| //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements routines for folding instructions into simpler forms |
| // that do not require creating new instructions. For example, this does |
| // constant folding, and can handle identities like (X&0)->0. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Instructions.h" |
| using namespace llvm; |
| |
| |
| /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can |
| /// fold the result. If not, this returns null. |
| Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| const TargetData *TD) { |
| if (Constant *CLHS = dyn_cast<Constant>(LHS)) |
| if (Constant *CRHS = dyn_cast<Constant>(RHS)) { |
| Constant *COps[] = {CLHS, CRHS}; |
| return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD); |
| } |
| return 0; |
| } |
| |
| static const Type *GetCompareTy(Value *Op) { |
| return CmpInst::makeCmpResultType(Op->getType()); |
| } |
| |
| |
| /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can |
| /// fold the result. If not, this returns null. |
| Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const TargetData *TD) { |
| CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; |
| assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); |
| |
| if (Constant *CLHS = dyn_cast<Constant>(LHS)) |
| if (Constant *CRHS = dyn_cast<Constant>(RHS)) |
| return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); |
| |
| // ITy - This is the return type of the compare we're considering. |
| const Type *ITy = GetCompareTy(LHS); |
| |
| // icmp X, X -> true/false |
| if (LHS == RHS) |
| return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); |
| |
| // If we have a constant, make sure it is on the RHS. |
| if (isa<Constant>(LHS)) { |
| std::swap(LHS, RHS); |
| Pred = CmpInst::getSwappedPredicate(Pred); |
| } |
| |
| if (isa<UndefValue>(RHS)) // X icmp undef -> undef |
| return UndefValue::get(ITy); |
| |
| // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value |
| // addresses never equal each other! We already know that Op0 != Op1. |
| if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) || |
| isa<ConstantPointerNull>(LHS)) && |
| (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) || |
| isa<ConstantPointerNull>(RHS))) |
| return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred)); |
| |
| // See if we are doing a comparison with a constant. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { |
| // If we have an icmp le or icmp ge instruction, turn it into the |
| // appropriate icmp lt or icmp gt instruction. This allows us to rely on |
| // them being folded in the code below. |
| switch (Pred) { |
| default: break; |
| case ICmpInst::ICMP_ULE: |
| if (CI->isMaxValue(false)) // A <=u MAX -> TRUE |
| return ConstantInt::getTrue(CI->getContext()); |
| break; |
| case ICmpInst::ICMP_SLE: |
| if (CI->isMaxValue(true)) // A <=s MAX -> TRUE |
| return ConstantInt::getTrue(CI->getContext()); |
| break; |
| case ICmpInst::ICMP_UGE: |
| if (CI->isMinValue(false)) // A >=u MIN -> TRUE |
| return ConstantInt::getTrue(CI->getContext()); |
| break; |
| case ICmpInst::ICMP_SGE: |
| if (CI->isMinValue(true)) // A >=s MIN -> TRUE |
| return ConstantInt::getTrue(CI->getContext()); |
| break; |
| } |
| |
| |
| } |
| |
| |
| return 0; |
| } |
| |
| /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can |
| /// fold the result. If not, this returns null. |
| Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const TargetData *TD) { |
| CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; |
| assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); |
| |
| if (Constant *CLHS = dyn_cast<Constant>(LHS)) |
| if (Constant *CRHS = dyn_cast<Constant>(RHS)) |
| return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); |
| |
| // Fold trivial predicates. |
| if (Pred == FCmpInst::FCMP_FALSE) |
| return ConstantInt::get(GetCompareTy(LHS), 0); |
| if (Pred == FCmpInst::FCMP_TRUE) |
| return ConstantInt::get(GetCompareTy(LHS), 1); |
| |
| // If we have a constant, make sure it is on the RHS. |
| if (isa<Constant>(LHS)) { |
| std::swap(LHS, RHS); |
| Pred = CmpInst::getSwappedPredicate(Pred); |
| } |
| |
| if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef |
| return UndefValue::get(GetCompareTy(LHS)); |
| |
| // fcmp x,x -> true/false. Not all compares are foldable. |
| if (LHS == RHS) { |
| if (CmpInst::isTrueWhenEqual(Pred)) |
| return ConstantInt::get(GetCompareTy(LHS), 1); |
| if (CmpInst::isFalseWhenEqual(Pred)) |
| return ConstantInt::get(GetCompareTy(LHS), 0); |
| } |
| |
| // Handle fcmp with constant RHS |
| if (Constant *RHSC = dyn_cast<Constant>(RHS)) { |
| // If the constant is a nan, see if we can fold the comparison based on it. |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { |
| if (CFP->getValueAPF().isNaN()) { |
| if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" |
| return ConstantInt::getFalse(CFP->getContext()); |
| assert(FCmpInst::isUnordered(Pred) && |
| "Comparison must be either ordered or unordered!"); |
| // True if unordered. |
| return ConstantInt::getTrue(CFP->getContext()); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| |
| /// SimplifyCmpInst - Given operands for a CmpInst, see if we can |
| /// fold the result. |
| Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const TargetData *TD) { |
| if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) |
| return SimplifyICmpInst(Predicate, LHS, RHS, TD); |
| return SimplifyFCmpInst(Predicate, LHS, RHS, TD); |
| } |
| |