| //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that X86 uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86ISelLowering.h" |
| #include "X86MachineFunctionInfo.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/ADT/VectorExtras.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/ADT/StringExtras.h" |
| using namespace llvm; |
| |
| // FIXME: temporary. |
| static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden, |
| cl::desc("Enable fastcc on X86")); |
| X86TargetLowering::X86TargetLowering(TargetMachine &TM) |
| : TargetLowering(TM) { |
| Subtarget = &TM.getSubtarget<X86Subtarget>(); |
| X86ScalarSSE = Subtarget->hasSSE2(); |
| X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; |
| |
| // Set up the TargetLowering object. |
| |
| // X86 is weird, it always uses i8 for shift amounts and setcc results. |
| setShiftAmountType(MVT::i8); |
| setSetCCResultType(MVT::i8); |
| setSetCCResultContents(ZeroOrOneSetCCResult); |
| setSchedulingPreference(SchedulingForRegPressure); |
| setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 |
| setStackPointerRegisterToSaveRestore(X86StackPtr); |
| |
| if (Subtarget->isTargetDarwin()) { |
| // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. |
| setUseUnderscoreSetJmp(false); |
| setUseUnderscoreLongJmp(false); |
| } else if (Subtarget->isTargetCygwin()) { |
| // MS runtime is weird: it exports _setjmp, but longjmp! |
| setUseUnderscoreSetJmp(true); |
| setUseUnderscoreLongJmp(false); |
| } else { |
| setUseUnderscoreSetJmp(true); |
| setUseUnderscoreLongJmp(true); |
| } |
| |
| // Add legal addressing mode scale values. |
| addLegalAddressScale(8); |
| addLegalAddressScale(4); |
| addLegalAddressScale(2); |
| // Enter the ones which require both scale + index last. These are more |
| // expensive. |
| addLegalAddressScale(9); |
| addLegalAddressScale(5); |
| addLegalAddressScale(3); |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i8, X86::GR8RegisterClass); |
| addRegisterClass(MVT::i16, X86::GR16RegisterClass); |
| addRegisterClass(MVT::i32, X86::GR32RegisterClass); |
| if (Subtarget->is64Bit()) |
| addRegisterClass(MVT::i64, X86::GR64RegisterClass); |
| |
| setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand); |
| |
| // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this |
| // operation. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); |
| } else { |
| if (X86ScalarSSE) |
| // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); |
| else |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); |
| } |
| |
| // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); |
| // SSE has no i16 to fp conversion, only i32 |
| if (X86ScalarSSE) |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); |
| else { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); |
| } |
| |
| if (!Subtarget->is64Bit()) { |
| // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode. |
| setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); |
| } |
| |
| // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); |
| |
| if (X86ScalarSSE) { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); |
| } else { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| } |
| |
| // Handle FP_TO_UINT by promoting the destination to a larger signed |
| // conversion. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); |
| } else { |
| if (X86ScalarSSE && !Subtarget->hasSSE3()) |
| // Expand FP_TO_UINT into a select. |
| // FIXME: We would like to use a Custom expander here eventually to do |
| // the optimal thing for SSE vs. the default expansion in the legalizer. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); |
| else |
| // With SSE3 we can use fisttpll to convert to a signed i64. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); |
| } |
| |
| // TODO: when we have SSE, these could be more efficient, by using movd/movq. |
| if (!X86ScalarSSE) { |
| setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); |
| setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); |
| } |
| |
| setOperationAction(ISD::BR_JT , MVT::Other, Expand); |
| setOperationAction(ISD::BRCOND , MVT::Other, Custom); |
| setOperationAction(ISD::BR_CC , MVT::Other, Expand); |
| setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); |
| setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); |
| setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); |
| setOperationAction(ISD::FREM , MVT::f64 , Expand); |
| |
| setOperationAction(ISD::CTPOP , MVT::i8 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i8 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i8 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i16 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i16 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i16 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i32 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i32 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i32 , Expand); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::CTPOP , MVT::i64 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i64 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i64 , Expand); |
| } |
| |
| setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); |
| setOperationAction(ISD::BSWAP , MVT::i16 , Expand); |
| |
| // These should be promoted to a larger select which is supported. |
| setOperationAction(ISD::SELECT , MVT::i1 , Promote); |
| setOperationAction(ISD::SELECT , MVT::i8 , Promote); |
| // X86 wants to expand cmov itself. |
| setOperationAction(ISD::SELECT , MVT::i16 , Custom); |
| setOperationAction(ISD::SELECT , MVT::i32 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f32 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f64 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i8 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i16 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i32 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f32 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f64 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::SELECT , MVT::i64 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i64 , Custom); |
| } |
| // X86 ret instruction may pop stack. |
| setOperationAction(ISD::RET , MVT::Other, Custom); |
| // Darwin ABI issue. |
| setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); |
| setOperationAction(ISD::JumpTable , MVT::i32 , Custom); |
| setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); |
| setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); |
| setOperationAction(ISD::JumpTable , MVT::i64 , Custom); |
| setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); |
| setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); |
| } |
| // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) |
| setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); |
| setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); |
| setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); |
| // X86 wants to expand memset / memcpy itself. |
| setOperationAction(ISD::MEMSET , MVT::Other, Custom); |
| setOperationAction(ISD::MEMCPY , MVT::Other, Custom); |
| |
| // We don't have line number support yet. |
| setOperationAction(ISD::LOCATION, MVT::Other, Expand); |
| setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); |
| // FIXME - use subtarget debug flags |
| if (!Subtarget->isTargetDarwin() && |
| !Subtarget->isTargetELF() && |
| !Subtarget->isTargetCygwin()) |
| setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand); |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VAARG , MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand); |
| |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| |
| if (X86ScalarSSE) { |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f32, X86::FR32RegisterClass); |
| addRegisterClass(MVT::f64, X86::FR64RegisterClass); |
| |
| // Use ANDPD to simulate FABS. |
| setOperationAction(ISD::FABS , MVT::f64, Custom); |
| setOperationAction(ISD::FABS , MVT::f32, Custom); |
| |
| // Use XORP to simulate FNEG. |
| setOperationAction(ISD::FNEG , MVT::f64, Custom); |
| setOperationAction(ISD::FNEG , MVT::f32, Custom); |
| |
| // We don't support sin/cos/fmod |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FREM , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FREM , MVT::f32, Expand); |
| |
| // Expand FP immediates into loads from the stack, except for the special |
| // cases we handle. |
| setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Expand); |
| addLegalFPImmediate(+0.0); // xorps / xorpd |
| } else { |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f64, X86::RFPRegisterClass); |
| |
| setOperationAction(ISD::UNDEF, MVT::f64, Expand); |
| |
| if (!UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f64 , Expand); |
| setOperationAction(ISD::FCOS , MVT::f64 , Expand); |
| } |
| |
| setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| addLegalFPImmediate(+0.0); // FLD0 |
| addLegalFPImmediate(+1.0); // FLD1 |
| addLegalFPImmediate(-0.0); // FLD0/FCHS |
| addLegalFPImmediate(-1.0); // FLD1/FCHS |
| } |
| |
| // First set operation action for all vector types to expand. Then we |
| // will selectively turn on ones that can be effectively codegen'd. |
| for (unsigned VT = (unsigned)MVT::Vector + 1; |
| VT != (unsigned)MVT::LAST_VALUETYPE; VT++) { |
| setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); |
| } |
| |
| if (Subtarget->hasMMX()) { |
| addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); |
| |
| // FIXME: add MMX packed arithmetics |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Expand); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Expand); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Expand); |
| } |
| |
| if (Subtarget->hasSSE1()) { |
| addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); |
| |
| setOperationAction(ISD::FADD, MVT::v4f32, Legal); |
| setOperationAction(ISD::FSUB, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMUL, MVT::v4f32, Legal); |
| setOperationAction(ISD::FDIV, MVT::v4f32, Legal); |
| setOperationAction(ISD::LOAD, MVT::v4f32, Legal); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::v4f32, Custom); |
| } |
| |
| if (Subtarget->hasSSE2()) { |
| addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); |
| |
| setOperationAction(ISD::ADD, MVT::v16i8, Legal); |
| setOperationAction(ISD::ADD, MVT::v8i16, Legal); |
| setOperationAction(ISD::ADD, MVT::v4i32, Legal); |
| setOperationAction(ISD::SUB, MVT::v16i8, Legal); |
| setOperationAction(ISD::SUB, MVT::v8i16, Legal); |
| setOperationAction(ISD::SUB, MVT::v4i32, Legal); |
| setOperationAction(ISD::MUL, MVT::v8i16, Legal); |
| setOperationAction(ISD::FADD, MVT::v2f64, Legal); |
| setOperationAction(ISD::FSUB, MVT::v2f64, Legal); |
| setOperationAction(ISD::FMUL, MVT::v2f64, Legal); |
| setOperationAction(ISD::FDIV, MVT::v2f64, Legal); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); |
| // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones. |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| // Custom lower build_vector, vector_shuffle, and extract_vector_elt. |
| for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { |
| setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom); |
| } |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); |
| |
| // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. |
| for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { |
| setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64); |
| setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64); |
| setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64); |
| setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64); |
| setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64); |
| } |
| |
| // Custom lower v2i64 and v2f64 selects. |
| setOperationAction(ISD::LOAD, MVT::v2f64, Legal); |
| setOperationAction(ISD::LOAD, MVT::v2i64, Legal); |
| setOperationAction(ISD::SELECT, MVT::v2f64, Custom); |
| setOperationAction(ISD::SELECT, MVT::v2i64, Custom); |
| } |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| setTargetDAGCombine(ISD::VECTOR_SHUFFLE); |
| setTargetDAGCombine(ISD::SELECT); |
| |
| computeRegisterProperties(); |
| |
| // FIXME: These should be based on subtarget info. Plus, the values should |
| // be smaller when we are in optimizing for size mode. |
| maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores |
| maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores |
| maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores |
| allowUnalignedMemoryAccesses = true; // x86 supports it! |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // C Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// AddLiveIn - This helper function adds the specified physical register to the |
| /// MachineFunction as a live in value. It also creates a corresponding virtual |
| /// register for it. |
| static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, |
| TargetRegisterClass *RC) { |
| assert(RC->contains(PReg) && "Not the correct regclass!"); |
| unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); |
| MF.addLiveIn(PReg, VReg); |
| return VReg; |
| } |
| |
| /// HowToPassCCCArgument - Returns how an formal argument of the specified type |
| /// should be passed. If it is through stack, returns the size of the stack |
| /// slot; if it is through XMM register, returns the number of XMM registers |
| /// are needed. |
| static void |
| HowToPassCCCArgument(MVT::ValueType ObjectVT, unsigned NumXMMRegs, |
| unsigned &ObjSize, unsigned &ObjXMMRegs) { |
| ObjXMMRegs = 0; |
| |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i8: ObjSize = 1; break; |
| case MVT::i16: ObjSize = 2; break; |
| case MVT::i32: ObjSize = 4; break; |
| case MVT::i64: ObjSize = 8; break; |
| case MVT::f32: ObjSize = 4; break; |
| case MVT::f64: ObjSize = 8; break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 4) |
| ObjXMMRegs = 1; |
| else |
| ObjSize = 16; |
| break; |
| } |
| } |
| |
| SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG) { |
| unsigned NumArgs = Op.Val->getNumValues() - 1; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| SDOperand Root = Op.getOperand(0); |
| std::vector<SDOperand> ArgValues; |
| |
| // Add DAG nodes to load the arguments... On entry to a function on the X86, |
| // the stack frame looks like this: |
| // |
| // [ESP] -- return address |
| // [ESP + 4] -- first argument (leftmost lexically) |
| // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size |
| // ... |
| // |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 |
| }; |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| MVT::ValueType ObjectVT = Op.getValue(i).getValueType(); |
| unsigned ArgIncrement = 4; |
| unsigned ObjSize = 0; |
| unsigned ObjXMMRegs = 0; |
| HowToPassCCCArgument(ObjectVT, NumXMMRegs, ObjSize, ObjXMMRegs); |
| if (ObjSize > 4) |
| ArgIncrement = ObjSize; |
| |
| SDOperand ArgValue; |
| if (ObjXMMRegs) { |
| // Passed in a XMM register. |
| unsigned Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], |
| X86::VR128RegisterClass); |
| ArgValue= DAG.getCopyFromReg(Root, Reg, ObjectVT); |
| ArgValues.push_back(ArgValue); |
| NumXMMRegs += ObjXMMRegs; |
| } else { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| if (ObjSize == 16) |
| ArgOffset = ((ArgOffset + 15) / 16) * 16; |
| // Create the frame index object for this incoming parameter... |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0); |
| ArgValues.push_back(ArgValue); |
| ArgOffset += ArgIncrement; // Move on to the next argument... |
| } |
| } |
| |
| ArgValues.push_back(Root); |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| if (isVarArg) |
| VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); |
| RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only. |
| ReturnAddrIndex = 0; // No return address slot generated yet. |
| BytesToPopOnReturn = 0; // Callee pops nothing. |
| BytesCallerReserves = ArgOffset; |
| |
| // If this is a struct return on, the callee pops the hidden struct |
| // pointer. This is common for Darwin/X86, Linux & Mingw32 targets. |
| if (MF.getFunction()->getCallingConv() == CallingConv::CSRet) |
| BytesToPopOnReturn = 4; |
| |
| // Return the new list of results. |
| std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(), |
| Op.Val->value_end()); |
| return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size()); |
| } |
| |
| |
| SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Chain = Op.getOperand(0); |
| unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0; |
| SDOperand Callee = Op.getOperand(4); |
| MVT::ValueType RetVT= Op.Val->getValueType(0); |
| unsigned NumOps = (Op.getNumOperands() - 5) / 2; |
| |
| // Keep track of the number of XMM regs passed so far. |
| unsigned NumXMMRegs = 0; |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 |
| }; |
| |
| // Count how many bytes are to be pushed on the stack. |
| unsigned NumBytes = 0; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| |
| switch (Arg.getValueType()) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::f32: |
| NumBytes += 4; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| NumBytes += 8; |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 4) |
| ++NumXMMRegs; |
| else { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| NumBytes = ((NumBytes + 15) / 16) * 16; |
| NumBytes += 16; |
| } |
| break; |
| } |
| } |
| |
| Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| unsigned ArgOffset = 0; |
| NumXMMRegs = 0; |
| std::vector<std::pair<unsigned, SDOperand> > RegsToPass; |
| std::vector<SDOperand> MemOpChains; |
| SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy()); |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| |
| switch (Arg.getValueType()) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i8: |
| case MVT::i16: { |
| // Promote the integer to 32 bits. If the input type is signed use a |
| // sign extend, otherwise use a zero extend. |
| unsigned ExtOp = |
| dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ? |
| ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| Arg = DAG.getNode(ExtOp, MVT::i32, Arg); |
| } |
| // Fallthrough |
| |
| case MVT::i32: |
| case MVT::f32: { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| ArgOffset += 4; |
| break; |
| } |
| case MVT::i64: |
| case MVT::f64: { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| ArgOffset += 8; |
| break; |
| } |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 4) { |
| RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg)); |
| NumXMMRegs++; |
| } else { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| ArgOffset = ((ArgOffset + 15) / 16) * 16; |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| ArgOffset += 16; |
| } |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into registers. |
| SDOperand InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| // We should use extra load for direct calls to dllimported functions in |
| // non-JIT mode. |
| if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), |
| getTargetMachine(), true)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| |
| std::vector<MVT::ValueType> NodeTys; |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| if (InFlag.Val) |
| Ops.push_back(InFlag); |
| |
| Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, |
| NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| unsigned NumBytesForCalleeToPush = 0; |
| |
| // If this is is a call to a struct-return function, the callee |
| // pops the hidden struct pointer, so we have to push it back. |
| // This is common for Darwin/X86, Linux & Mingw32 targets. |
| if (CallingConv == CallingConv::CSRet) |
| NumBytesForCalleeToPush = 4; |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| if (RetVT != MVT::Other) |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy())); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); |
| if (RetVT != MVT::Other) |
| InFlag = Chain.getValue(1); |
| |
| std::vector<SDOperand> ResultVals; |
| NodeTys.clear(); |
| switch (RetVT) { |
| default: assert(0 && "Unknown value type to return!"); |
| case MVT::Other: break; |
| case MVT::i8: |
| Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i8); |
| break; |
| case MVT::i16: |
| Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i16); |
| break; |
| case MVT::i32: |
| if (Op.Val->getValueType(1) == MVT::i32) { |
| Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32, |
| Chain.getValue(2)).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i32); |
| } else { |
| Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| } |
| NodeTys.push_back(MVT::i32); |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(RetVT); |
| break; |
| case MVT::f32: |
| case MVT::f64: { |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(InFlag); |
| SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, |
| &Ops[0], Ops.size()); |
| Chain = RetVal.getValue(1); |
| InFlag = RetVal.getValue(2); |
| if (X86ScalarSSE) { |
| // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(RetVal); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(RetVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); |
| RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0); |
| Chain = RetVal.getValue(1); |
| } |
| |
| if (RetVT == MVT::f32 && !X86ScalarSSE) |
| // FIXME: we would really like to remember that this FP_ROUND |
| // operation is okay to eliminate if we allow excess FP precision. |
| RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); |
| ResultVals.push_back(RetVal); |
| NodeTys.push_back(RetVT); |
| break; |
| } |
| } |
| |
| // If the function returns void, just return the chain. |
| if (ResultVals.empty()) |
| return Chain; |
| |
| // Otherwise, merge everything together with a MERGE_VALUES node. |
| NodeTys.push_back(MVT::Other); |
| ResultVals.push_back(Chain); |
| SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, |
| &ResultVals[0], ResultVals.size()); |
| return Res.getValue(Op.ResNo); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // X86-64 C Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// HowToPassX86_64CCCArgument - Returns how an formal argument of the specified |
| /// type should be passed. If it is through stack, returns the size of the stack |
| /// slot; if it is through integer or XMM register, returns the number of |
| /// integer or XMM registers are needed. |
| static void |
| HowToPassX86_64CCCArgument(MVT::ValueType ObjectVT, |
| unsigned NumIntRegs, unsigned NumXMMRegs, |
| unsigned &ObjSize, unsigned &ObjIntRegs, |
| unsigned &ObjXMMRegs) { |
| ObjSize = 0; |
| ObjIntRegs = 0; |
| ObjXMMRegs = 0; |
| |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: |
| if (NumIntRegs < 6) |
| ObjIntRegs = 1; |
| else { |
| switch (ObjectVT) { |
| default: break; |
| case MVT::i8: ObjSize = 1; break; |
| case MVT::i16: ObjSize = 2; break; |
| case MVT::i32: ObjSize = 4; break; |
| case MVT::i64: ObjSize = 8; break; |
| } |
| } |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 8) |
| ObjXMMRegs = 1; |
| else { |
| switch (ObjectVT) { |
| default: break; |
| case MVT::f32: ObjSize = 4; break; |
| case MVT::f64: ObjSize = 8; break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: ObjSize = 16; break; |
| } |
| break; |
| } |
| } |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) { |
| unsigned NumArgs = Op.Val->getNumValues() - 1; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| SDOperand Root = Op.getOperand(0); |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| std::vector<SDOperand> ArgValues; |
| |
| // Add DAG nodes to load the arguments... On entry to a function on the X86, |
| // the stack frame looks like this: |
| // |
| // [RSP] -- return address |
| // [RSP + 8] -- first nonreg argument (leftmost lexically) |
| // [RSP +16] -- second nonreg argument, if 1st argument is <= 8 bytes in size |
| // ... |
| // |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| unsigned NumIntRegs = 0; // Int regs used for parameter passing. |
| unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. |
| |
| static const unsigned GPR8ArgRegs[] = { |
| X86::DIL, X86::SIL, X86::DL, X86::CL, X86::R8B, X86::R9B |
| }; |
| static const unsigned GPR16ArgRegs[] = { |
| X86::DI, X86::SI, X86::DX, X86::CX, X86::R8W, X86::R9W |
| }; |
| static const unsigned GPR32ArgRegs[] = { |
| X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D |
| }; |
| static const unsigned GPR64ArgRegs[] = { |
| X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 |
| }; |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| }; |
| |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| MVT::ValueType ObjectVT = Op.getValue(i).getValueType(); |
| unsigned ArgIncrement = 8; |
| unsigned ObjSize = 0; |
| unsigned ObjIntRegs = 0; |
| unsigned ObjXMMRegs = 0; |
| |
| // FIXME: __int128 and long double support? |
| HowToPassX86_64CCCArgument(ObjectVT, NumIntRegs, NumXMMRegs, |
| ObjSize, ObjIntRegs, ObjXMMRegs); |
| if (ObjSize > 8) |
| ArgIncrement = ObjSize; |
| |
| unsigned Reg = 0; |
| SDOperand ArgValue; |
| if (ObjIntRegs || ObjXMMRegs) { |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: { |
| TargetRegisterClass *RC = NULL; |
| switch (ObjectVT) { |
| default: break; |
| case MVT::i8: |
| RC = X86::GR8RegisterClass; |
| Reg = GPR8ArgRegs[NumIntRegs]; |
| break; |
| case MVT::i16: |
| RC = X86::GR16RegisterClass; |
| Reg = GPR16ArgRegs[NumIntRegs]; |
| break; |
| case MVT::i32: |
| RC = X86::GR32RegisterClass; |
| Reg = GPR32ArgRegs[NumIntRegs]; |
| break; |
| case MVT::i64: |
| RC = X86::GR64RegisterClass; |
| Reg = GPR64ArgRegs[NumIntRegs]; |
| break; |
| } |
| Reg = AddLiveIn(MF, Reg, RC); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT); |
| break; |
| } |
| case MVT::f32: |
| case MVT::f64: |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: { |
| TargetRegisterClass *RC= (ObjectVT == MVT::f32) ? |
| X86::FR32RegisterClass : ((ObjectVT == MVT::f64) ? |
| X86::FR64RegisterClass : X86::VR128RegisterClass); |
| Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], RC); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT); |
| break; |
| } |
| } |
| NumIntRegs += ObjIntRegs; |
| NumXMMRegs += ObjXMMRegs; |
| } else if (ObjSize) { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| if (ObjSize == 16) |
| ArgOffset = ((ArgOffset + 15) / 16) * 16; |
| // Create the SelectionDAG nodes corresponding to a load from this |
| // parameter. |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0); |
| ArgOffset += ArgIncrement; // Move on to the next argument. |
| } |
| |
| ArgValues.push_back(ArgValue); |
| } |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (isVarArg) { |
| // For X86-64, if there are vararg parameters that are passed via |
| // registers, then we must store them to their spots on the stack so they |
| // may be loaded by deferencing the result of va_next. |
| VarArgsGPOffset = NumIntRegs * 8; |
| VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16; |
| VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); |
| RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16); |
| |
| // Store the integer parameter registers. |
| std::vector<SDOperand> MemOps; |
| SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); |
| SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, |
| DAG.getConstant(VarArgsGPOffset, getPointerTy())); |
| for (; NumIntRegs != 6; ++NumIntRegs) { |
| unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs], |
| X86::GR64RegisterClass); |
| SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64); |
| SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); |
| MemOps.push_back(Store); |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| DAG.getConstant(8, getPointerTy())); |
| } |
| |
| // Now store the XMM (fp + vector) parameter registers. |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, |
| DAG.getConstant(VarArgsFPOffset, getPointerTy())); |
| for (; NumXMMRegs != 8; ++NumXMMRegs) { |
| unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], |
| X86::VR128RegisterClass); |
| SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32); |
| SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); |
| MemOps.push_back(Store); |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| DAG.getConstant(16, getPointerTy())); |
| } |
| if (!MemOps.empty()) |
| Root = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &MemOps[0], MemOps.size()); |
| } |
| |
| ArgValues.push_back(Root); |
| |
| ReturnAddrIndex = 0; // No return address slot generated yet. |
| BytesToPopOnReturn = 0; // Callee pops nothing. |
| BytesCallerReserves = ArgOffset; |
| |
| // Return the new list of results. |
| std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(), |
| Op.Val->value_end()); |
| return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size()); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Chain = Op.getOperand(0); |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0; |
| SDOperand Callee = Op.getOperand(4); |
| MVT::ValueType RetVT= Op.Val->getValueType(0); |
| unsigned NumOps = (Op.getNumOperands() - 5) / 2; |
| |
| // Count how many bytes are to be pushed on the stack. |
| unsigned NumBytes = 0; |
| unsigned NumIntRegs = 0; // Int regs used for parameter passing. |
| unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. |
| |
| static const unsigned GPR8ArgRegs[] = { |
| X86::DIL, X86::SIL, X86::DL, X86::CL, X86::R8B, X86::R9B |
| }; |
| static const unsigned GPR16ArgRegs[] = { |
| X86::DI, X86::SI, X86::DX, X86::CX, X86::R8W, X86::R9W |
| }; |
| static const unsigned GPR32ArgRegs[] = { |
| X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D |
| }; |
| static const unsigned GPR64ArgRegs[] = { |
| X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 |
| }; |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| }; |
| |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| MVT::ValueType ArgVT = Arg.getValueType(); |
| |
| switch (ArgVT) { |
| default: assert(0 && "Unknown value type!"); |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: |
| if (NumIntRegs < 6) |
| ++NumIntRegs; |
| else |
| NumBytes += 8; |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 8) |
| NumXMMRegs++; |
| else if (ArgVT == MVT::f32 || ArgVT == MVT::f64) |
| NumBytes += 8; |
| else { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| NumBytes = ((NumBytes + 15) / 16) * 16; |
| NumBytes += 16; |
| } |
| break; |
| } |
| } |
| |
| Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| unsigned ArgOffset = 0; |
| NumIntRegs = 0; |
| NumXMMRegs = 0; |
| std::vector<std::pair<unsigned, SDOperand> > RegsToPass; |
| std::vector<SDOperand> MemOpChains; |
| SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy()); |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| MVT::ValueType ArgVT = Arg.getValueType(); |
| |
| switch (ArgVT) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: |
| if (NumIntRegs < 6) { |
| unsigned Reg = 0; |
| switch (ArgVT) { |
| default: break; |
| case MVT::i8: Reg = GPR8ArgRegs[NumIntRegs]; break; |
| case MVT::i16: Reg = GPR16ArgRegs[NumIntRegs]; break; |
| case MVT::i32: Reg = GPR32ArgRegs[NumIntRegs]; break; |
| case MVT::i64: Reg = GPR64ArgRegs[NumIntRegs]; break; |
| } |
| RegsToPass.push_back(std::make_pair(Reg, Arg)); |
| ++NumIntRegs; |
| } else { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| ArgOffset += 8; |
| } |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 8) { |
| RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg)); |
| NumXMMRegs++; |
| } else { |
| if (ArgVT != MVT::f32 && ArgVT != MVT::f64) { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| ArgOffset = ((ArgOffset + 15) / 16) * 16; |
| } |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| if (ArgVT == MVT::f32 || ArgVT == MVT::f64) |
| ArgOffset += 8; |
| else |
| ArgOffset += 16; |
| } |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into registers. |
| SDOperand InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| if (isVarArg) { |
| // From AMD64 ABI document: |
| // For calls that may call functions that use varargs or stdargs |
| // (prototype-less calls or calls to functions containing ellipsis (...) in |
| // the declaration) %al is used as hidden argument to specify the number |
| // of SSE registers used. The contents of %al do not need to match exactly |
| // the number of registers, but must be an ubound on the number of SSE |
| // registers used and is in the range 0 - 8 inclusive. |
| Chain = DAG.getCopyToReg(Chain, X86::AL, |
| DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| // We should use extra load for direct calls to dllimported functions in |
| // non-JIT mode. |
| if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), |
| getTargetMachine(), true)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| |
| std::vector<MVT::ValueType> NodeTys; |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| if (InFlag.Val) |
| Ops.push_back(InFlag); |
| |
| // FIXME: Do not generate X86ISD::TAILCALL for now. |
| Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, |
| NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| if (RetVT != MVT::Other) |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| Ops.push_back(DAG.getConstant(0, getPointerTy())); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); |
| if (RetVT != MVT::Other) |
| InFlag = Chain.getValue(1); |
| |
| std::vector<SDOperand> ResultVals; |
| NodeTys.clear(); |
| switch (RetVT) { |
| default: assert(0 && "Unknown value type to return!"); |
| case MVT::Other: break; |
| case MVT::i8: |
| Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i8); |
| break; |
| case MVT::i16: |
| Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i16); |
| break; |
| case MVT::i32: |
| Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i32); |
| break; |
| case MVT::i64: |
| if (Op.Val->getValueType(1) == MVT::i64) { |
| // FIXME: __int128 support? |
| Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| Chain = DAG.getCopyFromReg(Chain, X86::RDX, MVT::i64, |
| Chain.getValue(2)).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i64); |
| } else { |
| Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| } |
| NodeTys.push_back(MVT::i64); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| // FIXME: long double support? |
| Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(RetVT); |
| break; |
| } |
| |
| // If the function returns void, just return the chain. |
| if (ResultVals.empty()) |
| return Chain; |
| |
| // Otherwise, merge everything together with a MERGE_VALUES node. |
| NodeTys.push_back(MVT::Other); |
| ResultVals.push_back(Chain); |
| SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, |
| &ResultVals[0], ResultVals.size()); |
| return Res.getValue(Op.ResNo); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Fast Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| // |
| // The X86 'fast' calling convention passes up to two integer arguments in |
| // registers (an appropriate portion of EAX/EDX), passes arguments in C order, |
| // and requires that the callee pop its arguments off the stack (allowing proper |
| // tail calls), and has the same return value conventions as C calling convs. |
| // |
| // This calling convention always arranges for the callee pop value to be 8n+4 |
| // bytes, which is needed for tail recursion elimination and stack alignment |
| // reasons. |
| // |
| // Note that this can be enhanced in the future to pass fp vals in registers |
| // (when we have a global fp allocator) and do other tricks. |
| // |
| |
| /// HowToPassFastCCArgument - Returns how an formal argument of the specified |
| /// type should be passed. If it is through stack, returns the size of the stack |
| /// slot; if it is through integer or XMM register, returns the number of |
| /// integer or XMM registers are needed. |
| static void |
| HowToPassFastCCArgument(MVT::ValueType ObjectVT, |
| unsigned NumIntRegs, unsigned NumXMMRegs, |
| unsigned &ObjSize, unsigned &ObjIntRegs, |
| unsigned &ObjXMMRegs) { |
| ObjSize = 0; |
| ObjIntRegs = 0; |
| ObjXMMRegs = 0; |
| |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i8: |
| #if FASTCC_NUM_INT_ARGS_INREGS > 0 |
| if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) |
| ObjIntRegs = 1; |
| else |
| #endif |
| ObjSize = 1; |
| break; |
| case MVT::i16: |
| #if FASTCC_NUM_INT_ARGS_INREGS > 0 |
| if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) |
| ObjIntRegs = 1; |
| else |
| #endif |
| ObjSize = 2; |
| break; |
| case MVT::i32: |
| #if FASTCC_NUM_INT_ARGS_INREGS > 0 |
| if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) |
| ObjIntRegs = 1; |
| else |
| #endif |
| ObjSize = 4; |
| break; |
| case MVT::i64: |
| #if FASTCC_NUM_INT_ARGS_INREGS > 0 |
| if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) { |
| ObjIntRegs = 2; |
| } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) { |
| ObjIntRegs = 1; |
| ObjSize = 4; |
| } else |
| #endif |
| ObjSize = 8; |
| case MVT::f32: |
| ObjSize = 4; |
| break; |
| case MVT::f64: |
| ObjSize = 8; |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 4) |
| ObjXMMRegs = 1; |
| else |
| ObjSize = 16; |
| break; |
| } |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) { |
| unsigned NumArgs = Op.Val->getNumValues()-1; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| SDOperand Root = Op.getOperand(0); |
| std::vector<SDOperand> ArgValues; |
| |
| // Add DAG nodes to load the arguments... On entry to a function the stack |
| // frame looks like this: |
| // |
| // [ESP] -- return address |
| // [ESP + 4] -- first nonreg argument (leftmost lexically) |
| // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size |
| // ... |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| |
| // Keep track of the number of integer regs passed so far. This can be either |
| // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both |
| // used). |
| unsigned NumIntRegs = 0; |
| unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. |
| |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 |
| }; |
| |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| MVT::ValueType ObjectVT = Op.getValue(i).getValueType(); |
| unsigned ArgIncrement = 4; |
| unsigned ObjSize = 0; |
| unsigned ObjIntRegs = 0; |
| unsigned ObjXMMRegs = 0; |
| |
| HowToPassFastCCArgument(ObjectVT, NumIntRegs, NumXMMRegs, |
| ObjSize, ObjIntRegs, ObjXMMRegs); |
| if (ObjSize > 4) |
| ArgIncrement = ObjSize; |
| |
| unsigned Reg = 0; |
| SDOperand ArgValue; |
| if (ObjIntRegs || ObjXMMRegs) { |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i8: |
| Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL, |
| X86::GR8RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8); |
| break; |
| case MVT::i16: |
| Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX, |
| X86::GR16RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16); |
| break; |
| case MVT::i32: |
| Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX, |
| X86::GR32RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32); |
| break; |
| case MVT::i64: |
| Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX, |
| X86::GR32RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32); |
| if (ObjIntRegs == 2) { |
| Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass); |
| SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32); |
| ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2); |
| } |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT); |
| break; |
| } |
| NumIntRegs += ObjIntRegs; |
| NumXMMRegs += ObjXMMRegs; |
| } |
| |
| if (ObjSize) { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| if (ObjSize == 16) |
| ArgOffset = ((ArgOffset + 15) / 16) * 16; |
| // Create the SelectionDAG nodes corresponding to a load from this |
| // parameter. |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| if (ObjectVT == MVT::i64 && ObjIntRegs) { |
| SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, |
| NULL, 0); |
| ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2); |
| } else |
| ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0); |
| ArgOffset += ArgIncrement; // Move on to the next argument. |
| } |
| |
| ArgValues.push_back(ArgValue); |
| } |
| |
| ArgValues.push_back(Root); |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are aligned. |
| if ((ArgOffset & 7) == 0) |
| ArgOffset += 4; |
| |
| VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. |
| RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only. |
| ReturnAddrIndex = 0; // No return address slot generated yet. |
| BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments. |
| BytesCallerReserves = 0; |
| |
| // Finally, inform the code generator which regs we return values in. |
| switch (getValueType(MF.getFunction()->getReturnType())) { |
| default: assert(0 && "Unknown type!"); |
| case MVT::isVoid: break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| MF.addLiveOut(X86::EAX); |
| break; |
| case MVT::i64: |
| MF.addLiveOut(X86::EAX); |
| MF.addLiveOut(X86::EDX); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| MF.addLiveOut(X86::ST0); |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| MF.addLiveOut(X86::XMM0); |
| break; |
| } |
| |
| // Return the new list of results. |
| std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(), |
| Op.Val->value_end()); |
| return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size()); |
| } |
| |
| SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG, |
| bool isFastCall) { |
| SDOperand Chain = Op.getOperand(0); |
| bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0; |
| SDOperand Callee = Op.getOperand(4); |
| MVT::ValueType RetVT= Op.Val->getValueType(0); |
| unsigned NumOps = (Op.getNumOperands() - 5) / 2; |
| |
| // Count how many bytes are to be pushed on the stack. |
| unsigned NumBytes = 0; |
| |
| // Keep track of the number of integer regs passed so far. This can be either |
| // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both |
| // used). |
| unsigned NumIntRegs = 0; |
| unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. |
| |
| static const unsigned GPRArgRegs[][2] = { |
| { X86::AL, X86::DL }, |
| { X86::AX, X86::DX }, |
| { X86::EAX, X86::EDX } |
| }; |
| #if 0 |
| static const unsigned FastCallGPRArgRegs[][2] = { |
| { X86::CL, X86::DL }, |
| { X86::CX, X86::DX }, |
| { X86::ECX, X86::EDX } |
| }; |
| #endif |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 |
| }; |
| |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| |
| switch (Arg.getValueType()) { |
| default: assert(0 && "Unknown value type!"); |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: { |
| unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS); |
| if (NumIntRegs < MaxNumIntRegs) { |
| ++NumIntRegs; |
| break; |
| } |
| } // Fall through |
| case MVT::f32: |
| NumBytes += 4; |
| break; |
| case MVT::f64: |
| NumBytes += 8; |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (isFastCall) { |
| assert(0 && "Unknown value type!"); |
| } else { |
| if (NumXMMRegs < 4) |
| NumXMMRegs++; |
| else { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| NumBytes = ((NumBytes + 15) / 16) * 16; |
| NumBytes += 16; |
| } |
| } |
| break; |
| } |
| } |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are aligned. |
| if ((NumBytes & 7) == 0) |
| NumBytes += 4; |
| |
| Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| unsigned ArgOffset = 0; |
| NumIntRegs = 0; |
| std::vector<std::pair<unsigned, SDOperand> > RegsToPass; |
| std::vector<SDOperand> MemOpChains; |
| SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy()); |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| |
| switch (Arg.getValueType()) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: { |
| unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS); |
| if (NumIntRegs < MaxNumIntRegs) { |
| RegsToPass.push_back( |
| std::make_pair(GPRArgRegs[Arg.getValueType()-MVT::i8][NumIntRegs], |
| Arg)); |
| ++NumIntRegs; |
| break; |
| } |
| } // Fall through |
| case MVT::f32: { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| ArgOffset += 4; |
| break; |
| } |
| case MVT::f64: { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| ArgOffset += 8; |
| break; |
| } |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (isFastCall) { |
| assert(0 && "Unexpected ValueType for argument!"); |
| } else { |
| if (NumXMMRegs < 4) { |
| RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg)); |
| NumXMMRegs++; |
| } else { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| ArgOffset = ((ArgOffset + 15) / 16) * 16; |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| ArgOffset += 16; |
| } |
| } |
| break; |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into registers. |
| SDOperand InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| // We should use extra load for direct calls to dllimported functions in |
| // non-JIT mode. |
| if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), |
| getTargetMachine(), true)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| |
| std::vector<MVT::ValueType> NodeTys; |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| if (InFlag.Val) |
| Ops.push_back(InFlag); |
| |
| // FIXME: Do not generate X86ISD::TAILCALL for now. |
| Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, |
| NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| if (RetVT != MVT::Other) |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); |
| if (RetVT != MVT::Other) |
| InFlag = Chain.getValue(1); |
| |
| std::vector<SDOperand> ResultVals; |
| NodeTys.clear(); |
| switch (RetVT) { |
| default: assert(0 && "Unknown value type to return!"); |
| case MVT::Other: break; |
| case MVT::i8: |
| Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i8); |
| break; |
| case MVT::i16: |
| Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i16); |
| break; |
| case MVT::i32: |
| if (Op.Val->getValueType(1) == MVT::i32) { |
| Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32, |
| Chain.getValue(2)).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i32); |
| } else { |
| Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| } |
| NodeTys.push_back(MVT::i32); |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (isFastCall) { |
| assert(0 && "Unknown value type to return!"); |
| } else { |
| Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(RetVT); |
| } |
| break; |
| case MVT::f32: |
| case MVT::f64: { |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(InFlag); |
| SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, |
| &Ops[0], Ops.size()); |
| Chain = RetVal.getValue(1); |
| InFlag = RetVal.getValue(2); |
| if (X86ScalarSSE) { |
| // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(RetVal); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(RetVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); |
| RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0); |
| Chain = RetVal.getValue(1); |
| } |
| |
| if (RetVT == MVT::f32 && !X86ScalarSSE) |
| // FIXME: we would really like to remember that this FP_ROUND |
| // operation is okay to eliminate if we allow excess FP precision. |
| RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); |
| ResultVals.push_back(RetVal); |
| NodeTys.push_back(RetVT); |
| break; |
| } |
| } |
| |
| |
| // If the function returns void, just return the chain. |
| if (ResultVals.empty()) |
| return Chain; |
| |
| // Otherwise, merge everything together with a MERGE_VALUES node. |
| NodeTys.push_back(MVT::Other); |
| ResultVals.push_back(Chain); |
| SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, |
| &ResultVals[0], ResultVals.size()); |
| return Res.getValue(Op.ResNo); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // StdCall Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| // StdCall calling convention seems to be standard for many Windows' API |
| // routines and around. It differs from C calling convention just a little: |
| // callee should clean up the stack, not caller. Symbols should be also |
| // decorated in some fancy way :) It doesn't support any vector arguments. |
| |
| /// HowToPassStdCallCCArgument - Returns how an formal argument of the specified |
| /// type should be passed. Returns the size of the stack slot |
| static void |
| HowToPassStdCallCCArgument(MVT::ValueType ObjectVT, unsigned &ObjSize) { |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i8: ObjSize = 1; break; |
| case MVT::i16: ObjSize = 2; break; |
| case MVT::i32: ObjSize = 4; break; |
| case MVT::i64: ObjSize = 8; break; |
| case MVT::f32: ObjSize = 4; break; |
| case MVT::f64: ObjSize = 8; break; |
| } |
| } |
| |
| SDOperand X86TargetLowering::LowerStdCallCCArguments(SDOperand Op, |
| SelectionDAG &DAG) { |
| unsigned NumArgs = Op.Val->getNumValues() - 1; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| SDOperand Root = Op.getOperand(0); |
| std::vector<SDOperand> ArgValues; |
| |
| // Add DAG nodes to load the arguments... On entry to a function on the X86, |
| // the stack frame looks like this: |
| // |
| // [ESP] -- return address |
| // [ESP + 4] -- first argument (leftmost lexically) |
| // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size |
| // ... |
| // |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| MVT::ValueType ObjectVT = Op.getValue(i).getValueType(); |
| unsigned ArgIncrement = 4; |
| unsigned ObjSize = 0; |
| HowToPassStdCallCCArgument(ObjectVT, ObjSize); |
| if (ObjSize > 4) |
| ArgIncrement = ObjSize; |
| |
| SDOperand ArgValue; |
| // Create the frame index object for this incoming parameter... |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0); |
| ArgValues.push_back(ArgValue); |
| ArgOffset += ArgIncrement; // Move on to the next argument... |
| } |
| |
| ArgValues.push_back(Root); |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| if (isVarArg) { |
| BytesToPopOnReturn = 0; // Callee pops nothing. |
| BytesCallerReserves = ArgOffset; |
| VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); |
| } else { |
| BytesToPopOnReturn = ArgOffset; // Callee pops everything.. |
| BytesCallerReserves = 0; |
| } |
| RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only. |
| ReturnAddrIndex = 0; // No return address slot generated yet. |
| |
| MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn); |
| |
| // Return the new list of results. |
| std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(), |
| Op.Val->value_end()); |
| return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size()); |
| } |
| |
| |
| SDOperand X86TargetLowering::LowerStdCallCCCallTo(SDOperand Op, |
| SelectionDAG &DAG) { |
| SDOperand Chain = Op.getOperand(0); |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0; |
| SDOperand Callee = Op.getOperand(4); |
| MVT::ValueType RetVT= Op.Val->getValueType(0); |
| unsigned NumOps = (Op.getNumOperands() - 5) / 2; |
| |
| // Count how many bytes are to be pushed on the stack. |
| unsigned NumBytes = 0; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| |
| switch (Arg.getValueType()) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::f32: |
| NumBytes += 4; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| NumBytes += 8; |
| break; |
| } |
| } |
| |
| Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| unsigned ArgOffset = 0; |
| std::vector<SDOperand> MemOpChains; |
| SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy()); |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| |
| switch (Arg.getValueType()) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i8: |
| case MVT::i16: { |
| // Promote the integer to 32 bits. If the input type is signed use a |
| // sign extend, otherwise use a zero extend. |
| unsigned ExtOp = |
| dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ? |
| ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| Arg = DAG.getNode(ExtOp, MVT::i32, Arg); |
| } |
| // Fallthrough |
| |
| case MVT::i32: |
| case MVT::f32: { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| ArgOffset += 4; |
| break; |
| } |
| case MVT::i64: |
| case MVT::f64: { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| ArgOffset += 8; |
| break; |
| } |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| // We should use extra load for direct calls to dllimported functions in |
| // non-JIT mode. |
| if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), |
| getTargetMachine(), true)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| |
| std::vector<MVT::ValueType> NodeTys; |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, |
| NodeTys, &Ops[0], Ops.size()); |
| SDOperand InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| unsigned NumBytesForCalleeToPush; |
| |
| if (isVarArg) { |
| NumBytesForCalleeToPush = 0; |
| } else { |
| NumBytesForCalleeToPush = NumBytes; |
| } |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| if (RetVT != MVT::Other) |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy())); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); |
| if (RetVT != MVT::Other) |
| InFlag = Chain.getValue(1); |
| |
| std::vector<SDOperand> ResultVals; |
| NodeTys.clear(); |
| switch (RetVT) { |
| default: assert(0 && "Unknown value type to return!"); |
| case MVT::Other: break; |
| case MVT::i8: |
| Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i8); |
| break; |
| case MVT::i16: |
| Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i16); |
| break; |
| case MVT::i32: |
| if (Op.Val->getValueType(1) == MVT::i32) { |
| Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32, |
| Chain.getValue(2)).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i32); |
| } else { |
| Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| } |
| NodeTys.push_back(MVT::i32); |
| break; |
| case MVT::f32: |
| case MVT::f64: { |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(InFlag); |
| SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, |
| &Ops[0], Ops.size()); |
| Chain = RetVal.getValue(1); |
| InFlag = RetVal.getValue(2); |
| if (X86ScalarSSE) { |
| // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(RetVal); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(RetVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); |
| RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0); |
| Chain = RetVal.getValue(1); |
| } |
| |
| if (RetVT == MVT::f32 && !X86ScalarSSE) |
| // FIXME: we would really like to remember that this FP_ROUND |
| // operation is okay to eliminate if we allow excess FP precision. |
| RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); |
| ResultVals.push_back(RetVal); |
| NodeTys.push_back(RetVT); |
| break; |
| } |
| } |
| |
| // If the function returns void, just return the chain. |
| if (ResultVals.empty()) |
| return Chain; |
| |
| // Otherwise, merge everything together with a MERGE_VALUES node. |
| NodeTys.push_back(MVT::Other); |
| ResultVals.push_back(Chain); |
| SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, |
| &ResultVals[0], ResultVals.size()); |
| return Res.getValue(Op.ResNo); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FastCall Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| // |
| // The X86 'fastcall' calling convention passes up to two integer arguments in |
| // registers (an appropriate portion of ECX/EDX), passes arguments in C order, |
| // and requires that the callee pop its arguments off the stack (allowing proper |
| // tail calls), and has the same return value conventions as C calling convs. |
| // |
| // This calling convention always arranges for the callee pop value to be 8n+4 |
| // bytes, which is needed for tail recursion elimination and stack alignment |
| // reasons. |
| // |
| |
| /// HowToPassFastCallCCArgument - Returns how an formal argument of the |
| /// specified type should be passed. If it is through stack, returns the size of |
| /// the stack slot; if it is through integer register, returns the number of |
| /// integer registers are needed. |
| static void |
| HowToPassFastCallCCArgument(MVT::ValueType ObjectVT, |
| unsigned NumIntRegs, |
| unsigned &ObjSize, |
| unsigned &ObjIntRegs) |
| { |
| ObjSize = 0; |
| ObjIntRegs = 0; |
| |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i8: |
| if (NumIntRegs < 2) |
| ObjIntRegs = 1; |
| else |
| ObjSize = 1; |
| break; |
| case MVT::i16: |
| if (NumIntRegs < 2) |
| ObjIntRegs = 1; |
| else |
| ObjSize = 2; |
| break; |
| case MVT::i32: |
| if (NumIntRegs < 2) |
| ObjIntRegs = 1; |
| else |
| ObjSize = 4; |
| break; |
| case MVT::i64: |
| if (NumIntRegs+2 <= 2) { |
| ObjIntRegs = 2; |
| } else if (NumIntRegs+1 <= 2) { |
| ObjIntRegs = 1; |
| ObjSize = 4; |
| } else |
| ObjSize = 8; |
| case MVT::f32: |
| ObjSize = 4; |
| break; |
| case MVT::f64: |
| ObjSize = 8; |
| break; |
| } |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerFastCallCCArguments(SDOperand Op, SelectionDAG &DAG) { |
| unsigned NumArgs = Op.Val->getNumValues()-1; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| SDOperand Root = Op.getOperand(0); |
| std::vector<SDOperand> ArgValues; |
| |
| // Add DAG nodes to load the arguments... On entry to a function the stack |
| // frame looks like this: |
| // |
| // [ESP] -- return address |
| // [ESP + 4] -- first nonreg argument (leftmost lexically) |
| // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size |
| // ... |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| |
| // Keep track of the number of integer regs passed so far. This can be either |
| // 0 (neither ECX or EDX used), 1 (ECX is used) or 2 (ECX and EDX are both |
| // used). |
| unsigned NumIntRegs = 0; |
| |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| MVT::ValueType ObjectVT = Op.getValue(i).getValueType(); |
| unsigned ArgIncrement = 4; |
| unsigned ObjSize = 0; |
| unsigned ObjIntRegs = 0; |
| |
| HowToPassFastCallCCArgument(ObjectVT, NumIntRegs, ObjSize, ObjIntRegs); |
| if (ObjSize > 4) |
| ArgIncrement = ObjSize; |
| |
| unsigned Reg = 0; |
| SDOperand ArgValue; |
| if (ObjIntRegs) { |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i8: |
| Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::CL, |
| X86::GR8RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8); |
| break; |
| case MVT::i16: |
| Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::CX, |
| X86::GR16RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16); |
| break; |
| case MVT::i32: |
| Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::ECX, |
| X86::GR32RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32); |
| break; |
| case MVT::i64: |
| Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::ECX, |
| X86::GR32RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32); |
| if (ObjIntRegs == 2) { |
| Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass); |
| SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32); |
| ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2); |
| } |
| break; |
| } |
| |
| NumIntRegs += ObjIntRegs; |
| } |
| |
| if (ObjSize) { |
| // Create the SelectionDAG nodes corresponding to a load from this |
| // parameter. |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| if (ObjectVT == MVT::i64 && ObjIntRegs) { |
| SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, |
| NULL, 0); |
| ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2); |
| } else |
| ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0); |
| ArgOffset += ArgIncrement; // Move on to the next argument. |
| } |
| |
| ArgValues.push_back(ArgValue); |
| } |
| |
| ArgValues.push_back(Root); |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are aligned. |
| if ((ArgOffset & 7) == 0) |
| ArgOffset += 4; |
| |
| VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. |
| RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only. |
| ReturnAddrIndex = 0; // No return address slot generated yet. |
| BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments. |
| BytesCallerReserves = 0; |
| |
| MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn); |
| |
| // Finally, inform the code generator which regs we return values in. |
| switch (getValueType(MF.getFunction()->getReturnType())) { |
| default: assert(0 && "Unknown type!"); |
| case MVT::isVoid: break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| MF.addLiveOut(X86::ECX); |
| break; |
| case MVT::i64: |
| MF.addLiveOut(X86::ECX); |
| MF.addLiveOut(X86::EDX); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| MF.addLiveOut(X86::ST0); |
| break; |
| } |
| |
| // Return the new list of results. |
| std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(), |
| Op.Val->value_end()); |
| return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size()); |
| } |
| |
| SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { |
| if (ReturnAddrIndex == 0) { |
| // Set up a frame object for the return address. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| if (Subtarget->is64Bit()) |
| ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8); |
| else |
| ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); |
| } |
| |
| return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); |
| } |
| |
| |
| |
| std::pair<SDOperand, SDOperand> X86TargetLowering:: |
| LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, |
| SelectionDAG &DAG) { |
| SDOperand Result; |
| if (Depth) // Depths > 0 not supported yet! |
| Result = DAG.getConstant(0, getPointerTy()); |
| else { |
| SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); |
| if (!isFrameAddress) |
| // Just load the return address |
| Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, |
| NULL, 0); |
| else |
| Result = DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI, |
| DAG.getConstant(4, getPointerTy())); |
| } |
| return std::make_pair(Result, Chain); |
| } |
| |
| /// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 |
| /// specific condition code. It returns a false if it cannot do a direct |
| /// translation. X86CC is the translated CondCode. LHS/RHS are modified as |
| /// needed. |
| static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP, |
| unsigned &X86CC, SDOperand &LHS, SDOperand &RHS, |
| SelectionDAG &DAG) { |
| X86CC = X86::COND_INVALID; |
| if (!isFP) { |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { |
| if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { |
| // X > -1 -> X == 0, jump !sign. |
| RHS = DAG.getConstant(0, RHS.getValueType()); |
| X86CC = X86::COND_NS; |
| return true; |
| } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { |
| // X < 0 -> X == 0, jump on sign. |
| X86CC = X86::COND_S; |
| return true; |
| } |
| } |
| |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETEQ: X86CC = X86::COND_E; break; |
| case ISD::SETGT: X86CC = X86::COND_G; break; |
| case ISD::SETGE: X86CC = X86::COND_GE; break; |
| case ISD::SETLT: X86CC = X86::COND_L; break; |
| case ISD::SETLE: X86CC = X86::COND_LE; break; |
| case ISD::SETNE: X86CC = X86::COND_NE; break; |
| case ISD::SETULT: X86CC = X86::COND_B; break; |
| case ISD::SETUGT: X86CC = X86::COND_A; break; |
| case ISD::SETULE: X86CC = X86::COND_BE; break; |
| case ISD::SETUGE: X86CC = X86::COND_AE; break; |
| } |
| } else { |
| // On a floating point condition, the flags are set as follows: |
| // ZF PF CF op |
| // 0 | 0 | 0 | X > Y |
| // 0 | 0 | 1 | X < Y |
| // 1 | 0 | 0 | X == Y |
| // 1 | 1 | 1 | unordered |
| bool Flip = false; |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETUEQ: |
| case ISD::SETEQ: X86CC = X86::COND_E; break; |
| case ISD::SETOLT: Flip = true; // Fallthrough |
| case ISD::SETOGT: |
| case ISD::SETGT: X86CC = X86::COND_A; break; |
| case ISD::SETOLE: Flip = true; // Fallthrough |
| case ISD::SETOGE: |
| case ISD::SETGE: X86CC = X86::COND_AE; break; |
| case ISD::SETUGT: Flip = true; // Fallthrough |
| case ISD::SETULT: |
| case ISD::SETLT: X86CC = X86::COND_B; break; |
| case ISD::SETUGE: Flip = true; // Fallthrough |
| case ISD::SETULE: |
| case ISD::SETLE: X86CC = X86::COND_BE; break; |
| case ISD::SETONE: |
| case ISD::SETNE: X86CC = X86::COND_NE; break; |
| case ISD::SETUO: X86CC = X86::COND_P; break; |
| case ISD::SETO: X86CC = X86::COND_NP; break; |
| } |
| if (Flip) |
| std::swap(LHS, RHS); |
| } |
| |
| return X86CC != X86::COND_INVALID; |
| } |
| |
| /// hasFPCMov - is there a floating point cmov for the specific X86 condition |
| /// code. Current x86 isa includes the following FP cmov instructions: |
| /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. |
| static bool hasFPCMov(unsigned X86CC) { |
| switch (X86CC) { |
| default: |
| return false; |
| case X86::COND_B: |
| case X86::COND_BE: |
| case X86::COND_E: |
| case X86::COND_P: |
| case X86::COND_A: |
| case X86::COND_AE: |
| case X86::COND_NE: |
| case X86::COND_NP: |
| return true; |
| } |
| } |
| |
| /// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return |
| /// true if Op is undef or if its value falls within the specified range (L, H]. |
| static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) { |
| if (Op.getOpcode() == ISD::UNDEF) |
| return true; |
| |
| unsigned Val = cast<ConstantSDNode>(Op)->getValue(); |
| return (Val >= Low && Val < Hi); |
| } |
| |
| /// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return |
| /// true if Op is undef or if its value equal to the specified value. |
| static bool isUndefOrEqual(SDOperand Op, unsigned Val) { |
| if (Op.getOpcode() == ISD::UNDEF) |
| return true; |
| return cast<ConstantSDNode>(Op)->getValue() == Val; |
| } |
| |
| /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFD. |
| bool X86::isPSHUFDMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Check if the value doesn't reference the second vector. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| if (cast<ConstantSDNode>(Arg)->getValue() >= 4) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFHW. |
| bool X86::isPSHUFHWMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 8) |
| return false; |
| |
| // Lower quadword copied in order. |
| for (unsigned i = 0; i != 4; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| if (cast<ConstantSDNode>(Arg)->getValue() != i) |
| return false; |
| } |
| |
| // Upper quadword shuffled. |
| for (unsigned i = 4; i != 8; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val < 4 || Val > 7) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFLW. |
| bool X86::isPSHUFLWMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 8) |
| return false; |
| |
| // Upper quadword copied in order. |
| for (unsigned i = 4; i != 8; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i)) |
| return false; |
| |
| // Lower quadword shuffled. |
| for (unsigned i = 0; i != 4; ++i) |
| if (!isUndefOrInRange(N->getOperand(i), 0, 4)) |
| return false; |
| |
| return true; |
| } |
| |
| /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to SHUFP*. |
| static bool isSHUFPMask(std::vector<SDOperand> &N) { |
| unsigned NumElems = N.size(); |
| if (NumElems != 2 && NumElems != 4) return false; |
| |
| unsigned Half = NumElems / 2; |
| for (unsigned i = 0; i < Half; ++i) |
| if (!isUndefOrInRange(N[i], 0, NumElems)) |
| return false; |
| for (unsigned i = Half; i < NumElems; ++i) |
| if (!isUndefOrInRange(N[i], NumElems, NumElems*2)) |
| return false; |
| |
| return true; |
| } |
| |
| bool X86::isSHUFPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| return ::isSHUFPMask(Ops); |
| } |
| |
| /// isCommutedSHUFP - Returns true if the shuffle mask is except |
| /// the reverse of what x86 shuffles want. x86 shuffles requires the lower |
| /// half elements to come from vector 1 (which would equal the dest.) and |
| /// the upper half to come from vector 2. |
| static bool isCommutedSHUFP(std::vector<SDOperand> &Ops) { |
| unsigned NumElems = Ops.size(); |
| if (NumElems != 2 && NumElems != 4) return false; |
| |
| unsigned Half = NumElems / 2; |
| for (unsigned i = 0; i < Half; ++i) |
| if (!isUndefOrInRange(Ops[i], NumElems, NumElems*2)) |
| return false; |
| for (unsigned i = Half; i < NumElems; ++i) |
| if (!isUndefOrInRange(Ops[i], 0, NumElems)) |
| return false; |
| return true; |
| } |
| |
| static bool isCommutedSHUFP(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| return isCommutedSHUFP(Ops); |
| } |
| |
| /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVHLPS. |
| bool X86::isMOVHLPSMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 |
| return isUndefOrEqual(N->getOperand(0), 6) && |
| isUndefOrEqual(N->getOperand(1), 7) && |
| isUndefOrEqual(N->getOperand(2), 2) && |
| isUndefOrEqual(N->getOperand(3), 3); |
| } |
| |
| /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form |
| /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, |
| /// <2, 3, 2, 3> |
| bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3 |
| return isUndefOrEqual(N->getOperand(0), 2) && |
| isUndefOrEqual(N->getOperand(1), 3) && |
| isUndefOrEqual(N->getOperand(2), 2) && |
| isUndefOrEqual(N->getOperand(3), 3); |
| } |
| |
| /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. |
| bool X86::isMOVLPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| unsigned NumElems = N->getNumOperands(); |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| |
| for (unsigned i = 0; i < NumElems/2; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i + NumElems)) |
| return false; |
| |
| for (unsigned i = NumElems/2; i < NumElems; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i)) |
| return false; |
| |
| return true; |
| } |
| |
| /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} |
| /// and MOVLHPS. |
| bool X86::isMOVHPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| unsigned NumElems = N->getNumOperands(); |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| |
| for (unsigned i = 0; i < NumElems/2; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i)) |
| return false; |
| |
| for (unsigned i = 0; i < NumElems/2; ++i) { |
| SDOperand Arg = N->getOperand(i + NumElems/2); |
| if (!isUndefOrEqual(Arg, i + NumElems)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKL. |
| bool static isUNPCKLMask(std::vector<SDOperand> &N, bool V2IsSplat = false) { |
| unsigned NumElems = N.size(); |
| if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { |
| SDOperand BitI = N[i]; |
| SDOperand BitI1 = N[i+1]; |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (V2IsSplat) { |
| if (isUndefOrEqual(BitI1, NumElems)) |
| return false; |
| } else { |
| if (!isUndefOrEqual(BitI1, j + NumElems)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| return ::isUNPCKLMask(Ops, V2IsSplat); |
| } |
| |
| /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKH. |
| bool static isUNPCKHMask(std::vector<SDOperand> &N, bool V2IsSplat = false) { |
| unsigned NumElems = N.size(); |
| if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { |
| SDOperand BitI = N[i]; |
| SDOperand BitI1 = N[i+1]; |
| if (!isUndefOrEqual(BitI, j + NumElems/2)) |
| return false; |
| if (V2IsSplat) { |
| if (isUndefOrEqual(BitI1, NumElems)) |
| return false; |
| } else { |
| if (!isUndefOrEqual(BitI1, j + NumElems/2 + NumElems)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| return ::isUNPCKHMask(Ops, V2IsSplat); |
| } |
| |
| /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form |
| /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, |
| /// <0, 0, 1, 1> |
| bool X86::isUNPCKL_v_undef_Mask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| unsigned NumElems = N->getNumOperands(); |
| if (NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { |
| SDOperand BitI = N->getOperand(i); |
| SDOperand BitI1 = N->getOperand(i+1); |
| |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (!isUndefOrEqual(BitI1, j)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSS, |
| /// MOVSD, and MOVD, i.e. setting the lowest element. |
| static bool isMOVLMask(std::vector<SDOperand> &N) { |
| unsigned NumElems = N.size(); |
| if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| if (!isUndefOrEqual(N[0], NumElems)) |
| return false; |
| |
| for (unsigned i = 1; i < NumElems; ++i) { |
| SDOperand Arg = N[i]; |
| if (!isUndefOrEqual(Arg, i)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool X86::isMOVLMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| return ::isMOVLMask(Ops); |
| } |
| |
| /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse |
| /// of what x86 movss want. X86 movs requires the lowest element to be lowest |
| /// element of vector 2 and the other elements to come from vector 1 in order. |
| static bool isCommutedMOVL(std::vector<SDOperand> &Ops, bool V2IsSplat = false, |
| bool V2IsUndef = false) { |
| unsigned NumElems = Ops.size(); |
| if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| if (!isUndefOrEqual(Ops[0], 0)) |
| return false; |
| |
| for (unsigned i = 1; i < NumElems; ++i) { |
| SDOperand Arg = Ops[i]; |
| if (!(isUndefOrEqual(Arg, i+NumElems) || |
| (V2IsUndef && isUndefOrInRange(Arg, NumElems, NumElems*2)) || |
| (V2IsSplat && isUndefOrEqual(Arg, NumElems)))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false, |
| bool V2IsUndef = false) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| return isCommutedMOVL(Ops, V2IsSplat, V2IsUndef); |
| } |
| |
| /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. |
| bool X86::isMOVSHDUPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Expect 1, 1, 3, 3 |
| for (unsigned i = 0; i < 2; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val != 1) return false; |
| } |
| |
| bool HasHi = false; |
| for (unsigned i = 2; i < 4; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val != 3) return false; |
| HasHi = true; |
| } |
| |
| // Don't use movshdup if it can be done with a shufps. |
| return HasHi; |
| } |
| |
| /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. |
| bool X86::isMOVSLDUPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Expect 0, 0, 2, 2 |
| for (unsigned i = 0; i < 2; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val != 0) return false; |
| } |
| |
| bool HasHi = false; |
| for (unsigned i = 2; i < 4; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val != 2) return false; |
| HasHi = true; |
| } |
| |
| // Don't use movshdup if it can be done with a shufps. |
| return HasHi; |
| } |
| |
| /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies |
| /// a splat of a single element. |
| static bool isSplatMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| // This is a splat operation if each element of the permute is the same, and |
| // if the value doesn't reference the second vector. |
| unsigned NumElems = N->getNumOperands(); |
| SDOperand ElementBase; |
| unsigned i = 0; |
| for (; i != NumElems; ++i) { |
| SDOperand Elt = N->getOperand(i); |
| if (isa<ConstantSDNode>(Elt)) { |
| ElementBase = Elt; |
| break; |
| } |
| } |
| |
| if (!ElementBase.Val) |
| return false; |
| |
| for (; i != NumElems; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| if (Arg != ElementBase) return false; |
| } |
| |
| // Make sure it is a splat of the first vector operand. |
| return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems; |
| } |
| |
| /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies |
| /// a splat of a single element and it's a 2 or 4 element mask. |
| bool X86::isSplatMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| // We can only splat 64-bit, and 32-bit quantities with a single instruction. |
| if (N->getNumOperands() != 4 && N->getNumOperands() != 2) |
| return false; |
| return ::isSplatMask(N); |
| } |
| |
| /// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a splat of zero element. |
| bool X86::isSplatLoMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), 0)) |
| return false; |
| return true; |
| } |
| |
| /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* |
| /// instructions. |
| unsigned X86::getShuffleSHUFImmediate(SDNode *N) { |
| unsigned NumOperands = N->getNumOperands(); |
| unsigned Shift = (NumOperands == 4) ? 2 : 1; |
| unsigned Mask = 0; |
| for (unsigned i = 0; i < NumOperands; ++i) { |
| unsigned Val = 0; |
| SDOperand Arg = N->getOperand(NumOperands-i-1); |
| if (Arg.getOpcode() != ISD::UNDEF) |
| Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val >= NumOperands) Val -= NumOperands; |
| Mask |= Val; |
| if (i != NumOperands - 1) |
| Mask <<= Shift; |
| } |
| |
| return Mask; |
| } |
| |
| /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW |
| /// instructions. |
| unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { |
| unsigned Mask = 0; |
| // 8 nodes, but we only care about the last 4. |
| for (unsigned i = 7; i >= 4; --i) { |
| unsigned Val = 0; |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() != ISD::UNDEF) |
| Val = cast<ConstantSDNode>(Arg)->getValue(); |
| Mask |= (Val - 4); |
| if (i != 4) |
| Mask <<= 2; |
| } |
| |
| return Mask; |
| } |
| |
| /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW |
| /// instructions. |
| unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { |
| unsigned Mask = 0; |
| // 8 nodes, but we only care about the first 4. |
| for (int i = 3; i >= 0; --i) { |
| unsigned Val = 0; |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() != ISD::UNDEF) |
| Val = cast<ConstantSDNode>(Arg)->getValue(); |
| Mask |= Val; |
| if (i != 0) |
| Mask <<= 2; |
| } |
| |
| return Mask; |
| } |
| |
| /// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand |
| /// specifies a 8 element shuffle that can be broken into a pair of |
| /// PSHUFHW and PSHUFLW. |
| static bool isPSHUFHW_PSHUFLWMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 8) |
| return false; |
| |
| // Lower quadword shuffled. |
| for (unsigned i = 0; i != 4; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val > 4) |
| return false; |
| } |
| |
| // Upper quadword shuffled. |
| for (unsigned i = 4; i != 8; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val < 4 || Val > 7) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// CommuteVectorShuffle - Swap vector_shuffle operandsas well as |
| /// values in ther permute mask. |
| static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1, |
| SDOperand &V2, SDOperand &Mask, |
| SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType MaskVT = Mask.getValueType(); |
| MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT); |
| unsigned NumElems = Mask.getNumOperands(); |
| std::vector<SDOperand> MaskVec; |
| |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Arg = Mask.getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) { |
| MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); |
| continue; |
| } |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val < NumElems) |
| MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); |
| else |
| MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); |
| } |
| |
| std::swap(V1, V2); |
| Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| } |
| |
| /// ShouldXformToMOVHLPS - Return true if the node should be transformed to |
| /// match movhlps. The lower half elements should come from upper half of |
| /// V1 (and in order), and the upper half elements should come from the upper |
| /// half of V2 (and in order). |
| static bool ShouldXformToMOVHLPS(SDNode *Mask) { |
| unsigned NumElems = Mask->getNumOperands(); |
| if (NumElems != 4) |
| return false; |
| for (unsigned i = 0, e = 2; i != e; ++i) |
| if (!isUndefOrEqual(Mask->getOperand(i), i+2)) |
| return false; |
| for (unsigned i = 2; i != 4; ++i) |
| if (!isUndefOrEqual(Mask->getOperand(i), i+4)) |
| return false; |
| return true; |
| } |
| |
| /// isScalarLoadToVector - Returns true if the node is a scalar load that |
| /// is promoted to a vector. |
| static inline bool isScalarLoadToVector(SDNode *N) { |
| if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| N = N->getOperand(0).Val; |
| return ISD::isNON_EXTLoad(N); |
| } |
| return false; |
| } |
| |
| /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to |
| /// match movlp{s|d}. The lower half elements should come from lower half of |
| /// V1 (and in order), and the upper half elements should come from the upper |
| /// half of V2 (and in order). And since V1 will become the source of the |
| /// MOVLP, it must be either a vector load or a scalar load to vector. |
| static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) { |
| if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) |
| return false; |
| // Is V2 is a vector load, don't do this transformation. We will try to use |
| // load folding shufps op. |
| if (ISD::isNON_EXTLoad(V2)) |
| return false; |
| |
| unsigned NumElems = Mask->getNumOperands(); |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) |
| if (!isUndefOrEqual(Mask->getOperand(i), i)) |
| return false; |
| for (unsigned i = NumElems/2; i != NumElems; ++i) |
| if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems)) |
| return false; |
| return true; |
| } |
| |
| /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are |
| /// all the same. |
| static bool isSplatVector(SDNode *N) { |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| SDOperand SplatValue = N->getOperand(0); |
| for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) |
| if (N->getOperand(i) != SplatValue) |
| return false; |
| return true; |
| } |
| |
| /// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved |
| /// to an undef. |
| static bool isUndefShuffle(SDNode *N) { |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| SDOperand V1 = N->getOperand(0); |
| SDOperand V2 = N->getOperand(1); |
| SDOperand Mask = N->getOperand(2); |
| unsigned NumElems = Mask.getNumOperands(); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Arg = Mask.getOperand(i); |
| if (Arg.getOpcode() != ISD::UNDEF) { |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val < NumElems && V1.getOpcode() != ISD::UNDEF) |
| return false; |
| else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements |
| /// that point to V2 points to its first element. |
| static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) { |
| assert(Mask.getOpcode() == ISD::BUILD_VECTOR); |
| |
| bool Changed = false; |
| std::vector<SDOperand> MaskVec; |
| unsigned NumElems = Mask.getNumOperands(); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Arg = Mask.getOperand(i); |
| if (Arg.getOpcode() != ISD::UNDEF) { |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val > NumElems) { |
| Arg = DAG.getConstant(NumElems, Arg.getValueType()); |
| Changed = true; |
| } |
| } |
| MaskVec.push_back(Arg); |
| } |
| |
| if (Changed) |
| Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), |
| &MaskVec[0], MaskVec.size()); |
| return Mask; |
| } |
| |
| /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd |
| /// operation of specified width. |
| static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) { |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); |
| |
| std::vector<SDOperand> MaskVec; |
| MaskVec.push_back(DAG.getConstant(NumElems, BaseVT)); |
| for (unsigned i = 1; i != NumElems; ++i) |
| MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); |
| } |
| |
| /// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation |
| /// of specified width. |
| static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) { |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); |
| std::vector<SDOperand> MaskVec; |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) { |
| MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT)); |
| } |
| return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); |
| } |
| |
| /// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation |
| /// of specified width. |
| static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) { |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); |
| unsigned Half = NumElems/2; |
| std::vector<SDOperand> MaskVec; |
| for (unsigned i = 0; i != Half; ++i) { |
| MaskVec.push_back(DAG.getConstant(i + Half, BaseVT)); |
| MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT)); |
| } |
| return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); |
| } |
| |
| /// getZeroVector - Returns a vector of specified type with all zero elements. |
| /// |
| static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) { |
| assert(MVT::isVector(VT) && "Expected a vector type"); |
| unsigned NumElems = getVectorNumElements(VT); |
| MVT::ValueType EVT = MVT::getVectorBaseType(VT); |
| bool isFP = MVT::isFloatingPoint(EVT); |
| SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT); |
| std::vector<SDOperand> ZeroVec(NumElems, Zero); |
| return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size()); |
| } |
| |
| /// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32. |
| /// |
| static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand V1 = Op.getOperand(0); |
| SDOperand Mask = Op.getOperand(2); |
| MVT::ValueType VT = Op.getValueType(); |
| unsigned NumElems = Mask.getNumOperands(); |
| Mask = getUnpacklMask(NumElems, DAG); |
| while (NumElems != 4) { |
| V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask); |
| NumElems >>= 1; |
| } |
| V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1); |
| |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| Mask = getZeroVector(MaskVT, DAG); |
| SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1, |
| DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask); |
| return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle); |
| } |
| |
| /// isZeroNode - Returns true if Elt is a constant zero or a floating point |
| /// constant +0.0. |
| static inline bool isZeroNode(SDOperand Elt) { |
| return ((isa<ConstantSDNode>(Elt) && |
| cast<ConstantSDNode>(Elt)->getValue() == 0) || |
| (isa<ConstantFPSDNode>(Elt) && |
| cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0))); |
| } |
| |
| /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified |
| /// vector and zero or undef vector. |
| static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT, |
| unsigned NumElems, unsigned Idx, |
| bool isZero, SelectionDAG &DAG) { |
| SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT); |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT); |
| SDOperand Zero = DAG.getConstant(0, EVT); |
| std::vector<SDOperand> MaskVec(NumElems, Zero); |
| MaskVec[Idx] = DAG.getConstant(NumElems, EVT); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &MaskVec[0], MaskVec.size()); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| } |
| |
| /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. |
| /// |
| static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG, TargetLowering &TLI) { |
| if (NumNonZero > 8) |
| return SDOperand(); |
| |
| SDOperand V(0, 0); |
| bool First = true; |
| for (unsigned i = 0; i < 16; ++i) { |
| bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; |
| if (ThisIsNonZero && First) { |
| if (NumZero) |
| V = getZeroVector(MVT::v8i16, DAG); |
| else |
| V = DAG.getNode(ISD::UNDEF, MVT::v8i16); |
| First = false; |
| } |
| |
| if ((i & 1) != 0) { |
| SDOperand ThisElt(0, 0), LastElt(0, 0); |
| bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; |
| if (LastIsNonZero) { |
| LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1)); |
| } |
| if (ThisIsNonZero) { |
| ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i)); |
| ThisElt = DAG.getNode(ISD::SHL, MVT::i16, |
| ThisElt, DAG.getConstant(8, MVT::i8)); |
| if (LastIsNonZero) |
| ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt); |
| } else |
| ThisElt = LastElt; |
| |
| if (ThisElt.Val) |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt, |
| DAG.getConstant(i/2, TLI.getPointerTy())); |
| } |
| } |
| |
| return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V); |
| } |
| |
| /// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16. |
| /// |
| static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG, TargetLowering &TLI) { |
| if (NumNonZero > 4) |
| return SDOperand(); |
| |
| SDOperand V(0, 0); |
| bool First = true; |
| for (unsigned i = 0; i < 8; ++i) { |
| bool isNonZero = (NonZeros & (1 << i)) != 0; |
| if (isNonZero) { |
| if (First) { |
| if (NumZero) |
| V = getZeroVector(MVT::v8i16, DAG); |
| else |
| V = DAG.getNode(ISD::UNDEF, MVT::v8i16); |
| First = false; |
| } |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i), |
| DAG.getConstant(i, TLI.getPointerTy())); |
| } |
| } |
| |
| return V; |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { |
| // All zero's are handled with pxor. |
| if (ISD::isBuildVectorAllZeros(Op.Val)) |
| return Op; |
| |
| // All one's are handled with pcmpeqd. |
| if (ISD::isBuildVectorAllOnes(Op.Val)) |
| return Op; |
| |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType EVT = MVT::getVectorBaseType(VT); |
| unsigned EVTBits = MVT::getSizeInBits(EVT); |
| |
| unsigned NumElems = Op.getNumOperands(); |
| unsigned NumZero = 0; |
| unsigned NumNonZero = 0; |
| unsigned NonZeros = 0; |
| std::set<SDOperand> Values; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDOperand Elt = Op.getOperand(i); |
| if (Elt.getOpcode() != ISD::UNDEF) { |
| Values.insert(Elt); |
| if (isZeroNode(Elt)) |
| NumZero++; |
| else { |
| NonZeros |= (1 << i); |
| NumNonZero++; |
| } |
| } |
| } |
| |
| if (NumNonZero == 0) |
| // Must be a mix of zero and undef. Return a zero vector. |
| return getZeroVector(VT, DAG); |
| |
| // Splat is obviously ok. Let legalizer expand it to a shuffle. |
| if (Values.size() == 1) |
| return SDOperand(); |
| |
| // Special case for single non-zero element. |
| if (NumNonZero == 1) { |
| unsigned Idx = CountTrailingZeros_32(NonZeros); |
| SDOperand Item = Op.getOperand(Idx); |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); |
| if (Idx == 0) |
| // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. |
| return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx, |
| NumZero > 0, DAG); |
| |
| if (EVTBits == 32) { |
| // Turn it into a shuffle of zero and zero-extended scalar to vector. |
| Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0, |
| DAG); |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT); |
| std::vector<SDOperand> MaskVec; |
| for (unsigned i = 0; i < NumElems; i++) |
| MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT)); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &MaskVec[0], MaskVec.size()); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item, |
| DAG.getNode(ISD::UNDEF, VT), Mask); |
| } |
| } |
| |
| // Let legalizer expand 2-wide build_vector's. |
| if (EVTBits == 64) |
| return SDOperand(); |
| |
| // If element VT is < 32 bits, convert it to inserts into a zero vector. |
| if (EVTBits == 8) { |
| SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, |
| *this); |
| if (V.Val) return V; |
| } |
| |
| if (EVTBits == 16) { |
| SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, |
| *this); |
| if (V.Val) return V; |
| } |
| |
| // If element VT is == 32 bits, turn it into a number of shuffles. |
| std::vector<SDOperand> V(NumElems); |
| if (NumElems == 4 && NumZero > 0) { |
| for (unsigned i = 0; i < 4; ++i) { |
| bool isZero = !(NonZeros & (1 << i)); |
| if (isZero) |
| V[i] = getZeroVector(VT, DAG); |
| else |
| V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); |
| } |
| |
| for (unsigned i = 0; i < 2; ++i) { |
| switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { |
| default: break; |
| case 0: |
| V[i] = V[i*2]; // Must be a zero vector. |
| break; |
| case 1: |
| V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2], |
| getMOVLMask(NumElems, DAG)); |
| break; |
| case 2: |
| V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], |
| getMOVLMask(NumElems, DAG)); |
| break; |
| case 3: |
| V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], |
| getUnpacklMask(NumElems, DAG)); |
| break; |
| } |
| } |
| |
| // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd) |
| // clears the upper bits. |
| // FIXME: we can do the same for v4f32 case when we know both parts of |
| // the lower half come from scalar_to_vector (loadf32). We should do |
| // that in post legalizer dag combiner with target specific hooks. |
| if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0) |
| return V[0]; |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT); |
| std::vector<SDOperand> MaskVec; |
| bool Reverse = (NonZeros & 0x3) == 2; |
| for (unsigned i = 0; i < 2; ++i) |
| if (Reverse) |
| MaskVec.push_back(DAG.getConstant(1-i, EVT)); |
| else |
| MaskVec.push_back(DAG.getConstant(i, EVT)); |
| Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; |
| for (unsigned i = 0; i < 2; ++i) |
| if (Reverse) |
| MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT)); |
| else |
| MaskVec.push_back(DAG.getConstant(i+NumElems, EVT)); |
| SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &MaskVec[0], MaskVec.size()); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask); |
| } |
| |
| if (Values.size() > 2) { |
| // Expand into a number of unpckl*. |
| // e.g. for v4f32 |
| // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> |
| // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> |
| // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> |
| SDOperand UnpckMask = getUnpacklMask(NumElems, DAG); |
| for (unsigned i = 0; i < NumElems; ++i) |
| V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); |
| NumElems >>= 1; |
| while (NumElems != 0) { |
| for (unsigned i = 0; i < NumElems; ++i) |
| V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems], |
| UnpckMask); |
| NumElems >>= 1; |
| } |
| return V[0]; |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand V1 = Op.getOperand(0); |
| SDOperand V2 = Op.getOperand(1); |
| SDOperand PermMask = Op.getOperand(2); |
| MVT::ValueType VT = Op.getValueType(); |
| unsigned NumElems = PermMask.getNumOperands(); |
| bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; |
| bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; |
| bool V1IsSplat = false; |
| bool V2IsSplat = false; |
| |
| if (isUndefShuffle(Op.Val)) |
| return DAG.getNode(ISD::UNDEF, VT); |
| |
| if (isSplatMask(PermMask.Val)) { |
| if (NumElems <= 4) return Op; |
| // Promote it to a v4i32 splat. |
| return PromoteSplat(Op, DAG); |
| } |
| |
| if (X86::isMOVLMask(PermMask.Val)) |
| return (V1IsUndef) ? V2 : Op; |
| |
| if (X86::isMOVSHDUPMask(PermMask.Val) || |
| X86::isMOVSLDUPMask(PermMask.Val) || |
| X86::isMOVHLPSMask(PermMask.Val) || |
| X86::isMOVHPMask(PermMask.Val) || |
| X86::isMOVLPMask(PermMask.Val)) |
| return Op; |
| |
| if (ShouldXformToMOVHLPS(PermMask.Val) || |
| ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val)) |
| return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| |
| bool Commuted = false; |
| V1IsSplat = isSplatVector(V1.Val); |
| V2IsSplat = isSplatVector(V2.Val); |
| if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { |
| Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| std::swap(V1IsSplat, V2IsSplat); |
| std::swap(V1IsUndef, V2IsUndef); |
| Commuted = true; |
| } |
| |
| if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) { |
| if (V2IsUndef) return V1; |
| Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| if (V2IsSplat) { |
| // V2 is a splat, so the mask may be malformed. That is, it may point |
| // to any V2 element. The instruction selectior won't like this. Get |
| // a corrected mask and commute to form a proper MOVS{S|D}. |
| SDOperand NewMask = getMOVLMask(NumElems, DAG); |
| if (NewMask.Val != PermMask.Val) |
| Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); |
| } |
| return Op; |
| } |
| |
| if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || |
| X86::isUNPCKLMask(PermMask.Val) || |
| X86::isUNPCKHMask(PermMask.Val)) |
| return Op; |
| |
| if (V2IsSplat) { |
| // Normalize mask so all entries that point to V2 points to its first |
| // element then try to match unpck{h|l} again. If match, return a |
| // new vector_shuffle with the corrected mask. |
| SDOperand NewMask = NormalizeMask(PermMask, DAG); |
| if (NewMask.Val != PermMask.Val) { |
| if (X86::isUNPCKLMask(PermMask.Val, true)) { |
| SDOperand NewMask = getUnpacklMask(NumElems, DAG); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); |
| } else if (X86::isUNPCKHMask(PermMask.Val, true)) { |
| SDOperand NewMask = getUnpackhMask(NumElems, DAG); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); |
| } |
| } |
| } |
| |
| // Normalize the node to match x86 shuffle ops if needed |
| if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val)) |
| Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| |
| if (Commuted) { |
| // Commute is back and try unpck* again. |
| Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); |
| if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || |
| X86::isUNPCKLMask(PermMask.Val) || |
| X86::isUNPCKHMask(PermMask.Val)) |
| return Op; |
| } |
| |
| // If VT is integer, try PSHUF* first, then SHUFP*. |
| if (MVT::isInteger(VT)) { |
| if (X86::isPSHUFDMask(PermMask.Val) || |
| X86::isPSHUFHWMask(PermMask.Val) || |
| X86::isPSHUFLWMask(PermMask.Val)) { |
| if (V2.getOpcode() != ISD::UNDEF) |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, |
| DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); |
| return Op; |
| } |
| |
| if (X86::isSHUFPMask(PermMask.Val)) |
| return Op; |
| |
| // Handle v8i16 shuffle high / low shuffle node pair. |
| if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) { |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); |
| std::vector<SDOperand> MaskVec; |
| for (unsigned i = 0; i != 4; ++i) |
| MaskVec.push_back(PermMask.getOperand(i)); |
| for (unsigned i = 4; i != 8; ++i) |
| MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &MaskVec[0], MaskVec.size()); |
| V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| MaskVec.clear(); |
| for (unsigned i = 0; i != 4; ++i) |
| MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| for (unsigned i = 4; i != 8; ++i) |
| MaskVec.push_back(PermMask.getOperand(i)); |
| Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size()); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| } |
| } else { |
| // Floating point cases in the other order. |
| if (X86::isSHUFPMask(PermMask.Val)) |
| return Op; |
| if (X86::isPSHUFDMask(PermMask.Val) || |
| X86::isPSHUFHWMask(PermMask.Val) || |
| X86::isPSHUFLWMask(PermMask.Val)) { |
| if (V2.getOpcode() != ISD::UNDEF) |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, |
| DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); |
| return Op; |
| } |
| } |
| |
| if (NumElems == 4) { |
| MVT::ValueType MaskVT = PermMask.getValueType(); |
| MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT); |
| std::vector<std::pair<int, int> > Locs; |
| Locs.reserve(NumElems); |
| std::vector<SDOperand> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| std::vector<SDOperand> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| unsigned NumHi = 0; |
| unsigned NumLo = 0; |
| // If no more than two elements come from either vector. This can be |
| // implemented with two shuffles. First shuffle gather the elements. |
| // The second shuffle, which takes the first shuffle as both of its |
| // vector operands, put the elements into the right order. |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Elt = PermMask.getOperand(i); |
| if (Elt.getOpcode() == ISD::UNDEF) { |
| Locs[i] = std::make_pair(-1, -1); |
| } else { |
| unsigned Val = cast<ConstantSDNode>(Elt)->getValue(); |
| if (Val < NumElems) { |
| Locs[i] = std::make_pair(0, NumLo); |
| Mask1[NumLo] = Elt; |
| NumLo++; |
| } else { |
| Locs[i] = std::make_pair(1, NumHi); |
| if (2+NumHi < NumElems) |
| Mask1[2+NumHi] = Elt; |
| NumHi++; |
| } |
| } |
| } |
| if (NumLo <= 2 && NumHi <= 2) { |
| V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &Mask1[0], Mask1.size())); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (Locs[i].first == -1) |
| continue; |
| else { |
| unsigned Idx = (i < NumElems/2) ? 0 : NumElems; |
| Idx += Locs[i].first * (NumElems/2) + Locs[i].second; |
| Mask2[i] = DAG.getConstant(Idx, MaskEVT); |
| } |
| } |
| |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &Mask2[0], Mask2.size())); |
| } |
| |
| // Break it into (shuffle shuffle_hi, shuffle_lo). |
| Locs.clear(); |
| std::vector<SDOperand> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| std::vector<SDOperand> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| std::vector<SDOperand> *MaskPtr = &LoMask; |
| unsigned MaskIdx = 0; |
| unsigned LoIdx = 0; |
| unsigned HiIdx = NumElems/2; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (i == NumElems/2) { |
| MaskPtr = &HiMask; |
| MaskIdx = 1; |
| LoIdx = 0; |
| HiIdx = NumElems/2; |
| } |
| SDOperand Elt = PermMask.getOperand(i); |
| if (Elt.getOpcode() == ISD::UNDEF) { |
| Locs[i] = std::make_pair(-1, -1); |
| } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) { |
| Locs[i] = std::make_pair(MaskIdx, LoIdx); |
| (*MaskPtr)[LoIdx] = Elt; |
| LoIdx++; |
| } else { |
| Locs[i] = std::make_pair(MaskIdx, HiIdx); |
| (*MaskPtr)[HiIdx] = Elt; |
| HiIdx++; |
| } |
| } |
| |
| SDOperand LoShuffle = |
| DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &LoMask[0], LoMask.size())); |
| SDOperand HiShuffle = |
| DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &HiMask[0], HiMask.size())); |
| std::vector<SDOperand> MaskOps; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (Locs[i].first == -1) { |
| MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); |
| } else { |
| unsigned Idx = Locs[i].first * NumElems + Locs[i].second; |
| MaskOps.push_back(DAG.getConstant(Idx, MaskEVT)); |
| } |
| } |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &MaskOps[0], MaskOps.size())); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { |
| if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| return SDOperand(); |
| |
| MVT::ValueType VT = Op.getValueType(); |
| // TODO: handle v16i8. |
| if (MVT::getSizeInBits(VT) == 16) { |
| // Transform it so it match pextrw which produces a 32-bit result. |
| MVT::ValueType EVT = (MVT::ValueType)(VT+1); |
| SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT, |
| Op.getOperand(0), Op.getOperand(1)); |
| SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract, |
| DAG.getValueType(VT)); |
| return DAG.getNode(ISD::TRUNCATE, VT, Assert); |
| } else if (MVT::getSizeInBits(VT) == 32) { |
| SDOperand Vec = Op.getOperand(0); |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| if (Idx == 0) |
| return Op; |
| // SHUFPS the element to the lowest double word, then movss. |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| std::vector<SDOperand> IdxVec; |
| IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT))); |
| IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); |
| IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); |
| IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &IdxVec[0], IdxVec.size()); |
| Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), |
| Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, |
| DAG.getConstant(0, getPointerTy())); |
| } else if (MVT::getSizeInBits(VT) == 64) { |
| SDOperand Vec = Op.getOperand(0); |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| if (Idx == 0) |
| return Op; |
| |
| // UNPCKHPD the element to the lowest double word, then movsd. |
| // Note if the lower 64 bits of the result of the UNPCKHPD is then stored |
| // to a f64mem, the whole operation is folded into a single MOVHPDmr. |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| std::vector<SDOperand> IdxVec; |
| IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT))); |
| IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &IdxVec[0], IdxVec.size()); |
| Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), |
| Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, |
| DAG.getConstant(0, getPointerTy())); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { |
| // Transform it so it match pinsrw which expects a 16-bit value in a GR32 |
| // as its second argument. |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType BaseVT = MVT::getVectorBaseType(VT); |
| SDOperand N0 = Op.getOperand(0); |
| SDOperand N1 = Op.getOperand(1); |
| SDOperand N2 = Op.getOperand(2); |
| if (MVT::getSizeInBits(BaseVT) == 16) { |
| if (N1.getValueType() != MVT::i32) |
| N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); |
| if (N2.getValueType() != MVT::i32) |
| N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32); |
| return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2); |
| } else if (MVT::getSizeInBits(BaseVT) == 32) { |
| unsigned Idx = cast<ConstantSDNode>(N2)->getValue(); |
| if (Idx == 0) { |
| // Use a movss. |
| N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1); |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); |
| std::vector<SDOperand> MaskVec; |
| MaskVec.push_back(DAG.getConstant(4, BaseVT)); |
| for (unsigned i = 1; i <= 3; ++i) |
| MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, |
| &MaskVec[0], MaskVec.size())); |
| } else { |
| // Use two pinsrw instructions to insert a 32 bit value. |
| Idx <<= 1; |
| if (MVT::isFloatingPoint(N1.getValueType())) { |
| if (ISD::isNON_EXTLoad(N1.Val)) { |
| // Just load directly from f32mem to GR32. |
| LoadSDNode *LD = cast<LoadSDNode>(N1); |
| N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(), |
| LD->getSrcValue(), LD->getSrcValueOffset()); |
| } else { |
| N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1); |
| N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1); |
| N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1, |
| DAG.getConstant(0, getPointerTy())); |
| } |
| } |
| N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0); |
| N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1, |
| DAG.getConstant(Idx, getPointerTy())); |
| N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8)); |
| N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1, |
| DAG.getConstant(Idx+1, getPointerTy())); |
| return DAG.getNode(ISD::BIT_CONVERT, VT, N0); |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0)); |
| return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt); |
| } |
| |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as |
| // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is |
| // one of the above mentioned nodes. It has to be wrapped because otherwise |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only |
| // be used to form addressing mode. These wrapped nodes will be selected |
| // into MOV32ri. |
| SDOperand |
| X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(), |
| getPointerTy(), |
| CP->getAlignment()); |
| Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); |
| if (Subtarget->isTargetDarwin()) { |
| // With PIC, the address is actually $g + Offset. |
| if (!Subtarget->is64Bit() && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_) |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); |
| } |
| |
| return Result; |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { |
| GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy()); |
| Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); |
| if (Subtarget->isTargetDarwin()) { |
| // With PIC, the address is actually $g + Offset. |
| if (!Subtarget->is64Bit() && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_) |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| Result); |
| } |
| |
| // For Darwin & Mingw32, external and weak symbols are indirect, so we want to |
| // load the value at address GV, not the value of GV itself. This means that |
| // the GlobalAddress must be in the base or index register of the address, not |
| // the GV offset field. Platform check is inside GVRequiresExtraLoad() call |
| if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false)) |
| Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0); |
| |
| return Result; |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) { |
| const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); |
| SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy()); |
| Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); |
| if (Subtarget->isTargetDarwin()) { |
| // With PIC, the address is actually $g + Offset. |
| if (!Subtarget->is64Bit() && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_) |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && |
| "Not an i64 shift!"); |
| bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; |
| SDOperand ShOpLo = Op.getOperand(0); |
| SDOperand ShOpHi = Op.getOperand(1); |
| SDOperand ShAmt = Op.getOperand(2); |
| SDOperand Tmp1 = isSRA ? |
| DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) : |
| DAG.getConstant(0, MVT::i32); |
| |
| SDOperand Tmp2, Tmp3; |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt); |
| Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt); |
| } else { |
| Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt); |
| Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt); |
| } |
| |
| const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); |
| SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt, |
| DAG.getConstant(32, MVT::i8)); |
| SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)}; |
| SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1); |
| |
| SDOperand Hi, Lo; |
| SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| |
| VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag); |
| SmallVector<SDOperand, 4> Ops; |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Ops.push_back(Tmp2); |
| Ops.push_back(Tmp3); |
| Ops.push_back(CC); |
| Ops.push_back(InFlag); |
| Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); |
| InFlag = Hi.getValue(1); |
| |
| Ops.clear(); |
| Ops.push_back(Tmp3); |
| Ops.push_back(Tmp1); |
| Ops.push_back(CC); |
| Ops.push_back(InFlag); |
| Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); |
| } else { |
| Ops.push_back(Tmp2); |
| Ops.push_back(Tmp3); |
| Ops.push_back(CC); |
| Ops.push_back(InFlag); |
| Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); |
| InFlag = Lo.getValue(1); |
| |
| Ops.clear(); |
| Ops.push_back(Tmp3); |
| Ops.push_back(Tmp1); |
| Ops.push_back(CC); |
| Ops.push_back(InFlag); |
| Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); |
| } |
| |
| VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32); |
| Ops.clear(); |
| Ops.push_back(Lo); |
| Ops.push_back(Hi); |
| return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size()); |
| } |
| |
| SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getOperand(0).getValueType() <= MVT::i64 && |
| Op.getOperand(0).getValueType() >= MVT::i16 && |
| "Unknown SINT_TO_FP to lower!"); |
| |
| SDOperand Result; |
| MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); |
| unsigned Size = MVT::getSizeInBits(SrcVT)/8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0), |
| StackSlot, NULL, 0); |
| |
| // Build the FILD |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| if (X86ScalarSSE) Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(SrcVT)); |
| Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD, |
| Tys, &Ops[0], Ops.size()); |
| |
| if (X86ScalarSSE) { |
| Chain = Result.getValue(1); |
| SDOperand InFlag = Result.getValue(2); |
| |
| // FIXME: Currently the FST is flagged to the FILD_FLAG. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Result); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(Op.getValueType())); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); |
| Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0); |
| } |
| |
| return Result; |
| } |
| |
| SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && |
| "Unknown FP_TO_SINT to lower!"); |
| // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary |
| // stack slot. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; |
| int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| |
| unsigned Opc; |
| switch (Op.getValueType()) { |
| default: assert(0 && "Invalid FP_TO_SINT to lower!"); |
| case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; |
| case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; |
| case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; |
| } |
| |
| SDOperand Chain = DAG.getEntryNode(); |
| SDOperand Value = Op.getOperand(0); |
| if (X86ScalarSSE) { |
| assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); |
| Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0); |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType())); |
| Value = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size()); |
| Chain = Value.getValue(1); |
| SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); |
| StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| } |
| |
| // Build the FP_TO_INT*_IN_MEM |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Value); |
| Ops.push_back(StackSlot); |
| SDOperand FIST = DAG.getNode(Opc, MVT::Other, &Ops[0], Ops.size()); |
| |
| // Load the result. |
| return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0); |
| } |
| |
| SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| const Type *OpNTy = MVT::getTypeForValueType(VT); |
| std::vector<Constant*> CV; |
| if (VT == MVT::f64) { |
| CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)))); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| } else { |
| CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)))); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| } |
| Constant *CS = ConstantStruct::get(CV); |
| SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(VT); |
| Tys.push_back(MVT::Other); |
| SmallVector<SDOperand, 3> Ops; |
| Ops.push_back(DAG.getEntryNode()); |
| Ops.push_back(CPIdx); |
| Ops.push_back(DAG.getSrcValue(NULL)); |
| SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size()); |
| return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); |
| } |
| |
| SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| const Type *OpNTy = MVT::getTypeForValueType(VT); |
| std::vector<Constant*> CV; |
| if (VT == MVT::f64) { |
| CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63))); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| } else { |
| CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31))); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| } |
| Constant *CS = ConstantStruct::get(CV); |
| SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(VT); |
| Tys.push_back(MVT::Other); |
| SmallVector<SDOperand, 3> Ops; |
| Ops.push_back(DAG.getEntryNode()); |
| Ops.push_back(CPIdx); |
| Ops.push_back(DAG.getSrcValue(NULL)); |
| SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size()); |
| return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); |
| } |
| |
| SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG, |
| SDOperand Chain) { |
| assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); |
| SDOperand Cond; |
| SDOperand Op0 = Op.getOperand(0); |
| SDOperand Op1 = Op.getOperand(1); |
| SDOperand CC = Op.getOperand(2); |
| ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); |
| const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag); |
| bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType()); |
| unsigned X86CC; |
| |
| if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC, |
| Op0, Op1, DAG)) { |
| SDOperand Ops1[] = { Chain, Op0, Op1 }; |
| Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1); |
| SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond }; |
| return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2); |
| } |
| |
| assert(isFP && "Illegal integer SetCC!"); |
| |
| SDOperand COps[] = { Chain, Op0, Op1 }; |
| Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1); |
| |
| switch (SetCCOpcode) { |
| default: assert(false && "Illegal floating point SetCC!"); |
| case ISD::SETOEQ: { // !PF & ZF |
| SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond }; |
| SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2); |
| SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8), |
| Tmp1.getValue(1) }; |
| SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2); |
| return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); |
| } |
| case ISD::SETUNE: { // PF | !ZF |
| SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond }; |
| SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2); |
| SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8), |
| Tmp1.getValue(1) }; |
| SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2); |
| return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); |
| } |
| } |
| } |
| |
| SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) { |
| bool addTest = true; |
| SDOperand Chain = DAG.getEntryNode(); |
| SDOperand Cond = Op.getOperand(0); |
| SDOperand CC; |
| const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); |
| |
| if (Cond.getOpcode() == ISD::SETCC) |
| Cond = LowerSETCC(Cond, DAG, Chain); |
| |
| if (Cond.getOpcode() == X86ISD::SETCC) { |
| CC = Cond.getOperand(0); |
| |
| // If condition flag is set by a X86ISD::CMP, then make a copy of it |
| // (since flag operand cannot be shared). Use it as the condition setting |
| // operand in place of the X86ISD::SETCC. |
| // If the X86ISD::SETCC has more than one use, then perhaps it's better |
| // to use a test instead of duplicating the X86ISD::CMP (for register |
| // pressure reason)? |
| SDOperand Cmp = Cond.getOperand(1); |
| unsigned Opc = Cmp.getOpcode(); |
| bool IllegalFPCMov = !X86ScalarSSE && |
| MVT::isFloatingPoint(Op.getValueType()) && |
| !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended()); |
| if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) && |
| !IllegalFPCMov) { |
| SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) }; |
| Cond = DAG.getNode(Opc, VTs, 2, Ops, 3); |
| addTest = false; |
| } |
| } |
| |
| if (addTest) { |
| CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) }; |
| Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3); |
| } |
| |
| VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag); |
| SmallVector<SDOperand, 4> Ops; |
| // X86ISD::CMOV means set the result (which is operand 1) to the RHS if |
| // condition is true. |
| Ops.push_back(Op.getOperand(2)); |
| Ops.push_back(Op.getOperand(1)); |
| Ops.push_back(CC); |
| Ops.push_back(Cond.getValue(1)); |
| return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); |
| } |
| |
| SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) { |
| bool addTest = true; |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand Cond = Op.getOperand(1); |
| SDOperand Dest = Op.getOperand(2); |
| SDOperand CC; |
| const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); |
| |
| if (Cond.getOpcode() == ISD::SETCC) |
| Cond = LowerSETCC(Cond, DAG, Chain); |
| |
| if (Cond.getOpcode() == X86ISD::SETCC) { |
| CC = Cond.getOperand(0); |
| |
| // If condition flag is set by a X86ISD::CMP, then make a copy of it |
| // (since flag operand cannot be shared). Use it as the condition setting |
| // operand in place of the X86ISD::SETCC. |
| // If the X86ISD::SETCC has more than one use, then perhaps it's better |
| // to use a test instead of duplicating the X86ISD::CMP (for register |
| // pressure reason)? |
| SDOperand Cmp = Cond.getOperand(1); |
| unsigned Opc = Cmp.getOpcode(); |
| if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) { |
| SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) }; |
| Cond = DAG.getNode(Opc, VTs, 2, Ops, 3); |
| addTest = false; |
| } |
| } |
| |
| if (addTest) { |
| CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) }; |
| Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3); |
| } |
| return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), |
| Cond, Op.getOperand(2), CC, Cond.getValue(1)); |
| } |
| |
| SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()); |
| Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); |
| if (Subtarget->isTargetDarwin()) { |
| // With PIC, the address is actually $g + Offset. |
| if (!Subtarget->is64Bit() && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_) |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) { |
| unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| |
| if (Subtarget->is64Bit()) |
| return LowerX86_64CCCCallTo(Op, DAG); |
| else |
| switch (CallingConv) { |
| default: |
| assert(0 && "Unsupported calling convention"); |
| case CallingConv::Fast: |
| if (EnableFastCC) { |
| return LowerFastCCCallTo(Op, DAG, false); |
| } |
| // Falls through |
| case CallingConv::C: |
| case CallingConv::CSRet: |
| return LowerCCCCallTo(Op, DAG); |
| case CallingConv::X86_StdCall: |
| return LowerStdCallCCCallTo(Op, DAG); |
| case CallingConv::X86_FastCall: |
| return LowerFastCCCallTo(Op, DAG, true); |
| } |
| } |
| |
| SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Copy; |
| |
| switch(Op.getNumOperands()) { |
| default: |
| assert(0 && "Do not know how to return this many arguments!"); |
| abort(); |
| case 1: // ret void. |
| return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); |
| case 3: { |
| MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); |
| |
| if (MVT::isVector(ArgVT) || |
| (Subtarget->is64Bit() && MVT::isFloatingPoint(ArgVT))) { |
| // Integer or FP vector result -> XMM0. |
| if (DAG.getMachineFunction().liveout_empty()) |
| DAG.getMachineFunction().addLiveOut(X86::XMM0); |
| Copy = DAG.getCopyToReg(Op.getOperand(0), X86::XMM0, Op.getOperand(1), |
| SDOperand()); |
| } else if (MVT::isInteger(ArgVT)) { |
| // Integer result -> EAX / RAX. |
| // The C calling convention guarantees the return value has been |
| // promoted to at least MVT::i32. The X86-64 ABI doesn't require the |
| // value to be promoted MVT::i64. So we don't have to extend it to |
| // 64-bit. Return the value in EAX, but mark RAX as liveout. |
| unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; |
| if (DAG.getMachineFunction().liveout_empty()) |
| DAG.getMachineFunction().addLiveOut(Reg); |
| |
| Reg = (ArgVT == MVT::i64) ? X86::RAX : X86::EAX; |
| Copy = DAG.getCopyToReg(Op.getOperand(0), Reg, Op.getOperand(1), |
| SDOperand()); |
| } else if (!X86ScalarSSE) { |
| // FP return with fp-stack value. |
| if (DAG.getMachineFunction().liveout_empty()) |
| DAG.getMachineFunction().addLiveOut(X86::ST0); |
| |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Op.getOperand(0)); |
| Ops.push_back(Op.getOperand(1)); |
| Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size()); |
| } else { |
| // FP return with ScalarSSE (return on fp-stack). |
| if (DAG.getMachineFunction().liveout_empty()) |
| DAG.getMachineFunction().addLiveOut(X86::ST0); |
| |
| SDOperand MemLoc; |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand Value = Op.getOperand(1); |
| |
| if (ISD::isNON_EXTLoad(Value.Val) && |
| (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) { |
| Chain = Value.getOperand(0); |
| MemLoc = Value.getOperand(1); |
| } else { |
| // Spill the value to memory and reload it into top of stack. |
| unsigned Size = MVT::getSizeInBits(ArgVT)/8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); |
| MemLoc = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0); |
| } |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(MemLoc); |
| Ops.push_back(DAG.getValueType(ArgVT)); |
| Copy = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size()); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| Ops.clear(); |
| Ops.push_back(Copy.getValue(1)); |
| Ops.push_back(Copy); |
| Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size()); |
| } |
| break; |
| } |
| case 5: { |
| unsigned Reg1 = Subtarget->is64Bit() ? X86::RAX : X86::EAX; |
| unsigned Reg2 = Subtarget->is64Bit() ? X86::RDX : X86::EDX; |
| if (DAG.getMachineFunction().liveout_empty()) { |
| DAG.getMachineFunction().addLiveOut(Reg1); |
| DAG.getMachineFunction().addLiveOut(Reg2); |
| } |
| |
| Copy = DAG.getCopyToReg(Op.getOperand(0), Reg2, Op.getOperand(3), |
| SDOperand()); |
| Copy = DAG.getCopyToReg(Copy, Reg1, Op.getOperand(1), Copy.getValue(1)); |
| break; |
| } |
| } |
| return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, |
| Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16), |
| Copy.getValue(1)); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const Function* Fn = MF.getFunction(); |
| if (Fn->hasExternalLinkage() && |
| Subtarget->isTargetCygwin() && |
| Fn->getName() == "main") |
| MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true); |
| |
| unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| if (Subtarget->is64Bit()) |
| return LowerX86_64CCCArguments(Op, DAG); |
| else |
| switch(CC) { |
| default: |
| assert(0 && "Unsupported calling convention"); |
| case CallingConv::Fast: |
| if (EnableFastCC) { |
| return LowerFastCCArguments(Op, DAG); |
| } |
| // Falls through |
| case CallingConv::C: |
| case CallingConv::CSRet: |
| return LowerCCCArguments(Op, DAG); |
| case CallingConv::X86_StdCall: |
| MF.getInfo<X86FunctionInfo>()->setDecorationStyle(StdCall); |
| return LowerStdCallCCArguments(Op, DAG); |
| case CallingConv::X86_FastCall: |
| MF.getInfo<X86FunctionInfo>()->setDecorationStyle(FastCall); |
| return LowerFastCallCCArguments(Op, DAG); |
| } |
| } |
| |
| SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand InFlag(0, 0); |
| SDOperand Chain = Op.getOperand(0); |
| unsigned Align = |
| (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); |
| if (Align == 0) Align = 1; |
| |
| ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); |
| // If not DWORD aligned, call memset if size is less than the threshold. |
| // It knows how to align to the right boundary first. |
| if ((Align & 3) != 0 || |
| (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) { |
| MVT::ValueType IntPtr = getPointerTy(); |
| const Type *IntPtrTy = getTargetData()->getIntPtrType(); |
| std::vector<std::pair<SDOperand, const Type*> > Args; |
| Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); |
| // Extend the ubyte argument to be an int value for the call. |
| SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2)); |
| Args.push_back(std::make_pair(Val, IntPtrTy)); |
| Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); |
| std::pair<SDOperand,SDOperand> CallResult = |
| LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, |
| DAG.getExternalSymbol("memset", IntPtr), Args, DAG); |
| return CallResult.second; |
| } |
| |
| MVT::ValueType AVT; |
| SDOperand Count; |
| ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| unsigned BytesLeft = 0; |
| bool TwoRepStos = false; |
| if (ValC) { |
| unsigned ValReg; |
| uint64_t Val = ValC->getValue() & 255; |
| |
| // If the value is a constant, then we can potentially use larger sets. |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| AVT = MVT::i16; |
| ValReg = X86::AX; |
| Val = (Val << 8) | Val; |
| break; |
| case 0: // DWORD aligned |
| AVT = MVT::i32; |
| ValReg = X86::EAX; |
| Val = (Val << 8) | Val; |
| Val = (Val << 16) | Val; |
| if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned |
| AVT = MVT::i64; |
| ValReg = X86::RAX; |
| Val = (Val << 32) | Val; |
| } |
| break; |
| default: // Byte aligned |
| AVT = MVT::i8; |
| ValReg = X86::AL; |
| Count = Op.getOperand(3); |
| break; |
| } |
| |
| if (AVT > MVT::i8) { |
| if (I) { |
| unsigned UBytes = MVT::getSizeInBits(AVT) / 8; |
| Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy()); |
| BytesLeft = I->getValue() % UBytes; |
| } else { |
| assert(AVT >= MVT::i32 && |
| "Do not use rep;stos if not at least DWORD aligned"); |
| Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(), |
| Op.getOperand(3), DAG.getConstant(2, MVT::i8)); |
| TwoRepStos = true; |
| } |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } else { |
| AVT = MVT::i8; |
| Count = Op.getOperand(3); |
| Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, |
| Count, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, |
| Op.getOperand(1), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getValueType(AVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); |
| |
| if (TwoRepStos) { |
| InFlag = Chain.getValue(1); |
| Count = Op.getOperand(3); |
| MVT::ValueType CVT = Count.getValueType(); |
| SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, |
| DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); |
| Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX, |
| Left, InFlag); |
| InFlag = Chain.getValue(1); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getValueType(MVT::i8)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); |
| } else if (BytesLeft) { |
| // Issue stores for the last 1 - 7 bytes. |
| SDOperand Value; |
| unsigned Val = ValC->getValue() & 255; |
| unsigned Offset = I->getValue() - BytesLeft; |
| SDOperand DstAddr = Op.getOperand(1); |
| MVT::ValueType AddrVT = DstAddr.getValueType(); |
| if (BytesLeft >= 4) { |
| Val = (Val << 8) | Val; |
| Val = (Val << 16) | Val; |
| Value = DAG.getConstant(Val, MVT::i32); |
| Chain = DAG.getStore(Chain, Value, |
| DAG.getNode(ISD::ADD, AddrVT, DstAddr, |
| DAG.getConstant(Offset, AddrVT)), |
| NULL, 0); |
| BytesLeft -= 4; |
| Offset += 4; |
| } |
| if (BytesLeft >= 2) { |
| Value = DAG.getConstant((Val << 8) | Val, MVT::i16); |
| Chain = DAG.getStore(Chain, Value, |
| DAG.getNode(ISD::ADD, AddrVT, DstAddr, |
| DAG.getConstant(Offset, AddrVT)), |
| NULL, 0); |
| BytesLeft -= 2; |
| Offset += 2; |
| } |
| if (BytesLeft == 1) { |
| Value = DAG.getConstant(Val, MVT::i8); |
| Chain = DAG.getStore(Chain, Value, |
| DAG.getNode(ISD::ADD, AddrVT, DstAddr, |
| DAG.getConstant(Offset, AddrVT)), |
| NULL, 0); |
| } |
| } |
| |
| return Chain; |
| } |
| |
| SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Chain = Op.getOperand(0); |
| unsigned Align = |
| (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); |
| if (Align == 0) Align = 1; |
| |
| ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); |
| // If not DWORD aligned, call memcpy if size is less than the threshold. |
| // It knows how to align to the right boundary first. |
| if ((Align & 3) != 0 || |
| (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) { |
| MVT::ValueType IntPtr = getPointerTy(); |
| const Type *IntPtrTy = getTargetData()->getIntPtrType(); |
| std::vector<std::pair<SDOperand, const Type*> > Args; |
| Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); |
| Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy)); |
| Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); |
| std::pair<SDOperand,SDOperand> CallResult = |
| LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, |
| DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG); |
| return CallResult.second; |
| } |
| |
| MVT::ValueType AVT; |
| SDOperand Count; |
| unsigned BytesLeft = 0; |
| bool TwoRepMovs = false; |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| AVT = MVT::i16; |
| break; |
| case 0: // DWORD aligned |
| AVT = MVT::i32; |
| if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned |
| AVT = MVT::i64; |
| break; |
| default: // Byte aligned |
| AVT = MVT::i8; |
| Count = Op.getOperand(3); |
| break; |
| } |
| |
| if (AVT > MVT::i8) { |
| if (I) { |
| unsigned UBytes = MVT::getSizeInBits(AVT) / 8; |
| Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy()); |
| BytesLeft = I->getValue() % UBytes; |
| } else { |
| assert(AVT >= MVT::i32 && |
| "Do not use rep;movs if not at least DWORD aligned"); |
| Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(), |
| Op.getOperand(3), DAG.getConstant(2, MVT::i8)); |
| TwoRepMovs = true; |
| } |
| } |
| |
| SDOperand InFlag(0, 0); |
| Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, |
| Count, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, |
| Op.getOperand(1), InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI, |
| Op.getOperand(2), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getValueType(AVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size()); |
| |
| if (TwoRepMovs) { |
| InFlag = Chain.getValue(1); |
| Count = Op.getOperand(3); |
| MVT::ValueType CVT = Count.getValueType(); |
| SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, |
| DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); |
| Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX, |
| Left, InFlag); |
| InFlag = Chain.getValue(1); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getValueType(MVT::i8)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size()); |
| } else if (BytesLeft) { |
| // Issue loads and stores for the last 1 - 7 bytes. |
| unsigned Offset = I->getValue() - BytesLeft; |
| SDOperand DstAddr = Op.getOperand(1); |
| MVT::ValueType DstVT = DstAddr.getValueType(); |
| SDOperand SrcAddr = Op.getOperand(2); |
| MVT::ValueType SrcVT = SrcAddr.getValueType(); |
| SDOperand Value; |
| if (BytesLeft >= 4) { |
| Value = DAG.getLoad(MVT::i32, Chain, |
| DAG.getNode(ISD::ADD, SrcVT, SrcAddr, |
| DAG.getConstant(Offset, SrcVT)), |
| NULL, 0); |
| Chain = Value.getValue(1); |
| Chain = DAG.getStore(Chain, Value, |
| DAG.getNode(ISD::ADD, DstVT, DstAddr, |
| DAG.getConstant(Offset, DstVT)), |
| NULL, 0); |
| BytesLeft -= 4; |
| Offset += 4; |
| } |
| if (BytesLeft >= 2) { |
| Value = DAG.getLoad(MVT::i16, Chain, |
| DAG.getNode(ISD::ADD, SrcVT, SrcAddr, |
| DAG.getConstant(Offset, SrcVT)), |
| NULL, 0); |
| Chain = Value.getValue(1); |
| Chain = DAG.getStore(Chain, Value, |
| DAG.getNode(ISD::ADD, DstVT, DstAddr, |
| DAG.getConstant(Offset, DstVT)), |
| NULL, 0); |
| BytesLeft -= 2; |
| Offset += 2; |
| } |
| |
| if (BytesLeft == 1) { |
| Value = DAG.getLoad(MVT::i8, Chain, |
| DAG.getNode(ISD::ADD, SrcVT, SrcAddr, |
| DAG.getConstant(Offset, SrcVT)), |
| NULL, 0); |
| Chain = Value.getValue(1); |
| Chain = DAG.getStore(Chain, Value, |
| DAG.getNode(ISD::ADD, DstVT, DstAddr, |
| DAG.getConstant(Offset, DstVT)), |
| NULL, 0); |
| } |
| } |
| |
| return Chain; |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) { |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Op.getOperand(0)); |
| SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &Ops[0], Ops.size()); |
| Ops.clear(); |
| if (Subtarget->is64Bit()) { |
| SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1)); |
| SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX, |
| MVT::i64, Copy1.getValue(2)); |
| SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2, |
| DAG.getConstant(32, MVT::i8)); |
| Ops.push_back(DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp)); |
| Ops.push_back(Copy2.getValue(1)); |
| Tys[0] = MVT::i64; |
| Tys[1] = MVT::Other; |
| } else { |
| SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)); |
| SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX, |
| MVT::i32, Copy1.getValue(2)); |
| Ops.push_back(Copy1); |
| Ops.push_back(Copy2); |
| Ops.push_back(Copy2.getValue(1)); |
| Tys[0] = Tys[1] = MVT::i32; |
| Tys.push_back(MVT::Other); |
| } |
| return DAG.getNode(ISD::MERGE_VALUES, Tys, &Ops[0], Ops.size()); |
| } |
| |
| SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) { |
| SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2)); |
| |
| if (!Subtarget->is64Bit()) { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); |
| return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(), |
| SV->getOffset()); |
| } |
| |
| // __va_list_tag: |
| // gp_offset (0 - 6 * 8) |
| // fp_offset (48 - 48 + 8 * 16) |
| // overflow_arg_area (point to parameters coming in memory). |
| // reg_save_area |
| std::vector<SDOperand> MemOps; |
| SDOperand FIN = Op.getOperand(1); |
| // Store gp_offset |
| SDOperand Store = DAG.getStore(Op.getOperand(0), |
| DAG.getConstant(VarArgsGPOffset, MVT::i32), |
| FIN, SV->getValue(), SV->getOffset()); |
| MemOps.push_back(Store); |
| |
| // Store fp_offset |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| DAG.getConstant(4, getPointerTy())); |
| Store = DAG.getStore(Op.getOperand(0), |
| DAG.getConstant(VarArgsFPOffset, MVT::i32), |
| FIN, SV->getValue(), SV->getOffset()); |
| MemOps.push_back(Store); |
| |
| // Store ptr to overflow_arg_area |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| DAG.getConstant(4, getPointerTy())); |
| SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); |
| Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(), |
| SV->getOffset()); |
| MemOps.push_back(Store); |
| |
| // Store ptr to reg_save_area. |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| DAG.getConstant(8, getPointerTy())); |
| SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); |
| Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(), |
| SV->getOffset()); |
| MemOps.push_back(Store); |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size()); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue(); |
| switch (IntNo) { |
| default: return SDOperand(); // Don't custom lower most intrinsics. |
| // Comparison intrinsics. |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| case Intrinsic::x86_sse2_comilt_sd: |
| case Intrinsic::x86_sse2_comile_sd: |
| case Intrinsic::x86_sse2_comigt_sd: |
| case Intrinsic::x86_sse2_comige_sd: |
| case Intrinsic::x86_sse2_comineq_sd: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| case Intrinsic::x86_sse2_ucomineq_sd: { |
| unsigned Opc = 0; |
| ISD::CondCode CC = ISD::SETCC_INVALID; |
| switch (IntNo) { |
| default: break; |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETEQ; |
| break; |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse2_comilt_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETLT; |
| break; |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse2_comile_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETLE; |
| break; |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse2_comigt_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETGT; |
| break; |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse2_comige_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETGE; |
| break; |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse2_comineq_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETNE; |
| break; |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETEQ; |
| break; |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETLT; |
| break; |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETLE; |
| break; |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETGT; |
| break; |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETGE; |
| break; |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_ucomineq_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETNE; |
| break; |
| } |
| |
| unsigned X86CC; |
| SDOperand LHS = Op.getOperand(1); |
| SDOperand RHS = Op.getOperand(2); |
| translateX86CC(CC, true, X86CC, LHS, RHS, DAG); |
| |
| const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag); |
| SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS }; |
| SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3); |
| VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag); |
| SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond }; |
| SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2); |
| return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC); |
| } |
| } |
| } |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { |
| switch (Op.getOpcode()) { |
| default: assert(0 && "Should not custom lower this!"); |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); |
| case ISD::SHL_PARTS: |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: return LowerShift(Op, DAG); |
| case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); |
| case ISD::FABS: return LowerFABS(Op, DAG); |
| case ISD::FNEG: return LowerFNEG(Op, DAG); |
| case ISD::SETCC: return LowerSETCC(Op, DAG, DAG.getEntryNode()); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::CALL: return LowerCALL(Op, DAG); |
| case ISD::RET: return LowerRET(Op, DAG); |
| case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); |
| case ISD::MEMSET: return LowerMEMSET(Op, DAG); |
| case ISD::MEMCPY: return LowerMEMCPY(Op, DAG); |
| case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| } |
| } |
| |
| const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return NULL; |
| case X86ISD::SHLD: return "X86ISD::SHLD"; |
| case X86ISD::SHRD: return "X86ISD::SHRD"; |
| case X86ISD::FAND: return "X86ISD::FAND"; |
| case X86ISD::FXOR: return "X86ISD::FXOR"; |
| case X86ISD::FILD: return "X86ISD::FILD"; |
| case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; |
| case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; |
| case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; |
| case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; |
| case X86ISD::FLD: return "X86ISD::FLD"; |
| case X86ISD::FST: return "X86ISD::FST"; |
| case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT"; |
| case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT"; |
| case X86ISD::CALL: return "X86ISD::CALL"; |
| case X86ISD::TAILCALL: return "X86ISD::TAILCALL"; |
| case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; |
| case X86ISD::CMP: return "X86ISD::CMP"; |
| case X86ISD::COMI: return "X86ISD::COMI"; |
| case X86ISD::UCOMI: return "X86ISD::UCOMI"; |
| case X86ISD::SETCC: return "X86ISD::SETCC"; |
| case X86ISD::CMOV: return "X86ISD::CMOV"; |
| case X86ISD::BRCOND: return "X86ISD::BRCOND"; |
| case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; |
| case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; |
| case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; |
| case X86ISD::LOAD_PACK: return "X86ISD::LOAD_PACK"; |
| case X86ISD::LOAD_UA: return "X86ISD::LOAD_UA"; |
| case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; |
| case X86ISD::Wrapper: return "X86ISD::Wrapper"; |
| case X86ISD::S2VEC: return "X86ISD::S2VEC"; |
| case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; |
| case X86ISD::PINSRW: return "X86ISD::PINSRW"; |
| case X86ISD::FMAX: return "X86ISD::FMAX"; |
| case X86ISD::FMIN: return "X86ISD::FMIN"; |
| } |
| } |
| |
| /// isLegalAddressImmediate - Return true if the integer value or |
| /// GlobalValue can be used as the offset of the target addressing mode. |
| bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const { |
| // X86 allows a sign-extended 32-bit immediate field. |
| return (V > -(1LL << 32) && V < (1LL << 32)-1); |
| } |
| |
| bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const { |
| // In 64-bit mode, GV is 64-bit so it won't fit in the 32-bit displacement |
| // field unless we are in small code model. |
| if (Subtarget->is64Bit() && |
| getTargetMachine().getCodeModel() != CodeModel::Small) |
| return false; |
| |
| return (!Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false)); |
| } |
| |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values |
| /// are assumed to be legal. |
| bool |
| X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const { |
| // Only do shuffles on 128-bit vector types for now. |
| if (MVT::getSizeInBits(VT) == 64) return false; |
| return (Mask.Val->getNumOperands() <= 4 || |
| isSplatMask(Mask.Val) || |
| isPSHUFHW_PSHUFLWMask(Mask.Val) || |
| X86::isUNPCKLMask(Mask.Val) || |
| X86::isUNPCKL_v_undef_Mask(Mask.Val) || |
| X86::isUNPCKHMask(Mask.Val)); |
| } |
| |
| bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps, |
| MVT::ValueType EVT, |
| SelectionDAG &DAG) const { |
| unsigned NumElts = BVOps.size(); |
| // Only do shuffles on 128-bit vector types for now. |
| if (MVT::getSizeInBits(EVT) * NumElts == 64) return false; |
| if (NumElts == 2) return true; |
| if (NumElts == 4) { |
| return (isMOVLMask(BVOps) || isCommutedMOVL(BVOps, true) || |
| isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps)); |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Scheduler Hooks |
| //===----------------------------------------------------------------------===// |
| |
| MachineBasicBlock * |
| X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, |
| MachineBasicBlock *BB) { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| switch (MI->getOpcode()) { |
| default: assert(false && "Unexpected instr type to insert"); |
| case X86::CMOV_FR32: |
| case X86::CMOV_FR64: |
| case X86::CMOV_V4F32: |
| case X86::CMOV_V2F64: |
| case X86::CMOV_V2I64: { |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| unsigned Opc = |
| X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); |
| BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB); |
| MachineFunction *F = BB->getParent(); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges by first adding all successors of the current |
| // block to the new block which will contain the Phi node for the select. |
| for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), |
| e = BB->succ_end(); i != e; ++i) |
| sinkMBB->addSuccessor(*i); |
| // Next, remove all successors of the current block, and add the true |
| // and fallthrough blocks as its successors. |
| while(!BB->succ_empty()) |
| BB->removeSuccessor(BB->succ_begin()); |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| |
| delete MI; // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| case X86::FP_TO_INT16_IN_MEM: |
| case X86::FP_TO_INT32_IN_MEM: |
| case X86::FP_TO_INT64_IN_MEM: { |
| // Change the floating point control register to use "round towards zero" |
| // mode when truncating to an integer value. |
| MachineFunction *F = BB->getParent(); |
| int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); |
| addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx); |
| |
| // Load the old value of the high byte of the control word... |
| unsigned OldCW = |
| F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass); |
| addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); |
| |
| // Set the high part to be round to zero... |
| addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx) |
| .addImm(0xC7F); |
| |
| // Reload the modified control word now... |
| addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); |
| |
| // Restore the memory image of control word to original value |
| addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx) |
| .addReg(OldCW); |
| |
| // Get the X86 opcode to use. |
| unsigned Opc; |
| switch (MI->getOpcode()) { |
| default: assert(0 && "illegal opcode!"); |
| case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break; |
| case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break; |
| case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break; |
| } |
| |
| X86AddressMode AM; |
| MachineOperand &Op = MI->getOperand(0); |
| if (Op.isRegister()) { |
| AM.BaseType = X86AddressMode::RegBase; |
| AM.Base.Reg = Op.getReg(); |
| } else { |
| AM.BaseType = X86AddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = Op.getFrameIndex(); |
| } |
| Op = MI->getOperand(1); |
| if (Op.isImmediate()) |
| AM.Scale = Op.getImm(); |
| Op = MI->getOperand(2); |
| if (Op.isImmediate()) |
| AM.IndexReg = Op.getImm(); |
| Op = MI->getOperand(3); |
| if (Op.isGlobalAddress()) { |
| AM.GV = Op.getGlobal(); |
| } else { |
| AM.Disp = Op.getImm(); |
| } |
| addFullAddress(BuildMI(BB, TII->get(Opc)), AM) |
| .addReg(MI->getOperand(4).getReg()); |
| |
| // Reload the original control word now. |
| addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); |
| |
| delete MI; // The pseudo instruction is gone now. |
| return BB; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| uint64_t Mask, |
| uint64_t &KnownZero, |
| uint64_t &KnownOne, |
| unsigned Depth) const { |
| unsigned Opc = Op.getOpcode(); |
| assert((Opc >= ISD::BUILTIN_OP_END || |
| Opc == ISD::INTRINSIC_WO_CHAIN || |
| Opc == ISD::INTRINSIC_W_CHAIN || |
| Opc == ISD::INTRINSIC_VOID) && |
| "Should use MaskedValueIsZero if you don't know whether Op" |
| " is a target node!"); |
| |
| KnownZero = KnownOne = 0; // Don't know anything. |
| switch (Opc) { |
| default: break; |
| case X86ISD::SETCC: |
| KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| break; |
| } |
| } |
| |
| /// getShuffleScalarElt - Returns the scalar element that will make up the ith |
| /// element of the result of the vector shuffle. |
| static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) { |
| MVT::ValueType VT = N->getValueType(0); |
| SDOperand PermMask = N->getOperand(2); |
| unsigned NumElems = PermMask.getNumOperands(); |
| SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1); |
| i %= NumElems; |
| if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| return (i == 0) |
| ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT)); |
| } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) { |
| SDOperand Idx = PermMask.getOperand(i); |
| if (Idx.getOpcode() == ISD::UNDEF) |
| return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT)); |
| return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG); |
| } |
| return SDOperand(); |
| } |
| |
| /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the |
| /// node is a GlobalAddress + an offset. |
| static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) { |
| unsigned Opc = N->getOpcode(); |
| if (Opc == X86ISD::Wrapper) { |
| if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) { |
| GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); |
| return true; |
| } |
| } else if (Opc == ISD::ADD) { |
| SDOperand N1 = N->getOperand(0); |
| SDOperand N2 = N->getOperand(1); |
| if (isGAPlusOffset(N1.Val, GA, Offset)) { |
| ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); |
| if (V) { |
| Offset += V->getSignExtended(); |
| return true; |
| } |
| } else if (isGAPlusOffset(N2.Val, GA, Offset)) { |
| ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); |
| if (V) { |
| Offset += V->getSignExtended(); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| /// isConsecutiveLoad - Returns true if N is loading from an address of Base |
| /// + Dist * Size. |
| static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size, |
| MachineFrameInfo *MFI) { |
| if (N->getOperand(0).Val != Base->getOperand(0).Val) |
| return false; |
| |
| SDOperand Loc = N->getOperand(1); |
| SDOperand BaseLoc = Base->getOperand(1); |
| if (Loc.getOpcode() == ISD::FrameIndex) { |
| if (BaseLoc.getOpcode() != ISD::FrameIndex) |
| return false; |
| int FI = dyn_cast<FrameIndexSDNode>(Loc)->getIndex(); |
| int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex(); |
| int FS = MFI->getObjectSize(FI); |
| int BFS = MFI->getObjectSize(BFI); |
| if (FS != BFS || FS != Size) return false; |
| return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size); |
| } else { |
| GlobalValue *GV1 = NULL; |
| GlobalValue *GV2 = NULL; |
| int64_t Offset1 = 0; |
| int64_t Offset2 = 0; |
| bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1); |
| bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2); |
| if (isGA1 && isGA2 && GV1 == GV2) |
| return Offset1 == (Offset2 + Dist*Size); |
| } |
| |
| return false; |
| } |
| |
| static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI, |
| const X86Subtarget *Subtarget) { |
| GlobalValue *GV; |
| int64_t Offset; |
| if (isGAPlusOffset(Base, GV, Offset)) |
| return (GV->getAlignment() >= 16 && (Offset % 16) == 0); |
| else { |
| assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!"); |
| int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex(); |
| if (BFI < 0) |
| // Fixed objects do not specify alignment, however the offsets are known. |
| return ((Subtarget->getStackAlignment() % 16) == 0 && |
| (MFI->getObjectOffset(BFI) % 16) == 0); |
| else |
| return MFI->getObjectAlignment(BFI) >= 16; |
| } |
| return false; |
| } |
| |
| |
| /// PerformShuffleCombine - Combine a vector_shuffle that is equal to |
| /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load |
| /// if the load addresses are consecutive, non-overlapping, and in the right |
| /// order. |
| static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MVT::ValueType VT = N->getValueType(0); |
| MVT::ValueType EVT = MVT::getVectorBaseType(VT); |
| SDOperand PermMask = N->getOperand(2); |
| int NumElems = (int)PermMask.getNumOperands(); |
| SDNode *Base = NULL; |
| for (int i = 0; i < NumElems; ++i) { |
| SDOperand Idx = PermMask.getOperand(i); |
| if (Idx.getOpcode() == ISD::UNDEF) { |
| if (!Base) return SDOperand(); |
| } else { |
| SDOperand Arg = |
| getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG); |
| if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val)) |
| return SDOperand(); |
| if (!Base) |
| Base = Arg.Val; |
| else if (!isConsecutiveLoad(Arg.Val, Base, |
| i, MVT::getSizeInBits(EVT)/8,MFI)) |
| return SDOperand(); |
| } |
| } |
| |
| bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget); |
| if (isAlign16) { |
| LoadSDNode *LD = cast<LoadSDNode>(Base); |
| return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), |
| LD->getSrcValueOffset()); |
| } else { |
| // Just use movups, it's shorter. |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::v4f32); |
| Tys.push_back(MVT::Other); |
| SmallVector<SDOperand, 3> Ops; |
| Ops.push_back(Base->getOperand(0)); |
| Ops.push_back(Base->getOperand(1)); |
| Ops.push_back(Base->getOperand(2)); |
| return DAG.getNode(ISD::BIT_CONVERT, VT, |
| DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size())); |
| } |
| } |
| |
| /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. |
| static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| SDOperand Cond = N->getOperand(0); |
| |
| // If we have SSE[12] support, try to form min/max nodes. |
| if (Subtarget->hasSSE2() && |
| (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) { |
| if (Cond.getOpcode() == ISD::SETCC) { |
| // Get the LHS/RHS of the select. |
| SDOperand LHS = N->getOperand(1); |
| SDOperand RHS = N->getOperand(2); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| |
| unsigned Opcode = 0; |
| if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) { |
| switch (CC) { |
| default: break; |
| case ISD::SETOLE: // (X <= Y) ? X : Y -> min |
| case ISD::SETULE: |
| case ISD::SETLE: |
| if (!UnsafeFPMath) break; |
| // FALL THROUGH. |
| case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min |
| case ISD::SETLT: |
| Opcode = X86ISD::FMIN; |
| break; |
| |
| case ISD::SETOGT: // (X > Y) ? X : Y -> max |
| case ISD::SETUGT: |
| case ISD::SETGT: |
| if (!UnsafeFPMath) break; |
| // FALL THROUGH. |
| case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max |
| case ISD::SETGE: |
| Opcode = X86ISD::FMAX; |
| break; |
| } |
| } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) { |
| switch (CC) { |
| default: break; |
| case ISD::SETOGT: // (X > Y) ? Y : X -> min |
| case ISD::SETUGT: |
| case ISD::SETGT: |
| if (!UnsafeFPMath) break; |
| // FALL THROUGH. |
| case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min |
| case ISD::SETGE: |
| Opcode = X86ISD::FMIN; |
| break; |
| |
| case ISD::SETOLE: // (X <= Y) ? Y : X -> max |
| case ISD::SETULE: |
| case ISD::SETLE: |
| if (!UnsafeFPMath) break; |
| // FALL THROUGH. |
| case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max |
| case ISD::SETLT: |
| Opcode = X86ISD::FMAX; |
| break; |
| } |
| } |
| |
| if (Opcode) |
| return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS); |
| } |
| |
| } |
| |
| return SDOperand(); |
| } |
| |
| |
| SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::VECTOR_SHUFFLE: |
| return PerformShuffleCombine(N, DAG, Subtarget); |
| case ISD::SELECT: |
| return PerformSELECTCombine(N, DAG, Subtarget); |
| } |
| |
| return SDOperand(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| X86TargetLowering::ConstraintType |
| X86TargetLowering::getConstraintType(char ConstraintLetter) const { |
| switch (ConstraintLetter) { |
| case 'A': |
| case 'r': |
| case 'R': |
| case 'l': |
| case 'q': |
| case 'Q': |
| case 'x': |
| case 'Y': |
| return C_RegisterClass; |
| default: return TargetLowering::getConstraintType(ConstraintLetter); |
| } |
| } |
| |
| /// isOperandValidForConstraint - Return the specified operand (possibly |
| /// modified) if the specified SDOperand is valid for the specified target |
| /// constraint letter, otherwise return null. |
| SDOperand X86TargetLowering:: |
| isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) { |
| switch (Constraint) { |
| default: break; |
| case 'i': |
| // Literal immediates are always ok. |
| if (isa<ConstantSDNode>(Op)) return Op; |
| |
| // If we are in non-pic codegen mode, we allow the address of a global to |
| // be used with 'i'. |
| if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_) |
| return SDOperand(0, 0); |
| |
| if (GA->getOpcode() != ISD::TargetGlobalAddress) |
| Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), |
| GA->getOffset()); |
| return Op; |
| } |
| |
| // Otherwise, not valid for this mode. |
| return SDOperand(0, 0); |
| } |
| return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG); |
| } |
| |
| |
| std::vector<unsigned> X86TargetLowering:: |
| getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| MVT::ValueType VT) const { |
| if (Constraint.size() == 1) { |
| // FIXME: not handling fp-stack yet! |
| // FIXME: not handling MMX registers yet ('y' constraint). |
| switch (Constraint[0]) { // GCC X86 Constraint Letters |
| default: break; // Unknown constraint letter |
| case 'A': // EAX/EDX |
| if (VT == MVT::i32 || VT == MVT::i64) |
| return make_vector<unsigned>(X86::EAX, X86::EDX, 0); |
| break; |
| case 'r': // GENERAL_REGS |
| case 'R': // LEGACY_REGS |
| if (VT == MVT::i64 && Subtarget->is64Bit()) |
| return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, |
| X86::RSI, X86::RDI, X86::RBP, X86::RSP, |
| X86::R8, X86::R9, X86::R10, X86::R11, |
| X86::R12, X86::R13, X86::R14, X86::R15, 0); |
| if (VT == MVT::i32) |
| return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, |
| X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0); |
| else if (VT == MVT::i16) |
| return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, |
| X86::SI, X86::DI, X86::BP, X86::SP, 0); |
| else if (VT == MVT::i8) |
| return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0); |
| break; |
| case 'l': // INDEX_REGS |
| if (VT == MVT::i32) |
| return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, |
| X86::ESI, X86::EDI, X86::EBP, 0); |
| else if (VT == MVT::i16) |
| return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, |
| X86::SI, X86::DI, X86::BP, 0); |
| else if (VT == MVT::i8) |
| return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0); |
| break; |
| case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode) |
| case 'Q': // Q_REGS |
| if (VT == MVT::i32) |
| return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); |
| else if (VT == MVT::i16) |
| return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); |
| else if (VT == MVT::i8) |
| return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0); |
| break; |
| case 'x': // SSE_REGS if SSE1 allowed |
| if (Subtarget->hasSSE1()) |
| return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, |
| 0); |
| return std::vector<unsigned>(); |
| case 'Y': // SSE_REGS if SSE2 allowed |
| if (Subtarget->hasSSE2()) |
| return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, |
| 0); |
| return std::vector<unsigned>(); |
| } |
| } |
| |
| return std::vector<unsigned>(); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, |
| MVT::ValueType VT) const { |
| // Use the default implementation in TargetLowering to convert the register |
| // constraint into a member of a register class. |
| std::pair<unsigned, const TargetRegisterClass*> Res; |
| Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| |
| // Not found as a standard register? |
| if (Res.second == 0) { |
| // GCC calls "st(0)" just plain "st". |
| if (StringsEqualNoCase("{st}", Constraint)) { |
| Res.first = X86::ST0; |
| Res.second = X86::RSTRegisterClass; |
| } |
| |
| return Res; |
| } |
| |
| // Otherwise, check to see if this is a register class of the wrong value |
| // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to |
| // turn into {ax},{dx}. |
| if (Res.second->hasType(VT)) |
| return Res; // Correct type already, nothing to do. |
| |
| // All of the single-register GCC register classes map their values onto |
| // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we |
| // really want an 8-bit or 32-bit register, map to the appropriate register |
| // class and return the appropriate register. |
| if (Res.second != X86::GR16RegisterClass) |
| return Res; |
| |
| if (VT == MVT::i8) { |
| unsigned DestReg = 0; |
| switch (Res.first) { |
| default: break; |
| case X86::AX: DestReg = X86::AL; break; |
| case X86::DX: DestReg = X86::DL; break; |
| case X86::CX: DestReg = X86::CL; break; |
| case X86::BX: DestReg = X86::BL; break; |
| } |
| if (DestReg) { |
| Res.first = DestReg; |
| Res.second = Res.second = X86::GR8RegisterClass; |
| } |
| } else if (VT == MVT::i32) { |
| unsigned DestReg = 0; |
| switch (Res.first) { |
| default: break; |
| case X86::AX: DestReg = X86::EAX; break; |
| case X86::DX: DestReg = X86::EDX; break; |
| case X86::CX: DestReg = X86::ECX; break; |
| case X86::BX: DestReg = X86::EBX; break; |
| case X86::SI: DestReg = X86::ESI; break; |
| case X86::DI: DestReg = X86::EDI; break; |
| case X86::BP: DestReg = X86::EBP; break; |
| case X86::SP: DestReg = X86::ESP; break; |
| } |
| if (DestReg) { |
| Res.first = DestReg; |
| Res.second = Res.second = X86::GR32RegisterClass; |
| } |
| } else if (VT == MVT::i64) { |
| unsigned DestReg = 0; |
| switch (Res.first) { |
| default: break; |
| case X86::AX: DestReg = X86::RAX; break; |
| case X86::DX: DestReg = X86::RDX; break; |
| case X86::CX: DestReg = X86::RCX; break; |
| case X86::BX: DestReg = X86::RBX; break; |
| case X86::SI: DestReg = X86::RSI; break; |
| case X86::DI: DestReg = X86::RDI; break; |
| case X86::BP: DestReg = X86::RBP; break; |
| case X86::SP: DestReg = X86::RSP; break; |
| } |
| if (DestReg) { |
| Res.first = DestReg; |
| Res.second = Res.second = X86::GR64RegisterClass; |
| } |
| } |
| |
| return Res; |
| } |