |
| // visit Implementations - Something changed in this instruction... Either an |
| // operand made a transition, or the instruction is newly executable. Change |
| // the value type of I to reflect these changes if appropriate. This method |
| // makes sure to do the following actions: |
| // |
| // 1. If a phi node merges two constants in, and has conflicting value coming |
| // from different branches, or if the PHI node merges in an overdefined |
| // value, then the PHI node becomes overdefined. |
| // 2. If a phi node merges only constants in, and they all agree on value, the |
| // PHI node becomes a constant value equal to that. |
| // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant |
| // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined |
| // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined |
| // 6. If a conditional branch has a value that is constant, make the selected |
| // destination executable |
| // 7. If a conditional branch has a value that is overdefined, make all |
| // successors executable. |
| // |
| void SCCPSolver::visitPHINode(PHINode &PN) { |
| LatticeVal &PNIV = getValueState(&PN); |
| if (PNIV.isOverdefined()) { |
| // There may be instructions using this PHI node that are not overdefined |
| // themselves. If so, make sure that they know that the PHI node operand |
| // changed. |
| std::multimap<PHINode*, Instruction*>::iterator I, E; |
| tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); |
| if (I != E) { |
| std::vector<Instruction*> Users; |
| Users.reserve(std::distance(I, E)); |
| for (; I != E; ++I) Users.push_back(I->second); |
| while (!Users.empty()) { |
| visit(Users.back()); |
| Users.pop_back(); |
| } |
| } |
| return; // Quick exit |
| } |
| |
| // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, |
| // and slow us down a lot. Just mark them overdefined. |
| if (PN.getNumIncomingValues() > 64) { |
| markOverdefined(PNIV, &PN); |
| return; |
| } |
| |
| // Look at all of the executable operands of the PHI node. If any of them |
| // are overdefined, the PHI becomes overdefined as well. If they are all |
| // constant, and they agree with each other, the PHI becomes the identical |
| // constant. If they are constant and don't agree, the PHI is overdefined. |
| // If there are no executable operands, the PHI remains undefined. |
| // |
| Constant *OperandVal = 0; |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
| LatticeVal &IV = getValueState(PN.getIncomingValue(i)); |
| if (IV.isUndefined()) continue; // Doesn't influence PHI node. |
| |
| if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { |
| if (IV.isOverdefined()) { // PHI node becomes overdefined! |
| markOverdefined(PNIV, &PN); |
| return; |
| } |
| |
| if (OperandVal == 0) { // Grab the first value... |
| OperandVal = IV.getConstant(); |
| } else { // Another value is being merged in! |
| // There is already a reachable operand. If we conflict with it, |
| // then the PHI node becomes overdefined. If we agree with it, we |
| // can continue on. |
| |
| // Check to see if there are two different constants merging... |
| if (IV.getConstant() != OperandVal) { |
| // Yes there is. This means the PHI node is not constant. |
| // You must be overdefined poor PHI. |
| // |
| markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined |
| return; // I'm done analyzing you |
| } |
| } |
| } |
| } |
| |
| // If we exited the loop, this means that the PHI node only has constant |
| // arguments that agree with each other(and OperandVal is the constant) or |
| // OperandVal is null because there are no defined incoming arguments. If |
| // this is the case, the PHI remains undefined. |
| // |
| if (OperandVal) |
| markConstant(PNIV, &PN, OperandVal); // Acquire operand value |
| } |
| |
| void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { |
| std::vector<bool> SuccFeasible; |
| getFeasibleSuccessors(TI, SuccFeasible); |
| |
| BasicBlock *BB = TI.getParent(); |
| |
| // Mark all feasible successors executable... |
| for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) |
| if (SuccFeasible[i]) |
| markEdgeExecutable(BB, TI.getSuccessor(i)); |
| } |
| |
| void SCCPSolver::visitCastInst(CastInst &I) { |
| Value *V = I.getOperand(0); |
| LatticeVal &VState = getValueState(V); |
| if (VState.isOverdefined()) // Inherit overdefinedness of operand |
| markOverdefined(&I); |
| else if (VState.isConstant()) // Propagate constant value |
| markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType())); |
| } |
| |
| void SCCPSolver::visitSelectInst(SelectInst &I) { |
| LatticeVal &CondValue = getValueState(I.getCondition()); |
| if (CondValue.isOverdefined()) |
| markOverdefined(&I); |
| else if (CondValue.isConstant()) { |
| if (CondValue.getConstant() == ConstantBool::True) { |
| LatticeVal &Val = getValueState(I.getTrueValue()); |
| if (Val.isOverdefined()) |
| markOverdefined(&I); |
| else if (Val.isConstant()) |
| markConstant(&I, Val.getConstant()); |
| } else if (CondValue.getConstant() == ConstantBool::False) { |
| LatticeVal &Val = getValueState(I.getFalseValue()); |
| if (Val.isOverdefined()) |
| markOverdefined(&I); |
| else if (Val.isConstant()) |
| markConstant(&I, Val.getConstant()); |
| } else |
| markOverdefined(&I); |
| } |
| } |
| |
| // Handle BinaryOperators and Shift Instructions... |
| void SCCPSolver::visitBinaryOperator(Instruction &I) { |
| LatticeVal &IV = ValueState[&I]; |
| if (IV.isOverdefined()) return; |
| |
| LatticeVal &V1State = getValueState(I.getOperand(0)); |
| LatticeVal &V2State = getValueState(I.getOperand(1)); |
| |
| if (V1State.isOverdefined() || V2State.isOverdefined()) { |
| // If both operands are PHI nodes, it is possible that this instruction has |
| // a constant value, despite the fact that the PHI node doesn't. Check for |
| // this condition now. |
| if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) |
| if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) |
| if (PN1->getParent() == PN2->getParent()) { |
| // Since the two PHI nodes are in the same basic block, they must have |
| // entries for the same predecessors. Walk the predecessor list, and |
| // if all of the incoming values are constants, and the result of |
| // evaluating this expression with all incoming value pairs is the |
| // same, then this expression is a constant even though the PHI node |
| // is not a constant! |
| LatticeVal Result; |
| for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { |
| LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); |
| BasicBlock *InBlock = PN1->getIncomingBlock(i); |
| LatticeVal &In2 = |
| getValueState(PN2->getIncomingValueForBlock(InBlock)); |
| |
| if (In1.isOverdefined() || In2.isOverdefined()) { |
| Result.markOverdefined(); |
| break; // Cannot fold this operation over the PHI nodes! |
| } else if (In1.isConstant() && In2.isConstant()) { |
| Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), |
| In2.getConstant()); |
| if (Result.isUndefined()) |
| Result.markConstant(V); |
| else if (Result.isConstant() && Result.getConstant() != V) { |
| Result.markOverdefined(); |
| break; |
| } |
| } |
| } |
| |
| // If we found a constant value here, then we know the instruction is |
| // constant despite the fact that the PHI nodes are overdefined. |
| if (Result.isConstant()) { |
| markConstant(IV, &I, Result.getConstant()); |
| // Remember that this instruction is virtually using the PHI node |
| // operands. |
| UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); |
| UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); |
| return; |
| } else if (Result.isUndefined()) { |
| return; |
| } |
| |
| // Okay, this really is overdefined now. Since we might have |
| // speculatively thought that this was not overdefined before, and |
| // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, |
| // make sure to clean out any entries that we put there, for |
| // efficiency. |
| std::multimap<PHINode*, Instruction*>::iterator It, E; |
| tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); |
| while (It != E) { |
| if (It->second == &I) { |
| UsersOfOverdefinedPHIs.erase(It++); |
| } else |
| ++It; |
| } |
| tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); |
| while (It != E) { |
| if (It->second == &I) { |
| UsersOfOverdefinedPHIs.erase(It++); |
| } else |
| ++It; |
| } |
| } |
| |
| markOverdefined(IV, &I); |
| } else if (V1State.isConstant() && V2State.isConstant()) { |
| markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), |
| V2State.getConstant())); |
| } |
| } |
| |
| // Handle getelementptr instructions... if all operands are constants then we |
| // can turn this into a getelementptr ConstantExpr. |
| // |
| void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { |
| LatticeVal &IV = ValueState[&I]; |
| if (IV.isOverdefined()) return; |
| |
| std::vector<Constant*> Operands; |
| Operands.reserve(I.getNumOperands()); |
| |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
| LatticeVal &State = getValueState(I.getOperand(i)); |
| if (State.isUndefined()) |
| return; // Operands are not resolved yet... |
| else if (State.isOverdefined()) { |
| markOverdefined(IV, &I); |
| return; |
| } |
| assert(State.isConstant() && "Unknown state!"); |
| Operands.push_back(State.getConstant()); |
| } |
| |
| Constant *Ptr = Operands[0]; |
| Operands.erase(Operands.begin()); // Erase the pointer from idx list... |
| |
| markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands)); |
| } |
| |
| /// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr, |
| /// return the constant value being addressed by the constant expression, or |
| /// null if something is funny. |
| /// |
| static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) { |
| if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType())) |
| return 0; // Do not allow stepping over the value! |
| |
| // Loop over all of the operands, tracking down which value we are |
| // addressing... |
| for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) |
| if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) { |
| ConstantStruct *CS = dyn_cast<ConstantStruct>(C); |
| if (CS == 0) return 0; |
| if (CU->getValue() >= CS->getNumOperands()) return 0; |
| C = CS->getOperand(CU->getValue()); |
| } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) { |
| ConstantArray *CA = dyn_cast<ConstantArray>(C); |
| if (CA == 0) return 0; |
| if ((uint64_t)CS->getValue() >= CA->getNumOperands()) return 0; |
| C = CA->getOperand(CS->getValue()); |
| } else |
| return 0; |
| return C; |
| } |
| |
| // Handle load instructions. If the operand is a constant pointer to a constant |
| // global, we can replace the load with the loaded constant value! |
| void SCCPSolver::visitLoadInst(LoadInst &I) { |
| LatticeVal &IV = ValueState[&I]; |
| if (IV.isOverdefined()) return; |
| |
| LatticeVal &PtrVal = getValueState(I.getOperand(0)); |
| if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! |
| if (PtrVal.isConstant() && !I.isVolatile()) { |
| Value *Ptr = PtrVal.getConstant(); |
| if (isa<ConstantPointerNull>(Ptr)) { |
| // load null -> null |
| markConstant(IV, &I, Constant::getNullValue(I.getType())); |
| return; |
| } |
| |
| // Transform load (constant global) into the value loaded. |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) |
| if (GV->isConstant() && !GV->isExternal()) { |
| markConstant(IV, &I, GV->getInitializer()); |
| return; |
| } |
| |
| // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) |
| if (CE->getOpcode() == Instruction::GetElementPtr) |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) |
| if (GV->isConstant() && !GV->isExternal()) |
| if (Constant *V = |
| GetGEPGlobalInitializer(GV->getInitializer(), CE)) { |
| markConstant(IV, &I, V); |
| return; |
| } |
| } |
| |
| // Otherwise we cannot say for certain what value this load will produce. |
| // Bail out. |
| markOverdefined(IV, &I); |
| } |
| |
| void SCCPSolver::visitCallInst(CallInst &I) { |
| LatticeVal &IV = ValueState[&I]; |
| if (IV.isOverdefined()) return; |
| |
| Function *F = I.getCalledFunction(); |
| if (F == 0 || !canConstantFoldCallTo(F)) { |
| markOverdefined(IV, &I); |
| return; |
| } |
| |
| std::vector<Constant*> Operands; |
| Operands.reserve(I.getNumOperands()-1); |
| |
| for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { |
| LatticeVal &State = getValueState(I.getOperand(i)); |
| if (State.isUndefined()) |
| return; // Operands are not resolved yet... |
| else if (State.isOverdefined()) { |
| markOverdefined(IV, &I); |
| return; |
| } |
| assert(State.isConstant() && "Unknown state!"); |
| Operands.push_back(State.getConstant()); |
| } |
| |
| if (Constant *C = ConstantFoldCall(F, Operands)) |
| markConstant(IV, &I, C); |
| else |
| markOverdefined(IV, &I); |
| } |
| |
| |
| void SCCPSolver::Solve() { |
| // Process the work lists until they are empty! |
| while (!BBWorkList.empty() || !InstWorkList.empty() || |
| !OverdefinedInstWorkList.empty()) { |
| // Process the instruction work list... |
| while (!OverdefinedInstWorkList.empty()) { |
| Instruction *I = OverdefinedInstWorkList.back(); |
| OverdefinedInstWorkList.pop_back(); |
| |
| DEBUG(std::cerr << "\nPopped off OI-WL: " << I); |
| |
| // "I" got into the work list because it either made the transition from |
| // bottom to constant |
| // |
| // Anything on this worklist that is overdefined need not be visited |
| // since all of its users will have already been marked as overdefined |
| // Update all of the users of this instruction's value... |
| // |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| UI != E; ++UI) |
| OperandChangedState(*UI); |
| } |
| // Process the instruction work list... |
| while (!InstWorkList.empty()) { |
| Instruction *I = InstWorkList.back(); |
| InstWorkList.pop_back(); |
| |
| DEBUG(std::cerr << "\nPopped off I-WL: " << *I); |
| |
| // "I" got into the work list because it either made the transition from |
| // bottom to constant |
| // |
| // Anything on this worklist that is overdefined need not be visited |
| // since all of its users will have already been marked as overdefined. |
| // Update all of the users of this instruction's value... |
| // |
| if (!getValueState(I).isOverdefined()) |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| UI != E; ++UI) |
| OperandChangedState(*UI); |
| } |
| |
| // Process the basic block work list... |
| while (!BBWorkList.empty()) { |
| BasicBlock *BB = BBWorkList.back(); |
| BBWorkList.pop_back(); |
| |
| DEBUG(std::cerr << "\nPopped off BBWL: " << *BB); |
| |
| // Notify all instructions in this basic block that they are newly |
| // executable. |
| visit(BB); |
| } |
| } |
| } |
| |
| |
| namespace { |
| //===--------------------------------------------------------------------===// |
| // |
| /// SCCP Class - This class uses the SCCPSolver to implement a per-function |
| /// Sparse Conditional COnstant Propagator. |
| /// |
| struct SCCP : public FunctionPass { |
| // runOnFunction - Run the Sparse Conditional Constant Propagation |
| // algorithm, and return true if the function was modified. |
| // |
| bool runOnFunction(Function &F); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| } |
| }; |
| |
| RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); |
| } // end anonymous namespace |
| |
| |
| // createSCCPPass - This is the public interface to this file... |
| FunctionPass *llvm::createSCCPPass() { |
| return new SCCP(); |
| } |
| |
| |
| // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, |
| // and return true if the function was modified. |
| // |
| bool SCCP::runOnFunction(Function &F) { |
| DEBUG(std::cerr << "SCCP on function '" << F.getName() << "'\n"); |
| SCCPSolver Solver; |
| |
| // Mark the first block of the function as being executable. |
| Solver.MarkBlockExecutable(F.begin()); |
| |
| // Mark all arguments to the function as being overdefined. |
| hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping(); |
| for (Function::aiterator AI = F.abegin(), E = F.aend(); AI != E; ++AI) |
| Values[AI].markOverdefined(); |
| |
| // Solve for constants. |
| Solver.Solve(); |
| |
| bool MadeChanges = false; |
| |
| // If we decided that there are basic blocks that are dead in this function, |
| // delete their contents now. Note that we cannot actually delete the blocks, |
| // as we cannot modify the CFG of the function. |
| // |
| std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks(); |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| if (!ExecutableBBs.count(BB)) { |
| DEBUG(std::cerr << " BasicBlock Dead:" << *BB); |
| ++NumDeadBlocks; |
| |
| // Delete the instructions backwards, as it has a reduced likelihood of |
| // having to update as many def-use and use-def chains. |
| std::vector<Instruction*> Insts; |
| for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); |
| I != E; ++I) |
| Insts.push_back(I); |
| while (!Insts.empty()) { |
| Instruction *I = Insts.back(); |
| Insts.pop_back(); |
| if (!I->use_empty()) |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| BB->getInstList().erase(I); |
| MadeChanges = true; |
| ++NumInstRemoved; |
| } |
| } |
| |
| // Iterate over all of the instructions in a function, replacing them with |
| // constants if we have found them to be of constant values. |
| // |
| for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) |
| for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { |
| Instruction *Inst = BI++; |
| if (Inst->getType() != Type::VoidTy) { |
| LatticeVal &IV = Values[Inst]; |
| if (IV.isConstant() || IV.isUndefined() && !isa<TerminatorInst>(Inst)) { |
| Constant *Const; |
| if (IV.isConstant()) { |
| Const = IV.getConstant(); |
| DEBUG(std::cerr << " Constant: " << *Const << " = " << *Inst); |
| } else { |
| Const = UndefValue::get(Inst->getType()); |
| DEBUG(std::cerr << " Undefined: " << *Inst); |
| } |
| |
| // Replaces all of the uses of a variable with uses of the constant. |
| Inst->replaceAllUsesWith(Const); |
| |
| // Delete the instruction. |
| BB->getInstList().erase(Inst); |
| |
| // Hey, we just changed something! |
| MadeChanges = true; |
| ++NumInstRemoved; |
| } |
| } |
| } |
| |
| return MadeChanges; |
| } |