| //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SSAUpdater class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "ssaupdater" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/Support/AlignOf.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| /// BBInfo - Per-basic block information used internally by SSAUpdater. |
| /// The predecessors of each block are cached here since pred_iterator is |
| /// slow and we need to iterate over the blocks at least a few times. |
| class SSAUpdater::BBInfo { |
| public: |
| BasicBlock *BB; // Back-pointer to the corresponding block. |
| Value *AvailableVal; // Value to use in this block. |
| BBInfo *DefBB; // Block that defines the available value. |
| int BlkNum; // Postorder number. |
| BBInfo *IDom; // Immediate dominator. |
| unsigned NumPreds; // Number of predecessor blocks. |
| BBInfo **Preds; // Array[NumPreds] of predecessor blocks. |
| PHINode *PHITag; // Marker for existing PHIs that match. |
| |
| BBInfo(BasicBlock *ThisBB, Value *V) |
| : BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0), |
| NumPreds(0), Preds(0), PHITag(0) { } |
| }; |
| |
| typedef DenseMap<BasicBlock*, SSAUpdater::BBInfo*> BBMapTy; |
| |
| typedef DenseMap<BasicBlock*, Value*> AvailableValsTy; |
| static AvailableValsTy &getAvailableVals(void *AV) { |
| return *static_cast<AvailableValsTy*>(AV); |
| } |
| |
| static BBMapTy *getBBMap(void *BM) { |
| return static_cast<BBMapTy*>(BM); |
| } |
| |
| SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI) |
| : AV(0), PrototypeValue(0), BM(0), InsertedPHIs(NewPHI) {} |
| |
| SSAUpdater::~SSAUpdater() { |
| delete &getAvailableVals(AV); |
| } |
| |
| /// Initialize - Reset this object to get ready for a new set of SSA |
| /// updates. ProtoValue is the value used to name PHI nodes. |
| void SSAUpdater::Initialize(Value *ProtoValue) { |
| if (AV == 0) |
| AV = new AvailableValsTy(); |
| else |
| getAvailableVals(AV).clear(); |
| PrototypeValue = ProtoValue; |
| } |
| |
| /// HasValueForBlock - Return true if the SSAUpdater already has a value for |
| /// the specified block. |
| bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { |
| return getAvailableVals(AV).count(BB); |
| } |
| |
| /// AddAvailableValue - Indicate that a rewritten value is available in the |
| /// specified block with the specified value. |
| void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { |
| assert(PrototypeValue != 0 && "Need to initialize SSAUpdater"); |
| assert(PrototypeValue->getType() == V->getType() && |
| "All rewritten values must have the same type"); |
| getAvailableVals(AV)[BB] = V; |
| } |
| |
| /// IsEquivalentPHI - Check if PHI has the same incoming value as specified |
| /// in ValueMapping for each predecessor block. |
| static bool IsEquivalentPHI(PHINode *PHI, |
| DenseMap<BasicBlock*, Value*> &ValueMapping) { |
| unsigned PHINumValues = PHI->getNumIncomingValues(); |
| if (PHINumValues != ValueMapping.size()) |
| return false; |
| |
| // Scan the phi to see if it matches. |
| for (unsigned i = 0, e = PHINumValues; i != e; ++i) |
| if (ValueMapping[PHI->getIncomingBlock(i)] != |
| PHI->getIncomingValue(i)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is |
| /// live at the end of the specified block. |
| Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { |
| assert(BM == 0 && "Unexpected Internal State"); |
| Value *Res = GetValueAtEndOfBlockInternal(BB); |
| assert(BM == 0 && "Unexpected Internal State"); |
| return Res; |
| } |
| |
| /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that |
| /// is live in the middle of the specified block. |
| /// |
| /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one |
| /// important case: if there is a definition of the rewritten value after the |
| /// 'use' in BB. Consider code like this: |
| /// |
| /// X1 = ... |
| /// SomeBB: |
| /// use(X) |
| /// X2 = ... |
| /// br Cond, SomeBB, OutBB |
| /// |
| /// In this case, there are two values (X1 and X2) added to the AvailableVals |
| /// set by the client of the rewriter, and those values are both live out of |
| /// their respective blocks. However, the use of X happens in the *middle* of |
| /// a block. Because of this, we need to insert a new PHI node in SomeBB to |
| /// merge the appropriate values, and this value isn't live out of the block. |
| /// |
| Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { |
| // If there is no definition of the renamed variable in this block, just use |
| // GetValueAtEndOfBlock to do our work. |
| if (!HasValueForBlock(BB)) |
| return GetValueAtEndOfBlock(BB); |
| |
| // Otherwise, we have the hard case. Get the live-in values for each |
| // predecessor. |
| SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues; |
| Value *SingularValue = 0; |
| |
| // We can get our predecessor info by walking the pred_iterator list, but it |
| // is relatively slow. If we already have PHI nodes in this block, walk one |
| // of them to get the predecessor list instead. |
| if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { |
| for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *PredBB = SomePhi->getIncomingBlock(i); |
| Value *PredVal = GetValueAtEndOfBlock(PredBB); |
| PredValues.push_back(std::make_pair(PredBB, PredVal)); |
| |
| // Compute SingularValue. |
| if (i == 0) |
| SingularValue = PredVal; |
| else if (PredVal != SingularValue) |
| SingularValue = 0; |
| } |
| } else { |
| bool isFirstPred = true; |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| BasicBlock *PredBB = *PI; |
| Value *PredVal = GetValueAtEndOfBlock(PredBB); |
| PredValues.push_back(std::make_pair(PredBB, PredVal)); |
| |
| // Compute SingularValue. |
| if (isFirstPred) { |
| SingularValue = PredVal; |
| isFirstPred = false; |
| } else if (PredVal != SingularValue) |
| SingularValue = 0; |
| } |
| } |
| |
| // If there are no predecessors, just return undef. |
| if (PredValues.empty()) |
| return UndefValue::get(PrototypeValue->getType()); |
| |
| // Otherwise, if all the merged values are the same, just use it. |
| if (SingularValue != 0) |
| return SingularValue; |
| |
| // Otherwise, we do need a PHI: check to see if we already have one available |
| // in this block that produces the right value. |
| if (isa<PHINode>(BB->begin())) { |
| DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(), |
| PredValues.end()); |
| PHINode *SomePHI; |
| for (BasicBlock::iterator It = BB->begin(); |
| (SomePHI = dyn_cast<PHINode>(It)); ++It) { |
| if (IsEquivalentPHI(SomePHI, ValueMapping)) |
| return SomePHI; |
| } |
| } |
| |
| // Ok, we have no way out, insert a new one now. |
| PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(), |
| PrototypeValue->getName(), |
| &BB->front()); |
| InsertedPHI->reserveOperandSpace(PredValues.size()); |
| |
| // Fill in all the predecessors of the PHI. |
| for (unsigned i = 0, e = PredValues.size(); i != e; ++i) |
| InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first); |
| |
| // See if the PHI node can be merged to a single value. This can happen in |
| // loop cases when we get a PHI of itself and one other value. |
| if (Value *ConstVal = InsertedPHI->hasConstantValue()) { |
| InsertedPHI->eraseFromParent(); |
| return ConstVal; |
| } |
| |
| // If the client wants to know about all new instructions, tell it. |
| if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); |
| |
| DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); |
| return InsertedPHI; |
| } |
| |
| /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes, |
| /// which use their value in the corresponding predecessor. |
| void SSAUpdater::RewriteUse(Use &U) { |
| Instruction *User = cast<Instruction>(U.getUser()); |
| |
| Value *V; |
| if (PHINode *UserPN = dyn_cast<PHINode>(User)) |
| V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); |
| else |
| V = GetValueInMiddleOfBlock(User->getParent()); |
| |
| U.set(V); |
| } |
| |
| /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry |
| /// for the specified BB and if so, return it. If not, construct SSA form by |
| /// first calculating the required placement of PHIs and then inserting new |
| /// PHIs where needed. |
| Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| if (Value *V = AvailableVals[BB]) |
| return V; |
| |
| // Pool allocation used internally by GetValueAtEndOfBlock. |
| BumpPtrAllocator Allocator; |
| BBMapTy BBMapObj; |
| BM = &BBMapObj; |
| |
| SmallVector<BBInfo*, 100> BlockList; |
| BuildBlockList(BB, &BlockList, &Allocator); |
| |
| // Special case: bail out if BB is unreachable. |
| if (BlockList.size() == 0) { |
| BM = 0; |
| return UndefValue::get(PrototypeValue->getType()); |
| } |
| |
| FindDominators(&BlockList); |
| FindPHIPlacement(&BlockList); |
| FindAvailableVals(&BlockList); |
| |
| BM = 0; |
| return BBMapObj[BB]->DefBB->AvailableVal; |
| } |
| |
| /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds |
| /// vector, set Info->NumPreds, and allocate space in Info->Preds. |
| static void FindPredecessorBlocks(SSAUpdater::BBInfo *Info, |
| SmallVectorImpl<BasicBlock*> *Preds, |
| BumpPtrAllocator *Allocator) { |
| // We can get our predecessor info by walking the pred_iterator list, |
| // but it is relatively slow. If we already have PHI nodes in this |
| // block, walk one of them to get the predecessor list instead. |
| BasicBlock *BB = Info->BB; |
| if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { |
| for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI) |
| Preds->push_back(SomePhi->getIncomingBlock(PI)); |
| } else { |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) |
| Preds->push_back(*PI); |
| } |
| |
| Info->NumPreds = Preds->size(); |
| Info->Preds = static_cast<SSAUpdater::BBInfo**> |
| (Allocator->Allocate(Info->NumPreds * sizeof(SSAUpdater::BBInfo*), |
| AlignOf<SSAUpdater::BBInfo*>::Alignment)); |
| } |
| |
| /// BuildBlockList - Starting from the specified basic block, traverse back |
| /// through its predecessors until reaching blocks with known values. Create |
| /// BBInfo structures for the blocks and append them to the block list. |
| void SSAUpdater::BuildBlockList(BasicBlock *BB, BlockListTy *BlockList, |
| BumpPtrAllocator *Allocator) { |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| BBMapTy *BBMap = getBBMap(BM); |
| SmallVector<BBInfo*, 10> RootList; |
| SmallVector<BBInfo*, 64> WorkList; |
| |
| BBInfo *Info = new (*Allocator) BBInfo(BB, 0); |
| (*BBMap)[BB] = Info; |
| WorkList.push_back(Info); |
| |
| // Search backward from BB, creating BBInfos along the way and stopping when |
| // reaching blocks that define the value. Record those defining blocks on |
| // the RootList. |
| SmallVector<BasicBlock*, 10> Preds; |
| while (!WorkList.empty()) { |
| Info = WorkList.pop_back_val(); |
| Preds.clear(); |
| FindPredecessorBlocks(Info, &Preds, Allocator); |
| |
| // Treat an unreachable predecessor as a definition with 'undef'. |
| if (Info->NumPreds == 0) { |
| Info->AvailableVal = UndefValue::get(PrototypeValue->getType()); |
| Info->DefBB = Info; |
| RootList.push_back(Info); |
| continue; |
| } |
| |
| for (unsigned p = 0; p != Info->NumPreds; ++p) { |
| BasicBlock *Pred = Preds[p]; |
| // Check if BBMap already has a BBInfo for the predecessor block. |
| BBMapTy::value_type &BBMapBucket = BBMap->FindAndConstruct(Pred); |
| if (BBMapBucket.second) { |
| Info->Preds[p] = BBMapBucket.second; |
| continue; |
| } |
| |
| // Create a new BBInfo for the predecessor. |
| Value *PredVal = AvailableVals.lookup(Pred); |
| BBInfo *PredInfo = new (*Allocator) BBInfo(Pred, PredVal); |
| BBMapBucket.second = PredInfo; |
| Info->Preds[p] = PredInfo; |
| |
| if (PredInfo->AvailableVal) { |
| RootList.push_back(PredInfo); |
| continue; |
| } |
| WorkList.push_back(PredInfo); |
| } |
| } |
| |
| // Now that we know what blocks are backwards-reachable from the starting |
| // block, do a forward depth-first traversal to assign postorder numbers |
| // to those blocks. |
| BBInfo *PseudoEntry = new (*Allocator) BBInfo(0, 0); |
| unsigned BlkNum = 1; |
| |
| // Initialize the worklist with the roots from the backward traversal. |
| while (!RootList.empty()) { |
| Info = RootList.pop_back_val(); |
| Info->IDom = PseudoEntry; |
| Info->BlkNum = -1; |
| WorkList.push_back(Info); |
| } |
| |
| while (!WorkList.empty()) { |
| Info = WorkList.back(); |
| |
| if (Info->BlkNum == -2) { |
| // All the successors have been handled; assign the postorder number. |
| Info->BlkNum = BlkNum++; |
| // If not a root, put it on the BlockList. |
| if (!Info->AvailableVal) |
| BlockList->push_back(Info); |
| WorkList.pop_back(); |
| continue; |
| } |
| |
| // Leave this entry on the worklist, but set its BlkNum to mark that its |
| // successors have been put on the worklist. When it returns to the top |
| // the list, after handling its successors, it will be assigned a number. |
| Info->BlkNum = -2; |
| |
| // Add unvisited successors to the work list. |
| for (succ_iterator SI = succ_begin(Info->BB), E = succ_end(Info->BB); |
| SI != E; ++SI) { |
| BBInfo *SuccInfo = (*BBMap)[*SI]; |
| if (!SuccInfo || SuccInfo->BlkNum) |
| continue; |
| SuccInfo->BlkNum = -1; |
| WorkList.push_back(SuccInfo); |
| } |
| } |
| PseudoEntry->BlkNum = BlkNum; |
| } |
| |
| /// IntersectDominators - This is the dataflow lattice "meet" operation for |
| /// finding dominators. Given two basic blocks, it walks up the dominator |
| /// tree until it finds a common dominator of both. It uses the postorder |
| /// number of the blocks to determine how to do that. |
| static SSAUpdater::BBInfo *IntersectDominators(SSAUpdater::BBInfo *Blk1, |
| SSAUpdater::BBInfo *Blk2) { |
| while (Blk1 != Blk2) { |
| while (Blk1->BlkNum < Blk2->BlkNum) { |
| Blk1 = Blk1->IDom; |
| if (!Blk1) |
| return Blk2; |
| } |
| while (Blk2->BlkNum < Blk1->BlkNum) { |
| Blk2 = Blk2->IDom; |
| if (!Blk2) |
| return Blk1; |
| } |
| } |
| return Blk1; |
| } |
| |
| /// FindDominators - Calculate the dominator tree for the subset of the CFG |
| /// corresponding to the basic blocks on the BlockList. This uses the |
| /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey and |
| /// Kennedy, published in Software--Practice and Experience, 2001, 4:1-10. |
| /// Because the CFG subset does not include any edges leading into blocks that |
| /// define the value, the results are not the usual dominator tree. The CFG |
| /// subset has a single pseudo-entry node with edges to a set of root nodes |
| /// for blocks that define the value. The dominators for this subset CFG are |
| /// not the standard dominators but they are adequate for placing PHIs within |
| /// the subset CFG. |
| void SSAUpdater::FindDominators(BlockListTy *BlockList) { |
| bool Changed; |
| do { |
| Changed = false; |
| // Iterate over the list in reverse order, i.e., forward on CFG edges. |
| for (BlockListTy::reverse_iterator I = BlockList->rbegin(), |
| E = BlockList->rend(); I != E; ++I) { |
| BBInfo *Info = *I; |
| |
| // Start with the first predecessor. |
| assert(Info->NumPreds > 0 && "unreachable block"); |
| BBInfo *NewIDom = Info->Preds[0]; |
| |
| // Iterate through the block's other predecessors. |
| for (unsigned p = 1; p != Info->NumPreds; ++p) { |
| BBInfo *Pred = Info->Preds[p]; |
| NewIDom = IntersectDominators(NewIDom, Pred); |
| } |
| |
| // Check if the IDom value has changed. |
| if (NewIDom != Info->IDom) { |
| Info->IDom = NewIDom; |
| Changed = true; |
| } |
| } |
| } while (Changed); |
| } |
| |
| /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for |
| /// any blocks containing definitions of the value. If one is found, then the |
| /// successor of Pred is in the dominance frontier for the definition, and |
| /// this function returns true. |
| static bool IsDefInDomFrontier(const SSAUpdater::BBInfo *Pred, |
| const SSAUpdater::BBInfo *IDom) { |
| for (; Pred != IDom; Pred = Pred->IDom) { |
| if (Pred->DefBB == Pred) |
| return true; |
| } |
| return false; |
| } |
| |
| /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers of |
| /// the known definitions. Iteratively add PHIs in the dom frontiers until |
| /// nothing changes. Along the way, keep track of the nearest dominating |
| /// definitions for non-PHI blocks. |
| void SSAUpdater::FindPHIPlacement(BlockListTy *BlockList) { |
| bool Changed; |
| do { |
| Changed = false; |
| // Iterate over the list in reverse order, i.e., forward on CFG edges. |
| for (BlockListTy::reverse_iterator I = BlockList->rbegin(), |
| E = BlockList->rend(); I != E; ++I) { |
| BBInfo *Info = *I; |
| |
| // If this block already needs a PHI, there is nothing to do here. |
| if (Info->DefBB == Info) |
| continue; |
| |
| // Default to use the same def as the immediate dominator. |
| BBInfo *NewDefBB = Info->IDom->DefBB; |
| for (unsigned p = 0; p != Info->NumPreds; ++p) { |
| if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) { |
| // Need a PHI here. |
| NewDefBB = Info; |
| break; |
| } |
| } |
| |
| // Check if anything changed. |
| if (NewDefBB != Info->DefBB) { |
| Info->DefBB = NewDefBB; |
| Changed = true; |
| } |
| } |
| } while (Changed); |
| } |
| |
| /// FindAvailableVal - If this block requires a PHI, first check if an existing |
| /// PHI matches the PHI placement and reaching definitions computed earlier, |
| /// and if not, create a new PHI. Visit all the block's predecessors to |
| /// calculate the available value for each one and fill in the incoming values |
| /// for a new PHI. |
| void SSAUpdater::FindAvailableVals(BlockListTy *BlockList) { |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| |
| // Go through the worklist in forward order (i.e., backward through the CFG) |
| // and check if existing PHIs can be used. If not, create empty PHIs where |
| // they are needed. |
| for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end(); |
| I != E; ++I) { |
| BBInfo *Info = *I; |
| // Check if there needs to be a PHI in BB. |
| if (Info->DefBB != Info) |
| continue; |
| |
| // Look for an existing PHI. |
| FindExistingPHI(Info->BB, BlockList); |
| if (Info->AvailableVal) |
| continue; |
| |
| PHINode *PHI = PHINode::Create(PrototypeValue->getType(), |
| PrototypeValue->getName(), |
| &Info->BB->front()); |
| PHI->reserveOperandSpace(Info->NumPreds); |
| Info->AvailableVal = PHI; |
| AvailableVals[Info->BB] = PHI; |
| } |
| |
| // Now go back through the worklist in reverse order to fill in the arguments |
| // for any new PHIs added in the forward traversal. |
| for (BlockListTy::reverse_iterator I = BlockList->rbegin(), |
| E = BlockList->rend(); I != E; ++I) { |
| BBInfo *Info = *I; |
| |
| if (Info->DefBB != Info) { |
| // Record the available value at join nodes to speed up subsequent |
| // uses of this SSAUpdater for the same value. |
| if (Info->NumPreds > 1) |
| AvailableVals[Info->BB] = Info->DefBB->AvailableVal; |
| continue; |
| } |
| |
| // Check if this block contains a newly added PHI. |
| PHINode *PHI = dyn_cast<PHINode>(Info->AvailableVal); |
| if (!PHI || PHI->getNumIncomingValues() == Info->NumPreds) |
| continue; |
| |
| // Iterate through the block's predecessors. |
| for (unsigned p = 0; p != Info->NumPreds; ++p) { |
| BBInfo *PredInfo = Info->Preds[p]; |
| BasicBlock *Pred = PredInfo->BB; |
| // Skip to the nearest preceding definition. |
| if (PredInfo->DefBB != PredInfo) |
| PredInfo = PredInfo->DefBB; |
| PHI->addIncoming(PredInfo->AvailableVal, Pred); |
| } |
| |
| DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n"); |
| |
| // If the client wants to know about all new instructions, tell it. |
| if (InsertedPHIs) InsertedPHIs->push_back(PHI); |
| } |
| } |
| |
| /// FindExistingPHI - Look through the PHI nodes in a block to see if any of |
| /// them match what is needed. |
| void SSAUpdater::FindExistingPHI(BasicBlock *BB, BlockListTy *BlockList) { |
| PHINode *SomePHI; |
| for (BasicBlock::iterator It = BB->begin(); |
| (SomePHI = dyn_cast<PHINode>(It)); ++It) { |
| if (CheckIfPHIMatches(SomePHI)) { |
| RecordMatchingPHI(SomePHI); |
| break; |
| } |
| // Match failed: clear all the PHITag values. |
| for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end(); |
| I != E; ++I) |
| (*I)->PHITag = 0; |
| } |
| } |
| |
| /// CheckIfPHIMatches - Check if a PHI node matches the placement and values |
| /// in the BBMap. |
| bool SSAUpdater::CheckIfPHIMatches(PHINode *PHI) { |
| BBMapTy *BBMap = getBBMap(BM); |
| SmallVector<PHINode*, 20> WorkList; |
| WorkList.push_back(PHI); |
| |
| // Mark that the block containing this PHI has been visited. |
| (*BBMap)[PHI->getParent()]->PHITag = PHI; |
| |
| while (!WorkList.empty()) { |
| PHI = WorkList.pop_back_val(); |
| |
| // Iterate through the PHI's incoming values. |
| for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { |
| Value *IncomingVal = PHI->getIncomingValue(i); |
| BBInfo *PredInfo = (*BBMap)[PHI->getIncomingBlock(i)]; |
| // Skip to the nearest preceding definition. |
| if (PredInfo->DefBB != PredInfo) |
| PredInfo = PredInfo->DefBB; |
| |
| // Check if it matches the expected value. |
| if (PredInfo->AvailableVal) { |
| if (IncomingVal == PredInfo->AvailableVal) |
| continue; |
| return false; |
| } |
| |
| // Check if the value is a PHI in the correct block. |
| PHINode *IncomingPHIVal = dyn_cast<PHINode>(IncomingVal); |
| if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB) |
| return false; |
| |
| // If this block has already been visited, check if this PHI matches. |
| if (PredInfo->PHITag) { |
| if (IncomingPHIVal == PredInfo->PHITag) |
| continue; |
| return false; |
| } |
| PredInfo->PHITag = IncomingPHIVal; |
| |
| WorkList.push_back(IncomingPHIVal); |
| } |
| } |
| return true; |
| } |
| |
| /// RecordMatchingPHI - For a PHI node that matches, record it and its input |
| /// PHIs in both the BBMap and the AvailableVals mapping. |
| void SSAUpdater::RecordMatchingPHI(PHINode *PHI) { |
| BBMapTy *BBMap = getBBMap(BM); |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| SmallVector<PHINode*, 20> WorkList; |
| WorkList.push_back(PHI); |
| |
| // Record this PHI. |
| BasicBlock *BB = PHI->getParent(); |
| AvailableVals[BB] = PHI; |
| (*BBMap)[BB]->AvailableVal = PHI; |
| |
| while (!WorkList.empty()) { |
| PHI = WorkList.pop_back_val(); |
| |
| // Iterate through the PHI's incoming values. |
| for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { |
| PHINode *IncomingPHIVal = dyn_cast<PHINode>(PHI->getIncomingValue(i)); |
| if (!IncomingPHIVal) continue; |
| BB = IncomingPHIVal->getParent(); |
| BBInfo *Info = (*BBMap)[BB]; |
| if (!Info || Info->AvailableVal) |
| continue; |
| |
| // Record the PHI and add it to the worklist. |
| AvailableVals[BB] = IncomingPHIVal; |
| Info->AvailableVal = IncomingPHIVal; |
| WorkList.push_back(IncomingPHIVal); |
| } |
| } |
| } |