| //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAG class. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/GlobalAlias.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include <algorithm> |
| #include <cmath> |
| using namespace llvm; |
| |
| /// makeVTList - Return an instance of the SDVTList struct initialized with the |
| /// specified members. |
| static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) { |
| SDVTList Res = {VTs, NumVTs}; |
| return Res; |
| } |
| |
| static const fltSemantics *MVTToAPFloatSemantics(MVT VT) { |
| switch (VT.getSimpleVT()) { |
| default: assert(0 && "Unknown FP format"); |
| case MVT::f32: return &APFloat::IEEEsingle; |
| case MVT::f64: return &APFloat::IEEEdouble; |
| case MVT::f80: return &APFloat::x87DoubleExtended; |
| case MVT::f128: return &APFloat::IEEEquad; |
| case MVT::ppcf128: return &APFloat::PPCDoubleDouble; |
| } |
| } |
| |
| SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {} |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantFPSDNode Class |
| //===----------------------------------------------------------------------===// |
| |
| /// isExactlyValue - We don't rely on operator== working on double values, as |
| /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
| /// As such, this method can be used to do an exact bit-for-bit comparison of |
| /// two floating point values. |
| bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { |
| return getValueAPF().bitwiseIsEqual(V); |
| } |
| |
| bool ConstantFPSDNode::isValueValidForType(MVT VT, |
| const APFloat& Val) { |
| assert(VT.isFloatingPoint() && "Can only convert between FP types"); |
| |
| // PPC long double cannot be converted to any other type. |
| if (VT == MVT::ppcf128 || |
| &Val.getSemantics() == &APFloat::PPCDoubleDouble) |
| return false; |
| |
| // convert modifies in place, so make a copy. |
| APFloat Val2 = APFloat(Val); |
| return Val2.convert(*MVTToAPFloatSemantics(VT), |
| APFloat::rmNearestTiesToEven) == APFloat::opOK; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ISD Namespace |
| //===----------------------------------------------------------------------===// |
| |
| /// isBuildVectorAllOnes - Return true if the specified node is a |
| /// BUILD_VECTOR where all of the elements are ~0 or undef. |
| bool ISD::isBuildVectorAllOnes(const SDNode *N) { |
| // Look through a bit convert. |
| if (N->getOpcode() == ISD::BIT_CONVERT) |
| N = N->getOperand(0).getNode(); |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) return false; |
| |
| unsigned i = 0, e = N->getNumOperands(); |
| |
| // Skip over all of the undef values. |
| while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) |
| ++i; |
| |
| // Do not accept an all-undef vector. |
| if (i == e) return false; |
| |
| // Do not accept build_vectors that aren't all constants or which have non-~0 |
| // elements. |
| SDValue NotZero = N->getOperand(i); |
| if (isa<ConstantSDNode>(NotZero)) { |
| if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue()) |
| return false; |
| } else if (isa<ConstantFPSDNode>(NotZero)) { |
| if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF(). |
| convertToAPInt().isAllOnesValue()) |
| return false; |
| } else |
| return false; |
| |
| // Okay, we have at least one ~0 value, check to see if the rest match or are |
| // undefs. |
| for (++i; i != e; ++i) |
| if (N->getOperand(i) != NotZero && |
| N->getOperand(i).getOpcode() != ISD::UNDEF) |
| return false; |
| return true; |
| } |
| |
| |
| /// isBuildVectorAllZeros - Return true if the specified node is a |
| /// BUILD_VECTOR where all of the elements are 0 or undef. |
| bool ISD::isBuildVectorAllZeros(const SDNode *N) { |
| // Look through a bit convert. |
| if (N->getOpcode() == ISD::BIT_CONVERT) |
| N = N->getOperand(0).getNode(); |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) return false; |
| |
| unsigned i = 0, e = N->getNumOperands(); |
| |
| // Skip over all of the undef values. |
| while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) |
| ++i; |
| |
| // Do not accept an all-undef vector. |
| if (i == e) return false; |
| |
| // Do not accept build_vectors that aren't all constants or which have non-~0 |
| // elements. |
| SDValue Zero = N->getOperand(i); |
| if (isa<ConstantSDNode>(Zero)) { |
| if (!cast<ConstantSDNode>(Zero)->isNullValue()) |
| return false; |
| } else if (isa<ConstantFPSDNode>(Zero)) { |
| if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero()) |
| return false; |
| } else |
| return false; |
| |
| // Okay, we have at least one ~0 value, check to see if the rest match or are |
| // undefs. |
| for (++i; i != e; ++i) |
| if (N->getOperand(i) != Zero && |
| N->getOperand(i).getOpcode() != ISD::UNDEF) |
| return false; |
| return true; |
| } |
| |
| /// isScalarToVector - Return true if the specified node is a |
| /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low |
| /// element is not an undef. |
| bool ISD::isScalarToVector(const SDNode *N) { |
| if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) |
| return true; |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| if (N->getOperand(0).getOpcode() == ISD::UNDEF) |
| return false; |
| unsigned NumElems = N->getNumOperands(); |
| for (unsigned i = 1; i < NumElems; ++i) { |
| SDValue V = N->getOperand(i); |
| if (V.getOpcode() != ISD::UNDEF) |
| return false; |
| } |
| return true; |
| } |
| |
| |
| /// isDebugLabel - Return true if the specified node represents a debug |
| /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node). |
| bool ISD::isDebugLabel(const SDNode *N) { |
| SDValue Zero; |
| if (N->getOpcode() == ISD::DBG_LABEL) |
| return true; |
| if (N->isMachineOpcode() && |
| N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL) |
| return true; |
| return false; |
| } |
| |
| /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) |
| /// when given the operation for (X op Y). |
| ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { |
| // To perform this operation, we just need to swap the L and G bits of the |
| // operation. |
| unsigned OldL = (Operation >> 2) & 1; |
| unsigned OldG = (Operation >> 1) & 1; |
| return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits |
| (OldL << 1) | // New G bit |
| (OldG << 2)); // New L bit. |
| } |
| |
| /// getSetCCInverse - Return the operation corresponding to !(X op Y), where |
| /// 'op' is a valid SetCC operation. |
| ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { |
| unsigned Operation = Op; |
| if (isInteger) |
| Operation ^= 7; // Flip L, G, E bits, but not U. |
| else |
| Operation ^= 15; // Flip all of the condition bits. |
| if (Operation > ISD::SETTRUE2) |
| Operation &= ~8; // Don't let N and U bits get set. |
| return ISD::CondCode(Operation); |
| } |
| |
| |
| /// isSignedOp - For an integer comparison, return 1 if the comparison is a |
| /// signed operation and 2 if the result is an unsigned comparison. Return zero |
| /// if the operation does not depend on the sign of the input (setne and seteq). |
| static int isSignedOp(ISD::CondCode Opcode) { |
| switch (Opcode) { |
| default: assert(0 && "Illegal integer setcc operation!"); |
| case ISD::SETEQ: |
| case ISD::SETNE: return 0; |
| case ISD::SETLT: |
| case ISD::SETLE: |
| case ISD::SETGT: |
| case ISD::SETGE: return 1; |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: return 2; |
| } |
| } |
| |
| /// getSetCCOrOperation - Return the result of a logical OR between different |
| /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function |
| /// returns SETCC_INVALID if it is not possible to represent the resultant |
| /// comparison. |
| ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, |
| bool isInteger) { |
| if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) |
| // Cannot fold a signed integer setcc with an unsigned integer setcc. |
| return ISD::SETCC_INVALID; |
| |
| unsigned Op = Op1 | Op2; // Combine all of the condition bits. |
| |
| // If the N and U bits get set then the resultant comparison DOES suddenly |
| // care about orderedness, and is true when ordered. |
| if (Op > ISD::SETTRUE2) |
| Op &= ~16; // Clear the U bit if the N bit is set. |
| |
| // Canonicalize illegal integer setcc's. |
| if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT |
| Op = ISD::SETNE; |
| |
| return ISD::CondCode(Op); |
| } |
| |
| /// getSetCCAndOperation - Return the result of a logical AND between different |
| /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This |
| /// function returns zero if it is not possible to represent the resultant |
| /// comparison. |
| ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, |
| bool isInteger) { |
| if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) |
| // Cannot fold a signed setcc with an unsigned setcc. |
| return ISD::SETCC_INVALID; |
| |
| // Combine all of the condition bits. |
| ISD::CondCode Result = ISD::CondCode(Op1 & Op2); |
| |
| // Canonicalize illegal integer setcc's. |
| if (isInteger) { |
| switch (Result) { |
| default: break; |
| case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT |
| case ISD::SETOEQ: // SETEQ & SETU[LG]E |
| case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE |
| case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE |
| case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE |
| } |
| } |
| |
| return Result; |
| } |
| |
| const TargetMachine &SelectionDAG::getTarget() const { |
| return MF->getTarget(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SDNode Profile Support |
| //===----------------------------------------------------------------------===// |
| |
| /// AddNodeIDOpcode - Add the node opcode to the NodeID data. |
| /// |
| static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { |
| ID.AddInteger(OpC); |
| } |
| |
| /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them |
| /// solely with their pointer. |
| static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { |
| ID.AddPointer(VTList.VTs); |
| } |
| |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. |
| /// |
| static void AddNodeIDOperands(FoldingSetNodeID &ID, |
| const SDValue *Ops, unsigned NumOps) { |
| for (; NumOps; --NumOps, ++Ops) { |
| ID.AddPointer(Ops->getNode()); |
| ID.AddInteger(Ops->getResNo()); |
| } |
| } |
| |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. |
| /// |
| static void AddNodeIDOperands(FoldingSetNodeID &ID, |
| const SDUse *Ops, unsigned NumOps) { |
| for (; NumOps; --NumOps, ++Ops) { |
| ID.AddPointer(Ops->getVal()); |
| ID.AddInteger(Ops->getSDValue().getResNo()); |
| } |
| } |
| |
| static void AddNodeIDNode(FoldingSetNodeID &ID, |
| unsigned short OpC, SDVTList VTList, |
| const SDValue *OpList, unsigned N) { |
| AddNodeIDOpcode(ID, OpC); |
| AddNodeIDValueTypes(ID, VTList); |
| AddNodeIDOperands(ID, OpList, N); |
| } |
| |
| |
| /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID |
| /// data. |
| static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { |
| AddNodeIDOpcode(ID, N->getOpcode()); |
| // Add the return value info. |
| AddNodeIDValueTypes(ID, N->getVTList()); |
| // Add the operand info. |
| AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands()); |
| |
| // Handle SDNode leafs with special info. |
| switch (N->getOpcode()) { |
| default: break; // Normal nodes don't need extra info. |
| case ISD::ARG_FLAGS: |
| ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits()); |
| break; |
| case ISD::TargetConstant: |
| case ISD::Constant: |
| ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue()); |
| break; |
| case ISD::TargetConstantFP: |
| case ISD::ConstantFP: { |
| ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); |
| break; |
| } |
| case ISD::TargetGlobalAddress: |
| case ISD::GlobalAddress: |
| case ISD::TargetGlobalTLSAddress: |
| case ISD::GlobalTLSAddress: { |
| const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); |
| ID.AddPointer(GA->getGlobal()); |
| ID.AddInteger(GA->getOffset()); |
| break; |
| } |
| case ISD::BasicBlock: |
| ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); |
| break; |
| case ISD::Register: |
| ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); |
| break; |
| case ISD::DBG_STOPPOINT: { |
| const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N); |
| ID.AddInteger(DSP->getLine()); |
| ID.AddInteger(DSP->getColumn()); |
| ID.AddPointer(DSP->getCompileUnit()); |
| break; |
| } |
| case ISD::SRCVALUE: |
| ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); |
| break; |
| case ISD::MEMOPERAND: { |
| const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO; |
| MO.Profile(ID); |
| break; |
| } |
| case ISD::FrameIndex: |
| case ISD::TargetFrameIndex: |
| ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); |
| break; |
| case ISD::JumpTable: |
| case ISD::TargetJumpTable: |
| ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); |
| break; |
| case ISD::ConstantPool: |
| case ISD::TargetConstantPool: { |
| const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); |
| ID.AddInteger(CP->getAlignment()); |
| ID.AddInteger(CP->getOffset()); |
| if (CP->isMachineConstantPoolEntry()) |
| CP->getMachineCPVal()->AddSelectionDAGCSEId(ID); |
| else |
| ID.AddPointer(CP->getConstVal()); |
| break; |
| } |
| case ISD::CALL: { |
| const CallSDNode *Call = cast<CallSDNode>(N); |
| ID.AddInteger(Call->getCallingConv()); |
| ID.AddInteger(Call->isVarArg()); |
| break; |
| } |
| case ISD::LOAD: { |
| const LoadSDNode *LD = cast<LoadSDNode>(N); |
| ID.AddInteger(LD->getAddressingMode()); |
| ID.AddInteger(LD->getExtensionType()); |
| ID.AddInteger(LD->getMemoryVT().getRawBits()); |
| ID.AddInteger(LD->getRawFlags()); |
| break; |
| } |
| case ISD::STORE: { |
| const StoreSDNode *ST = cast<StoreSDNode>(N); |
| ID.AddInteger(ST->getAddressingMode()); |
| ID.AddInteger(ST->isTruncatingStore()); |
| ID.AddInteger(ST->getMemoryVT().getRawBits()); |
| ID.AddInteger(ST->getRawFlags()); |
| break; |
| } |
| case ISD::ATOMIC_CMP_SWAP_8: |
| case ISD::ATOMIC_SWAP_8: |
| case ISD::ATOMIC_LOAD_ADD_8: |
| case ISD::ATOMIC_LOAD_SUB_8: |
| case ISD::ATOMIC_LOAD_AND_8: |
| case ISD::ATOMIC_LOAD_OR_8: |
| case ISD::ATOMIC_LOAD_XOR_8: |
| case ISD::ATOMIC_LOAD_NAND_8: |
| case ISD::ATOMIC_LOAD_MIN_8: |
| case ISD::ATOMIC_LOAD_MAX_8: |
| case ISD::ATOMIC_LOAD_UMIN_8: |
| case ISD::ATOMIC_LOAD_UMAX_8: |
| case ISD::ATOMIC_CMP_SWAP_16: |
| case ISD::ATOMIC_SWAP_16: |
| case ISD::ATOMIC_LOAD_ADD_16: |
| case ISD::ATOMIC_LOAD_SUB_16: |
| case ISD::ATOMIC_LOAD_AND_16: |
| case ISD::ATOMIC_LOAD_OR_16: |
| case ISD::ATOMIC_LOAD_XOR_16: |
| case ISD::ATOMIC_LOAD_NAND_16: |
| case ISD::ATOMIC_LOAD_MIN_16: |
| case ISD::ATOMIC_LOAD_MAX_16: |
| case ISD::ATOMIC_LOAD_UMIN_16: |
| case ISD::ATOMIC_LOAD_UMAX_16: |
| case ISD::ATOMIC_CMP_SWAP_32: |
| case ISD::ATOMIC_SWAP_32: |
| case ISD::ATOMIC_LOAD_ADD_32: |
| case ISD::ATOMIC_LOAD_SUB_32: |
| case ISD::ATOMIC_LOAD_AND_32: |
| case ISD::ATOMIC_LOAD_OR_32: |
| case ISD::ATOMIC_LOAD_XOR_32: |
| case ISD::ATOMIC_LOAD_NAND_32: |
| case ISD::ATOMIC_LOAD_MIN_32: |
| case ISD::ATOMIC_LOAD_MAX_32: |
| case ISD::ATOMIC_LOAD_UMIN_32: |
| case ISD::ATOMIC_LOAD_UMAX_32: |
| case ISD::ATOMIC_CMP_SWAP_64: |
| case ISD::ATOMIC_SWAP_64: |
| case ISD::ATOMIC_LOAD_ADD_64: |
| case ISD::ATOMIC_LOAD_SUB_64: |
| case ISD::ATOMIC_LOAD_AND_64: |
| case ISD::ATOMIC_LOAD_OR_64: |
| case ISD::ATOMIC_LOAD_XOR_64: |
| case ISD::ATOMIC_LOAD_NAND_64: |
| case ISD::ATOMIC_LOAD_MIN_64: |
| case ISD::ATOMIC_LOAD_MAX_64: |
| case ISD::ATOMIC_LOAD_UMIN_64: |
| case ISD::ATOMIC_LOAD_UMAX_64: { |
| const AtomicSDNode *AT = cast<AtomicSDNode>(N); |
| ID.AddInteger(AT->getRawFlags()); |
| break; |
| } |
| } // end switch (N->getOpcode()) |
| } |
| |
| /// encodeMemSDNodeFlags - Generic routine for computing a value for use in |
| /// the CSE map that carries both alignment and volatility information. |
| /// |
| static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) { |
| return isVolatile | ((Log2_32(Alignment) + 1) << 1); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAG Class |
| //===----------------------------------------------------------------------===// |
| |
| /// RemoveDeadNodes - This method deletes all unreachable nodes in the |
| /// SelectionDAG. |
| void SelectionDAG::RemoveDeadNodes() { |
| // Create a dummy node (which is not added to allnodes), that adds a reference |
| // to the root node, preventing it from being deleted. |
| HandleSDNode Dummy(getRoot()); |
| |
| SmallVector<SDNode*, 128> DeadNodes; |
| |
| // Add all obviously-dead nodes to the DeadNodes worklist. |
| for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) |
| if (I->use_empty()) |
| DeadNodes.push_back(I); |
| |
| RemoveDeadNodes(DeadNodes); |
| |
| // If the root changed (e.g. it was a dead load, update the root). |
| setRoot(Dummy.getValue()); |
| } |
| |
| /// RemoveDeadNodes - This method deletes the unreachable nodes in the |
| /// given list, and any nodes that become unreachable as a result. |
| void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes, |
| DAGUpdateListener *UpdateListener) { |
| |
| // Process the worklist, deleting the nodes and adding their uses to the |
| // worklist. |
| while (!DeadNodes.empty()) { |
| SDNode *N = DeadNodes.back(); |
| DeadNodes.pop_back(); |
| |
| if (UpdateListener) |
| UpdateListener->NodeDeleted(N, 0); |
| |
| // Take the node out of the appropriate CSE map. |
| RemoveNodeFromCSEMaps(N); |
| |
| // Next, brutally remove the operand list. This is safe to do, as there are |
| // no cycles in the graph. |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { |
| SDNode *Operand = I->getVal(); |
| Operand->removeUser(std::distance(N->op_begin(), I), N); |
| |
| // Now that we removed this operand, see if there are no uses of it left. |
| if (Operand->use_empty()) |
| DeadNodes.push_back(Operand); |
| } |
| if (N->OperandsNeedDelete) { |
| delete[] N->OperandList; |
| } |
| N->OperandList = 0; |
| N->NumOperands = 0; |
| |
| // Finally, remove N itself. |
| NodeAllocator.Deallocate(AllNodes.remove(N)); |
| } |
| } |
| |
| void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){ |
| SmallVector<SDNode*, 16> DeadNodes(1, N); |
| RemoveDeadNodes(DeadNodes, UpdateListener); |
| } |
| |
| void SelectionDAG::DeleteNode(SDNode *N) { |
| assert(N->use_empty() && "Cannot delete a node that is not dead!"); |
| |
| // First take this out of the appropriate CSE map. |
| RemoveNodeFromCSEMaps(N); |
| |
| // Finally, remove uses due to operands of this node, remove from the |
| // AllNodes list, and delete the node. |
| DeleteNodeNotInCSEMaps(N); |
| } |
| |
| void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { |
| |
| // Drop all of the operands and decrement used node's use counts. |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) |
| I->getVal()->removeUser(std::distance(N->op_begin(), I), N); |
| if (N->OperandsNeedDelete) |
| delete[] N->OperandList; |
| |
| assert(N != AllNodes.begin()); |
| NodeAllocator.Deallocate(AllNodes.remove(N)); |
| } |
| |
| /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that |
| /// correspond to it. This is useful when we're about to delete or repurpose |
| /// the node. We don't want future request for structurally identical nodes |
| /// to return N anymore. |
| bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { |
| bool Erased = false; |
| switch (N->getOpcode()) { |
| case ISD::EntryToken: |
| assert(0 && "EntryToken should not be in CSEMaps!"); |
| return false; |
| case ISD::HANDLENODE: return false; // noop. |
| case ISD::CONDCODE: |
| assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && |
| "Cond code doesn't exist!"); |
| Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0; |
| CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0; |
| break; |
| case ISD::ExternalSymbol: |
| Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); |
| break; |
| case ISD::TargetExternalSymbol: |
| Erased = |
| TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); |
| break; |
| case ISD::VALUETYPE: { |
| MVT VT = cast<VTSDNode>(N)->getVT(); |
| if (VT.isExtended()) { |
| Erased = ExtendedValueTypeNodes.erase(VT); |
| } else { |
| Erased = ValueTypeNodes[VT.getSimpleVT()] != 0; |
| ValueTypeNodes[VT.getSimpleVT()] = 0; |
| } |
| break; |
| } |
| default: |
| // Remove it from the CSE Map. |
| Erased = CSEMap.RemoveNode(N); |
| break; |
| } |
| #ifndef NDEBUG |
| // Verify that the node was actually in one of the CSE maps, unless it has a |
| // flag result (which cannot be CSE'd) or is one of the special cases that are |
| // not subject to CSE. |
| if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag && |
| !N->isMachineOpcode() && |
| N->getOpcode() != ISD::DBG_LABEL && |
| N->getOpcode() != ISD::DBG_STOPPOINT && |
| N->getOpcode() != ISD::EH_LABEL && |
| N->getOpcode() != ISD::DECLARE) { |
| N->dump(this); |
| cerr << "\n"; |
| assert(0 && "Node is not in map!"); |
| } |
| #endif |
| return Erased; |
| } |
| |
| /// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It |
| /// has been taken out and modified in some way. If the specified node already |
| /// exists in the CSE maps, do not modify the maps, but return the existing node |
| /// instead. If it doesn't exist, add it and return null. |
| /// |
| SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) { |
| assert(N->getNumOperands() && "This is a leaf node!"); |
| |
| if (N->getValueType(0) == MVT::Flag) |
| return 0; // Never CSE anything that produces a flag. |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::HANDLENODE: |
| case ISD::DBG_LABEL: |
| case ISD::DBG_STOPPOINT: |
| case ISD::EH_LABEL: |
| case ISD::DECLARE: |
| return 0; // Never add these nodes. |
| } |
| |
| // Check that remaining values produced are not flags. |
| for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) |
| if (N->getValueType(i) == MVT::Flag) |
| return 0; // Never CSE anything that produces a flag. |
| |
| SDNode *New = CSEMap.GetOrInsertNode(N); |
| if (New != N) return New; // Node already existed. |
| return 0; |
| } |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, |
| void *&InsertPos) { |
| if (N->getValueType(0) == MVT::Flag) |
| return 0; // Never CSE anything that produces a flag. |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::HANDLENODE: |
| case ISD::DBG_LABEL: |
| case ISD::DBG_STOPPOINT: |
| case ISD::EH_LABEL: |
| return 0; // Never add these nodes. |
| } |
| |
| // Check that remaining values produced are not flags. |
| for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) |
| if (N->getValueType(i) == MVT::Flag) |
| return 0; // Never CSE anything that produces a flag. |
| |
| SDValue Ops[] = { Op }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1); |
| return CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, |
| SDValue Op1, SDValue Op2, |
| void *&InsertPos) { |
| if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) |
| |
| // Check that remaining values produced are not flags. |
| for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) |
| if (N->getValueType(i) == MVT::Flag) |
| return 0; // Never CSE anything that produces a flag. |
| |
| SDValue Ops[] = { Op1, Op2 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2); |
| return CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands |
| /// were replaced with those specified. If this node is never memoized, |
| /// return null, otherwise return a pointer to the slot it would take. If a |
| /// node already exists with these operands, the slot will be non-null. |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, |
| const SDValue *Ops,unsigned NumOps, |
| void *&InsertPos) { |
| if (N->getValueType(0) == MVT::Flag) |
| return 0; // Never CSE anything that produces a flag. |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::HANDLENODE: |
| case ISD::DBG_LABEL: |
| case ISD::DBG_STOPPOINT: |
| case ISD::EH_LABEL: |
| case ISD::DECLARE: |
| return 0; // Never add these nodes. |
| } |
| |
| // Check that remaining values produced are not flags. |
| for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) |
| if (N->getValueType(i) == MVT::Flag) |
| return 0; // Never CSE anything that produces a flag. |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps); |
| |
| if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| ID.AddInteger(LD->getAddressingMode()); |
| ID.AddInteger(LD->getExtensionType()); |
| ID.AddInteger(LD->getMemoryVT().getRawBits()); |
| ID.AddInteger(LD->getRawFlags()); |
| } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| ID.AddInteger(ST->getAddressingMode()); |
| ID.AddInteger(ST->isTruncatingStore()); |
| ID.AddInteger(ST->getMemoryVT().getRawBits()); |
| ID.AddInteger(ST->getRawFlags()); |
| } |
| |
| return CSEMap.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| /// VerifyNode - Sanity check the given node. Aborts if it is invalid. |
| void SelectionDAG::VerifyNode(SDNode *N) { |
| switch (N->getOpcode()) { |
| default: |
| break; |
| case ISD::BUILD_VECTOR: { |
| assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!"); |
| assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!"); |
| assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && |
| "Wrong number of BUILD_VECTOR operands!"); |
| MVT EltVT = N->getValueType(0).getVectorElementType(); |
| for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) |
| assert(I->getSDValue().getValueType() == EltVT && |
| "Wrong BUILD_VECTOR operand type!"); |
| break; |
| } |
| } |
| } |
| |
| /// getMVTAlignment - Compute the default alignment value for the |
| /// given type. |
| /// |
| unsigned SelectionDAG::getMVTAlignment(MVT VT) const { |
| const Type *Ty = VT == MVT::iPTR ? |
| PointerType::get(Type::Int8Ty, 0) : |
| VT.getTypeForMVT(); |
| |
| return TLI.getTargetData()->getABITypeAlignment(Ty); |
| } |
| |
| SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli) |
| : TLI(tli), FLI(fli), |
| EntryNode(ISD::EntryToken, getVTList(MVT::Other)), |
| Root(getEntryNode()) { |
| AllNodes.push_back(&EntryNode); |
| } |
| |
| void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) { |
| MF = &mf; |
| MMI = mmi; |
| } |
| |
| SelectionDAG::~SelectionDAG() { |
| allnodes_clear(); |
| } |
| |
| void SelectionDAG::allnodes_clear() { |
| assert(&*AllNodes.begin() == &EntryNode); |
| AllNodes.remove(AllNodes.begin()); |
| while (!AllNodes.empty()) { |
| SDNode *N = AllNodes.remove(AllNodes.begin()); |
| N->SetNextInBucket(0); |
| if (N->OperandsNeedDelete) |
| delete [] N->OperandList; |
| NodeAllocator.Deallocate(N); |
| } |
| } |
| |
| void SelectionDAG::clear() { |
| allnodes_clear(); |
| OperandAllocator.Reset(); |
| CSEMap.clear(); |
| |
| ExtendedValueTypeNodes.clear(); |
| ExternalSymbols.clear(); |
| TargetExternalSymbols.clear(); |
| std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), |
| static_cast<CondCodeSDNode*>(0)); |
| std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), |
| static_cast<SDNode*>(0)); |
| |
| EntryNode.Uses = 0; |
| AllNodes.push_back(&EntryNode); |
| Root = getEntryNode(); |
| } |
| |
| SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) { |
| if (Op.getValueType() == VT) return Op; |
| APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(), |
| VT.getSizeInBits()); |
| return getNode(ISD::AND, Op.getValueType(), Op, |
| getConstant(Imm, Op.getValueType())); |
| } |
| |
| SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) { |
| MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; |
| return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT); |
| } |
| |
| SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) { |
| return getConstant(*ConstantInt::get(Val), VT, isT); |
| } |
| |
| SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) { |
| assert(VT.isInteger() && "Cannot create FP integer constant!"); |
| |
| MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; |
| assert(Val.getBitWidth() == EltVT.getSizeInBits() && |
| "APInt size does not match type size!"); |
| |
| unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0); |
| ID.AddPointer(&Val); |
| void *IP = 0; |
| SDNode *N = NULL; |
| if ((N = CSEMap.FindNodeOrInsertPos(ID, IP))) |
| if (!VT.isVector()) |
| return SDValue(N, 0); |
| if (!N) { |
| N = NodeAllocator.Allocate<ConstantSDNode>(); |
| new (N) ConstantSDNode(isT, &Val, EltVT); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| } |
| |
| SDValue Result(N, 0); |
| if (VT.isVector()) { |
| SmallVector<SDValue, 8> Ops; |
| Ops.assign(VT.getVectorNumElements(), Result); |
| Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); |
| } |
| return Result; |
| } |
| |
| SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) { |
| return getConstant(Val, TLI.getPointerTy(), isTarget); |
| } |
| |
| |
| SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) { |
| return getConstantFP(*ConstantFP::get(V), VT, isTarget); |
| } |
| |
| SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){ |
| assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); |
| |
| MVT EltVT = |
| VT.isVector() ? VT.getVectorElementType() : VT; |
| |
| // Do the map lookup using the actual bit pattern for the floating point |
| // value, so that we don't have problems with 0.0 comparing equal to -0.0, and |
| // we don't have issues with SNANs. |
| unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0); |
| ID.AddPointer(&V); |
| void *IP = 0; |
| SDNode *N = NULL; |
| if ((N = CSEMap.FindNodeOrInsertPos(ID, IP))) |
| if (!VT.isVector()) |
| return SDValue(N, 0); |
| if (!N) { |
| N = NodeAllocator.Allocate<ConstantFPSDNode>(); |
| new (N) ConstantFPSDNode(isTarget, &V, EltVT); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| } |
| |
| SDValue Result(N, 0); |
| if (VT.isVector()) { |
| SmallVector<SDValue, 8> Ops; |
| Ops.assign(VT.getVectorNumElements(), Result); |
| Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); |
| } |
| return Result; |
| } |
| |
| SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) { |
| MVT EltVT = |
| VT.isVector() ? VT.getVectorElementType() : VT; |
| if (EltVT==MVT::f32) |
| return getConstantFP(APFloat((float)Val), VT, isTarget); |
| else |
| return getConstantFP(APFloat(Val), VT, isTarget); |
| } |
| |
| SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, |
| MVT VT, int Offset, |
| bool isTargetGA) { |
| unsigned Opc; |
| |
| const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); |
| if (!GVar) { |
| // If GV is an alias then use the aliasee for determining thread-localness. |
| if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) |
| GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false)); |
| } |
| |
| if (GVar && GVar->isThreadLocal()) |
| Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; |
| else |
| Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddPointer(GV); |
| ID.AddInteger(Offset); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>(); |
| new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) { |
| unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(FI); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>(); |
| new (N) FrameIndexSDNode(FI, VT, isTarget); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){ |
| unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(JTI); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>(); |
| new (N) JumpTableSDNode(JTI, VT, isTarget); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT, |
| unsigned Alignment, int Offset, |
| bool isTarget) { |
| if (Alignment == 0) |
| Alignment = |
| TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType()); |
| unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(Offset); |
| ID.AddPointer(C); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>(); |
| new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| |
| SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT, |
| unsigned Alignment, int Offset, |
| bool isTarget) { |
| if (Alignment == 0) |
| Alignment = |
| TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType()); |
| unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); |
| ID.AddInteger(Alignment); |
| ID.AddInteger(Offset); |
| C->AddSelectionDAGCSEId(ID); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>(); |
| new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| |
| SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0); |
| ID.AddPointer(MBB); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>(); |
| new (N) BasicBlockSDNode(MBB); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0); |
| ID.AddInteger(Flags.getRawBits()); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>(); |
| new (N) ARG_FLAGSSDNode(Flags); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getValueType(MVT VT) { |
| if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size()) |
| ValueTypeNodes.resize(VT.getSimpleVT()+1); |
| |
| SDNode *&N = VT.isExtended() ? |
| ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()]; |
| |
| if (N) return SDValue(N, 0); |
| N = NodeAllocator.Allocate<VTSDNode>(); |
| new (N) VTSDNode(VT); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) { |
| SDNode *&N = ExternalSymbols[Sym]; |
| if (N) return SDValue(N, 0); |
| N = NodeAllocator.Allocate<ExternalSymbolSDNode>(); |
| new (N) ExternalSymbolSDNode(false, Sym, VT); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) { |
| SDNode *&N = TargetExternalSymbols[Sym]; |
| if (N) return SDValue(N, 0); |
| N = NodeAllocator.Allocate<ExternalSymbolSDNode>(); |
| new (N) ExternalSymbolSDNode(true, Sym, VT); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { |
| if ((unsigned)Cond >= CondCodeNodes.size()) |
| CondCodeNodes.resize(Cond+1); |
| |
| if (CondCodeNodes[Cond] == 0) { |
| CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>(); |
| new (N) CondCodeSDNode(Cond); |
| CondCodeNodes[Cond] = N; |
| AllNodes.push_back(N); |
| } |
| return SDValue(CondCodeNodes[Cond], 0); |
| } |
| |
| SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0); |
| ID.AddInteger(RegNo); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<RegisterSDNode>(); |
| new (N) RegisterSDNode(RegNo, VT); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getDbgStopPoint(SDValue Root, |
| unsigned Line, unsigned Col, |
| const CompileUnitDesc *CU) { |
| SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>(); |
| new (N) DbgStopPointSDNode(Root, Line, Col, CU); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getLabel(unsigned Opcode, |
| SDValue Root, |
| unsigned LabelID) { |
| FoldingSetNodeID ID; |
| SDValue Ops[] = { Root }; |
| AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1); |
| ID.AddInteger(LabelID); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<LabelSDNode>(); |
| new (N) LabelSDNode(Opcode, Root, LabelID); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getSrcValue(const Value *V) { |
| assert((!V || isa<PointerType>(V->getType())) && |
| "SrcValue is not a pointer?"); |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0); |
| ID.AddPointer(V); |
| |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>(); |
| new (N) SrcValueSDNode(V); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) { |
| const Value *v = MO.getValue(); |
| assert((!v || isa<PointerType>(v->getType())) && |
| "SrcValue is not a pointer?"); |
| |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0); |
| MO.Profile(ID); |
| |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| |
| SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>(); |
| new (N) MemOperandSDNode(MO); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| /// CreateStackTemporary - Create a stack temporary, suitable for holding the |
| /// specified value type. |
| SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) { |
| MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo(); |
| unsigned ByteSize = VT.getSizeInBits()/8; |
| const Type *Ty = VT.getTypeForMVT(); |
| unsigned StackAlign = |
| std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign); |
| |
| int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign); |
| return getFrameIndex(FrameIdx, TLI.getPointerTy()); |
| } |
| |
| SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1, |
| SDValue N2, ISD::CondCode Cond) { |
| // These setcc operations always fold. |
| switch (Cond) { |
| default: break; |
| case ISD::SETFALSE: |
| case ISD::SETFALSE2: return getConstant(0, VT); |
| case ISD::SETTRUE: |
| case ISD::SETTRUE2: return getConstant(1, VT); |
| |
| case ISD::SETOEQ: |
| case ISD::SETOGT: |
| case ISD::SETOGE: |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETONE: |
| case ISD::SETO: |
| case ISD::SETUO: |
| case ISD::SETUEQ: |
| case ISD::SETUNE: |
| assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); |
| break; |
| } |
| |
| if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) { |
| const APInt &C2 = N2C->getAPIntValue(); |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { |
| const APInt &C1 = N1C->getAPIntValue(); |
| |
| switch (Cond) { |
| default: assert(0 && "Unknown integer setcc!"); |
| case ISD::SETEQ: return getConstant(C1 == C2, VT); |
| case ISD::SETNE: return getConstant(C1 != C2, VT); |
| case ISD::SETULT: return getConstant(C1.ult(C2), VT); |
| case ISD::SETUGT: return getConstant(C1.ugt(C2), VT); |
| case ISD::SETULE: return getConstant(C1.ule(C2), VT); |
| case ISD::SETUGE: return getConstant(C1.uge(C2), VT); |
| case ISD::SETLT: return getConstant(C1.slt(C2), VT); |
| case ISD::SETGT: return getConstant(C1.sgt(C2), VT); |
| case ISD::SETLE: return getConstant(C1.sle(C2), VT); |
| case ISD::SETGE: return getConstant(C1.sge(C2), VT); |
| } |
| } |
| } |
| if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) { |
| if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) { |
| // No compile time operations on this type yet. |
| if (N1C->getValueType(0) == MVT::ppcf128) |
| return SDValue(); |
| |
| APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); |
| switch (Cond) { |
| default: break; |
| case ISD::SETEQ: if (R==APFloat::cmpUnordered) |
| return getNode(ISD::UNDEF, VT); |
| // fall through |
| case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT); |
| case ISD::SETNE: if (R==APFloat::cmpUnordered) |
| return getNode(ISD::UNDEF, VT); |
| // fall through |
| case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || |
| R==APFloat::cmpLessThan, VT); |
| case ISD::SETLT: if (R==APFloat::cmpUnordered) |
| return getNode(ISD::UNDEF, VT); |
| // fall through |
| case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT); |
| case ISD::SETGT: if (R==APFloat::cmpUnordered) |
| return getNode(ISD::UNDEF, VT); |
| // fall through |
| case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT); |
| case ISD::SETLE: if (R==APFloat::cmpUnordered) |
| return getNode(ISD::UNDEF, VT); |
| // fall through |
| case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || |
| R==APFloat::cmpEqual, VT); |
| case ISD::SETGE: if (R==APFloat::cmpUnordered) |
| return getNode(ISD::UNDEF, VT); |
| // fall through |
| case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || |
| R==APFloat::cmpEqual, VT); |
| case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT); |
| case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT); |
| case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || |
| R==APFloat::cmpEqual, VT); |
| case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT); |
| case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || |
| R==APFloat::cmpLessThan, VT); |
| case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || |
| R==APFloat::cmpUnordered, VT); |
| case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT); |
| case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT); |
| } |
| } else { |
| // Ensure that the constant occurs on the RHS. |
| return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); |
| } |
| } |
| |
| // Could not fold it. |
| return SDValue(); |
| } |
| |
| /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We |
| /// use this predicate to simplify operations downstream. |
| bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { |
| unsigned BitWidth = Op.getValueSizeInBits(); |
| return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); |
| } |
| |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| /// this predicate to simplify operations downstream. Mask is known to be zero |
| /// for bits that V cannot have. |
| bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, |
| unsigned Depth) const { |
| APInt KnownZero, KnownOne; |
| ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| return (KnownZero & Mask) == Mask; |
| } |
| |
| /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| /// known to be either zero or one and return them in the KnownZero/KnownOne |
| /// bitsets. This code only analyzes bits in Mask, in order to short-circuit |
| /// processing. |
| void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask, |
| APInt &KnownZero, APInt &KnownOne, |
| unsigned Depth) const { |
| unsigned BitWidth = Mask.getBitWidth(); |
| assert(BitWidth == Op.getValueType().getSizeInBits() && |
| "Mask size mismatches value type size!"); |
| |
| KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. |
| if (Depth == 6 || Mask == 0) |
| return; // Limit search depth. |
| |
| APInt KnownZero2, KnownOne2; |
| |
| switch (Op.getOpcode()) { |
| case ISD::Constant: |
| // We know all of the bits for a constant! |
| KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask; |
| KnownZero = ~KnownOne & Mask; |
| return; |
| case ISD::AND: |
| // If either the LHS or the RHS are Zero, the result is zero. |
| ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero, |
| KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Output known-1 bits are only known if set in both the LHS & RHS. |
| KnownOne &= KnownOne2; |
| // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| KnownZero |= KnownZero2; |
| return; |
| case ISD::OR: |
| ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne, |
| KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Output known-0 bits are only known if clear in both the LHS & RHS. |
| KnownZero &= KnownZero2; |
| // Output known-1 are known to be set if set in either the LHS | RHS. |
| KnownOne |= KnownOne2; |
| return; |
| case ISD::XOR: { |
| ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| KnownZero = KnownZeroOut; |
| return; |
| } |
| case ISD::MUL: { |
| APInt Mask2 = APInt::getAllOnesValue(BitWidth); |
| ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // If low bits are zero in either operand, output low known-0 bits. |
| // Also compute a conserative estimate for high known-0 bits. |
| // More trickiness is possible, but this is sufficient for the |
| // interesting case of alignment computation. |
| KnownOne.clear(); |
| unsigned TrailZ = KnownZero.countTrailingOnes() + |
| KnownZero2.countTrailingOnes(); |
| unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + |
| KnownZero2.countLeadingOnes(), |
| BitWidth) - BitWidth; |
| |
| TrailZ = std::min(TrailZ, BitWidth); |
| LeadZ = std::min(LeadZ, BitWidth); |
| KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | |
| APInt::getHighBitsSet(BitWidth, LeadZ); |
| KnownZero &= Mask; |
| return; |
| } |
| case ISD::UDIV: { |
| // For the purposes of computing leading zeros we can conservatively |
| // treat a udiv as a logical right shift by the power of 2 known to |
| // be less than the denominator. |
| APInt AllOnes = APInt::getAllOnesValue(BitWidth); |
| ComputeMaskedBits(Op.getOperand(0), |
| AllOnes, KnownZero2, KnownOne2, Depth+1); |
| unsigned LeadZ = KnownZero2.countLeadingOnes(); |
| |
| KnownOne2.clear(); |
| KnownZero2.clear(); |
| ComputeMaskedBits(Op.getOperand(1), |
| AllOnes, KnownZero2, KnownOne2, Depth+1); |
| unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); |
| if (RHSUnknownLeadingOnes != BitWidth) |
| LeadZ = std::min(BitWidth, |
| LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); |
| |
| KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; |
| return; |
| } |
| case ISD::SELECT: |
| ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Only known if known in both the LHS and RHS. |
| KnownOne &= KnownOne2; |
| KnownZero &= KnownZero2; |
| return; |
| case ISD::SELECT_CC: |
| ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); |
| ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| |
| // Only known if known in both the LHS and RHS. |
| KnownOne &= KnownOne2; |
| KnownZero &= KnownZero2; |
| return; |
| case ISD::SETCC: |
| // If we know the result of a setcc has the top bits zero, use this info. |
| if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult && |
| BitWidth > 1) |
| KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); |
| return; |
| case ISD::SHL: |
| // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| unsigned ShAmt = SA->getZExtValue(); |
| |
| // If the shift count is an invalid immediate, don't do anything. |
| if (ShAmt >= BitWidth) |
| return; |
| |
| ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt), |
| KnownZero, KnownOne, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| KnownZero <<= ShAmt; |
| KnownOne <<= ShAmt; |
| // low bits known zero. |
| KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt); |
| } |
| return; |
| case ISD::SRL: |
| // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| unsigned ShAmt = SA->getZExtValue(); |
| |
| // If the shift count is an invalid immediate, don't do anything. |
| if (ShAmt >= BitWidth) |
| return; |
| |
| ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt), |
| KnownZero, KnownOne, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| KnownZero = KnownZero.lshr(ShAmt); |
| KnownOne = KnownOne.lshr(ShAmt); |
| |
| APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask; |
| KnownZero |= HighBits; // High bits known zero. |
| } |
| return; |
| case ISD::SRA: |
| if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| unsigned ShAmt = SA->getZExtValue(); |
| |
| // If the shift count is an invalid immediate, don't do anything. |
| if (ShAmt >= BitWidth) |
| return; |
| |
| APInt InDemandedMask = (Mask << ShAmt); |
| // If any of the demanded bits are produced by the sign extension, we also |
| // demand the input sign bit. |
| APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask; |
| if (HighBits.getBoolValue()) |
| InDemandedMask |= APInt::getSignBit(BitWidth); |
| |
| ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, |
| Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| KnownZero = KnownZero.lshr(ShAmt); |
| KnownOne = KnownOne.lshr(ShAmt); |
| |
| // Handle the sign bits. |
| APInt SignBit = APInt::getSignBit(BitWidth); |
| SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask. |
| |
| if (KnownZero.intersects(SignBit)) { |
| KnownZero |= HighBits; // New bits are known zero. |
| } else if (KnownOne.intersects(SignBit)) { |
| KnownOne |= HighBits; // New bits are known one. |
| } |
| } |
| return; |
| case ISD::SIGN_EXTEND_INREG: { |
| MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| unsigned EBits = EVT.getSizeInBits(); |
| |
| // Sign extension. Compute the demanded bits in the result that are not |
| // present in the input. |
| APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask; |
| |
| APInt InSignBit = APInt::getSignBit(EBits); |
| APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits); |
| |
| // If the sign extended bits are demanded, we know that the sign |
| // bit is demanded. |
| InSignBit.zext(BitWidth); |
| if (NewBits.getBoolValue()) |
| InputDemandedBits |= InSignBit; |
| |
| ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, |
| KnownZero, KnownOne, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| |
| // If the sign bit of the input is known set or clear, then we know the |
| // top bits of the result. |
| if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear |
| KnownZero |= NewBits; |
| KnownOne &= ~NewBits; |
| } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set |
| KnownOne |= NewBits; |
| KnownZero &= ~NewBits; |
| } else { // Input sign bit unknown |
| KnownZero &= ~NewBits; |
| KnownOne &= ~NewBits; |
| } |
| return; |
| } |
| case ISD::CTTZ: |
| case ISD::CTLZ: |
| case ISD::CTPOP: { |
| unsigned LowBits = Log2_32(BitWidth)+1; |
| KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); |
| KnownOne.clear(); |
| return; |
| } |
| case ISD::LOAD: { |
| if (ISD::isZEXTLoad(Op.getNode())) { |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| MVT VT = LD->getMemoryVT(); |
| unsigned MemBits = VT.getSizeInBits(); |
| KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask; |
| } |
| return; |
| } |
| case ISD::ZERO_EXTEND: { |
| MVT InVT = Op.getOperand(0).getValueType(); |
| unsigned InBits = InVT.getSizeInBits(); |
| APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask; |
| APInt InMask = Mask; |
| InMask.trunc(InBits); |
| KnownZero.trunc(InBits); |
| KnownOne.trunc(InBits); |
| ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1); |
| KnownZero.zext(BitWidth); |
| KnownOne.zext(BitWidth); |
| KnownZero |= NewBits; |
| return; |
| } |
| case ISD::SIGN_EXTEND: { |
| MVT InVT = Op.getOperand(0).getValueType(); |
| unsigned InBits = InVT.getSizeInBits(); |
| APInt InSignBit = APInt::getSignBit(InBits); |
| APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask; |
| APInt InMask = Mask; |
| InMask.trunc(InBits); |
| |
| // If any of the sign extended bits are demanded, we know that the sign |
| // bit is demanded. Temporarily set this bit in the mask for our callee. |
| if (NewBits.getBoolValue()) |
| InMask |= InSignBit; |
| |
| KnownZero.trunc(InBits); |
| KnownOne.trunc(InBits); |
| ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1); |
| |
| // Note if the sign bit is known to be zero or one. |
| bool SignBitKnownZero = KnownZero.isNegative(); |
| bool SignBitKnownOne = KnownOne.isNegative(); |
| assert(!(SignBitKnownZero && SignBitKnownOne) && |
| "Sign bit can't be known to be both zero and one!"); |
| |
| // If the sign bit wasn't actually demanded by our caller, we don't |
| // want it set in the KnownZero and KnownOne result values. Reset the |
| // mask and reapply it to the result values. |
| InMask = Mask; |
| InMask.trunc(InBits); |
| KnownZero &= InMask; |
| KnownOne &= InMask; |
| |
| KnownZero.zext(BitWidth); |
| KnownOne.zext(BitWidth); |
| |
| // If the sign bit is known zero or one, the top bits match. |
| if (SignBitKnownZero) |
| KnownZero |= NewBits; |
| else if (SignBitKnownOne) |
| KnownOne |= NewBits; |
| return; |
| } |
| case ISD::ANY_EXTEND: { |
| MVT InVT = Op.getOperand(0).getValueType(); |
| unsigned InBits = InVT.getSizeInBits(); |
| APInt InMask = Mask; |
| InMask.trunc(InBits); |
| KnownZero.trunc(InBits); |
| KnownOne.trunc(InBits); |
| ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1); |
| KnownZero.zext(BitWidth); |
| KnownOne.zext(BitWidth); |
| return; |
| } |
| case ISD::TRUNCATE: { |
| MVT InVT = Op.getOperand(0).getValueType(); |
| unsigned InBits = InVT.getSizeInBits(); |
| APInt InMask = Mask; |
| InMask.zext(InBits); |
| KnownZero.zext(InBits); |
| KnownOne.zext(InBits); |
| ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1); |
| assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| KnownZero.trunc(BitWidth); |
| KnownOne.trunc(BitWidth); |
| break; |
| } |
| case ISD::AssertZext: { |
| MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); |
| ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| KnownOne, Depth+1); |
| KnownZero |= (~InMask) & Mask; |
| return; |
| } |
| case ISD::FGETSIGN: |
| // All bits are zero except the low bit. |
| KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1); |
| return; |
| |
| case ISD::SUB: { |
| if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) { |
| // We know that the top bits of C-X are clear if X contains less bits |
| // than C (i.e. no wrap-around can happen). For example, 20-X is |
| // positive if we can prove that X is >= 0 and < 16. |
| if (CLHS->getAPIntValue().isNonNegative()) { |
| unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); |
| // NLZ can't be BitWidth with no sign bit |
| APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); |
| ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2, |
| Depth+1); |
| |
| // If all of the MaskV bits are known to be zero, then we know the |
| // output top bits are zero, because we now know that the output is |
| // from [0-C]. |
| if ((KnownZero2 & MaskV) == MaskV) { |
| unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); |
| // Top bits known zero. |
| KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; |
| } |
| } |
| } |
| } |
| // fall through |
| case ISD::ADD: { |
| // Output known-0 bits are known if clear or set in both the low clear bits |
| // common to both LHS & RHS. For example, 8+(X<<3) is known to have the |
| // low 3 bits clear. |
| APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes()); |
| ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| unsigned KnownZeroOut = KnownZero2.countTrailingOnes(); |
| |
| ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1); |
| assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| KnownZeroOut = std::min(KnownZeroOut, |
| KnownZero2.countTrailingOnes()); |
| |
| KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut); |
| return; |
| } |
| case ISD::SREM: |
| if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| const APInt &RA = Rem->getAPIntValue(); |
| if (RA.isPowerOf2() || (-RA).isPowerOf2()) { |
| APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA; |
| APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); |
| ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1); |
| |
| // If the sign bit of the first operand is zero, the sign bit of |
| // the result is zero. If the first operand has no one bits below |
| // the second operand's single 1 bit, its sign will be zero. |
| if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) |
| KnownZero2 |= ~LowBits; |
| |
| KnownZero |= KnownZero2 & Mask; |
| |
| assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); |
| } |
| } |
| return; |
| case ISD::UREM: { |
| if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| const APInt &RA = Rem->getAPIntValue(); |
| if (RA.isPowerOf2()) { |
| APInt LowBits = (RA - 1); |
| APInt Mask2 = LowBits & Mask; |
| KnownZero |= ~LowBits & Mask; |
| ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1); |
| assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); |
| break; |
| } |
| } |
| |
| // Since the result is less than or equal to either operand, any leading |
| // zero bits in either operand must also exist in the result. |
| APInt AllOnes = APInt::getAllOnesValue(BitWidth); |
| ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne, |
| Depth+1); |
| ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2, |
| Depth+1); |
| |
| uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), |
| KnownZero2.countLeadingOnes()); |
| KnownOne.clear(); |
| KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; |
| return; |
| } |
| default: |
| // Allow the target to implement this method for its nodes. |
| if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { |
| case ISD::INTRINSIC_WO_CHAIN: |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_VOID: |
| TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this); |
| } |
| return; |
| } |
| } |
| |
| /// ComputeNumSignBits - Return the number of times the sign bit of the |
| /// register is replicated into the other bits. We know that at least 1 bit |
| /// is always equal to the sign bit (itself), but other cases can give us |
| /// information. For example, immediately after an "SRA X, 2", we know that |
| /// the top 3 bits are all equal to each other, so we return 3. |
| unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{ |
| MVT VT = Op.getValueType(); |
| assert(VT.isInteger() && "Invalid VT!"); |
| unsigned VTBits = VT.getSizeInBits(); |
| unsigned Tmp, Tmp2; |
| unsigned FirstAnswer = 1; |
| |
| if (Depth == 6) |
| return 1; // Limit search depth. |
| |
| switch (Op.getOpcode()) { |
| default: break; |
| case ISD::AssertSext: |
| Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); |
| return VTBits-Tmp+1; |
| case ISD::AssertZext: |
| Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); |
| return VTBits-Tmp; |
| |
| case ISD::Constant: { |
| const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); |
| // If negative, return # leading ones. |
| if (Val.isNegative()) |
| return Val.countLeadingOnes(); |
| |
| // Return # leading zeros. |
| return Val.countLeadingZeros(); |
| } |
| |
| case ISD::SIGN_EXTEND: |
| Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits(); |
| return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; |
| |
| case ISD::SIGN_EXTEND_INREG: |
| // Max of the input and what this extends. |
| Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); |
| Tmp = VTBits-Tmp+1; |
| |
| Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| return std::max(Tmp, Tmp2); |
| |
| case ISD::SRA: |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| // SRA X, C -> adds C sign bits. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| Tmp += C->getZExtValue(); |
| if (Tmp > VTBits) Tmp = VTBits; |
| } |
| return Tmp; |
| case ISD::SHL: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| // shl destroys sign bits. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (C->getZExtValue() >= VTBits || // Bad shift. |
| C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. |
| return Tmp - C->getZExtValue(); |
| } |
| break; |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: // NOT is handled here. |
| // Logical binary ops preserve the number of sign bits at the worst. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp != 1) { |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| FirstAnswer = std::min(Tmp, Tmp2); |
| // We computed what we know about the sign bits as our first |
| // answer. Now proceed to the generic code that uses |
| // ComputeMaskedBits, and pick whichever answer is better. |
| } |
| break; |
| |
| case ISD::SELECT: |
| Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); |
| return std::min(Tmp, Tmp2); |
| |
| case ISD::SETCC: |
| // If setcc returns 0/-1, all bits are sign bits. |
| if (TLI.getSetCCResultContents() == |
| TargetLowering::ZeroOrNegativeOneSetCCResult) |
| return VTBits; |
| break; |
| case ISD::ROTL: |
| case ISD::ROTR: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| unsigned RotAmt = C->getZExtValue() & (VTBits-1); |
| |
| // Handle rotate right by N like a rotate left by 32-N. |
| if (Op.getOpcode() == ISD::ROTR) |
| RotAmt = (VTBits-RotAmt) & (VTBits-1); |
| |
| // If we aren't rotating out all of the known-in sign bits, return the |
| // number that are left. This handles rotl(sext(x), 1) for example. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp > RotAmt+1) return Tmp-RotAmt; |
| } |
| break; |
| case ISD::ADD: |
| // Add can have at most one carry bit. Thus we know that the output |
| // is, at worst, one more bit than the inputs. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| |
| // Special case decrementing a value (ADD X, -1): |
| if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| if (CRHS->isAllOnesValue()) { |
| APInt KnownZero, KnownOne; |
| APInt Mask = APInt::getAllOnesValue(VTBits); |
| ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| |
| // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| // sign bits set. |
| if ((KnownZero | APInt(VTBits, 1)) == Mask) |
| return VTBits; |
| |
| // If we are subtracting one from a positive number, there is no carry |
| // out of the result. |
| if (KnownZero.isNegative()) |
| return Tmp; |
| } |
| |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| if (Tmp2 == 1) return 1; |
| return std::min(Tmp, Tmp2)-1; |
| break; |
| |
| case ISD::SUB: |
| Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| if (Tmp2 == 1) return 1; |
| |
| // Handle NEG. |
| if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| if (CLHS->isNullValue()) { |
| APInt KnownZero, KnownOne; |
| APInt Mask = APInt::getAllOnesValue(VTBits); |
| ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| // sign bits set. |
| if ((KnownZero | APInt(VTBits, 1)) == Mask) |
| return VTBits; |
| |
| // If the input is known to be positive (the sign bit is known clear), |
| // the output of the NEG has the same number of sign bits as the input. |
| if (KnownZero.isNegative()) |
| return Tmp2; |
| |
| // Otherwise, we treat this like a SUB. |
| } |
| |
| // Sub can have at most one carry bit. Thus we know that the output |
| // is, at worst, one more bit than the inputs. |
| Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| if (Tmp == 1) return 1; // Early out. |
| return std::min(Tmp, Tmp2)-1; |
| break; |
| case ISD::TRUNCATE: |
| // FIXME: it's tricky to do anything useful for this, but it is an important |
| // case for targets like X86. |
| break; |
| } |
| |
| // Handle LOADX separately here. EXTLOAD case will fallthrough. |
| if (Op.getOpcode() == ISD::LOAD) { |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| unsigned ExtType = LD->getExtensionType(); |
| switch (ExtType) { |
| default: break; |
| case ISD::SEXTLOAD: // '17' bits known |
| Tmp = LD->getMemoryVT().getSizeInBits(); |
| return VTBits-Tmp+1; |
| case ISD::ZEXTLOAD: // '16' bits known |
| Tmp = LD->getMemoryVT().getSizeInBits(); |
| return VTBits-Tmp; |
| } |
| } |
| |
| // Allow the target to implement this method for its nodes. |
| if (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_VOID) { |
| unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth); |
| if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); |
| } |
| |
| // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| // use this information. |
| APInt KnownZero, KnownOne; |
| APInt Mask = APInt::getAllOnesValue(VTBits); |
| ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| |
| if (KnownZero.isNegative()) { // sign bit is 0 |
| Mask = KnownZero; |
| } else if (KnownOne.isNegative()) { // sign bit is 1; |
| Mask = KnownOne; |
| } else { |
| // Nothing known. |
| return FirstAnswer; |
| } |
| |
| // Okay, we know that the sign bit in Mask is set. Use CLZ to determine |
| // the number of identical bits in the top of the input value. |
| Mask = ~Mask; |
| Mask <<= Mask.getBitWidth()-VTBits; |
| // Return # leading zeros. We use 'min' here in case Val was zero before |
| // shifting. We don't want to return '64' as for an i32 "0". |
| return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); |
| } |
| |
| |
| bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const { |
| GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); |
| if (!GA) return false; |
| GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal()); |
| if (!GV) return false; |
| MachineModuleInfo *MMI = getMachineModuleInfo(); |
| return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV); |
| } |
| |
| |
| /// getShuffleScalarElt - Returns the scalar element that will make up the ith |
| /// element of the result of the vector shuffle. |
| SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) { |
| MVT VT = N->getValueType(0); |
| SDValue PermMask = N->getOperand(2); |
| SDValue Idx = PermMask.getOperand(i); |
| if (Idx.getOpcode() == ISD::UNDEF) |
| return getNode(ISD::UNDEF, VT.getVectorElementType()); |
| unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue(); |
| unsigned NumElems = PermMask.getNumOperands(); |
| SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1); |
| Index %= NumElems; |
| |
| if (V.getOpcode() == ISD::BIT_CONVERT) { |
| V = V.getOperand(0); |
| if (V.getValueType().getVectorNumElements() != NumElems) |
| return SDValue(); |
| } |
| if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) |
| return (Index == 0) ? V.getOperand(0) |
| : getNode(ISD::UNDEF, VT.getVectorElementType()); |
| if (V.getOpcode() == ISD::BUILD_VECTOR) |
| return V.getOperand(Index); |
| if (V.getOpcode() == ISD::VECTOR_SHUFFLE) |
| return getShuffleScalarElt(V.getNode(), Index); |
| return SDValue(); |
| } |
| |
| |
| /// getNode - Gets or creates the specified node. |
| /// |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<SDNode>(); |
| new (N) SDNode(Opcode, SDNode::getSDVTList(VT)); |
| CSEMap.InsertNode(N, IP); |
| |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifyNode(N); |
| #endif |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) { |
| // Constant fold unary operations with an integer constant operand. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) { |
| const APInt &Val = C->getAPIntValue(); |
| unsigned BitWidth = VT.getSizeInBits(); |
| switch (Opcode) { |
| default: break; |
| case ISD::SIGN_EXTEND: |
| return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT); |
| case ISD::ANY_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::TRUNCATE: |
| return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT); |
| case ISD::UINT_TO_FP: |
| case ISD::SINT_TO_FP: { |
| const uint64_t zero[] = {0, 0}; |
| // No compile time operations on this type. |
| if (VT==MVT::ppcf128) |
| break; |
| APFloat apf = APFloat(APInt(BitWidth, 2, zero)); |
| (void)apf.convertFromAPInt(Val, |
| Opcode==ISD::SINT_TO_FP, |
| APFloat::rmNearestTiesToEven); |
| return getConstantFP(apf, VT); |
| } |
| case ISD::BIT_CONVERT: |
| if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) |
| return getConstantFP(Val.bitsToFloat(), VT); |
| else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) |
| return getConstantFP(Val.bitsToDouble(), VT); |
| break; |
| case ISD::BSWAP: |
| return getConstant(Val.byteSwap(), VT); |
| case ISD::CTPOP: |
| return getConstant(Val.countPopulation(), VT); |
| case ISD::CTLZ: |
| return getConstant(Val.countLeadingZeros(), VT); |
| case ISD::CTTZ: |
| return getConstant(Val.countTrailingZeros(), VT); |
| } |
| } |
| |
| // Constant fold unary operations with a floating point constant operand. |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) { |
| APFloat V = C->getValueAPF(); // make copy |
| if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) { |
| switch (Opcode) { |
| case ISD::FNEG: |
| V.changeSign(); |
| return getConstantFP(V, VT); |
| case ISD::FABS: |
| V.clearSign(); |
| return getConstantFP(V, VT); |
| case ISD::FP_ROUND: |
| case ISD::FP_EXTEND: |
| // This can return overflow, underflow, or inexact; we don't care. |
| // FIXME need to be more flexible about rounding mode. |
| (void)V.convert(*MVTToAPFloatSemantics(VT), |
| APFloat::rmNearestTiesToEven); |
| return getConstantFP(V, VT); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: { |
| integerPart x; |
| assert(integerPartWidth >= 64); |
| // FIXME need to be more flexible about rounding mode. |
| APFloat::opStatus s = V.convertToInteger(&x, 64U, |
| Opcode==ISD::FP_TO_SINT, |
| APFloat::rmTowardZero); |
| if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual |
| break; |
| return getConstant(x, VT); |
| } |
| case ISD::BIT_CONVERT: |
| if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) |
| return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT); |
| else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) |
| return getConstant(V.convertToAPInt().getZExtValue(), VT); |
| break; |
| } |
| } |
| } |
| |
| unsigned OpOpcode = Operand.getNode()->getOpcode(); |
| switch (Opcode) { |
| case ISD::TokenFactor: |
| case ISD::CONCAT_VECTORS: |
| return Operand; // Factor or concat of one node? No need. |
| case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node"); |
| case ISD::FP_EXTEND: |
| assert(VT.isFloatingPoint() && |
| Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); |
| if (Operand.getValueType() == VT) return Operand; // noop conversion. |
| if (Operand.getOpcode() == ISD::UNDEF) |
| return getNode(ISD::UNDEF, VT); |
| break; |
| case ISD::SIGN_EXTEND: |
| assert(VT.isInteger() && Operand.getValueType().isInteger() && |
| "Invalid SIGN_EXTEND!"); |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| assert(Operand.getValueType().bitsLT(VT) |
| && "Invalid sext node, dst < src!"); |
| if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) |
| return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0)); |
| break; |
| case ISD::ZERO_EXTEND: |
| assert(VT.isInteger() && Operand.getValueType().isInteger() && |
| "Invalid ZERO_EXTEND!"); |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| assert(Operand.getValueType().bitsLT(VT) |
| && "Invalid zext node, dst < src!"); |
| if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) |
| return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0)); |
| break; |
| case ISD::ANY_EXTEND: |
| assert(VT.isInteger() && Operand.getValueType().isInteger() && |
| "Invalid ANY_EXTEND!"); |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| assert(Operand.getValueType().bitsLT(VT) |
| && "Invalid anyext node, dst < src!"); |
| if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) |
| // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) |
| return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0)); |
| break; |
| case ISD::TRUNCATE: |
| assert(VT.isInteger() && Operand.getValueType().isInteger() && |
| "Invalid TRUNCATE!"); |
| if (Operand.getValueType() == VT) return Operand; // noop truncate |
| assert(Operand.getValueType().bitsGT(VT) |
| && "Invalid truncate node, src < dst!"); |
| if (OpOpcode == ISD::TRUNCATE) |
| return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0)); |
| else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || |
| OpOpcode == ISD::ANY_EXTEND) { |
| // If the source is smaller than the dest, we still need an extend. |
| if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT)) |
| return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0)); |
| else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) |
| return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0)); |
| else |
| return Operand.getNode()->getOperand(0); |
| } |
| break; |
| case ISD::BIT_CONVERT: |
| // Basic sanity checking. |
| assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits() |
| && "Cannot BIT_CONVERT between types of different sizes!"); |
| if (VT == Operand.getValueType()) return Operand; // noop conversion. |
| if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x) |
| return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0)); |
| if (OpOpcode == ISD::UNDEF) |
| return getNode(ISD::UNDEF, VT); |
| break; |
| case ISD::SCALAR_TO_VECTOR: |
| assert(VT.isVector() && !Operand.getValueType().isVector() && |
| VT.getVectorElementType() == Operand.getValueType() && |
| "Illegal SCALAR_TO_VECTOR node!"); |
| if (OpOpcode == ISD::UNDEF) |
| return getNode(ISD::UNDEF, VT); |
| // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. |
| if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && |
| isa<ConstantSDNode>(Operand.getOperand(1)) && |
| Operand.getConstantOperandVal(1) == 0 && |
| Operand.getOperand(0).getValueType() == VT) |
| return Operand.getOperand(0); |
| break; |
| case ISD::FNEG: |
| if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X) |
| return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1), |
| Operand.getNode()->getOperand(0)); |
| if (OpOpcode == ISD::FNEG) // --X -> X |
| return Operand.getNode()->getOperand(0); |
| break; |
| case ISD::FABS: |
| if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) |
| return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0)); |
| break; |
| } |
| |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| if (VT != MVT::Flag) { // Don't CSE flag producing nodes |
| FoldingSetNodeID ID; |
| SDValue Ops[1] = { Operand }; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 1); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| N = NodeAllocator.Allocate<UnarySDNode>(); |
| new (N) UnarySDNode(Opcode, VTs, Operand); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = NodeAllocator.Allocate<UnarySDNode>(); |
| new (N) UnarySDNode(Opcode, VTs, Operand); |
| } |
| |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifyNode(N); |
| #endif |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, |
| MVT VT, |
| ConstantSDNode *Cst1, |
| ConstantSDNode *Cst2) { |
| const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue(); |
| |
| switch (Opcode) { |
| case ISD::ADD: return getConstant(C1 + C2, VT); |
| case ISD::SUB: return getConstant(C1 - C2, VT); |
| case ISD::MUL: return getConstant(C1 * C2, VT); |
| case ISD::UDIV: |
| if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT); |
| break; |
| case ISD::UREM: |
| if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT); |
| break; |
| case ISD::SDIV: |
| if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT); |
| break; |
| case ISD::SREM: |
| if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT); |
| break; |
| case ISD::AND: return getConstant(C1 & C2, VT); |
| case ISD::OR: return getConstant(C1 | C2, VT); |
| case ISD::XOR: return getConstant(C1 ^ C2, VT); |
| case ISD::SHL: return getConstant(C1 << C2, VT); |
| case ISD::SRL: return getConstant(C1.lshr(C2), VT); |
| case ISD::SRA: return getConstant(C1.ashr(C2), VT); |
| case ISD::ROTL: return getConstant(C1.rotl(C2), VT); |
| case ISD::ROTR: return getConstant(C1.rotr(C2), VT); |
| default: break; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, |
| SDValue N1, SDValue N2) { |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); |
| switch (Opcode) { |
| default: break; |
| case ISD::TokenFactor: |
| assert(VT == MVT::Other && N1.getValueType() == MVT::Other && |
| N2.getValueType() == MVT::Other && "Invalid token factor!"); |
| // Fold trivial token factors. |
| if (N1.getOpcode() == ISD::EntryToken) return N2; |
| if (N2.getOpcode() == ISD::EntryToken) return N1; |
| if (N1 == N2) return N1; |
| break; |
| case ISD::CONCAT_VECTORS: |
| // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to |
| // one big BUILD_VECTOR. |
| if (N1.getOpcode() == ISD::BUILD_VECTOR && |
| N2.getOpcode() == ISD::BUILD_VECTOR) { |
| SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end()); |
| Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end()); |
| return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size()); |
| } |
| break; |
| case ISD::AND: |
| assert(VT.isInteger() && N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's |
| // worth handling here. |
| if (N2C && N2C->isNullValue()) |
| return N2; |
| if (N2C && N2C->isAllOnesValue()) // X & -1 -> X |
| return N1; |
| break; |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::ADD: |
| case ISD::SUB: |
| assert(VT.isInteger() && N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so |
| // it's worth handling here. |
| if (N2C && N2C->isNullValue()) |
| return N1; |
| break; |
| case ISD::UDIV: |
| case ISD::UREM: |
| case ISD::MULHU: |
| case ISD::MULHS: |
| assert(VT.isInteger() && "This operator does not apply to FP types!"); |
| // fall through |
| case ISD::MUL: |
| case ISD::SDIV: |
| case ISD::SREM: |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| assert(N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| break; |
| case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. |
| assert(N1.getValueType() == VT && |
| N1.getValueType().isFloatingPoint() && |
| N2.getValueType().isFloatingPoint() && |
| "Invalid FCOPYSIGN!"); |
| break; |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| assert(VT == N1.getValueType() && |
| "Shift operators return type must be the same as their first arg"); |
| assert(VT.isInteger() && N2.getValueType().isInteger() && |
| "Shifts only work on integers"); |
| |
| // Always fold shifts of i1 values so the code generator doesn't need to |
| // handle them. Since we know the size of the shift has to be less than the |
| // size of the value, the shift/rotate count is guaranteed to be zero. |
| if (VT == MVT::i1) |
| return N1; |
| break; |
| case ISD::FP_ROUND_INREG: { |
| MVT EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg round!"); |
| assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && |
| "Cannot FP_ROUND_INREG integer types"); |
| assert(EVT.bitsLE(VT) && "Not rounding down!"); |
| if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. |
| break; |
| } |
| case ISD::FP_ROUND: |
| assert(VT.isFloatingPoint() && |
| N1.getValueType().isFloatingPoint() && |
| VT.bitsLE(N1.getValueType()) && |
| isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!"); |
| if (N1.getValueType() == VT) return N1; // noop conversion. |
| break; |
| case ISD::AssertSext: |
| case ISD::AssertZext: { |
| MVT EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg extend!"); |
| assert(VT.isInteger() && EVT.isInteger() && |
| "Cannot *_EXTEND_INREG FP types"); |
| assert(EVT.bitsLE(VT) && "Not extending!"); |
| if (VT == EVT) return N1; // noop assertion. |
| break; |
| } |
| case ISD::SIGN_EXTEND_INREG: { |
| MVT EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg extend!"); |
| assert(VT.isInteger() && EVT.isInteger() && |
| "Cannot *_EXTEND_INREG FP types"); |
| assert(EVT.bitsLE(VT) && "Not extending!"); |
| if (EVT == VT) return N1; // Not actually extending |
| |
| if (N1C) { |
| APInt Val = N1C->getAPIntValue(); |
| unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits(); |
| Val <<= Val.getBitWidth()-FromBits; |
| Val = Val.ashr(Val.getBitWidth()-FromBits); |
| return getConstant(Val, VT); |
| } |
| break; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: |
| // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. |
| if (N1.getOpcode() == ISD::UNDEF) |
| return getNode(ISD::UNDEF, VT); |
| |
| // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is |
| // expanding copies of large vectors from registers. |
| if (N2C && |
| N1.getOpcode() == ISD::CONCAT_VECTORS && |
| N1.getNumOperands() > 0) { |
| unsigned Factor = |
| N1.getOperand(0).getValueType().getVectorNumElements(); |
| return getNode(ISD::EXTRACT_VECTOR_ELT, VT, |
| N1.getOperand(N2C->getZExtValue() / Factor), |
| getConstant(N2C->getZExtValue() % Factor, |
| N2.getValueType())); |
| } |
| |
| // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is |
| // expanding large vector constants. |
| if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) |
| return N1.getOperand(N2C->getZExtValue()); |
| |
| // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector |
| // operations are lowered to scalars. |
| if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { |
| if (N1.getOperand(2) == N2) |
| return N1.getOperand(1); |
| else |
| return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2); |
| } |
| break; |
| case ISD::EXTRACT_ELEMENT: |
| assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); |
| assert(!N1.getValueType().isVector() && !VT.isVector() && |
| (N1.getValueType().isInteger() == VT.isInteger()) && |
| "Wrong types for EXTRACT_ELEMENT!"); |
| |
| // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding |
| // 64-bit integers into 32-bit parts. Instead of building the extract of |
| // the BUILD_PAIR, only to have legalize rip it apart, just do it now. |
| if (N1.getOpcode() == ISD::BUILD_PAIR) |
| return N1.getOperand(N2C->getZExtValue()); |
| |
| // EXTRACT_ELEMENT of a constant int is also very common. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { |
| unsigned ElementSize = VT.getSizeInBits(); |
| unsigned Shift = ElementSize * N2C->getZExtValue(); |
| APInt ShiftedVal = C->getAPIntValue().lshr(Shift); |
| return getConstant(ShiftedVal.trunc(ElementSize), VT); |
| } |
| break; |
| case ISD::EXTRACT_SUBVECTOR: |
| if (N1.getValueType() == VT) // Trivial extraction. |
| return N1; |
| break; |
| } |
| |
| if (N1C) { |
| if (N2C) { |
| SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C); |
| if (SV.getNode()) return SV; |
| } else { // Cannonicalize constant to RHS if commutative |
| if (isCommutativeBinOp(Opcode)) { |
| std::swap(N1C, N2C); |
| std::swap(N1, N2); |
| } |
| } |
| } |
| |
| // Constant fold FP operations. |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); |
| ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); |
| if (N1CFP) { |
| if (!N2CFP && isCommutativeBinOp(Opcode)) { |
| // Cannonicalize constant to RHS if commutative |
| std::swap(N1CFP, N2CFP); |
| std::swap(N1, N2); |
| } else if (N2CFP && VT != MVT::ppcf128) { |
| APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); |
| APFloat::opStatus s; |
| switch (Opcode) { |
| case ISD::FADD: |
| s = V1.add(V2, APFloat::rmNearestTiesToEven); |
| if (s != APFloat::opInvalidOp) |
| return getConstantFP(V1, VT); |
| break; |
| case ISD::FSUB: |
| s = V1.subtract(V2, APFloat::rmNearestTiesToEven); |
| if (s!=APFloat::opInvalidOp) |
| return getConstantFP(V1, VT); |
| break; |
| case ISD::FMUL: |
| s = V1.multiply(V2, APFloat::rmNearestTiesToEven); |
| if (s!=APFloat::opInvalidOp) |
| return getConstantFP(V1, VT); |
| break; |
| case ISD::FDIV: |
| s = V1.divide(V2, APFloat::rmNearestTiesToEven); |
| if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero) |
| return getConstantFP(V1, VT); |
| break; |
| case ISD::FREM : |
| s = V1.mod(V2, APFloat::rmNearestTiesToEven); |
| if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero) |
| return getConstantFP(V1, VT); |
| break; |
| case ISD::FCOPYSIGN: |
| V1.copySign(V2); |
| return getConstantFP(V1, VT); |
| default: break; |
| } |
| } |
| } |
| |
| // Canonicalize an UNDEF to the RHS, even over a constant. |
| if (N1.getOpcode() == ISD::UNDEF) { |
| if (isCommutativeBinOp(Opcode)) { |
| std::swap(N1, N2); |
| } else { |
| switch (Opcode) { |
| case ISD::FP_ROUND_INREG: |
| case ISD::SIGN_EXTEND_INREG: |
| case ISD::SUB: |
| case ISD::FSUB: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::SRA: |
| return N1; // fold op(undef, arg2) -> undef |
| case ISD::UDIV: |
| case ISD::SDIV: |
| case ISD::UREM: |
| case ISD::SREM: |
| case ISD::SRL: |
| case ISD::SHL: |
| if (!VT.isVector()) |
| return getConstant(0, VT); // fold op(undef, arg2) -> 0 |
| // For vectors, we can't easily build an all zero vector, just return |
| // the LHS. |
| return N2; |
| } |
| } |
| } |
| |
| // Fold a bunch of operators when the RHS is undef. |
| if (N2.getOpcode() == ISD::UNDEF) { |
| switch (Opcode) { |
| case ISD::XOR: |
| if (N1.getOpcode() == ISD::UNDEF) |
| // Handle undef ^ undef -> 0 special case. This is a common |
| // idiom (misuse). |
| return getConstant(0, VT); |
| // fallthrough |
| case ISD::ADD: |
| case ISD::ADDC: |
| case ISD::ADDE: |
| case ISD::SUB: |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::UDIV: |
| case ISD::SDIV: |
| case ISD::UREM: |
| case ISD::SREM: |
| return N2; // fold op(arg1, undef) -> undef |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::SRL: |
| case ISD::SHL: |
| if (!VT.isVector()) |
| return getConstant(0, VT); // fold op(arg1, undef) -> 0 |
| // For vectors, we can't easily build an all zero vector, just return |
| // the LHS. |
| return N1; |
| case ISD::OR: |
| if (!VT.isVector()) |
| return getConstant(VT.getIntegerVTBitMask(), VT); |
| // For vectors, we can't easily build an all one vector, just return |
| // the LHS. |
| return N1; |
| case ISD::SRA: |
| return N1; |
| } |
| } |
| |
| // Memoize this node if possible. |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| if (VT != MVT::Flag) { |
| SDValue Ops[] = { N1, N2 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 2); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| N = NodeAllocator.Allocate<BinarySDNode>(); |
| new (N) BinarySDNode(Opcode, VTs, N1, N2); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = NodeAllocator.Allocate<BinarySDNode>(); |
| new (N) BinarySDNode(Opcode, VTs, N1, N2); |
| } |
| |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifyNode(N); |
| #endif |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, |
| SDValue N1, SDValue N2, SDValue N3) { |
| // Perform various simplifications. |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); |
| switch (Opcode) { |
| case ISD::CONCAT_VECTORS: |
| // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to |
| // one big BUILD_VECTOR. |
| if (N1.getOpcode() == ISD::BUILD_VECTOR && |
| N2.getOpcode() == ISD::BUILD_VECTOR && |
| N3.getOpcode() == ISD::BUILD_VECTOR) { |
| SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end()); |
| Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end()); |
| Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end()); |
| return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size()); |
| } |
| break; |
| case ISD::SETCC: { |
| // Use FoldSetCC to simplify SETCC's. |
| SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get()); |
| if (Simp.getNode()) return Simp; |
| break; |
| } |
| case ISD::SELECT: |
| if (N1C) { |
| if (N1C->getZExtValue()) |
| return N2; // select true, X, Y -> X |
| else |
| return N3; // select false, X, Y -> Y |
| } |
| |
| if (N2 == N3) return N2; // select C, X, X -> X |
| break; |
| case ISD::BRCOND: |
| if (N2C) { |
| if (N2C->getZExtValue()) // Unconditional branch |
| return getNode(ISD::BR, MVT::Other, N1, N3); |
| else |
| return N1; // Never-taken branch |
| } |
| break; |
| case ISD::VECTOR_SHUFFLE: |
| assert(VT == N1.getValueType() && VT == N2.getValueType() && |
| VT.isVector() && N3.getValueType().isVector() && |
| N3.getOpcode() == ISD::BUILD_VECTOR && |
| VT.getVectorNumElements() == N3.getNumOperands() && |
| "Illegal VECTOR_SHUFFLE node!"); |
| break; |
| case ISD::BIT_CONVERT: |
| // Fold bit_convert nodes from a type to themselves. |
| if (N1.getValueType() == VT) |
| return N1; |
| break; |
| } |
| |
| // Memoize node if it doesn't produce a flag. |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| if (VT != MVT::Flag) { |
| SDValue Ops[] = { N1, N2, N3 }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 3); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| N = NodeAllocator.Allocate<TernarySDNode>(); |
| new (N) TernarySDNode(Opcode, VTs, N1, N2, N3); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = NodeAllocator.Allocate<TernarySDNode>(); |
| new (N) TernarySDNode(Opcode, VTs, N1, N2, N3); |
| } |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifyNode(N); |
| #endif |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, |
| SDValue N1, SDValue N2, SDValue N3, |
| SDValue N4) { |
| SDValue Ops[] = { N1, N2, N3, N4 }; |
| return getNode(Opcode, VT, Ops, 4); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, |
| SDValue N1, SDValue N2, SDValue N3, |
| SDValue N4, SDValue N5) { |
| SDValue Ops[] = { N1, N2, N3, N4, N5 }; |
| return getNode(Opcode, VT, Ops, 5); |
| } |
| |
| /// getMemsetValue - Vectorized representation of the memset value |
| /// operand. |
| static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) { |
| unsigned NumBits = VT.isVector() ? |
| VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits(); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { |
| APInt Val = APInt(NumBits, C->getZExtValue() & 255); |
| unsigned Shift = 8; |
| for (unsigned i = NumBits; i > 8; i >>= 1) { |
| Val = (Val << Shift) | Val; |
| Shift <<= 1; |
| } |
| if (VT.isInteger()) |
| return DAG.getConstant(Val, VT); |
| return DAG.getConstantFP(APFloat(Val), VT); |
| } |
| |
| Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value); |
| unsigned Shift = 8; |
| for (unsigned i = NumBits; i > 8; i >>= 1) { |
| Value = DAG.getNode(ISD::OR, VT, |
| DAG.getNode(ISD::SHL, VT, Value, |
| DAG.getConstant(Shift, MVT::i8)), Value); |
| Shift <<= 1; |
| } |
| |
| return Value; |
| } |
| |
| /// getMemsetStringVal - Similar to getMemsetValue. Except this is only |
| /// used when a memcpy is turned into a memset when the source is a constant |
| /// string ptr. |
| static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG, |
| const TargetLowering &TLI, |
| std::string &Str, unsigned Offset) { |
| // Handle vector with all elements zero. |
| if (Str.empty()) { |
| if (VT.isInteger()) |
| return DAG.getConstant(0, VT); |
| unsigned NumElts = VT.getVectorNumElements(); |
| MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; |
| return DAG.getNode(ISD::BIT_CONVERT, VT, |
| DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts))); |
| } |
| |
| assert(!VT.isVector() && "Can't handle vector type here!"); |
| unsigned NumBits = VT.getSizeInBits(); |
| unsigned MSB = NumBits / 8; |
| uint64_t Val = 0; |
| if (TLI.isLittleEndian()) |
| Offset = Offset + MSB - 1; |
| for (unsigned i = 0; i != MSB; ++i) { |
| Val = (Val << 8) | (unsigned char)Str[Offset]; |
| Offset += TLI.isLittleEndian() ? -1 : 1; |
| } |
| return DAG.getConstant(Val, VT); |
| } |
| |
| /// getMemBasePlusOffset - Returns base and offset node for the |
| /// |
| static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, |
| SelectionDAG &DAG) { |
| MVT VT = Base.getValueType(); |
| return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT)); |
| } |
| |
| /// isMemSrcFromString - Returns true if memcpy source is a string constant. |
| /// |
| static bool isMemSrcFromString(SDValue Src, std::string &Str) { |
| unsigned SrcDelta = 0; |
| GlobalAddressSDNode *G = NULL; |
| if (Src.getOpcode() == ISD::GlobalAddress) |
| G = cast<GlobalAddressSDNode>(Src); |
| else if (Src.getOpcode() == ISD::ADD && |
| Src.getOperand(0).getOpcode() == ISD::GlobalAddress && |
| Src.getOperand(1).getOpcode() == ISD::Constant) { |
| G = cast<GlobalAddressSDNode>(Src.getOperand(0)); |
| SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); |
| } |
| if (!G) |
| return false; |
| |
| GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal()); |
| if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false)) |
| return true; |
| |
| return false; |
| } |
| |
| /// MeetsMaxMemopRequirement - Determines if the number of memory ops required |
| /// to replace the memset / memcpy is below the threshold. It also returns the |
| /// types of the sequence of memory ops to perform memset / memcpy. |
| static |
| bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps, |
| SDValue Dst, SDValue Src, |
| unsigned Limit, uint64_t Size, unsigned &Align, |
| std::string &Str, bool &isSrcStr, |
| SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| isSrcStr = isMemSrcFromString(Src, Str); |
| bool isSrcConst = isa<ConstantSDNode>(Src); |
| bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(); |
| MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr); |
| if (VT != MVT::iAny) { |
| unsigned NewAlign = (unsigned) |
| TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT()); |
| // If source is a string constant, this will require an unaligned load. |
| if (NewAlign > Align && (isSrcConst || AllowUnalign)) { |
| if (Dst.getOpcode() != ISD::FrameIndex) { |
| // Can't change destination alignment. It requires a unaligned store. |
| if (AllowUnalign) |
| VT = MVT::iAny; |
| } else { |
| int FI = cast<FrameIndexSDNode>(Dst)->getIndex(); |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| if (MFI->isFixedObjectIndex(FI)) { |
| // Can't change destination alignment. It requires a unaligned store. |
| if (AllowUnalign) |
| VT = MVT::iAny; |
| } else { |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI->getObjectAlignment(FI) < NewAlign) |
| MFI->setObjectAlignment(FI, NewAlign); |
| Align = NewAlign; |
| } |
| } |
| } |
| } |
| |
| if (VT == MVT::iAny) { |
| if (AllowUnalign) { |
| VT = MVT::i64; |
| } else { |
| switch (Align & 7) { |
| case 0: VT = MVT::i64; break; |
| case 4: VT = MVT::i32; break; |
| case 2: VT = MVT::i16; break; |
| default: VT = MVT::i8; break; |
| } |
| } |
| |
| MVT LVT = MVT::i64; |
| while (!TLI.isTypeLegal(LVT)) |
| LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1); |
| assert(LVT.isInteger()); |
| |
| if (VT.bitsGT(LVT)) |
| VT = LVT; |
| } |
| |
| unsigned NumMemOps = 0; |
| while (Size != 0) { |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| while (VTSize > Size) { |
| // For now, only use non-vector load / store's for the left-over pieces. |
| if (VT.isVector()) { |
| VT = MVT::i64; |
| while (!TLI.isTypeLegal(VT)) |
| VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1); |
| VTSize = VT.getSizeInBits() / 8; |
| } else { |
| VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1); |
| VTSize >>= 1; |
| } |
| } |
| |
| if (++NumMemOps > Limit) |
| return false; |
| MemOps.push_back(VT); |
| Size -= VTSize; |
| } |
| |
| return true; |
| } |
| |
| static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, |
| SDValue Chain, SDValue Dst, |
| SDValue Src, uint64_t Size, |
| unsigned Align, bool AlwaysInline, |
| const Value *DstSV, uint64_t DstSVOff, |
| const Value *SrcSV, uint64_t SrcSVOff){ |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // Expand memcpy to a series of load and store ops if the size operand falls |
| // below a certain threshold. |
| std::vector<MVT> MemOps; |
| uint64_t Limit = -1ULL; |
| if (!AlwaysInline) |
| Limit = TLI.getMaxStoresPerMemcpy(); |
| unsigned DstAlign = Align; // Destination alignment can change. |
| std::string Str; |
| bool CopyFromStr; |
| if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign, |
| Str, CopyFromStr, DAG, TLI)) |
| return SDValue(); |
| |
| |
| bool isZeroStr = CopyFromStr && Str.empty(); |
| SmallVector<SDValue, 8> OutChains; |
| unsigned NumMemOps = MemOps.size(); |
| uint64_t SrcOff = 0, DstOff = 0; |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| MVT VT = MemOps[i]; |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| SDValue Value, Store; |
| |
| if (CopyFromStr && (isZeroStr || !VT.isVector())) { |
| // It's unlikely a store of a vector immediate can be done in a single |
| // instruction. It would require a load from a constantpool first. |
| // We also handle store a vector with all zero's. |
| // FIXME: Handle other cases where store of vector immediate is done in |
| // a single instruction. |
| Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff); |
| Store = DAG.getStore(Chain, Value, |
| getMemBasePlusOffset(Dst, DstOff, DAG), |
| DstSV, DstSVOff + DstOff, false, DstAlign); |
| } else { |
| Value = DAG.getLoad(VT, Chain, |
| getMemBasePlusOffset(Src, SrcOff, DAG), |
| SrcSV, SrcSVOff + SrcOff, false, Align); |
| Store = DAG.getStore(Chain, Value, |
| getMemBasePlusOffset(Dst, DstOff, DAG), |
| DstSV, DstSVOff + DstOff, false, DstAlign); |
| } |
| OutChains.push_back(Store); |
| SrcOff += VTSize; |
| DstOff += VTSize; |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &OutChains[0], OutChains.size()); |
| } |
| |
| static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, |
| SDValue Chain, SDValue Dst, |
| SDValue Src, uint64_t Size, |
| unsigned Align, bool AlwaysInline, |
| const Value *DstSV, uint64_t DstSVOff, |
| const Value *SrcSV, uint64_t SrcSVOff){ |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // Expand memmove to a series of load and store ops if the size operand falls |
| // below a certain threshold. |
| std::vector<MVT> MemOps; |
| uint64_t Limit = -1ULL; |
| if (!AlwaysInline) |
| Limit = TLI.getMaxStoresPerMemmove(); |
| unsigned DstAlign = Align; // Destination alignment can change. |
| std::string Str; |
| bool CopyFromStr; |
| if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign, |
| Str, CopyFromStr, DAG, TLI)) |
| return SDValue(); |
| |
| uint64_t SrcOff = 0, DstOff = 0; |
| |
| SmallVector<SDValue, 8> LoadValues; |
| SmallVector<SDValue, 8> LoadChains; |
| SmallVector<SDValue, 8> OutChains; |
| unsigned NumMemOps = MemOps.size(); |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| MVT VT = MemOps[i]; |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| SDValue Value, Store; |
| |
| Value = DAG.getLoad(VT, Chain, |
| getMemBasePlusOffset(Src, SrcOff, DAG), |
| SrcSV, SrcSVOff + SrcOff, false, Align); |
| LoadValues.push_back(Value); |
| LoadChains.push_back(Value.getValue(1)); |
| SrcOff += VTSize; |
| } |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &LoadChains[0], LoadChains.size()); |
| OutChains.clear(); |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| MVT VT = MemOps[i]; |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| SDValue Value, Store; |
| |
| Store = DAG.getStore(Chain, LoadValues[i], |
| getMemBasePlusOffset(Dst, DstOff, DAG), |
| DstSV, DstSVOff + DstOff, false, DstAlign); |
| OutChains.push_back(Store); |
| DstOff += VTSize; |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &OutChains[0], OutChains.size()); |
| } |
| |
| static SDValue getMemsetStores(SelectionDAG &DAG, |
| SDValue Chain, SDValue Dst, |
| SDValue Src, uint64_t Size, |
| unsigned Align, |
| const Value *DstSV, uint64_t DstSVOff) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| // Expand memset to a series of load/store ops if the size operand |
| // falls below a certain threshold. |
| std::vector<MVT> MemOps; |
| std::string Str; |
| bool CopyFromStr; |
| if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(), |
| Size, Align, Str, CopyFromStr, DAG, TLI)) |
| return SDValue(); |
| |
| SmallVector<SDValue, 8> OutChains; |
| uint64_t DstOff = 0; |
| |
| unsigned NumMemOps = MemOps.size(); |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| MVT VT = MemOps[i]; |
| unsigned VTSize = VT.getSizeInBits() / 8; |
| SDValue Value = getMemsetValue(Src, VT, DAG); |
| SDValue Store = DAG.getStore(Chain, Value, |
| getMemBasePlusOffset(Dst, DstOff, DAG), |
| DstSV, DstSVOff + DstOff); |
| OutChains.push_back(Store); |
| DstOff += VTSize; |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &OutChains[0], OutChains.size()); |
| } |
| |
| SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst, |
| SDValue Src, SDValue Size, |
| unsigned Align, bool AlwaysInline, |
| const Value *DstSV, uint64_t DstSVOff, |
| const Value *SrcSV, uint64_t SrcSVOff) { |
| |
| // Check to see if we should lower the memcpy to loads and stores first. |
| // For cases within the target-specified limits, this is the best choice. |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (ConstantSize) { |
| // Memcpy with size zero? Just return the original chain. |
| if (ConstantSize->isNullValue()) |
| return Chain; |
| |
| SDValue Result = |
| getMemcpyLoadsAndStores(*this, Chain, Dst, Src, |
| ConstantSize->getZExtValue(), |
| Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| // Then check to see if we should lower the memcpy with target-specific |
| // code. If the target chooses to do this, this is the next best. |
| SDValue Result = |
| TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align, |
| AlwaysInline, |
| DstSV, DstSVOff, SrcSV, SrcSVOff); |
| if (Result.getNode()) |
| return Result; |
| |
| // If we really need inline code and the target declined to provide it, |
| // use a (potentially long) sequence of loads and stores. |
| if (AlwaysInline) { |
| assert(ConstantSize && "AlwaysInline requires a constant size!"); |
| return getMemcpyLoadsAndStores(*this, Chain, Dst, Src, |
| ConstantSize->getZExtValue(), Align, true, |
| DstSV, DstSVOff, SrcSV, SrcSVOff); |
| } |
| |
| // Emit a library call. |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Ty = TLI.getTargetData()->getIntPtrType(); |
| Entry.Node = Dst; Args.push_back(Entry); |
| Entry.Node = Src; Args.push_back(Entry); |
| Entry.Node = Size; Args.push_back(Entry); |
| std::pair<SDValue,SDValue> CallResult = |
| TLI.LowerCallTo(Chain, Type::VoidTy, |
| false, false, false, false, CallingConv::C, false, |
| getExternalSymbol("memcpy", TLI.getPointerTy()), |
| Args, *this); |
| return CallResult.second; |
| } |
| |
| SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst, |
| SDValue Src, SDValue Size, |
| unsigned Align, |
| const Value *DstSV, uint64_t DstSVOff, |
| const Value *SrcSV, uint64_t SrcSVOff) { |
| |
| // Check to see if we should lower the memmove to loads and stores first. |
| // For cases within the target-specified limits, this is the best choice. |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (ConstantSize) { |
| // Memmove with size zero? Just return the original chain. |
| if (ConstantSize->isNullValue()) |
| return Chain; |
| |
| SDValue Result = |
| getMemmoveLoadsAndStores(*this, Chain, Dst, Src, |
| ConstantSize->getZExtValue(), |
| Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| // Then check to see if we should lower the memmove with target-specific |
| // code. If the target chooses to do this, this is the next best. |
| SDValue Result = |
| TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align, |
| DstSV, DstSVOff, SrcSV, SrcSVOff); |
| if (Result.getNode()) |
| return Result; |
| |
| // Emit a library call. |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Ty = TLI.getTargetData()->getIntPtrType(); |
| Entry.Node = Dst; Args.push_back(Entry); |
| Entry.Node = Src; Args.push_back(Entry); |
| Entry.Node = Size; Args.push_back(Entry); |
| std::pair<SDValue,SDValue> CallResult = |
| TLI.LowerCallTo(Chain, Type::VoidTy, |
| false, false, false, false, CallingConv::C, false, |
| getExternalSymbol("memmove", TLI.getPointerTy()), |
| Args, *this); |
| return CallResult.second; |
| } |
| |
| SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst, |
| SDValue Src, SDValue Size, |
| unsigned Align, |
| const Value *DstSV, uint64_t DstSVOff) { |
| |
| // Check to see if we should lower the memset to stores first. |
| // For cases within the target-specified limits, this is the best choice. |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (ConstantSize) { |
| // Memset with size zero? Just return the original chain. |
| if (ConstantSize->isNullValue()) |
| return Chain; |
| |
| SDValue Result = |
| getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(), |
| Align, DstSV, DstSVOff); |
| if (Result.getNode()) |
| return Result; |
| } |
| |
| // Then check to see if we should lower the memset with target-specific |
| // code. If the target chooses to do this, this is the next best. |
| SDValue Result = |
| TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align, |
| DstSV, DstSVOff); |
| if (Result.getNode()) |
| return Result; |
| |
| // Emit a library call. |
| const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Node = Dst; Entry.Ty = IntPtrTy; |
| Args.push_back(Entry); |
| // Extend or truncate the argument to be an i32 value for the call. |
| if (Src.getValueType().bitsGT(MVT::i32)) |
| Src = getNode(ISD::TRUNCATE, MVT::i32, Src); |
| else |
| Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src); |
| Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; |
| Args.push_back(Entry); |
| Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false; |
| Args.push_back(Entry); |
| std::pair<SDValue,SDValue> CallResult = |
| TLI.LowerCallTo(Chain, Type::VoidTy, |
| false, false, false, false, CallingConv::C, false, |
| getExternalSymbol("memset", TLI.getPointerTy()), |
| Args, *this); |
| return CallResult.second; |
| } |
| |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain, |
| SDValue Ptr, SDValue Cmp, |
| SDValue Swp, const Value* PtrVal, |
| unsigned Alignment) { |
| assert((Opcode == ISD::ATOMIC_CMP_SWAP_8 || |
| Opcode == ISD::ATOMIC_CMP_SWAP_16 || |
| Opcode == ISD::ATOMIC_CMP_SWAP_32 || |
| Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op"); |
| assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); |
| |
| MVT VT = Cmp.getValueType(); |
| |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getMVTAlignment(VT); |
| |
| SDVTList VTs = getVTList(VT, MVT::Other); |
| FoldingSetNodeID ID; |
| SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 4); |
| void* IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode* N = NodeAllocator.Allocate<AtomicSDNode>(); |
| new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain, |
| SDValue Ptr, SDValue Val, |
| const Value* PtrVal, |
| unsigned Alignment) { |
| assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 || |
| Opcode == ISD::ATOMIC_LOAD_SUB_8 || |
| Opcode == ISD::ATOMIC_LOAD_AND_8 || |
| Opcode == ISD::ATOMIC_LOAD_OR_8 || |
| Opcode == ISD::ATOMIC_LOAD_XOR_8 || |
| Opcode == ISD::ATOMIC_LOAD_NAND_8 || |
| Opcode == ISD::ATOMIC_LOAD_MIN_8 || |
| Opcode == ISD::ATOMIC_LOAD_MAX_8 || |
| Opcode == ISD::ATOMIC_LOAD_UMIN_8 || |
| Opcode == ISD::ATOMIC_LOAD_UMAX_8 || |
| Opcode == ISD::ATOMIC_SWAP_8 || |
| Opcode == ISD::ATOMIC_LOAD_ADD_16 || |
| Opcode == ISD::ATOMIC_LOAD_SUB_16 || |
| Opcode == ISD::ATOMIC_LOAD_AND_16 || |
| Opcode == ISD::ATOMIC_LOAD_OR_16 || |
| Opcode == ISD::ATOMIC_LOAD_XOR_16 || |
| Opcode == ISD::ATOMIC_LOAD_NAND_16 || |
| Opcode == ISD::ATOMIC_LOAD_MIN_16 || |
| Opcode == ISD::ATOMIC_LOAD_MAX_16 || |
| Opcode == ISD::ATOMIC_LOAD_UMIN_16 || |
| Opcode == ISD::ATOMIC_LOAD_UMAX_16 || |
| Opcode == ISD::ATOMIC_SWAP_16 || |
| Opcode == ISD::ATOMIC_LOAD_ADD_32 || |
| Opcode == ISD::ATOMIC_LOAD_SUB_32 || |
| Opcode == ISD::ATOMIC_LOAD_AND_32 || |
| Opcode == ISD::ATOMIC_LOAD_OR_32 || |
| Opcode == ISD::ATOMIC_LOAD_XOR_32 || |
| Opcode == ISD::ATOMIC_LOAD_NAND_32 || |
| Opcode == ISD::ATOMIC_LOAD_MIN_32 || |
| Opcode == ISD::ATOMIC_LOAD_MAX_32 || |
| Opcode == ISD::ATOMIC_LOAD_UMIN_32 || |
| Opcode == ISD::ATOMIC_LOAD_UMAX_32 || |
| Opcode == ISD::ATOMIC_SWAP_32 || |
| Opcode == ISD::ATOMIC_LOAD_ADD_64 || |
| Opcode == ISD::ATOMIC_LOAD_SUB_64 || |
| Opcode == ISD::ATOMIC_LOAD_AND_64 || |
| Opcode == ISD::ATOMIC_LOAD_OR_64 || |
| Opcode == ISD::ATOMIC_LOAD_XOR_64 || |
| Opcode == ISD::ATOMIC_LOAD_NAND_64 || |
| Opcode == ISD::ATOMIC_LOAD_MIN_64 || |
| Opcode == ISD::ATOMIC_LOAD_MAX_64 || |
| Opcode == ISD::ATOMIC_LOAD_UMIN_64 || |
| Opcode == ISD::ATOMIC_LOAD_UMAX_64 || |
| Opcode == ISD::ATOMIC_SWAP_64) && "Invalid Atomic Op"); |
| |
| MVT VT = Val.getValueType(); |
| |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getMVTAlignment(VT); |
| |
| SDVTList VTs = getVTList(VT, MVT::Other); |
| FoldingSetNodeID ID; |
| SDValue Ops[] = {Chain, Ptr, Val}; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, 3); |
| void* IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode* N = NodeAllocator.Allocate<AtomicSDNode>(); |
| new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| /// getMergeValues - Create a MERGE_VALUES node from the given operands. |
| /// Allowed to return something different (and simpler) if Simplify is true. |
| SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps, |
| bool Simplify) { |
| if (Simplify && NumOps == 1) |
| return Ops[0]; |
| |
| SmallVector<MVT, 4> VTs; |
| VTs.reserve(NumOps); |
| for (unsigned i = 0; i < NumOps; ++i) |
| VTs.push_back(Ops[i].getValueType()); |
| return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps); |
| } |
| |
| SDValue |
| SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall, |
| bool IsInreg, SDVTList VTs, |
| const SDValue *Operands, unsigned NumOperands) { |
| // Do not include isTailCall in the folding set profile. |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands); |
| ID.AddInteger(CallingConv); |
| ID.AddInteger(IsVarArgs); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) { |
| // Instead of including isTailCall in the folding set, we just |
| // set the flag of the existing node. |
| if (!IsTailCall) |
| cast<CallSDNode>(E)->setNotTailCall(); |
| return SDValue(E, 0); |
| } |
| SDNode *N = NodeAllocator.Allocate<CallSDNode>(); |
| new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg, |
| VTs, Operands, NumOperands); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue |
| SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, |
| MVT VT, SDValue Chain, |
| SDValue Ptr, SDValue Offset, |
| const Value *SV, int SVOffset, MVT EVT, |
| bool isVolatile, unsigned Alignment) { |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getMVTAlignment(VT); |
| |
| if (VT == EVT) { |
| ExtType = ISD::NON_EXTLOAD; |
| } else if (ExtType == ISD::NON_EXTLOAD) { |
| assert(VT == EVT && "Non-extending load from different memory type!"); |
| } else { |
| // Extending load. |
| if (VT.isVector()) |
| assert(EVT.getVectorNumElements() == VT.getVectorNumElements() && |
| "Invalid vector extload!"); |
| else |
| assert(EVT.bitsLT(VT) && |
| "Should only be an extending load, not truncating!"); |
| assert((ExtType == ISD::EXTLOAD || VT.isInteger()) && |
| "Cannot sign/zero extend a FP/Vector load!"); |
| assert(VT.isInteger() == EVT.isInteger() && |
| "Cannot convert from FP to Int or Int -> FP!"); |
| } |
| |
| bool Indexed = AM != ISD::UNINDEXED; |
| assert((Indexed || Offset.getOpcode() == ISD::UNDEF) && |
| "Unindexed load with an offset!"); |
| |
| SDVTList VTs = Indexed ? |
| getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); |
| SDValue Ops[] = { Chain, Ptr, Offset }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); |
| ID.AddInteger(AM); |
| ID.AddInteger(ExtType); |
| ID.AddInteger(EVT.getRawBits()); |
| ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment)); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<LoadSDNode>(); |
| new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset, |
| Alignment, isVolatile); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getLoad(MVT VT, |
| SDValue Chain, SDValue Ptr, |
| const Value *SV, int SVOffset, |
| bool isVolatile, unsigned Alignment) { |
| SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType()); |
| return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef, |
| SV, SVOffset, VT, isVolatile, Alignment); |
| } |
| |
| SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT, |
| SDValue Chain, SDValue Ptr, |
| const Value *SV, |
| int SVOffset, MVT EVT, |
| bool isVolatile, unsigned Alignment) { |
| SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType()); |
| return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef, |
| SV, SVOffset, EVT, isVolatile, Alignment); |
| } |
| |
| SDValue |
| SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base, |
| SDValue Offset, ISD::MemIndexedMode AM) { |
| LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); |
| assert(LD->getOffset().getOpcode() == ISD::UNDEF && |
| "Load is already a indexed load!"); |
| return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), |
| LD->getChain(), Base, Offset, LD->getSrcValue(), |
| LD->getSrcValueOffset(), LD->getMemoryVT(), |
| LD->isVolatile(), LD->getAlignment()); |
| } |
| |
| SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val, |
| SDValue Ptr, const Value *SV, int SVOffset, |
| bool isVolatile, unsigned Alignment) { |
| MVT VT = Val.getValueType(); |
| |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getMVTAlignment(VT); |
| |
| SDVTList VTs = getVTList(MVT::Other); |
| SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType()); |
| SDValue Ops[] = { Chain, Val, Ptr, Undef }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); |
| ID.AddInteger(ISD::UNINDEXED); |
| ID.AddInteger(false); |
| ID.AddInteger(VT.getRawBits()); |
| ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment)); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<StoreSDNode>(); |
| new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false, |
| VT, SV, SVOffset, Alignment, isVolatile); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val, |
| SDValue Ptr, const Value *SV, |
| int SVOffset, MVT SVT, |
| bool isVolatile, unsigned Alignment) { |
| MVT VT = Val.getValueType(); |
| |
| if (VT == SVT) |
| return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment); |
| |
| assert(VT.bitsGT(SVT) && "Not a truncation?"); |
| assert(VT.isInteger() == SVT.isInteger() && |
| "Can't do FP-INT conversion!"); |
| |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = getMVTAlignment(VT); |
| |
| SDVTList VTs = getVTList(MVT::Other); |
| SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType()); |
| SDValue Ops[] = { Chain, Val, Ptr, Undef }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); |
| ID.AddInteger(ISD::UNINDEXED); |
| ID.AddInteger(1); |
| ID.AddInteger(SVT.getRawBits()); |
| ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment)); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<StoreSDNode>(); |
| new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true, |
| SVT, SV, SVOffset, Alignment, isVolatile); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue |
| SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base, |
| SDValue Offset, ISD::MemIndexedMode AM) { |
| StoreSDNode *ST = cast<StoreSDNode>(OrigStore); |
| assert(ST->getOffset().getOpcode() == ISD::UNDEF && |
| "Store is already a indexed store!"); |
| SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); |
| SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); |
| ID.AddInteger(AM); |
| ID.AddInteger(ST->isTruncatingStore()); |
| ID.AddInteger(ST->getMemoryVT().getRawBits()); |
| ID.AddInteger(ST->getRawFlags()); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| SDNode *N = NodeAllocator.Allocate<StoreSDNode>(); |
| new (N) StoreSDNode(Ops, VTs, AM, |
| ST->isTruncatingStore(), ST->getMemoryVT(), |
| ST->getSrcValue(), ST->getSrcValueOffset(), |
| ST->getAlignment(), ST->isVolatile()); |
| CSEMap.InsertNode(N, IP); |
| AllNodes.push_back(N); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getVAArg(MVT VT, |
| SDValue Chain, SDValue Ptr, |
| SDValue SV) { |
| SDValue Ops[] = { Chain, Ptr, SV }; |
| return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, |
| const SDUse *Ops, unsigned NumOps) { |
| switch (NumOps) { |
| case 0: return getNode(Opcode, VT); |
| case 1: return getNode(Opcode, VT, Ops[0]); |
| case 2: return getNode(Opcode, VT, Ops[0], Ops[1]); |
| case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]); |
| default: break; |
| } |
| |
| // Copy from an SDUse array into an SDValue array for use with |
| // the regular getNode logic. |
| SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps); |
| return getNode(Opcode, VT, &NewOps[0], NumOps); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, |
| const SDValue *Ops, unsigned NumOps) { |
| switch (NumOps) { |
| case 0: return getNode(Opcode, VT); |
| case 1: return getNode(Opcode, VT, Ops[0]); |
| case 2: return getNode(Opcode, VT, Ops[0], Ops[1]); |
| case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]); |
| default: break; |
| } |
| |
| switch (Opcode) { |
| default: break; |
| case ISD::SELECT_CC: { |
| assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); |
| assert(Ops[0].getValueType() == Ops[1].getValueType() && |
| "LHS and RHS of condition must have same type!"); |
| assert(Ops[2].getValueType() == Ops[3].getValueType() && |
| "True and False arms of SelectCC must have same type!"); |
| assert(Ops[2].getValueType() == VT && |
| "select_cc node must be of same type as true and false value!"); |
| break; |
| } |
| case ISD::BR_CC: { |
| assert(NumOps == 5 && "BR_CC takes 5 operands!"); |
| assert(Ops[2].getValueType() == Ops[3].getValueType() && |
| "LHS/RHS of comparison should match types!"); |
| break; |
| } |
| } |
| |
| // Memoize nodes. |
| SDNode *N; |
| SDVTList VTs = getVTList(VT); |
| if (VT != MVT::Flag) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| N = NodeAllocator.Allocate<SDNode>(); |
| new (N) SDNode(Opcode, VTs, Ops, NumOps); |
| CSEMap.InsertNode(N, IP); |
| } else { |
| N = NodeAllocator.Allocate<SDNode>(); |
| new (N) SDNode(Opcode, VTs, Ops, NumOps); |
| } |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifyNode(N); |
| #endif |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, |
| const std::vector<MVT> &ResultTys, |
| const SDValue *Ops, unsigned NumOps) { |
| return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(), |
| Ops, NumOps); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, |
| const MVT *VTs, unsigned NumVTs, |
| const SDValue *Ops, unsigned NumOps) { |
| if (NumVTs == 1) |
| return getNode(Opcode, VTs[0], Ops, NumOps); |
| return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, |
| const SDValue *Ops, unsigned NumOps) { |
| if (VTList.NumVTs == 1) |
| return getNode(Opcode, VTList.VTs[0], Ops, NumOps); |
| |
| switch (Opcode) { |
| // FIXME: figure out how to safely handle things like |
| // int foo(int x) { return 1 << (x & 255); } |
| // int bar() { return foo(256); } |
| #if 0 |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: |
| case ISD::SHL_PARTS: |
| if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) |
| return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); |
| else if (N3.getOpcode() == ISD::AND) |
| if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { |
| // If the and is only masking out bits that cannot effect the shift, |
| // eliminate the and. |
| unsigned NumBits = VT.getSizeInBits()*2; |
| if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) |
| return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); |
| } |
| break; |
| #endif |
| } |
| |
| // Memoize the node unless it returns a flag. |
| SDNode *N; |
| if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return SDValue(E, 0); |
| if (NumOps == 1) { |
| N = NodeAllocator.Allocate<UnarySDNode>(); |
| new (N) UnarySDNode(Opcode, VTList, Ops[0]); |
| } else if (NumOps == 2) { |
| N = NodeAllocator.Allocate<BinarySDNode>(); |
| new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]); |
| } else if (NumOps == 3) { |
| N = NodeAllocator.Allocate<TernarySDNode>(); |
| new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]); |
| } else { |
| N = NodeAllocator.Allocate<SDNode>(); |
| new (N) SDNode(Opcode, VTList, Ops, NumOps); |
| } |
| CSEMap.InsertNode(N, IP); |
| } else { |
| if (NumOps == 1) { |
| N = NodeAllocator.Allocate<UnarySDNode>(); |
| new (N) UnarySDNode(Opcode, VTList, Ops[0]); |
| } else if (NumOps == 2) { |
| N = NodeAllocator.Allocate<BinarySDNode>(); |
| new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]); |
| } else if (NumOps == 3) { |
| N = NodeAllocator.Allocate<TernarySDNode>(); |
| new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]); |
| } else { |
| N = NodeAllocator.Allocate<SDNode>(); |
| new (N) SDNode(Opcode, VTList, Ops, NumOps); |
| } |
| } |
| AllNodes.push_back(N); |
| #ifndef NDEBUG |
| VerifyNode(N); |
| #endif |
| return SDValue(N, 0); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) { |
| return getNode(Opcode, VTList, 0, 0); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, |
| SDValue N1) { |
| SDValue Ops[] = { N1 }; |
| return getNode(Opcode, VTList, Ops, 1); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, |
| SDValue N1, SDValue N2) { |
| SDValue Ops[] = { N1, N2 }; |
| return getNode(Opcode, VTList, Ops, 2); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, |
| SDValue N1, SDValue N2, SDValue N3) { |
| SDValue Ops[] = { N1, N2, N3 }; |
| return getNode(Opcode, VTList, Ops, 3); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, |
| SDValue N1, SDValue N2, SDValue N3, |
| SDValue N4) { |
| SDValue Ops[] = { N1, N2, N3, N4 }; |
| return getNode(Opcode, VTList, Ops, 4); |
| } |
| |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, |
| SDValue N1, SDValue N2, SDValue N3, |
| SDValue N4, SDValue N5) { |
| SDValue Ops[] = { N1, N2, N3, N4, N5 }; |
| return getNode(Opcode, VTList, Ops, 5); |
| } |
| |
| SDVTList SelectionDAG::getVTList(MVT VT) { |
| return makeVTList(SDNode::getValueTypeList(VT), 1); |
| } |
| |
| SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) { |
| for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(), |
| E = VTList.rend(); I != E; ++I) |
| if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2) |
| return *I; |
| |
| MVT *Array = Allocator.Allocate<MVT>(2); |
| Array[0] = VT1; |
| Array[1] = VT2; |
| SDVTList Result = makeVTList(Array, 2); |
| VTList.push_back(Result); |
| return Result; |
| } |
| |
| SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) { |
| for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(), |
| E = VTList.rend(); I != E; ++I) |
| if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 && |
| I->VTs[2] == VT3) |
| return *I; |
| |
| MVT *Array = Allocator.Allocate<MVT>(3); |
| Array[0] = VT1; |
| Array[1] = VT2; |
| Array[2] = VT3; |
| SDVTList Result = makeVTList(Array, 3); |
| VTList.push_back(Result); |
| return Result; |
| } |
| |
| SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) { |
| switch (NumVTs) { |
| case 0: assert(0 && "Cannot have nodes without results!"); |
| case 1: return getVTList(VTs[0]); |
| case 2: return getVTList(VTs[0], VTs[1]); |
| case 3: return getVTList(VTs[0], VTs[1], VTs[2]); |
| default: break; |
| } |
| |
| for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(), |
| E = VTList.rend(); I != E; ++I) { |
| if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1]) |
| continue; |
| |
| bool NoMatch = false; |
| for (unsigned i = 2; i != NumVTs; ++i) |
| if (VTs[i] != I->VTs[i]) { |
| NoMatch = true; |
| break; |
| } |
| if (!NoMatch) |
| return *I; |
| } |
| |
| MVT *Array = Allocator.Allocate<MVT>(NumVTs); |
| std::copy(VTs, VTs+NumVTs, Array); |
| SDVTList Result = makeVTList(Array, NumVTs); |
| VTList.push_back(Result); |
| return Result; |
| } |
| |
| |
| /// UpdateNodeOperands - *Mutate* the specified node in-place to have the |
| /// specified operands. If the resultant node already exists in the DAG, |
| /// this does not modify the specified node, instead it returns the node that |
| /// already exists. If the resultant node does not exist in the DAG, the |
| /// input node is returned. As a degenerate case, if you specify the same |
| /// input operands as the node already has, the input node is returned. |
| SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) { |
| SDNode *N = InN.getNode(); |
| assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); |
| |
| // Check to see if there is no change. |
| if (Op == N->getOperand(0)) return InN; |
| |
| // See if the modified node already exists. |
| void *InsertPos = 0; |
| if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) |
| return SDValue(Existing, InN.getResNo()); |
| |
| // Nope it doesn't. Remove the node from its current place in the maps. |
| if (InsertPos) |
| if (!RemoveNodeFromCSEMaps(N)) |
| InsertPos = 0; |
| |
| // Now we update the operands. |
| N->OperandList[0].getVal()->removeUser(0, N); |
| N->OperandList[0] = Op; |
| N->OperandList[0].setUser(N); |
| Op.getNode()->addUser(0, N); |
| |
| // If this gets put into a CSE map, add it. |
| if (InsertPos) CSEMap.InsertNode(N, InsertPos); |
| return InN; |
| } |
| |
| SDValue SelectionDAG:: |
| UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) { |
| SDNode *N = InN.getNode(); |
| assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); |
| |
| // Check to see if there is no change. |
| if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) |
| return InN; // No operands changed, just return the input node. |
| |
| // See if the modified node already exists. |
| void *InsertPos = 0; |
| if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) |
| return SDValue(Existing, InN.getResNo()); |
| |
| // Nope it doesn't. Remove the node from its current place in the maps. |
| if (InsertPos) |
| if (!RemoveNodeFromCSEMaps(N)) |
| InsertPos = 0; |
| |
| // Now we update the operands. |
| if (N->OperandList[0] != Op1) { |
| N->OperandList[0].getVal()->removeUser(0, N); |
| N->OperandList[0] = Op1; |
| N->OperandList[0].setUser(N); |
| Op1.getNode()->addUser(0, N); |
| } |
| if (N->OperandList[1] != Op2) { |
| N->OperandList[1].getVal()->removeUser(1, N); |
| N->OperandList[1] = Op2; |
| N->OperandList[1].setUser(N); |
| Op2.getNode()->addUser(1, N); |
| } |
| |
| // If this gets put into a CSE map, add it. |
| if (InsertPos) CSEMap.InsertNode(N, InsertPos); |
| return InN; |
| } |
| |
| SDValue SelectionDAG:: |
| UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) { |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return UpdateNodeOperands(N, Ops, 3); |
| } |
| |
| SDValue SelectionDAG:: |
| UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, |
| SDValue Op3, SDValue Op4) { |
| SDValue Ops[] = { Op1, Op2, Op3, Op4 }; |
| return UpdateNodeOperands(N, Ops, 4); |
| } |
| |
| SDValue SelectionDAG:: |
| UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, |
| SDValue Op3, SDValue Op4, SDValue Op5) { |
| SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; |
| return UpdateNodeOperands(N, Ops, 5); |
| } |
| |
| SDValue SelectionDAG:: |
| UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) { |
| SDNode *N = InN.getNode(); |
| assert(N->getNumOperands() == NumOps && |
| "Update with wrong number of operands"); |
| |
| // Check to see if there is no change. |
| bool AnyChange = false; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| if (Ops[i] != N->getOperand(i)) { |
| AnyChange = true; |
| break; |
| } |
| } |
| |
| // No operands changed, just return the input node. |
| if (!AnyChange) return InN; |
| |
| // See if the modified node already exists. |
| void *InsertPos = 0; |
| if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos)) |
| return SDValue(Existing, InN.getResNo()); |
| |
| // Nope it doesn't. Remove the node from its current place in the maps. |
| if (InsertPos) |
| if (!RemoveNodeFromCSEMaps(N)) |
| InsertPos = 0; |
| |
| // Now we update the operands. |
| for (unsigned i = 0; i != NumOps; ++i) { |
| if (N->OperandList[i] != Ops[i]) { |
| N->OperandList[i].getVal()->removeUser(i, N); |
| N->OperandList[i] = Ops[i]; |
| N->OperandList[i].setUser(N); |
| Ops[i].getNode()->addUser(i, N); |
| } |
| } |
| |
| // If this gets put into a CSE map, add it. |
| if (InsertPos) CSEMap.InsertNode(N, InsertPos); |
| return InN; |
| } |
| |
| /// DropOperands - Release the operands and set this node to have |
| /// zero operands. |
| void SDNode::DropOperands() { |
| // Unlike the code in MorphNodeTo that does this, we don't need to |
| // watch for dead nodes here. |
| for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) |
| I->getVal()->removeUser(std::distance(op_begin(), I), this); |
| |
| NumOperands = 0; |
| } |
| |
| /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a |
| /// machine opcode. |
| /// |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| MVT VT) { |
| SDVTList VTs = getVTList(VT); |
| return SelectNodeTo(N, MachineOpc, VTs, 0, 0); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| MVT VT, SDValue Op1) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 1); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| MVT VT, SDValue Op1, |
| SDValue Op2) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1, Op2 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 2); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| MVT VT, SDValue Op1, |
| SDValue Op2, SDValue Op3) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 3); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| MVT VT, const SDValue *Ops, |
| unsigned NumOps) { |
| SDVTList VTs = getVTList(VT); |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| MVT VT1, MVT VT2, const SDValue *Ops, |
| unsigned NumOps) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| MVT VT1, MVT VT2) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| MVT VT1, MVT VT2, MVT VT3, |
| const SDValue *Ops, unsigned NumOps) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3); |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| MVT VT1, MVT VT2, |
| SDValue Op1) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 1); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| MVT VT1, MVT VT2, |
| SDValue Op1, SDValue Op2) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 2); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| MVT VT1, MVT VT2, |
| SDValue Op1, SDValue Op2, |
| SDValue Op3) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return SelectNodeTo(N, MachineOpc, VTs, Ops, 3); |
| } |
| |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, |
| SDVTList VTs, const SDValue *Ops, |
| unsigned NumOps) { |
| return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps); |
| } |
| |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| MVT VT) { |
| SDVTList VTs = getVTList(VT); |
| return MorphNodeTo(N, Opc, VTs, 0, 0); |
| } |
| |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| MVT VT, SDValue Op1) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1 }; |
| return MorphNodeTo(N, Opc, VTs, Ops, 1); |
| } |
| |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| MVT VT, SDValue Op1, |
| SDValue Op2) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1, Op2 }; |
| return MorphNodeTo(N, Opc, VTs, Ops, 2); |
| } |
| |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| MVT VT, SDValue Op1, |
| SDValue Op2, SDValue Op3) { |
| SDVTList VTs = getVTList(VT); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return MorphNodeTo(N, Opc, VTs, Ops, 3); |
| } |
| |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| MVT VT, const SDValue *Ops, |
| unsigned NumOps) { |
| SDVTList VTs = getVTList(VT); |
| return MorphNodeTo(N, Opc, VTs, Ops, NumOps); |
| } |
| |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| MVT VT1, MVT VT2, const SDValue *Ops, |
| unsigned NumOps) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| return MorphNodeTo(N, Opc, VTs, Ops, NumOps); |
| } |
| |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| MVT VT1, MVT VT2) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0); |
| } |
| |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| MVT VT1, MVT VT2, MVT VT3, |
| const SDValue *Ops, unsigned NumOps) { |
| SDVTList VTs = getVTList(VT1, VT2, VT3); |
| return MorphNodeTo(N, Opc, VTs, Ops, NumOps); |
| } |
| |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| MVT VT1, MVT VT2, |
| SDValue Op1) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1 }; |
| return MorphNodeTo(N, Opc, VTs, Ops, 1); |
| } |
| |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| MVT VT1, MVT VT2, |
| SDValue Op1, SDValue Op2) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2 }; |
| return MorphNodeTo(N, Opc, VTs, Ops, 2); |
| } |
| |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| MVT VT1, MVT VT2, |
| SDValue Op1, SDValue Op2, |
| SDValue Op3) { |
| SDVTList VTs = getVTList(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return MorphNodeTo(N, Opc, VTs, Ops, 3); |
| } |
| |
| /// MorphNodeTo - These *mutate* the specified node to have the specified |
| /// return type, opcode, and operands. |
| /// |
| /// Note that MorphNodeTo returns the resultant node. If there is already a |
| /// node of the specified opcode and operands, it returns that node instead of |
| /// the current one. |
| /// |
| /// Using MorphNodeTo is faster than creating a new node and swapping it in |
| /// with ReplaceAllUsesWith both because it often avoids allocating a new |
| /// node, and because it doesn't require CSE recalculation for any of |
| /// the node's users. |
| /// |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, |
| SDVTList VTs, const SDValue *Ops, |
| unsigned NumOps) { |
| // If an identical node already exists, use it. |
| void *IP = 0; |
| if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opc, VTs, Ops, NumOps); |
| if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return ON; |
| } |
| |
| if (!RemoveNodeFromCSEMaps(N)) |
| IP = 0; |
| |
| // Start the morphing. |
| N->NodeType = Opc; |
| N->ValueList = VTs.VTs; |
| N->NumValues = VTs.NumVTs; |
| |
| // Clear the operands list, updating used nodes to remove this from their |
| // use list. Keep track of any operands that become dead as a result. |
| SmallPtrSet<SDNode*, 16> DeadNodeSet; |
| for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end(); |
| I != E; ++I) { |
| SDNode *Used = I->getVal(); |
| Used->removeUser(std::distance(B, I), N); |
| if (Used->use_empty()) |
| DeadNodeSet.insert(Used); |
| } |
| |
| // If NumOps is larger than the # of operands we currently have, reallocate |
| // the operand list. |
| if (NumOps > N->NumOperands) { |
| if (N->OperandsNeedDelete) |
| delete[] N->OperandList; |
| if (N->isMachineOpcode()) { |
| // We're creating a final node that will live unmorphed for the |
| // remainder of the current SelectionDAG iteration, so we can allocate |
| // the operands directly out of a pool with no recycling metadata. |
| N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps); |
| N->OperandsNeedDelete = false; |
| } else { |
| N->OperandList = new SDUse[NumOps]; |
| N->OperandsNeedDelete = true; |
| } |
| } |
| |
| // Assign the new operands. |
| N->NumOperands = NumOps; |
| for (unsigned i = 0, e = NumOps; i != e; ++i) { |
| N->OperandList[i] = Ops[i]; |
| N->OperandList[i].setUser(N); |
| SDNode *ToUse = N->OperandList[i].getVal(); |
| ToUse->addUser(i, N); |
| } |
| |
| // Delete any nodes that are still dead after adding the uses for the |
| // new operands. |
| SmallVector<SDNode *, 16> DeadNodes; |
| for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(), |
| E = DeadNodeSet.end(); I != E; ++I) |
| if ((*I)->use_empty()) |
| DeadNodes.push_back(*I); |
| RemoveDeadNodes(DeadNodes); |
| |
| if (IP) |
| CSEMap.InsertNode(N, IP); // Memoize the new node. |
| return N; |
| } |
| |
| |
| /// getTargetNode - These are used for target selectors to create a new node |
| /// with specified return type(s), target opcode, and operands. |
| /// |
| /// Note that getTargetNode returns the resultant node. If there is already a |
| /// node of the specified opcode and operands, it returns that node instead of |
| /// the current one. |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) { |
| return getNode(~Opcode, VT).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) { |
| return getNode(~Opcode, VT, Op1).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, |
| SDValue Op1, SDValue Op2) { |
| return getNode(~Opcode, VT, Op1, Op2).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, |
| SDValue Op1, SDValue Op2, |
| SDValue Op3) { |
| return getNode(~Opcode, VT, Op1, Op2, Op3).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, |
| const SDValue *Ops, unsigned NumOps) { |
| return getNode(~Opcode, VT, Ops, NumOps).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) { |
| const MVT *VTs = getNodeValueTypes(VT1, VT2); |
| SDValue Op; |
| return getNode(~Opcode, VTs, 2, &Op, 0).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, |
| MVT VT2, SDValue Op1) { |
| const MVT *VTs = getNodeValueTypes(VT1, VT2); |
| return getNode(~Opcode, VTs, 2, &Op1, 1).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, |
| MVT VT2, SDValue Op1, |
| SDValue Op2) { |
| const MVT *VTs = getNodeValueTypes(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2 }; |
| return getNode(~Opcode, VTs, 2, Ops, 2).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, |
| MVT VT2, SDValue Op1, |
| SDValue Op2, SDValue Op3) { |
| const MVT *VTs = getNodeValueTypes(VT1, VT2); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return getNode(~Opcode, VTs, 2, Ops, 3).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, |
| const SDValue *Ops, unsigned NumOps) { |
| const MVT *VTs = getNodeValueTypes(VT1, VT2); |
| return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, |
| SDValue Op1, SDValue Op2) { |
| const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3); |
| SDValue Ops[] = { Op1, Op2 }; |
| return getNode(~Opcode, VTs, 3, Ops, 2).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, |
| SDValue Op1, SDValue Op2, |
| SDValue Op3) { |
| const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3); |
| SDValue Ops[] = { Op1, Op2, Op3 }; |
| return getNode(~Opcode, VTs, 3, Ops, 3).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, |
| const SDValue *Ops, unsigned NumOps) { |
| const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3); |
| return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, |
| MVT VT2, MVT VT3, MVT VT4, |
| const SDValue *Ops, unsigned NumOps) { |
| std::vector<MVT> VTList; |
| VTList.push_back(VT1); |
| VTList.push_back(VT2); |
| VTList.push_back(VT3); |
| VTList.push_back(VT4); |
| const MVT *VTs = getNodeValueTypes(VTList); |
| return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode(); |
| } |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, |
| const std::vector<MVT> &ResultTys, |
| const SDValue *Ops, unsigned NumOps) { |
| const MVT *VTs = getNodeValueTypes(ResultTys); |
| return getNode(~Opcode, VTs, ResultTys.size(), |
| Ops, NumOps).getNode(); |
| } |
| |
| /// getNodeIfExists - Get the specified node if it's already available, or |
| /// else return NULL. |
| SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, |
| const SDValue *Ops, unsigned NumOps) { |
| if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) { |
| FoldingSetNodeID ID; |
| AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps); |
| void *IP = 0; |
| if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) |
| return E; |
| } |
| return NULL; |
| } |
| |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version assumes From has a single result value. |
| /// |
| void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To, |
| DAGUpdateListener *UpdateListener) { |
| SDNode *From = FromN.getNode(); |
| assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && |
| "Cannot replace with this method!"); |
| assert(From != To.getNode() && "Cannot replace uses of with self"); |
| |
| while (!From->use_empty()) { |
| SDNode::use_iterator UI = From->use_begin(); |
| SDNode *U = *UI; |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(U); |
| int operandNum = 0; |
| for (SDNode::op_iterator I = U->op_begin(), E = U->op_end(); |
| I != E; ++I, ++operandNum) |
| if (I->getVal() == From) { |
| From->removeUser(operandNum, U); |
| *I = To; |
| I->setUser(U); |
| To.getNode()->addUser(operandNum, U); |
| } |
| |
| // Now that we have modified U, add it back to the CSE maps. If it already |
| // exists there, recursively merge the results together. |
| if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { |
| ReplaceAllUsesWith(U, Existing, UpdateListener); |
| // U is now dead. Inform the listener if it exists and delete it. |
| if (UpdateListener) |
| UpdateListener->NodeDeleted(U, Existing); |
| DeleteNodeNotInCSEMaps(U); |
| } else { |
| // If the node doesn't already exist, we updated it. Inform a listener if |
| // it exists. |
| if (UpdateListener) |
| UpdateListener->NodeUpdated(U); |
| } |
| } |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version assumes From/To have matching types and numbers of result |
| /// values. |
| /// |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To, |
| DAGUpdateListener *UpdateListener) { |
| assert(From->getVTList().VTs == To->getVTList().VTs && |
| From->getNumValues() == To->getNumValues() && |
| "Cannot use this version of ReplaceAllUsesWith!"); |
| |
| // Handle the trivial case. |
| if (From == To) |
| return; |
| |
| while (!From->use_empty()) { |
| SDNode::use_iterator UI = From->use_begin(); |
| SDNode *U = *UI; |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(U); |
| int operandNum = 0; |
| for (SDNode::op_iterator I = U->op_begin(), E = U->op_end(); |
| I != E; ++I, ++operandNum) |
| if (I->getVal() == From) { |
| From->removeUser(operandNum, U); |
| I->getSDValue().setNode(To); |
| To->addUser(operandNum, U); |
| } |
| |
| // Now that we have modified U, add it back to the CSE maps. If it already |
| // exists there, recursively merge the results together. |
| if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { |
| ReplaceAllUsesWith(U, Existing, UpdateListener); |
| // U is now dead. Inform the listener if it exists and delete it. |
| if (UpdateListener) |
| UpdateListener->NodeDeleted(U, Existing); |
| DeleteNodeNotInCSEMaps(U); |
| } else { |
| // If the node doesn't already exist, we updated it. Inform a listener if |
| // it exists. |
| if (UpdateListener) |
| UpdateListener->NodeUpdated(U); |
| } |
| } |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version can replace From with any result values. To must match the |
| /// number and types of values returned by From. |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, |
| const SDValue *To, |
| DAGUpdateListener *UpdateListener) { |
| if (From->getNumValues() == 1) // Handle the simple case efficiently. |
| return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener); |
| |
| while (!From->use_empty()) { |
| SDNode::use_iterator UI = From->use_begin(); |
| SDNode *U = *UI; |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(U); |
| int operandNum = 0; |
| for (SDNode::op_iterator I = U->op_begin(), E = U->op_end(); |
| I != E; ++I, ++operandNum) |
| if (I->getVal() == From) { |
| const SDValue &ToOp = To[I->getSDValue().getResNo()]; |
| From->removeUser(operandNum, U); |
| *I = ToOp; |
| I->setUser(U); |
| ToOp.getNode()->addUser(operandNum, U); |
| } |
| |
| // Now that we have modified U, add it back to the CSE maps. If it already |
| // exists there, recursively merge the results together. |
| if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { |
| ReplaceAllUsesWith(U, Existing, UpdateListener); |
| // U is now dead. Inform the listener if it exists and delete it. |
| if (UpdateListener) |
| UpdateListener->NodeDeleted(U, Existing); |
| DeleteNodeNotInCSEMaps(U); |
| } else { |
| // If the node doesn't already exist, we updated it. Inform a listener if |
| // it exists. |
| if (UpdateListener) |
| UpdateListener->NodeUpdated(U); |
| } |
| } |
| } |
| |
| /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving |
| /// uses of other values produced by From.getVal() alone. The Deleted vector is |
| /// handled the same way as for ReplaceAllUsesWith. |
| void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To, |
| DAGUpdateListener *UpdateListener){ |
| // Handle the really simple, really trivial case efficiently. |
| if (From == To) return; |
| |
| // Handle the simple, trivial, case efficiently. |
| if (From.getNode()->getNumValues() == 1) { |
| ReplaceAllUsesWith(From, To, UpdateListener); |
| return; |
| } |
| |
| // Get all of the users of From.getNode(). We want these in a nice, |
| // deterministically ordered and uniqued set, so we use a SmallSetVector. |
| SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end()); |
| |
| while (!Users.empty()) { |
| // We know that this user uses some value of From. If it is the right |
| // value, update it. |
| SDNode *User = Users.back(); |
| Users.pop_back(); |
| |
| // Scan for an operand that matches From. |
| SDNode::op_iterator Op = User->op_begin(), E = User->op_end(); |
| for (; Op != E; ++Op) |
| if (*Op == From) break; |
| |
| // If there are no matches, the user must use some other result of From. |
| if (Op == E) continue; |
| |
| // Okay, we know this user needs to be updated. Remove its old self |
| // from the CSE maps. |
| RemoveNodeFromCSEMaps(User); |
| |
| // Update all operands that match "From" in case there are multiple uses. |
| for (; Op != E; ++Op) { |
| if (*Op == From) { |
| From.getNode()->removeUser(Op-User->op_begin(), User); |
| *Op = To; |
| Op->setUser(User); |
| To.getNode()->addUser(Op-User->op_begin(), User); |
| } |
| } |
| |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| SDNode *Existing = AddNonLeafNodeToCSEMaps(User); |
| if (!Existing) { |
| if (UpdateListener) UpdateListener->NodeUpdated(User); |
| continue; // Continue on to next user. |
| } |
| |
| // If there was already an existing matching node, use ReplaceAllUsesWith |
| // to replace the dead one with the existing one. This can cause |
| // recursive merging of other unrelated nodes down the line. |
| ReplaceAllUsesWith(User, Existing, UpdateListener); |
| |
| // User is now dead. Notify a listener if present. |
| if (UpdateListener) UpdateListener->NodeDeleted(User, Existing); |
| DeleteNodeNotInCSEMaps(User); |
| } |
| } |
| |
| /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving |
| /// uses of other values produced by From.getVal() alone. The same value may |
| /// appear in both the From and To list. The Deleted vector is |
| /// handled the same way as for ReplaceAllUsesWith. |
| void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, |
| const SDValue *To, |
| unsigned Num, |
| DAGUpdateListener *UpdateListener){ |
| // Handle the simple, trivial case efficiently. |
| if (Num == 1) |
| return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener); |
| |
| SmallVector<std::pair<SDNode *, unsigned>, 16> Users; |
| for (unsigned i = 0; i != Num; ++i) |
| for (SDNode::use_iterator UI = From[i].getNode()->use_begin(), |
| E = From[i].getNode()->use_end(); UI != E; ++UI) |
| Users.push_back(std::make_pair(*UI, i)); |
| |
| while (!Users.empty()) { |
| // We know that this user uses some value of From. If it is the right |
| // value, update it. |
| SDNode *User = Users.back().first; |
| unsigned i = Users.back().second; |
| Users.pop_back(); |
| |
| // Scan for an operand that matches From. |
| SDNode::op_iterator Op = User->op_begin(), E = User->op_end(); |
| for (; Op != E; ++Op) |
| if (*Op == From[i]) break; |
| |
| // If there are no matches, the user must use some other result of From. |
| if (Op == E) continue; |
| |
| // Okay, we know this user needs to be updated. Remove its old self |
| // from the CSE maps. |
| RemoveNodeFromCSEMaps(User); |
| |
| // Update all operands that match "From" in case there are multiple uses. |
| for (; Op != E; ++Op) { |
| if (*Op == From[i]) { |
| From[i].getNode()->removeUser(Op-User->op_begin(), User); |
| *Op = To[i]; |
| Op->setUser(User); |
| To[i].getNode()->addUser(Op-User->op_begin(), User); |
| } |
| } |
| |
| // Now that we have modified User, add it back to the CSE maps. If it |
| // already exists there, recursively merge the results together. |
| SDNode *Existing = AddNonLeafNodeToCSEMaps(User); |
| if (!Existing) { |
| if (UpdateListener) UpdateListener->NodeUpdated(User); |
| continue; // Continue on to next user. |
| } |
| |
| // If there was already an existing matching node, use ReplaceAllUsesWith |
| // to replace the dead one with the existing one. This can cause |
| // recursive merging of other unrelated nodes down the line. |
| ReplaceAllUsesWith(User, Existing, UpdateListener); |
| |
| // User is now dead. Notify a listener if present. |
| if (UpdateListener) UpdateListener->NodeDeleted(User, Existing); |
| DeleteNodeNotInCSEMaps(User); |
| } |
| } |
| |
| /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG |
| /// based on their topological order. It returns the maximum id and a vector |
| /// of the SDNodes* in assigned order by reference. |
| unsigned SelectionDAG::AssignTopologicalOrder() { |
| |
| unsigned DAGSize = 0; |
| |
| // SortedPos tracks the progress of the algorithm. Nodes before it are |
| // sorted, nodes after it are unsorted. When the algorithm completes |
| // it is at the end of the list. |
| allnodes_iterator SortedPos = allnodes_begin(); |
| |
| // Visit all the nodes. Add nodes with no operands to the TopOrder result |
| // array immediately. Annotate nodes that do have operands with their |
| // operand count. Before we do this, the Node Id fields of the nodes |
| // may contain arbitrary values. After, the Node Id fields for nodes |
| // before SortedPos will contain the topological sort index, and the |
| // Node Id fields for nodes At SortedPos and after will contain the |
| // count of outstanding operands. |
| for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { |
| SDNode *N = I++; |
| unsigned Degree = N->getNumOperands(); |
| if (Degree == 0) { |
| // A node with no uses, add it to the result array immediately. |
| N->setNodeId(DAGSize++); |
| allnodes_iterator Q = N; |
| if (Q != SortedPos) |
| SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); |
| ++SortedPos; |
| } else { |
| // Temporarily use the Node Id as scratch space for the degree count. |
| N->setNodeId(Degree); |
| } |
| } |
| |
| // Visit all the nodes. As we iterate, moves nodes into sorted order, |
| // such that by the time the end is reached all nodes will be sorted. |
| for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) { |
| SDNode *N = I; |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) { |
| SDNode *P = *UI; |
| unsigned Degree = P->getNodeId(); |
| --Degree; |
| if (Degree == 0) { |
| // All of P's operands are sorted, so P may sorted now. |
| P->setNodeId(DAGSize++); |
| if (P != SortedPos) |
| SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); |
| ++SortedPos; |
| } else { |
| // Update P's outstanding operand count. |
| P->setNodeId(Degree); |
| } |
| } |
| } |
| |
| assert(SortedPos == AllNodes.end() && |
| "Topological sort incomplete!"); |
| assert(AllNodes.front().getOpcode() == ISD::EntryToken && |
| "First node in topological sort is not the entry token!"); |
| assert(AllNodes.front().getNodeId() == 0 && |
| "First node in topological sort has non-zero id!"); |
| assert(AllNodes.front().getNumOperands() == 0 && |
| "First node in topological sort has operands!"); |
| assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && |
| "Last node in topologic sort has unexpected id!"); |
| assert(AllNodes.back().use_empty() && |
| "Last node in topologic sort has users!"); |
| assert(DAGSize == allnodes_size() && "TopOrder result count mismatch!"); |
| return DAGSize; |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SDNode Class |
| //===----------------------------------------------------------------------===// |
| |
| // Out-of-line virtual method to give class a home. |
| void SDNode::ANCHOR() {} |
| void UnarySDNode::ANCHOR() {} |
| void BinarySDNode::ANCHOR() {} |
| void TernarySDNode::ANCHOR() {} |
| void HandleSDNode::ANCHOR() {} |
| void ConstantSDNode::ANCHOR() {} |
| void ConstantFPSDNode::ANCHOR() {} |
| void GlobalAddressSDNode::ANCHOR() {} |
| void FrameIndexSDNode::ANCHOR() {} |
| void JumpTableSDNode::ANCHOR() {} |
| void ConstantPoolSDNode::ANCHOR() {} |
| void BasicBlockSDNode::ANCHOR() {} |
| void SrcValueSDNode::ANCHOR() {} |
| void MemOperandSDNode::ANCHOR() {} |
| void RegisterSDNode::ANCHOR() {} |
| void DbgStopPointSDNode::ANCHOR() {} |
| void LabelSDNode::ANCHOR() {} |
| void ExternalSymbolSDNode::ANCHOR() {} |
| void CondCodeSDNode::ANCHOR() {} |
| void ARG_FLAGSSDNode::ANCHOR() {} |
| void VTSDNode::ANCHOR() {} |
| void MemSDNode::ANCHOR() {} |
| void LoadSDNode::ANCHOR() {} |
| void StoreSDNode::ANCHOR() {} |
| void AtomicSDNode::ANCHOR() {} |
| void CallSDNode::ANCHOR() {} |
| |
| HandleSDNode::~HandleSDNode() { |
| DropOperands(); |
| } |
| |
| GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, |
| MVT VT, int o) |
| : SDNode(isa<GlobalVariable>(GA) && |
| cast<GlobalVariable>(GA)->isThreadLocal() ? |
| // Thread Local |
| (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) : |
| // Non Thread Local |
| (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress), |
| getSDVTList(VT)), Offset(o) { |
| TheGlobal = const_cast<GlobalValue*>(GA); |
| } |
| |
| MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt, |
| const Value *srcValue, int SVO, |
| unsigned alignment, bool vol) |
| : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO), |
| Flags(encodeMemSDNodeFlags(vol, alignment)) { |
| |
| assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!"); |
| assert(getAlignment() == alignment && "Alignment representation error!"); |
| assert(isVolatile() == vol && "Volatile representation error!"); |
| } |
| |
| /// getMemOperand - Return a MachineMemOperand object describing the memory |
| /// reference performed by this memory reference. |
| MachineMemOperand MemSDNode::getMemOperand() const { |
| int Flags; |
| if (isa<LoadSDNode>(this)) |
| Flags = MachineMemOperand::MOLoad; |
| else if (isa<StoreSDNode>(this)) |
| Flags = MachineMemOperand::MOStore; |
| else { |
| assert(isa<AtomicSDNode>(this) && "Unknown MemSDNode opcode!"); |
| Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| } |
| |
| int Size = (getMemoryVT().getSizeInBits() + 7) >> 3; |
| if (isVolatile()) Flags |= MachineMemOperand::MOVolatile; |
| |
| // Check if the memory reference references a frame index |
| const FrameIndexSDNode *FI = |
| dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode()); |
| if (!getSrcValue() && FI) |
| return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()), |
| Flags, 0, Size, getAlignment()); |
| else |
| return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(), |
| Size, getAlignment()); |
| } |
| |
| /// Profile - Gather unique data for the node. |
| /// |
| void SDNode::Profile(FoldingSetNodeID &ID) const { |
| AddNodeIDNode(ID, this); |
| } |
| |
| /// getValueTypeList - Return a pointer to the specified value type. |
| /// |
| const MVT *SDNode::getValueTypeList(MVT VT) { |
| if (VT.isExtended()) { |
| static std::set<MVT, MVT::compareRawBits> EVTs; |
| return &(*EVTs.insert(VT).first); |
| } else { |
| static MVT VTs[MVT::LAST_VALUETYPE]; |
| VTs[VT.getSimpleVT()] = VT; |
| return &VTs[VT.getSimpleVT()]; |
| } |
| } |
| |
| /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the |
| /// indicated value. This method ignores uses of other values defined by this |
| /// operation. |
| bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { |
| assert(Value < getNumValues() && "Bad value!"); |
| |
| // TODO: Only iterate over uses of a given value of the node |
| for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { |
| if (UI.getUse().getSDValue().getResNo() == Value) { |
| if (NUses == 0) |
| return false; |
| --NUses; |
| } |
| } |
| |
| // Found exactly the right number of uses? |
| return NUses == 0; |
| } |
| |
| |
| /// hasAnyUseOfValue - Return true if there are any use of the indicated |
| /// value. This method ignores uses of other values defined by this operation. |
| bool SDNode::hasAnyUseOfValue(unsigned Value) const { |
| assert(Value < getNumValues() && "Bad value!"); |
| |
| for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) |
| if (UI.getUse().getSDValue().getResNo() == Value) |
| return true; |
| |
| return false; |
| } |
| |
| |
| /// isOnlyUserOf - Return true if this node is the only use of N. |
| /// |
| bool SDNode::isOnlyUserOf(SDNode *N) const { |
| bool Seen = false; |
| for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { |
| SDNode *User = *I; |
| if (User == this) |
| Seen = true; |
| else |
| return false; |
| } |
| |
| return Seen; |
| } |
| |
| /// isOperand - Return true if this node is an operand of N. |
| /// |
| bool SDValue::isOperandOf(SDNode *N) const { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (*this == N->getOperand(i)) |
| return true; |
| return false; |
| } |
| |
| bool SDNode::isOperandOf(SDNode *N) const { |
| for (unsigned i = 0, e = N->NumOperands; i != e; ++i) |
| if (this == N->OperandList[i].getVal()) |
| return true; |
| return false; |
| } |
| |
| /// reachesChainWithoutSideEffects - Return true if this operand (which must |
| /// be a chain) reaches the specified operand without crossing any |
| /// side-effecting instructions. In practice, this looks through token |
| /// factors and non-volatile loads. In order to remain efficient, this only |
| /// looks a couple of nodes in, it does not do an exhaustive search. |
| bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, |
| unsigned Depth) const { |
| if (*this == Dest) return true; |
| |
| // Don't search too deeply, we just want to be able to see through |
| // TokenFactor's etc. |
| if (Depth == 0) return false; |
| |
| // If this is a token factor, all inputs to the TF happen in parallel. If any |
| // of the operands of the TF reach dest, then we can do the xform. |
| if (getOpcode() == ISD::TokenFactor) { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1)) |
| return true; |
| return false; |
| } |
| |
| // Loads don't have side effects, look through them. |
| if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { |
| if (!Ld->isVolatile()) |
| return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); |
| } |
| return false; |
| } |
| |
| |
| static void findPredecessor(SDNode *N, const SDNode *P, bool &found, |
| SmallPtrSet<SDNode *, 32> &Visited) { |
| if (found || !Visited.insert(N)) |
| return; |
| |
| for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) { |
| SDNode *Op = N->getOperand(i).getNode(); |
| if (Op == P) { |
| found = true; |
| return; |
| } |
| findPredecessor(Op, P, found, Visited); |
| } |
| } |
| |
| /// isPredecessorOf - Return true if this node is a predecessor of N. This node |
| /// is either an operand of N or it can be reached by recursively traversing |
| /// up the operands. |
| /// NOTE: this is an expensive method. Use it carefully. |
| bool SDNode::isPredecessorOf(SDNode *N) const { |
| SmallPtrSet<SDNode *, 32> Visited; |
| bool found = false; |
| findPredecessor(N, this, found, Visited); |
| return found; |
| } |
| |
| uint64_t SDNode::getConstantOperandVal(unsigned Num) const { |
| assert(Num < NumOperands && "Invalid child # of SDNode!"); |
| return cast<ConstantSDNode>(OperandList[Num])->getZExtValue(); |
| } |
| |
| std::string SDNode::getOperationName(const SelectionDAG *G) const { |
| switch (getOpcode()) { |
| default: |
| if (getOpcode() < ISD::BUILTIN_OP_END) |
| return "<<Unknown DAG Node>>"; |
| if (isMachineOpcode()) { |
| if (G) |
| if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo()) |
| if (getMachineOpcode() < TII->getNumOpcodes()) |
| return TII->get(getMachineOpcode()).getName(); |
| return "<<Unknown Machine Node>>"; |
| } |
| if (G) { |
| TargetLowering &TLI = G->getTargetLoweringInfo(); |
| const char *Name = TLI.getTargetNodeName(getOpcode()); |
| if (Name) return Name; |
| return "<<Unknown Target Node>>"; |
| } |
| return "<<Unknown Node>>"; |
| |
| #ifndef NDEBUG |
| case ISD::DELETED_NODE: |
| return "<<Deleted Node!>>"; |
| #endif |
| case ISD::PREFETCH: return "Prefetch"; |
| case ISD::MEMBARRIER: return "MemBarrier"; |
| case ISD::ATOMIC_CMP_SWAP_8: return "AtomicCmpSwap8"; |
| case ISD::ATOMIC_SWAP_8: return "AtomicSwap8"; |
| case ISD::ATOMIC_LOAD_ADD_8: return "AtomicLoadAdd8"; |
| case ISD::ATOMIC_LOAD_SUB_8: return "AtomicLoadSub8"; |
| case ISD::ATOMIC_LOAD_AND_8: return "AtomicLoadAnd8"; |
| case ISD::ATOMIC_LOAD_OR_8: return "AtomicLoadOr8"; |
| case ISD::ATOMIC_LOAD_XOR_8: return "AtomicLoadXor8"; |
| case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8"; |
| case ISD::ATOMIC_LOAD_MIN_8: return "AtomicLoadMin8"; |
| case ISD::ATOMIC_LOAD_MAX_8: return "AtomicLoadMax8"; |
| case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8"; |
| case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8"; |
| case ISD::ATOMIC_CMP_SWAP_16: return "AtomicCmpSwap16"; |
| case ISD::ATOMIC_SWAP_16: return "AtomicSwap16"; |
| case ISD::ATOMIC_LOAD_ADD_16: return "AtomicLoadAdd16"; |
| case ISD::ATOMIC_LOAD_SUB_16: return "AtomicLoadSub16"; |
| case ISD::ATOMIC_LOAD_AND_16: return "AtomicLoadAnd16"; |
| case ISD::ATOMIC_LOAD_OR_16: return "AtomicLoadOr16"; |
| case ISD::ATOMIC_LOAD_XOR_16: return "AtomicLoadXor16"; |
| case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16"; |
| case ISD::ATOMIC_LOAD_MIN_16: return "AtomicLoadMin16"; |
| case ISD::ATOMIC_LOAD_MAX_16: return "AtomicLoadMax16"; |
| case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16"; |
| case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16"; |
| case ISD::ATOMIC_CMP_SWAP_32: return "AtomicCmpSwap32"; |
| case ISD::ATOMIC_SWAP_32: return "AtomicSwap32"; |
| case ISD::ATOMIC_LOAD_ADD_32: return "AtomicLoadAdd32"; |
| case ISD::ATOMIC_LOAD_SUB_32: return "AtomicLoadSub32"; |
| case ISD::ATOMIC_LOAD_AND_32: return "AtomicLoadAnd32"; |
| case ISD::ATOMIC_LOAD_OR_32: return "AtomicLoadOr32"; |
| case ISD::ATOMIC_LOAD_XOR_32: return "AtomicLoadXor32"; |
| case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32"; |
| case ISD::ATOMIC_LOAD_MIN_32: return "AtomicLoadMin32"; |
| case ISD::ATOMIC_LOAD_MAX_32: return "AtomicLoadMax32"; |
| case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32"; |
| case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32"; |
| case ISD::ATOMIC_CMP_SWAP_64: return "AtomicCmpSwap64"; |
| case ISD::ATOMIC_SWAP_64: return "AtomicSwap64"; |
| case ISD::ATOMIC_LOAD_ADD_64: return "AtomicLoadAdd64"; |
| case ISD::ATOMIC_LOAD_SUB_64: return "AtomicLoadSub64"; |
| case ISD::ATOMIC_LOAD_AND_64: return "AtomicLoadAnd64"; |
| case ISD::ATOMIC_LOAD_OR_64: return "AtomicLoadOr64"; |
| case ISD::ATOMIC_LOAD_XOR_64: return "AtomicLoadXor64"; |
| case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64"; |
| case ISD::ATOMIC_LOAD_MIN_64: return "AtomicLoadMin64"; |
| case ISD::ATOMIC_LOAD_MAX_64: return "AtomicLoadMax64"; |
| case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64"; |
| case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64"; |
| case ISD::PCMARKER: return "PCMarker"; |
| case ISD::READCYCLECOUNTER: return "ReadCycleCounter"; |
| case ISD::SRCVALUE: return "SrcValue"; |
| case ISD::MEMOPERAND: return "MemOperand"; |
| case ISD::EntryToken: return "EntryToken"; |
| case ISD::TokenFactor: return "TokenFactor"; |
| case ISD::AssertSext: return "AssertSext"; |
| case ISD::AssertZext: return "AssertZext"; |
| |
| case ISD::BasicBlock: return "BasicBlock"; |
| case ISD::ARG_FLAGS: return "ArgFlags"; |
| case ISD::VALUETYPE: return "ValueType"; |
| case ISD::Register: return "Register"; |
| |
| case ISD::Constant: return "Constant"; |
| case ISD::ConstantFP: return "ConstantFP"; |
| case ISD::GlobalAddress: return "GlobalAddress"; |
| case ISD::GlobalTLSAddress: return "GlobalTLSAddress"; |
| case ISD::FrameIndex: return "FrameIndex"; |
| case ISD::JumpTable: return "JumpTable"; |
| case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE"; |
| case ISD::RETURNADDR: return "RETURNADDR"; |
| case ISD::FRAMEADDR: return "FRAMEADDR"; |
| case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET"; |
| case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR"; |
| case ISD::EHSELECTION: return "EHSELECTION"; |
| case ISD::EH_RETURN: return "EH_RETURN"; |
| case ISD::ConstantPool: return "ConstantPool"; |
| case ISD::ExternalSymbol: return "ExternalSymbol"; |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue(); |
| return Intrinsic::getName((Intrinsic::ID)IID); |
| } |
| case ISD::INTRINSIC_VOID: |
| case ISD::INTRINSIC_W_CHAIN: { |
| unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue(); |
| return Intrinsic::getName((Intrinsic::ID)IID); |
| } |
| |
| case ISD::BUILD_VECTOR: return "BUILD_VECTOR"; |
| case ISD::TargetConstant: return "TargetConstant"; |
| case ISD::TargetConstantFP:return "TargetConstantFP"; |
| case ISD::TargetGlobalAddress: return "TargetGlobalAddress"; |
| case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress"; |
| case ISD::TargetFrameIndex: return "TargetFrameIndex"; |
| case ISD::TargetJumpTable: return "TargetJumpTable"; |
| case ISD::TargetConstantPool: return "TargetConstantPool"; |
| case ISD::TargetExternalSymbol: return "TargetExternalSymbol"; |
| |
| case ISD::CopyToReg: return "CopyToReg"; |
| case ISD::CopyFromReg: return "CopyFromReg"; |
| case ISD::UNDEF: return "undef"; |
| case ISD::MERGE_VALUES: return "merge_values"; |
| case ISD::INLINEASM: return "inlineasm"; |
| case ISD::DBG_LABEL: return "dbg_label"; |
| case ISD::EH_LABEL: return "eh_label"; |
| case ISD::DECLARE: return "declare"; |
| case ISD::HANDLENODE: return "handlenode"; |
| case ISD::FORMAL_ARGUMENTS: return "formal_arguments"; |
| case ISD::CALL: return "call"; |
| |
| // Unary operators |
| case ISD::FABS: return "fabs"; |
| case ISD::FNEG: return "fneg"; |
| case ISD::FSQRT: return "fsqrt"; |
| case ISD::FSIN: return "fsin"; |
| case ISD::FCOS: return "fcos"; |
| case ISD::FPOWI: return "fpowi"; |
| case ISD::FPOW: return "fpow"; |
| case ISD::FTRUNC: return "ftrunc"; |
| case ISD::FFLOOR: return "ffloor"; |
| case ISD::FCEIL: return "fceil"; |
| case ISD::FRINT: return "frint"; |
| case ISD::FNEARBYINT: return "fnearbyint"; |
| |
| // Binary operators |
| case ISD::ADD: return "add"; |
| case ISD::SUB: return "sub"; |
| case ISD::MUL: return "mul"; |
| case ISD::MULHU: return "mulhu"; |
| case ISD::MULHS: return "mulhs"; |
| case ISD::SDIV: return "sdiv"; |
| case ISD::UDIV: return "udiv"; |
| case ISD::SREM: return "srem"; |
| case ISD::UREM: return "urem"; |
| case ISD::SMUL_LOHI: return "smul_lohi"; |
| case ISD::UMUL_LOHI: return "umul_lohi"; |
| case ISD::SDIVREM: return "sdivrem"; |
| case ISD::UDIVREM: return "udivrem"; |
| case ISD::AND: return "and"; |
| case ISD::OR: return "or"; |
| case ISD::XOR: return "xor"; |
| case ISD::SHL: return "shl"; |
| case ISD::SRA: return "sra"; |
| case ISD::SRL: return "srl"; |
| case ISD::ROTL: return "rotl"; |
| case ISD::ROTR: return "rotr"; |
| case ISD::FADD: return "fadd"; |
| case ISD::FSUB: return "fsub"; |
| case ISD::FMUL: return "fmul"; |
| case ISD::FDIV: return "fdiv"; |
| case ISD::FREM: return "frem"; |
| case ISD::FCOPYSIGN: return "fcopysign"; |
| case ISD::FGETSIGN: return "fgetsign"; |
| |
| case ISD::SETCC: return "setcc"; |
| case ISD::VSETCC: return "vsetcc"; |
| case ISD::SELECT: return "select"; |
| case ISD::SELECT_CC: return "select_cc"; |
| case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt"; |
| case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt"; |
| case ISD::CONCAT_VECTORS: return "concat_vectors"; |
| case ISD::EXTRACT_SUBVECTOR: return "extract_subvector"; |
| case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector"; |
| case ISD::VECTOR_SHUFFLE: return "vector_shuffle"; |
| case ISD::CARRY_FALSE: return "carry_false"; |
| case ISD::ADDC: return "addc"; |
| case ISD::ADDE: return "adde"; |
| case ISD::SUBC: return "subc"; |
| case ISD::SUBE: return "sube"; |
| case ISD::SHL_PARTS: return "shl_parts"; |
| case ISD::SRA_PARTS: return "sra_parts"; |
| case ISD::SRL_PARTS: return "srl_parts"; |
| |
| case ISD::EXTRACT_SUBREG: return "extract_subreg"; |
| case ISD::INSERT_SUBREG: return "insert_subreg"; |
| |
| // Conversion operators. |
| case ISD::SIGN_EXTEND: return "sign_extend"; |
| case ISD::ZERO_EXTEND: return "zero_extend"; |
| case ISD::ANY_EXTEND: return "any_extend"; |
| case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg"; |
| case ISD::TRUNCATE: return "truncate"; |
| case ISD::FP_ROUND: return "fp_round"; |
| case ISD::FLT_ROUNDS_: return "flt_rounds"; |
| case ISD::FP_ROUND_INREG: return "fp_round_inreg"; |
| case ISD::FP_EXTEND: return "fp_extend"; |
| |
| case ISD::SINT_TO_FP: return "sint_to_fp"; |
| case ISD::UINT_TO_FP: return "uint_to_fp"; |
| case ISD::FP_TO_SINT: return "fp_to_sint"; |
| case ISD::FP_TO_UINT: return "fp_to_uint"; |
| case ISD::BIT_CONVERT: return "bit_convert"; |
| |
| // Control flow instructions |
| case ISD::BR: return "br"; |
| case ISD::BRIND: return "brind"; |
| case ISD::BR_JT: return "br_jt"; |
| case ISD::BRCOND: return "brcond"; |
| case ISD::BR_CC: return "br_cc"; |
| case ISD::RET: return "ret"; |
| case ISD::CALLSEQ_START: return "callseq_start"; |
| case ISD::CALLSEQ_END: return "callseq_end"; |
| |
| // Other operators |
| case ISD::LOAD: return "load"; |
| case ISD::STORE: return "store"; |
| case ISD::VAARG: return "vaarg"; |
| case ISD::VACOPY: return "vacopy"; |
| case ISD::VAEND: return "vaend"; |
| case ISD::VASTART: return "vastart"; |
| case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc"; |
| case ISD::EXTRACT_ELEMENT: return "extract_element"; |
| case ISD::BUILD_PAIR: return "build_pair"; |
| case ISD::STACKSAVE: return "stacksave"; |
| case ISD::STACKRESTORE: return "stackrestore"; |
| case ISD::TRAP: return "trap"; |
| |
| // Bit manipulation |
| case ISD::BSWAP: return "bswap"; |
| case ISD::CTPOP: return "ctpop"; |
| case ISD::CTTZ: return "cttz"; |
| case ISD::CTLZ: return "ctlz"; |
| |
| // Debug info |
| case ISD::DBG_STOPPOINT: return "dbg_stoppoint"; |
| case ISD::DEBUG_LOC: return "debug_loc"; |
| |
| // Trampolines |
| case ISD::TRAMPOLINE: return "trampoline"; |
| |
| case ISD::CONDCODE: |
| switch (cast<CondCodeSDNode>(this)->get()) { |
| default: assert(0 && "Unknown setcc condition!"); |
| case ISD::SETOEQ: return "setoeq"; |
| case ISD::SETOGT: return "setogt"; |
| case ISD::SETOGE: return "setoge"; |
| case ISD::SETOLT: return "setolt"; |
| case ISD::SETOLE: return "setole"; |
| case ISD::SETONE: return "setone"; |
| |
| case ISD::SETO: return "seto"; |
| case ISD::SETUO: return "setuo"; |
| case ISD::SETUEQ: return "setue"; |
| case ISD::SETUGT: return "setugt"; |
| case ISD::SETUGE: return "setuge"; |
| case ISD::SETULT: return "setult"; |
| case ISD::SETULE: return "setule"; |
| case ISD::SETUNE: return "setune"; |
| |
| case ISD::SETEQ: return "seteq"; |
| case ISD::SETGT: return "setgt"; |
| case ISD::SETGE: return "setge"; |
| case ISD::SETLT: return "setlt"; |
| case ISD::SETLE: return "setle"; |
| case ISD::SETNE: return "setne"; |
| } |
| } |
| } |
| |
| const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) { |
| switch (AM) { |
| default: |
| return ""; |
| case ISD::PRE_INC: |
| return "<pre-inc>"; |
| case ISD::PRE_DEC: |
| return "<pre-dec>"; |
| case ISD::POST_INC: |
| return "<post-inc>"; |
| case ISD::POST_DEC: |
| return "<post-dec>"; |
| } |
| } |
| |
| std::string ISD::ArgFlagsTy::getArgFlagsString() { |
| std::string S = "< "; |
| |
| if (isZExt()) |
| S += "zext "; |
| if (isSExt()) |
| S += "sext "; |
| if (isInReg()) |
| S += "inreg "; |
| if (isSRet()) |
| S += "sret "; |
| if (isByVal()) |
| S += "byval "; |
| if (isNest()) |
| S += "nest "; |
| if (getByValAlign()) |
| S += "byval-align:" + utostr(getByValAlign()) + " "; |
| if (getOrigAlign()) |
| S += "orig-align:" + utostr(getOrigAlign()) + " "; |
| if (getByValSize()) |
| S += "byval-size:" + utostr(getByValSize()) + " "; |
| return S + ">"; |
| } |
| |
| void SDNode::dump() const { dump(0); } |
| void SDNode::dump(const SelectionDAG *G) const { |
| print(errs(), G); |
| errs().flush(); |
| } |
| |
| void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const { |
| OS << (void*)this << ": "; |
| |
| for (unsigned i = 0, e = getNumValues(); i != e; ++i) { |
| if (i) OS << ","; |
| if (getValueType(i) == MVT::Other) |
| OS << "ch"; |
| else |
| OS << getValueType(i).getMVTString(); |
| } |
| OS << " = " << getOperationName(G); |
| |
| OS << " "; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| if (i) OS << ", "; |
| OS << (void*)getOperand(i).getNode(); |
| if (unsigned RN = getOperand(i).getResNo()) |
| OS << ":" << RN; |
| } |
| |
| if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) { |
| SDNode *Mask = getOperand(2).getNode(); |
| OS << "<"; |
| for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) { |
| if (i) OS << ","; |
| if (Mask->getOperand(i).getOpcode() == ISD::UNDEF) |
| OS << "u"; |
| else |
| OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue(); |
| } |
| OS << ">"; |
| } |
| |
| if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) { |
| OS << '<' << CSDN->getAPIntValue() << '>'; |
| } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) { |
| if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle) |
| OS << '<' << CSDN->getValueAPF().convertToFloat() << '>'; |
| else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble) |
| OS << '<' << CSDN->getValueAPF().convertToDouble() << '>'; |
| else { |
| OS << "<APFloat("; |
| CSDN->getValueAPF().convertToAPInt().dump(); |
| OS << ")>"; |
| } |
| } else if (const GlobalAddressSDNode *GADN = |
| dyn_cast<GlobalAddressSDNode>(this)) { |
| int offset = GADN->getOffset(); |
| OS << '<'; |
| WriteAsOperand(OS, GADN->getGlobal()); |
| OS << '>'; |
| if (offset > 0) |
| OS << " + " << offset; |
| else |
| OS << " " << offset; |
| } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) { |
| OS << "<" << FIDN->getIndex() << ">"; |
| } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) { |
| OS << "<" << JTDN->getIndex() << ">"; |
| } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){ |
| int offset = CP->getOffset(); |
| if (CP->isMachineConstantPoolEntry()) |
| OS << "<" << *CP->getMachineCPVal() << ">"; |
| else |
| OS << "<" << *CP->getConstVal() << ">"; |
| if (offset > 0) |
| OS << " + " << offset; |
| else |
| OS << " " << offset; |
| } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) { |
| OS << "<"; |
| const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock(); |
| if (LBB) |
| OS << LBB->getName() << " "; |
| OS << (const void*)BBDN->getBasicBlock() << ">"; |
| } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) { |
| if (G && R->getReg() && |
| TargetRegisterInfo::isPhysicalRegister(R->getReg())) { |
| OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg()); |
| } else { |
| OS << " #" << R->getReg(); |
| } |
| } else if (const ExternalSymbolSDNode *ES = |
| dyn_cast<ExternalSymbolSDNode>(this)) { |
| OS << "'" << ES->getSymbol() << "'"; |
| } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) { |
| if (M->getValue()) |
| OS << "<" << M->getValue() << ">"; |
| else |
| OS << "<null>"; |
| } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) { |
| if (M->MO.getValue()) |
| OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">"; |
| else |
| OS << "<null:" << M->MO.getOffset() << ">"; |
| } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) { |
| OS << N->getArgFlags().getArgFlagsString(); |
| } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) { |
| OS << ":" << N->getVT().getMVTString(); |
| } |
| else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) { |
| const Value *SrcValue = LD->getSrcValue(); |
| int SrcOffset = LD->getSrcValueOffset(); |
| OS << " <"; |
| if (SrcValue) |
| OS << SrcValue; |
| else |
| OS << "null"; |
| OS << ":" << SrcOffset << ">"; |
| |
| bool doExt = true; |
| switch (LD->getExtensionType()) { |
| default: doExt = false; break; |
| case ISD::EXTLOAD: OS << " <anyext "; break; |
| case ISD::SEXTLOAD: OS << " <sext "; break; |
| case ISD::ZEXTLOAD: OS << " <zext "; break; |
| } |
| if (doExt) |
| OS << LD->getMemoryVT().getMVTString() << ">"; |
| |
| const char *AM = getIndexedModeName(LD->getAddressingMode()); |
| if (*AM) |
| OS << " " << AM; |
| if (LD->isVolatile()) |
| OS << " <volatile>"; |
| OS << " alignment=" << LD->getAlignment(); |
| } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) { |
| const Value *SrcValue = ST->getSrcValue(); |
| int SrcOffset = ST->getSrcValueOffset(); |
| OS << " <"; |
| if (SrcValue) |
| OS << SrcValue; |
| else |
| OS << "null"; |
| OS << ":" << SrcOffset << ">"; |
| |
| if (ST->isTruncatingStore()) |
| OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">"; |
| |
| const char *AM = getIndexedModeName(ST->getAddressingMode()); |
| if (*AM) |
| OS << " " << AM; |
| if (ST->isVolatile()) |
| OS << " <volatile>"; |
| OS << " alignment=" << ST->getAlignment(); |
| } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) { |
| const Value *SrcValue = AT->getSrcValue(); |
| int SrcOffset = AT->getSrcValueOffset(); |
| OS << " <"; |
| if (SrcValue) |
| OS << SrcValue; |
| else |
| OS << "null"; |
| OS << ":" << SrcOffset << ">"; |
| if (AT->isVolatile()) |
| OS << " <volatile>"; |
| OS << " alignment=" << AT->getAlignment(); |
| } |
| } |
| |
| static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (N->getOperand(i).getNode()->hasOneUse()) |
| DumpNodes(N->getOperand(i).getNode(), indent+2, G); |
| else |
| cerr << "\n" << std::string(indent+2, ' ') |
| << (void*)N->getOperand(i).getNode() << ": <multiple use>"; |
| |
| |
| cerr << "\n" << std::string(indent, ' '); |
| N->dump(G); |
| } |
| |
| void SelectionDAG::dump() const { |
| cerr << "SelectionDAG has " << AllNodes.size() << " nodes:"; |
| |
| for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end(); |
| I != E; ++I) { |
| const SDNode *N = I; |
| if (!N->hasOneUse() && N != getRoot().getNode()) |
| DumpNodes(N, 2, this); |
| } |
| |
| if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this); |
| |
| cerr << "\n\n"; |
| } |
| |
| const Type *ConstantPoolSDNode::getType() const { |
| if (isMachineConstantPoolEntry()) |
| return Val.MachineCPVal->getType(); |
| return Val.ConstVal->getType(); |
| } |