| //===-- Execution.cpp - Implement code to simulate the program ------------===// |
| // |
| // This file contains the actual instruction interpreter. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Interpreter.h" |
| #include "ExecutionAnnotations.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/iOther.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/GlobalVariable.h" |
| #include "Support/CommandLine.h" |
| #include <math.h> // For fmod |
| #include <signal.h> |
| #include <setjmp.h> |
| #include <iostream> |
| using std::vector; |
| using std::cout; |
| using std::cerr; |
| |
| static cl::opt<bool> |
| QuietMode("quiet", cl::desc("Do not emit any non-program output")); |
| |
| static cl::alias |
| QuietModeA("q", cl::desc("Alias for -quiet"), cl::aliasopt(QuietMode)); |
| |
| static cl::opt<bool> |
| ArrayChecksEnabled("array-checks", cl::desc("Enable array bound checks")); |
| |
| static cl::opt<bool> |
| AbortOnExceptions("abort-on-exception", |
| cl::desc("Halt execution on a machine exception")); |
| |
| // Create a TargetData structure to handle memory addressing and size/alignment |
| // computations |
| // |
| static TargetData TD("lli Interpreter"); |
| CachedWriter CW; // Object to accelerate printing of LLVM |
| |
| |
| #ifdef PROFILE_STRUCTURE_FIELDS |
| static cl::opt<bool> |
| ProfileStructureFields("profilestructfields", |
| cl::desc("Profile Structure Field Accesses")); |
| #include <map> |
| static std::map<const StructType *, vector<unsigned> > FieldAccessCounts; |
| #endif |
| |
| sigjmp_buf SignalRecoverBuffer; |
| static bool InInstruction = false; |
| |
| extern "C" { |
| static void SigHandler(int Signal) { |
| if (InInstruction) |
| siglongjmp(SignalRecoverBuffer, Signal); |
| } |
| } |
| |
| static void initializeSignalHandlers() { |
| struct sigaction Action; |
| Action.sa_handler = SigHandler; |
| Action.sa_flags = SA_SIGINFO; |
| sigemptyset(&Action.sa_mask); |
| sigaction(SIGSEGV, &Action, 0); |
| sigaction(SIGBUS, &Action, 0); |
| sigaction(SIGINT, &Action, 0); |
| sigaction(SIGFPE, &Action, 0); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Value Manipulation code |
| //===----------------------------------------------------------------------===// |
| |
| static unsigned getOperandSlot(Value *V) { |
| SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID); |
| assert(SN && "Operand does not have a slot number annotation!"); |
| return SN->SlotNum; |
| } |
| |
| #define GET_CONST_VAL(TY, CLASS) \ |
| case Type::TY##TyID: Result.TY##Val = cast<CLASS>(CPV)->getValue(); break |
| |
| static GenericValue getOperandValue(Value *V, ExecutionContext &SF) { |
| if (Constant *CPV = dyn_cast<Constant>(V)) { |
| GenericValue Result; |
| switch (CPV->getType()->getPrimitiveID()) { |
| GET_CONST_VAL(Bool , ConstantBool); |
| GET_CONST_VAL(UByte , ConstantUInt); |
| GET_CONST_VAL(SByte , ConstantSInt); |
| GET_CONST_VAL(UShort , ConstantUInt); |
| GET_CONST_VAL(Short , ConstantSInt); |
| GET_CONST_VAL(UInt , ConstantUInt); |
| GET_CONST_VAL(Int , ConstantSInt); |
| GET_CONST_VAL(ULong , ConstantUInt); |
| GET_CONST_VAL(Long , ConstantSInt); |
| GET_CONST_VAL(Float , ConstantFP); |
| GET_CONST_VAL(Double , ConstantFP); |
| case Type::PointerTyID: |
| if (isa<ConstantPointerNull>(CPV)) { |
| Result.PointerVal = 0; |
| } else if (isa<ConstantPointerRef>(CPV)) { |
| assert(0 && "Not implemented!"); |
| } else { |
| assert(0 && "Unknown constant pointer type!"); |
| } |
| break; |
| default: |
| cout << "ERROR: Constant unimp for type: " << CPV->getType() << "\n"; |
| } |
| return Result; |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| GlobalAddress *Address = |
| (GlobalAddress*)GV->getOrCreateAnnotation(GlobalAddressAID); |
| GenericValue Result; |
| Result.PointerVal = (PointerTy)(GenericValue*)Address->Ptr; |
| return Result; |
| } else { |
| unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value |
| unsigned OpSlot = getOperandSlot(V); |
| assert(TyP < SF.Values.size() && |
| OpSlot < SF.Values[TyP].size() && "Value out of range!"); |
| return SF.Values[TyP][getOperandSlot(V)]; |
| } |
| } |
| |
| static void printOperandInfo(Value *V, ExecutionContext &SF) { |
| if (isa<Constant>(V)) { |
| cout << "Constant Pool Value\n"; |
| } else if (isa<GlobalValue>(V)) { |
| cout << "Global Value\n"; |
| } else { |
| unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value |
| unsigned Slot = getOperandSlot(V); |
| cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot |
| << " Addr=" << &SF.Values[TyP][Slot] << " SF=" << &SF |
| << " Contents=0x"; |
| |
| const unsigned char *Buf = (const unsigned char*)&SF.Values[TyP][Slot]; |
| for (unsigned i = 0; i < sizeof(GenericValue); ++i) { |
| unsigned char Cur = Buf[i]; |
| cout << ( Cur >= 160? char((Cur>>4)+'A'-10) : char((Cur>>4) + '0')) |
| << ((Cur&15) >= 10? char((Cur&15)+'A'-10) : char((Cur&15) + '0')); |
| } |
| cout << "\n"; |
| } |
| } |
| |
| |
| |
| static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { |
| unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value |
| |
| //cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)] << "\n"; |
| SF.Values[TyP][getOperandSlot(V)] = Val; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Annotation Wrangling code |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::initializeExecutionEngine() { |
| AnnotationManager::registerAnnotationFactory(MethodInfoAID, |
| &MethodInfo::Create); |
| AnnotationManager::registerAnnotationFactory(GlobalAddressAID, |
| &GlobalAddress::Create); |
| initializeSignalHandlers(); |
| } |
| |
| // InitializeMemory - Recursive function to apply a Constant value into the |
| // specified memory location... |
| // |
| static void InitializeMemory(const Constant *Init, char *Addr) { |
| #define INITIALIZE_MEMORY(TYID, CLASS, TY) \ |
| case Type::TYID##TyID: { \ |
| TY Tmp = cast<CLASS>(Init)->getValue(); \ |
| memcpy(Addr, &Tmp, sizeof(TY)); \ |
| } return |
| |
| switch (Init->getType()->getPrimitiveID()) { |
| INITIALIZE_MEMORY(Bool , ConstantBool, bool); |
| INITIALIZE_MEMORY(UByte , ConstantUInt, unsigned char); |
| INITIALIZE_MEMORY(SByte , ConstantSInt, signed char); |
| INITIALIZE_MEMORY(UShort , ConstantUInt, unsigned short); |
| INITIALIZE_MEMORY(Short , ConstantSInt, signed short); |
| INITIALIZE_MEMORY(UInt , ConstantUInt, unsigned int); |
| INITIALIZE_MEMORY(Int , ConstantSInt, signed int); |
| INITIALIZE_MEMORY(ULong , ConstantUInt, uint64_t); |
| INITIALIZE_MEMORY(Long , ConstantSInt, int64_t); |
| INITIALIZE_MEMORY(Float , ConstantFP , float); |
| INITIALIZE_MEMORY(Double , ConstantFP , double); |
| #undef INITIALIZE_MEMORY |
| |
| case Type::ArrayTyID: { |
| const ConstantArray *CPA = cast<ConstantArray>(Init); |
| const vector<Use> &Val = CPA->getValues(); |
| unsigned ElementSize = |
| TD.getTypeSize(cast<ArrayType>(CPA->getType())->getElementType()); |
| for (unsigned i = 0; i < Val.size(); ++i) |
| InitializeMemory(cast<Constant>(Val[i].get()), Addr+i*ElementSize); |
| return; |
| } |
| |
| case Type::StructTyID: { |
| const ConstantStruct *CPS = cast<ConstantStruct>(Init); |
| const StructLayout *SL=TD.getStructLayout(cast<StructType>(CPS->getType())); |
| const vector<Use> &Val = CPS->getValues(); |
| for (unsigned i = 0; i < Val.size(); ++i) |
| InitializeMemory(cast<Constant>(Val[i].get()), |
| Addr+SL->MemberOffsets[i]); |
| return; |
| } |
| |
| case Type::PointerTyID: |
| if (isa<ConstantPointerNull>(Init)) { |
| *(void**)Addr = 0; |
| } else if (const ConstantPointerRef *CPR = |
| dyn_cast<ConstantPointerRef>(Init)) { |
| GlobalAddress *Address = |
| (GlobalAddress*)CPR->getValue()->getOrCreateAnnotation(GlobalAddressAID); |
| *(void**)Addr = (GenericValue*)Address->Ptr; |
| } else { |
| assert(0 && "Unknown Constant pointer type!"); |
| } |
| return; |
| |
| default: |
| CW << "Bad Type: " << Init->getType() << "\n"; |
| assert(0 && "Unknown constant type to initialize memory with!"); |
| } |
| } |
| |
| Annotation *GlobalAddress::Create(AnnotationID AID, const Annotable *O, void *){ |
| assert(AID == GlobalAddressAID); |
| |
| // This annotation will only be created on GlobalValue objects... |
| GlobalValue *GVal = cast<GlobalValue>((Value*)O); |
| |
| if (isa<Function>(GVal)) { |
| // The GlobalAddress object for a function is just a pointer to function |
| // itself. Don't delete it when the annotation is gone though! |
| return new GlobalAddress(GVal, false); |
| } |
| |
| // Handle the case of a global variable... |
| assert(isa<GlobalVariable>(GVal) && |
| "Global value found that isn't a function or global variable!"); |
| GlobalVariable *GV = cast<GlobalVariable>(GVal); |
| |
| // First off, we must allocate space for the global variable to point at... |
| const Type *Ty = GV->getType()->getElementType(); // Type to be allocated |
| |
| // Allocate enough memory to hold the type... |
| void *Addr = calloc(1, TD.getTypeSize(Ty)); |
| assert(Addr != 0 && "Null pointer returned by malloc!"); |
| |
| // Initialize the memory if there is an initializer... |
| if (GV->hasInitializer()) |
| InitializeMemory(GV->getInitializer(), (char*)Addr); |
| |
| return new GlobalAddress(Addr, true); // Simply invoke the ctor |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Binary Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ |
| case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break |
| |
| static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(+, UByte); |
| IMPLEMENT_BINARY_OPERATOR(+, SByte); |
| IMPLEMENT_BINARY_OPERATOR(+, UShort); |
| IMPLEMENT_BINARY_OPERATOR(+, Short); |
| IMPLEMENT_BINARY_OPERATOR(+, UInt); |
| IMPLEMENT_BINARY_OPERATOR(+, Int); |
| IMPLEMENT_BINARY_OPERATOR(+, ULong); |
| IMPLEMENT_BINARY_OPERATOR(+, Long); |
| IMPLEMENT_BINARY_OPERATOR(+, Float); |
| IMPLEMENT_BINARY_OPERATOR(+, Double); |
| IMPLEMENT_BINARY_OPERATOR(+, Pointer); |
| default: |
| cout << "Unhandled type for Add instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(-, UByte); |
| IMPLEMENT_BINARY_OPERATOR(-, SByte); |
| IMPLEMENT_BINARY_OPERATOR(-, UShort); |
| IMPLEMENT_BINARY_OPERATOR(-, Short); |
| IMPLEMENT_BINARY_OPERATOR(-, UInt); |
| IMPLEMENT_BINARY_OPERATOR(-, Int); |
| IMPLEMENT_BINARY_OPERATOR(-, ULong); |
| IMPLEMENT_BINARY_OPERATOR(-, Long); |
| IMPLEMENT_BINARY_OPERATOR(-, Float); |
| IMPLEMENT_BINARY_OPERATOR(-, Double); |
| IMPLEMENT_BINARY_OPERATOR(-, Pointer); |
| default: |
| cout << "Unhandled type for Sub instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(*, UByte); |
| IMPLEMENT_BINARY_OPERATOR(*, SByte); |
| IMPLEMENT_BINARY_OPERATOR(*, UShort); |
| IMPLEMENT_BINARY_OPERATOR(*, Short); |
| IMPLEMENT_BINARY_OPERATOR(*, UInt); |
| IMPLEMENT_BINARY_OPERATOR(*, Int); |
| IMPLEMENT_BINARY_OPERATOR(*, ULong); |
| IMPLEMENT_BINARY_OPERATOR(*, Long); |
| IMPLEMENT_BINARY_OPERATOR(*, Float); |
| IMPLEMENT_BINARY_OPERATOR(*, Double); |
| IMPLEMENT_BINARY_OPERATOR(*, Pointer); |
| default: |
| cout << "Unhandled type for Mul instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(/, UByte); |
| IMPLEMENT_BINARY_OPERATOR(/, SByte); |
| IMPLEMENT_BINARY_OPERATOR(/, UShort); |
| IMPLEMENT_BINARY_OPERATOR(/, Short); |
| IMPLEMENT_BINARY_OPERATOR(/, UInt); |
| IMPLEMENT_BINARY_OPERATOR(/, Int); |
| IMPLEMENT_BINARY_OPERATOR(/, ULong); |
| IMPLEMENT_BINARY_OPERATOR(/, Long); |
| IMPLEMENT_BINARY_OPERATOR(/, Float); |
| IMPLEMENT_BINARY_OPERATOR(/, Double); |
| IMPLEMENT_BINARY_OPERATOR(/, Pointer); |
| default: |
| cout << "Unhandled type for Div instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(%, UByte); |
| IMPLEMENT_BINARY_OPERATOR(%, SByte); |
| IMPLEMENT_BINARY_OPERATOR(%, UShort); |
| IMPLEMENT_BINARY_OPERATOR(%, Short); |
| IMPLEMENT_BINARY_OPERATOR(%, UInt); |
| IMPLEMENT_BINARY_OPERATOR(%, Int); |
| IMPLEMENT_BINARY_OPERATOR(%, ULong); |
| IMPLEMENT_BINARY_OPERATOR(%, Long); |
| IMPLEMENT_BINARY_OPERATOR(%, Pointer); |
| case Type::FloatTyID: |
| Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); |
| break; |
| case Type::DoubleTyID: |
| Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); |
| break; |
| default: |
| cout << "Unhandled type for Rem instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(&, UByte); |
| IMPLEMENT_BINARY_OPERATOR(&, SByte); |
| IMPLEMENT_BINARY_OPERATOR(&, UShort); |
| IMPLEMENT_BINARY_OPERATOR(&, Short); |
| IMPLEMENT_BINARY_OPERATOR(&, UInt); |
| IMPLEMENT_BINARY_OPERATOR(&, Int); |
| IMPLEMENT_BINARY_OPERATOR(&, ULong); |
| IMPLEMENT_BINARY_OPERATOR(&, Long); |
| IMPLEMENT_BINARY_OPERATOR(&, Pointer); |
| default: |
| cout << "Unhandled type for And instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| |
| static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(|, UByte); |
| IMPLEMENT_BINARY_OPERATOR(|, SByte); |
| IMPLEMENT_BINARY_OPERATOR(|, UShort); |
| IMPLEMENT_BINARY_OPERATOR(|, Short); |
| IMPLEMENT_BINARY_OPERATOR(|, UInt); |
| IMPLEMENT_BINARY_OPERATOR(|, Int); |
| IMPLEMENT_BINARY_OPERATOR(|, ULong); |
| IMPLEMENT_BINARY_OPERATOR(|, Long); |
| IMPLEMENT_BINARY_OPERATOR(|, Pointer); |
| default: |
| cout << "Unhandled type for Or instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| |
| static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(^, UByte); |
| IMPLEMENT_BINARY_OPERATOR(^, SByte); |
| IMPLEMENT_BINARY_OPERATOR(^, UShort); |
| IMPLEMENT_BINARY_OPERATOR(^, Short); |
| IMPLEMENT_BINARY_OPERATOR(^, UInt); |
| IMPLEMENT_BINARY_OPERATOR(^, Int); |
| IMPLEMENT_BINARY_OPERATOR(^, ULong); |
| IMPLEMENT_BINARY_OPERATOR(^, Long); |
| IMPLEMENT_BINARY_OPERATOR(^, Pointer); |
| default: |
| cout << "Unhandled type for Xor instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| |
| #define IMPLEMENT_SETCC(OP, TY) \ |
| case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break |
| |
| static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SETCC(==, UByte); |
| IMPLEMENT_SETCC(==, SByte); |
| IMPLEMENT_SETCC(==, UShort); |
| IMPLEMENT_SETCC(==, Short); |
| IMPLEMENT_SETCC(==, UInt); |
| IMPLEMENT_SETCC(==, Int); |
| IMPLEMENT_SETCC(==, ULong); |
| IMPLEMENT_SETCC(==, Long); |
| IMPLEMENT_SETCC(==, Float); |
| IMPLEMENT_SETCC(==, Double); |
| IMPLEMENT_SETCC(==, Pointer); |
| default: |
| cout << "Unhandled type for SetEQ instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SETCC(!=, UByte); |
| IMPLEMENT_SETCC(!=, SByte); |
| IMPLEMENT_SETCC(!=, UShort); |
| IMPLEMENT_SETCC(!=, Short); |
| IMPLEMENT_SETCC(!=, UInt); |
| IMPLEMENT_SETCC(!=, Int); |
| IMPLEMENT_SETCC(!=, ULong); |
| IMPLEMENT_SETCC(!=, Long); |
| IMPLEMENT_SETCC(!=, Float); |
| IMPLEMENT_SETCC(!=, Double); |
| IMPLEMENT_SETCC(!=, Pointer); |
| |
| default: |
| cout << "Unhandled type for SetNE instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SETCC(<=, UByte); |
| IMPLEMENT_SETCC(<=, SByte); |
| IMPLEMENT_SETCC(<=, UShort); |
| IMPLEMENT_SETCC(<=, Short); |
| IMPLEMENT_SETCC(<=, UInt); |
| IMPLEMENT_SETCC(<=, Int); |
| IMPLEMENT_SETCC(<=, ULong); |
| IMPLEMENT_SETCC(<=, Long); |
| IMPLEMENT_SETCC(<=, Float); |
| IMPLEMENT_SETCC(<=, Double); |
| IMPLEMENT_SETCC(<=, Pointer); |
| default: |
| cout << "Unhandled type for SetLE instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SETCC(>=, UByte); |
| IMPLEMENT_SETCC(>=, SByte); |
| IMPLEMENT_SETCC(>=, UShort); |
| IMPLEMENT_SETCC(>=, Short); |
| IMPLEMENT_SETCC(>=, UInt); |
| IMPLEMENT_SETCC(>=, Int); |
| IMPLEMENT_SETCC(>=, ULong); |
| IMPLEMENT_SETCC(>=, Long); |
| IMPLEMENT_SETCC(>=, Float); |
| IMPLEMENT_SETCC(>=, Double); |
| IMPLEMENT_SETCC(>=, Pointer); |
| default: |
| cout << "Unhandled type for SetGE instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SETCC(<, UByte); |
| IMPLEMENT_SETCC(<, SByte); |
| IMPLEMENT_SETCC(<, UShort); |
| IMPLEMENT_SETCC(<, Short); |
| IMPLEMENT_SETCC(<, UInt); |
| IMPLEMENT_SETCC(<, Int); |
| IMPLEMENT_SETCC(<, ULong); |
| IMPLEMENT_SETCC(<, Long); |
| IMPLEMENT_SETCC(<, Float); |
| IMPLEMENT_SETCC(<, Double); |
| IMPLEMENT_SETCC(<, Pointer); |
| default: |
| cout << "Unhandled type for SetLT instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty, ExecutionContext &SF) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SETCC(>, UByte); |
| IMPLEMENT_SETCC(>, SByte); |
| IMPLEMENT_SETCC(>, UShort); |
| IMPLEMENT_SETCC(>, Short); |
| IMPLEMENT_SETCC(>, UInt); |
| IMPLEMENT_SETCC(>, Int); |
| IMPLEMENT_SETCC(>, ULong); |
| IMPLEMENT_SETCC(>, Long); |
| IMPLEMENT_SETCC(>, Float); |
| IMPLEMENT_SETCC(>, Double); |
| IMPLEMENT_SETCC(>, Pointer); |
| default: |
| cout << "Unhandled type for SetGT instruction: " << Ty << "\n"; |
| } |
| return Dest; |
| } |
| |
| static void executeBinaryInst(BinaryOperator &I, ExecutionContext &SF) { |
| const Type *Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue R; // Result |
| |
| switch (I.getOpcode()) { |
| case Instruction::Add: R = executeAddInst (Src1, Src2, Ty, SF); break; |
| case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty, SF); break; |
| case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty, SF); break; |
| case Instruction::Div: R = executeDivInst (Src1, Src2, Ty, SF); break; |
| case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty, SF); break; |
| case Instruction::And: R = executeAndInst (Src1, Src2, Ty, SF); break; |
| case Instruction::Or: R = executeOrInst (Src1, Src2, Ty, SF); break; |
| case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty, SF); break; |
| case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty, SF); break; |
| case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty, SF); break; |
| case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty, SF); break; |
| case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty, SF); break; |
| case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty, SF); break; |
| case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty, SF); break; |
| default: |
| cout << "Don't know how to handle this binary operator!\n-->" << I; |
| R = Src1; |
| } |
| |
| SetValue(&I, R, SF); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Terminator Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| static void PerformExitStuff() { |
| #ifdef PROFILE_STRUCTURE_FIELDS |
| // Print out structure field accounting information... |
| if (!FieldAccessCounts.empty()) { |
| CW << "Profile Field Access Counts:\n"; |
| std::map<const StructType *, vector<unsigned> >::iterator |
| I = FieldAccessCounts.begin(), E = FieldAccessCounts.end(); |
| for (; I != E; ++I) { |
| vector<unsigned> &OfC = I->second; |
| CW << " '" << (Value*)I->first << "'\t- Sum="; |
| |
| unsigned Sum = 0; |
| for (unsigned i = 0; i < OfC.size(); ++i) |
| Sum += OfC[i]; |
| CW << Sum << " - "; |
| |
| for (unsigned i = 0; i < OfC.size(); ++i) { |
| if (i) CW << ", "; |
| CW << OfC[i]; |
| } |
| CW << "\n"; |
| } |
| CW << "\n"; |
| |
| CW << "Profile Field Access Percentages:\n"; |
| cout.precision(3); |
| for (I = FieldAccessCounts.begin(); I != E; ++I) { |
| vector<unsigned> &OfC = I->second; |
| unsigned Sum = 0; |
| for (unsigned i = 0; i < OfC.size(); ++i) |
| Sum += OfC[i]; |
| |
| CW << " '" << (Value*)I->first << "'\t- "; |
| for (unsigned i = 0; i < OfC.size(); ++i) { |
| if (i) CW << ", "; |
| CW << double(OfC[i])/Sum; |
| } |
| CW << "\n"; |
| } |
| CW << "\n"; |
| |
| FieldAccessCounts.clear(); |
| } |
| #endif |
| } |
| |
| void Interpreter::exitCalled(GenericValue GV) { |
| if (!QuietMode) { |
| cout << "Program returned "; |
| print(Type::IntTy, GV); |
| cout << " via 'void exit(int)'\n"; |
| } |
| |
| ExitCode = GV.SByteVal; |
| ECStack.clear(); |
| PerformExitStuff(); |
| } |
| |
| void Interpreter::executeRetInst(ReturnInst &I, ExecutionContext &SF) { |
| const Type *RetTy = 0; |
| GenericValue Result; |
| |
| // Save away the return value... (if we are not 'ret void') |
| if (I.getNumOperands()) { |
| RetTy = I.getReturnValue()->getType(); |
| Result = getOperandValue(I.getReturnValue(), SF); |
| } |
| |
| // Save previously executing meth |
| const Function *M = ECStack.back().CurMethod; |
| |
| // Pop the current stack frame... this invalidates SF |
| ECStack.pop_back(); |
| |
| if (ECStack.empty()) { // Finished main. Put result into exit code... |
| if (RetTy) { // Nonvoid return type? |
| if (!QuietMode) { |
| CW << "Function " << M->getType() << " \"" << M->getName() |
| << "\" returned "; |
| print(RetTy, Result); |
| cout << "\n"; |
| } |
| |
| if (RetTy->isIntegral()) |
| ExitCode = Result.IntVal; // Capture the exit code of the program |
| } else { |
| ExitCode = 0; |
| } |
| |
| PerformExitStuff(); |
| return; |
| } |
| |
| // If we have a previous stack frame, and we have a previous call, fill in |
| // the return value... |
| // |
| ExecutionContext &NewSF = ECStack.back(); |
| if (NewSF.Caller) { |
| if (NewSF.Caller->getType() != Type::VoidTy) // Save result... |
| SetValue(NewSF.Caller, Result, NewSF); |
| |
| NewSF.Caller = 0; // We returned from the call... |
| } else if (!QuietMode) { |
| // This must be a function that is executing because of a user 'call' |
| // instruction. |
| CW << "Function " << M->getType() << " \"" << M->getName() |
| << "\" returned "; |
| print(RetTy, Result); |
| cout << "\n"; |
| } |
| } |
| |
| void Interpreter::executeBrInst(BranchInst &I, ExecutionContext &SF) { |
| SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work... |
| BasicBlock *Dest; |
| |
| Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... |
| if (!I.isUnconditional()) { |
| Value *Cond = I.getCondition(); |
| GenericValue CondVal = getOperandValue(Cond, SF); |
| if (CondVal.BoolVal == 0) // If false cond... |
| Dest = I.getSuccessor(1); |
| } |
| SF.CurBB = Dest; // Update CurBB to branch destination |
| SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Memory Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::executeAllocInst(AllocationInst &I, ExecutionContext &SF) { |
| const Type *Ty = I.getType()->getElementType(); // Type to be allocated |
| |
| // Get the number of elements being allocated by the array... |
| unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal; |
| |
| // Allocate enough memory to hold the type... |
| // FIXME: Don't use CALLOC, use a tainted malloc. |
| void *Memory = calloc(NumElements, TD.getTypeSize(Ty)); |
| |
| GenericValue Result; |
| Result.PointerVal = (PointerTy)Memory; |
| assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); |
| SetValue(&I, Result, SF); |
| |
| if (I.getOpcode() == Instruction::Alloca) |
| ECStack.back().Allocas.add(Memory); |
| } |
| |
| static void executeFreeInst(FreeInst &I, ExecutionContext &SF) { |
| assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?"); |
| GenericValue Value = getOperandValue(I.getOperand(0), SF); |
| // TODO: Check to make sure memory is allocated |
| free((void*)Value.PointerVal); // Free memory |
| } |
| |
| |
| // getElementOffset - The workhorse for getelementptr, load and store. This |
| // function returns the offset that arguments ArgOff+1 -> NumArgs specify for |
| // the pointer type specified by argument Arg. |
| // |
| static PointerTy getElementOffset(MemAccessInst &I, ExecutionContext &SF) { |
| assert(isa<PointerType>(I.getPointerOperand()->getType()) && |
| "Cannot getElementOffset of a nonpointer type!"); |
| |
| PointerTy Total = 0; |
| const Type *Ty = I.getPointerOperand()->getType(); |
| |
| unsigned ArgOff = I.getFirstIndexOperandNumber(); |
| while (ArgOff < I.getNumOperands()) { |
| if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| const StructLayout *SLO = TD.getStructLayout(STy); |
| |
| // Indicies must be ubyte constants... |
| const ConstantUInt *CPU = cast<ConstantUInt>(I.getOperand(ArgOff++)); |
| assert(CPU->getType() == Type::UByteTy); |
| unsigned Index = CPU->getValue(); |
| |
| #ifdef PROFILE_STRUCTURE_FIELDS |
| if (ProfileStructureFields) { |
| // Do accounting for this field... |
| vector<unsigned> &OfC = FieldAccessCounts[STy]; |
| if (OfC.size() == 0) OfC.resize(STy->getElementTypes().size()); |
| OfC[Index]++; |
| } |
| #endif |
| |
| Total += SLO->MemberOffsets[Index]; |
| Ty = STy->getElementTypes()[Index]; |
| } else if (const SequentialType *ST = cast<SequentialType>(Ty)) { |
| |
| // Get the index number for the array... which must be uint type... |
| assert(I.getOperand(ArgOff)->getType() == Type::UIntTy); |
| unsigned Idx = getOperandValue(I.getOperand(ArgOff++), SF).UIntVal; |
| if (const ArrayType *AT = dyn_cast<ArrayType>(ST)) |
| if (Idx >= AT->getNumElements() && ArrayChecksEnabled) { |
| cerr << "Out of range memory access to element #" << Idx |
| << " of a " << AT->getNumElements() << " element array." |
| << " Subscript #" << (ArgOff-I.getFirstIndexOperandNumber()) |
| << "\n"; |
| // Get outta here!!! |
| siglongjmp(SignalRecoverBuffer, SIGTRAP); |
| } |
| |
| Ty = ST->getElementType(); |
| unsigned Size = TD.getTypeSize(Ty); |
| Total += Size*Idx; |
| } |
| } |
| |
| return Total; |
| } |
| |
| static void executeGEPInst(GetElementPtrInst &I, ExecutionContext &SF) { |
| GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); |
| PointerTy SrcPtr = SRC.PointerVal; |
| |
| GenericValue Result; |
| Result.PointerVal = SrcPtr + getElementOffset(I, SF); |
| SetValue(&I, Result, SF); |
| } |
| |
| static void executeLoadInst(LoadInst &I, ExecutionContext &SF) { |
| GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); |
| PointerTy SrcPtr = SRC.PointerVal; |
| PointerTy Offset = getElementOffset(I, SF); // Handle any structure indices |
| SrcPtr += Offset; |
| |
| GenericValue *Ptr = (GenericValue*)SrcPtr; |
| GenericValue Result; |
| |
| switch (I.getType()->getPrimitiveID()) { |
| case Type::BoolTyID: |
| case Type::UByteTyID: |
| case Type::SByteTyID: Result.SByteVal = Ptr->SByteVal; break; |
| case Type::UShortTyID: |
| case Type::ShortTyID: Result.ShortVal = Ptr->ShortVal; break; |
| case Type::UIntTyID: |
| case Type::IntTyID: Result.IntVal = Ptr->IntVal; break; |
| case Type::ULongTyID: |
| case Type::LongTyID: Result.ULongVal = Ptr->ULongVal; break; |
| case Type::PointerTyID: Result.PointerVal = Ptr->PointerVal; break; |
| case Type::FloatTyID: Result.FloatVal = Ptr->FloatVal; break; |
| case Type::DoubleTyID: Result.DoubleVal = Ptr->DoubleVal; break; |
| default: |
| cout << "Cannot load value of type " << I.getType() << "!\n"; |
| } |
| |
| SetValue(&I, Result, SF); |
| } |
| |
| static void executeStoreInst(StoreInst &I, ExecutionContext &SF) { |
| GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); |
| PointerTy SrcPtr = SRC.PointerVal; |
| SrcPtr += getElementOffset(I, SF); // Handle any structure indices |
| |
| GenericValue *Ptr = (GenericValue *)SrcPtr; |
| GenericValue Val = getOperandValue(I.getOperand(0), SF); |
| |
| switch (I.getOperand(0)->getType()->getPrimitiveID()) { |
| case Type::BoolTyID: |
| case Type::UByteTyID: |
| case Type::SByteTyID: Ptr->SByteVal = Val.SByteVal; break; |
| case Type::UShortTyID: |
| case Type::ShortTyID: Ptr->ShortVal = Val.ShortVal; break; |
| case Type::UIntTyID: |
| case Type::IntTyID: Ptr->IntVal = Val.IntVal; break; |
| case Type::ULongTyID: |
| case Type::LongTyID: Ptr->LongVal = Val.LongVal; break; |
| case Type::PointerTyID: Ptr->PointerVal = Val.PointerVal; break; |
| case Type::FloatTyID: Ptr->FloatVal = Val.FloatVal; break; |
| case Type::DoubleTyID: Ptr->DoubleVal = Val.DoubleVal; break; |
| default: |
| cout << "Cannot store value of type " << I.getType() << "!\n"; |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Miscellaneous Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::executeCallInst(CallInst &I, ExecutionContext &SF) { |
| ECStack.back().Caller = &I; |
| vector<GenericValue> ArgVals; |
| ArgVals.reserve(I.getNumOperands()-1); |
| for (unsigned i = 1; i < I.getNumOperands(); ++i) |
| ArgVals.push_back(getOperandValue(I.getOperand(i), SF)); |
| |
| // To handle indirect calls, we must get the pointer value from the argument |
| // and treat it as a function pointer. |
| GenericValue SRC = getOperandValue(I.getCalledValue(), SF); |
| |
| callMethod((Function*)SRC.PointerVal, ArgVals); |
| } |
| |
| static void executePHINode(PHINode &I, ExecutionContext &SF) { |
| BasicBlock *PrevBB = SF.PrevBB; |
| Value *IncomingValue = 0; |
| |
| // Search for the value corresponding to this previous bb... |
| for (unsigned i = I.getNumIncomingValues(); i > 0;) { |
| if (I.getIncomingBlock(--i) == PrevBB) { |
| IncomingValue = I.getIncomingValue(i); |
| break; |
| } |
| } |
| assert(IncomingValue && "No PHI node predecessor for current PrevBB!"); |
| |
| // Found the value, set as the result... |
| SetValue(&I, getOperandValue(IncomingValue, SF), SF); |
| } |
| |
| #define IMPLEMENT_SHIFT(OP, TY) \ |
| case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break |
| |
| static void executeShlInst(ShiftInst &I, ExecutionContext &SF) { |
| const Type *Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Dest; |
| |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SHIFT(<<, UByte); |
| IMPLEMENT_SHIFT(<<, SByte); |
| IMPLEMENT_SHIFT(<<, UShort); |
| IMPLEMENT_SHIFT(<<, Short); |
| IMPLEMENT_SHIFT(<<, UInt); |
| IMPLEMENT_SHIFT(<<, Int); |
| IMPLEMENT_SHIFT(<<, ULong); |
| IMPLEMENT_SHIFT(<<, Long); |
| IMPLEMENT_SHIFT(<<, Pointer); |
| default: |
| cout << "Unhandled type for Shl instruction: " << Ty << "\n"; |
| } |
| SetValue(&I, Dest, SF); |
| } |
| |
| static void executeShrInst(ShiftInst &I, ExecutionContext &SF) { |
| const Type *Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Dest; |
| |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SHIFT(>>, UByte); |
| IMPLEMENT_SHIFT(>>, SByte); |
| IMPLEMENT_SHIFT(>>, UShort); |
| IMPLEMENT_SHIFT(>>, Short); |
| IMPLEMENT_SHIFT(>>, UInt); |
| IMPLEMENT_SHIFT(>>, Int); |
| IMPLEMENT_SHIFT(>>, ULong); |
| IMPLEMENT_SHIFT(>>, Long); |
| IMPLEMENT_SHIFT(>>, Pointer); |
| default: |
| cout << "Unhandled type for Shr instruction: " << Ty << "\n"; |
| } |
| SetValue(&I, Dest, SF); |
| } |
| |
| #define IMPLEMENT_CAST(DTY, DCTY, STY) \ |
| case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break; |
| |
| #define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \ |
| case Type::DESTTY##TyID: \ |
| switch (SrcTy->getPrimitiveID()) { \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer); |
| |
| #define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Double) |
| |
| #define IMPLEMENT_CAST_CASE_END() \ |
| default: cout << "Unhandled cast: " << SrcTy << " to " << Ty << "\n"; \ |
| break; \ |
| } \ |
| break |
| |
| #define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \ |
| IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \ |
| IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \ |
| IMPLEMENT_CAST_CASE_END() |
| |
| static void executeCastInst(CastInst &I, ExecutionContext &SF) { |
| const Type *Ty = I.getType(); |
| const Type *SrcTy = I.getOperand(0)->getType(); |
| GenericValue Src = getOperandValue(I.getOperand(0), SF); |
| GenericValue Dest; |
| |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_CAST_CASE(UByte , (unsigned char)); |
| IMPLEMENT_CAST_CASE(SByte , ( signed char)); |
| IMPLEMENT_CAST_CASE(UShort , (unsigned short)); |
| IMPLEMENT_CAST_CASE(Short , ( signed short)); |
| IMPLEMENT_CAST_CASE(UInt , (unsigned int )); |
| IMPLEMENT_CAST_CASE(Int , ( signed int )); |
| IMPLEMENT_CAST_CASE(ULong , (uint64_t)); |
| IMPLEMENT_CAST_CASE(Long , ( int64_t)); |
| IMPLEMENT_CAST_CASE(Pointer, (PointerTy)(uint32_t)); |
| IMPLEMENT_CAST_CASE(Float , (float)); |
| IMPLEMENT_CAST_CASE(Double , (double)); |
| default: |
| cout << "Unhandled dest type for cast instruction: " << Ty << "\n"; |
| } |
| SetValue(&I, Dest, SF); |
| } |
| |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Dispatch and Execution Code |
| //===----------------------------------------------------------------------===// |
| |
| MethodInfo::MethodInfo(Function *F) : Annotation(MethodInfoAID) { |
| // Assign slot numbers to the function arguments... |
| for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI) |
| AI->addAnnotation(new SlotNumber(getValueSlot(AI))); |
| |
| // Iterate over all of the instructions... |
| unsigned InstNum = 0; |
| for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB) |
| for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) |
| // For each instruction... Add Annote |
| II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II))); |
| } |
| |
| unsigned MethodInfo::getValueSlot(const Value *V) { |
| unsigned Plane = V->getType()->getUniqueID(); |
| if (Plane >= NumPlaneElements.size()) |
| NumPlaneElements.resize(Plane+1, 0); |
| return NumPlaneElements[Plane]++; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // callMethod - Execute the specified function... |
| // |
| void Interpreter::callMethod(Function *M, const vector<GenericValue> &ArgVals) { |
| assert((ECStack.empty() || ECStack.back().Caller == 0 || |
| ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) && |
| "Incorrect number of arguments passed into function call!"); |
| if (M->isExternal()) { |
| GenericValue Result = callExternalMethod(M, ArgVals); |
| const Type *RetTy = M->getReturnType(); |
| |
| // Copy the result back into the result variable if we are not returning |
| // void. |
| if (RetTy != Type::VoidTy) { |
| if (!ECStack.empty() && ECStack.back().Caller) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(SF.Caller, Result, SF); |
| |
| SF.Caller = 0; // We returned from the call... |
| } else if (!QuietMode) { |
| // print it. |
| CW << "Function " << M->getType() << " \"" << M->getName() |
| << "\" returned "; |
| print(RetTy, Result); |
| cout << "\n"; |
| |
| if (RetTy->isIntegral()) |
| ExitCode = Result.SByteVal; // Capture the exit code of the program |
| } |
| } |
| |
| return; |
| } |
| |
| // Process the function, assigning instruction numbers to the instructions in |
| // the function. Also calculate the number of values for each type slot |
| // active. |
| // |
| MethodInfo *MethInfo = (MethodInfo*)M->getOrCreateAnnotation(MethodInfoAID); |
| ECStack.push_back(ExecutionContext()); // Make a new stack frame... |
| |
| ExecutionContext &StackFrame = ECStack.back(); // Fill it in... |
| StackFrame.CurMethod = M; |
| StackFrame.CurBB = M->begin(); |
| StackFrame.CurInst = StackFrame.CurBB->begin(); |
| StackFrame.MethInfo = MethInfo; |
| |
| // Initialize the values to nothing... |
| StackFrame.Values.resize(MethInfo->NumPlaneElements.size()); |
| for (unsigned i = 0; i < MethInfo->NumPlaneElements.size(); ++i) { |
| StackFrame.Values[i].resize(MethInfo->NumPlaneElements[i]); |
| |
| // Taint the initial values of stuff |
| memset(&StackFrame.Values[i][0], 42, |
| MethInfo->NumPlaneElements[i]*sizeof(GenericValue)); |
| } |
| |
| StackFrame.PrevBB = 0; // No previous BB for PHI nodes... |
| |
| |
| // Run through the function arguments and initialize their values... |
| assert(ArgVals.size() == M->asize() && |
| "Invalid number of values passed to function invocation!"); |
| unsigned i = 0; |
| for (Function::aiterator AI = M->abegin(), E = M->aend(); AI != E; ++AI, ++i) |
| SetValue(AI, ArgVals[i], StackFrame); |
| } |
| |
| // executeInstruction - Interpret a single instruction, increment the "PC", and |
| // return true if the next instruction is a breakpoint... |
| // |
| bool Interpreter::executeInstruction() { |
| assert(!ECStack.empty() && "No program running, cannot execute inst!"); |
| |
| ExecutionContext &SF = ECStack.back(); // Current stack frame |
| Instruction &I = *SF.CurInst++; // Increment before execute |
| |
| if (Trace) |
| CW << "Run:" << I; |
| |
| // Set a sigsetjmp buffer so that we can recover if an error happens during |
| // instruction execution... |
| // |
| if (int SigNo = sigsetjmp(SignalRecoverBuffer, 1)) { |
| --SF.CurInst; // Back up to erroring instruction |
| if (SigNo != SIGINT) { |
| cout << "EXCEPTION OCCURRED [" << _sys_siglistp[SigNo] << "]:\n"; |
| printStackTrace(); |
| // If -abort-on-exception was specified, terminate LLI instead of trying |
| // to debug it. |
| // |
| if (AbortOnExceptions) exit(1); |
| } else if (SigNo == SIGINT) { |
| cout << "CTRL-C Detected, execution halted.\n"; |
| } |
| InInstruction = false; |
| return true; |
| } |
| |
| InInstruction = true; |
| if (I.isBinaryOp()) { |
| executeBinaryInst(cast<BinaryOperator>(I), SF); |
| } else { |
| switch (I.getOpcode()) { |
| // Terminators |
| case Instruction::Ret: executeRetInst (cast<ReturnInst>(I), SF); break; |
| case Instruction::Br: executeBrInst (cast<BranchInst>(I), SF); break; |
| // Memory Instructions |
| case Instruction::Alloca: |
| case Instruction::Malloc: executeAllocInst((AllocationInst&)I, SF); break; |
| case Instruction::Free: executeFreeInst (cast<FreeInst> (I), SF); break; |
| case Instruction::Load: executeLoadInst (cast<LoadInst> (I), SF); break; |
| case Instruction::Store: executeStoreInst(cast<StoreInst>(I), SF); break; |
| case Instruction::GetElementPtr: |
| executeGEPInst(cast<GetElementPtrInst>(I), SF); break; |
| |
| // Miscellaneous Instructions |
| case Instruction::Call: executeCallInst (cast<CallInst> (I), SF); break; |
| case Instruction::PHINode: executePHINode (cast<PHINode> (I), SF); break; |
| case Instruction::Shl: executeShlInst (cast<ShiftInst>(I), SF); break; |
| case Instruction::Shr: executeShrInst (cast<ShiftInst>(I), SF); break; |
| case Instruction::Cast: executeCastInst (cast<CastInst> (I), SF); break; |
| default: |
| cout << "Don't know how to execute this instruction!\n-->" << I; |
| } |
| } |
| InInstruction = false; |
| |
| // Reset the current frame location to the top of stack |
| CurFrame = ECStack.size()-1; |
| |
| if (CurFrame == -1) return false; // No breakpoint if no code |
| |
| // Return true if there is a breakpoint annotation on the instruction... |
| return ECStack[CurFrame].CurInst->getAnnotation(BreakpointAID) != 0; |
| } |
| |
| void Interpreter::stepInstruction() { // Do the 'step' command |
| if (ECStack.empty()) { |
| cout << "Error: no program running, cannot step!\n"; |
| return; |
| } |
| |
| // Run an instruction... |
| executeInstruction(); |
| |
| // Print the next instruction to execute... |
| printCurrentInstruction(); |
| } |
| |
| // --- UI Stuff... |
| void Interpreter::nextInstruction() { // Do the 'next' command |
| if (ECStack.empty()) { |
| cout << "Error: no program running, cannot 'next'!\n"; |
| return; |
| } |
| |
| // If this is a call instruction, step over the call instruction... |
| // TODO: ICALL, CALL WITH, ... |
| if (ECStack.back().CurInst->getOpcode() == Instruction::Call) { |
| unsigned StackSize = ECStack.size(); |
| // Step into the function... |
| if (executeInstruction()) { |
| // Hit a breakpoint, print current instruction, then return to user... |
| cout << "Breakpoint hit!\n"; |
| printCurrentInstruction(); |
| return; |
| } |
| |
| // If we we able to step into the function, finish it now. We might not be |
| // able the step into a function, if it's external for example. |
| if (ECStack.size() != StackSize) |
| finish(); // Finish executing the function... |
| else |
| printCurrentInstruction(); |
| |
| } else { |
| // Normal instruction, just step... |
| stepInstruction(); |
| } |
| } |
| |
| void Interpreter::run() { |
| if (ECStack.empty()) { |
| cout << "Error: no program running, cannot run!\n"; |
| return; |
| } |
| |
| bool HitBreakpoint = false; |
| while (!ECStack.empty() && !HitBreakpoint) { |
| // Run an instruction... |
| HitBreakpoint = executeInstruction(); |
| } |
| |
| if (HitBreakpoint) { |
| cout << "Breakpoint hit!\n"; |
| } |
| // Print the next instruction to execute... |
| printCurrentInstruction(); |
| } |
| |
| void Interpreter::finish() { |
| if (ECStack.empty()) { |
| cout << "Error: no program running, cannot run!\n"; |
| return; |
| } |
| |
| unsigned StackSize = ECStack.size(); |
| bool HitBreakpoint = false; |
| while (ECStack.size() >= StackSize && !HitBreakpoint) { |
| // Run an instruction... |
| HitBreakpoint = executeInstruction(); |
| } |
| |
| if (HitBreakpoint) { |
| cout << "Breakpoint hit!\n"; |
| } |
| |
| // Print the next instruction to execute... |
| printCurrentInstruction(); |
| } |
| |
| |
| |
| // printCurrentInstruction - Print out the instruction that the virtual PC is |
| // at, or fail silently if no program is running. |
| // |
| void Interpreter::printCurrentInstruction() { |
| if (!ECStack.empty()) { |
| if (ECStack.back().CurBB->begin() == ECStack.back().CurInst) // print label |
| WriteAsOperand(cout, ECStack.back().CurBB) << ":\n"; |
| |
| Instruction &I = *ECStack.back().CurInst; |
| InstNumber *IN = (InstNumber*)I.getAnnotation(SlotNumberAID); |
| assert(IN && "Instruction has no numbering annotation!"); |
| cout << "#" << IN->InstNum << I; |
| } |
| } |
| |
| void Interpreter::printValue(const Type *Ty, GenericValue V) { |
| switch (Ty->getPrimitiveID()) { |
| case Type::BoolTyID: cout << (V.BoolVal?"true":"false"); break; |
| case Type::SByteTyID: |
| cout << (int)V.SByteVal << " '" << V.SByteVal << "'"; break; |
| case Type::UByteTyID: |
| cout << (unsigned)V.UByteVal << " '" << V.UByteVal << "'"; break; |
| case Type::ShortTyID: cout << V.ShortVal; break; |
| case Type::UShortTyID: cout << V.UShortVal; break; |
| case Type::IntTyID: cout << V.IntVal; break; |
| case Type::UIntTyID: cout << V.UIntVal; break; |
| case Type::LongTyID: cout << (long)V.LongVal; break; |
| case Type::ULongTyID: cout << (unsigned long)V.ULongVal; break; |
| case Type::FloatTyID: cout << V.FloatVal; break; |
| case Type::DoubleTyID: cout << V.DoubleVal; break; |
| case Type::PointerTyID:cout << (void*)V.PointerVal; break; |
| default: |
| cout << "- Don't know how to print value of this type!"; |
| break; |
| } |
| } |
| |
| void Interpreter::print(const Type *Ty, GenericValue V) { |
| CW << Ty << " "; |
| printValue(Ty, V); |
| } |
| |
| void Interpreter::print(const std::string &Name) { |
| Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name)); |
| if (!PickedVal) return; |
| |
| if (const Function *F = dyn_cast<const Function>(PickedVal)) { |
| CW << F; // Print the function |
| } else if (const Type *Ty = dyn_cast<const Type>(PickedVal)) { |
| CW << "type %" << Name << " = " << Ty->getDescription() << "\n"; |
| } else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(PickedVal)) { |
| CW << BB; // Print the basic block |
| } else { // Otherwise there should be an annotation for the slot# |
| print(PickedVal->getType(), |
| getOperandValue(PickedVal, ECStack[CurFrame])); |
| cout << "\n"; |
| } |
| } |
| |
| void Interpreter::infoValue(const std::string &Name) { |
| Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name)); |
| if (!PickedVal) return; |
| |
| cout << "Value: "; |
| print(PickedVal->getType(), |
| getOperandValue(PickedVal, ECStack[CurFrame])); |
| cout << "\n"; |
| printOperandInfo(PickedVal, ECStack[CurFrame]); |
| } |
| |
| // printStackFrame - Print information about the specified stack frame, or -1 |
| // for the default one. |
| // |
| void Interpreter::printStackFrame(int FrameNo) { |
| if (FrameNo == -1) FrameNo = CurFrame; |
| Function *F = ECStack[FrameNo].CurMethod; |
| const Type *RetTy = F->getReturnType(); |
| |
| CW << ((FrameNo == CurFrame) ? '>' : '-') << "#" << FrameNo << ". " |
| << (Value*)RetTy << " \"" << F->getName() << "\"("; |
| |
| unsigned i = 0; |
| for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++i) { |
| if (i != 0) cout << ", "; |
| CW << *I << "="; |
| |
| printValue(I->getType(), getOperandValue(I, ECStack[FrameNo])); |
| } |
| |
| cout << ")\n"; |
| |
| if (FrameNo != int(ECStack.size()-1)) { |
| BasicBlock::iterator I = ECStack[FrameNo].CurInst; |
| CW << --I; |
| } else { |
| CW << *ECStack[FrameNo].CurInst; |
| } |
| } |
| |