| //===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/MC/MCAsmLexer.h" |
| #include "llvm/MC/MCAsmParser.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Target/TargetRegistry.h" |
| #include "llvm/Target/TargetAsmParser.h" |
| using namespace llvm; |
| |
| namespace { |
| struct X86Operand; |
| |
| class X86ATTAsmParser : public TargetAsmParser { |
| MCAsmParser &Parser; |
| |
| private: |
| MCAsmParser &getParser() const { return Parser; } |
| |
| MCAsmLexer &getLexer() const { return Parser.getLexer(); } |
| |
| void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); } |
| |
| bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } |
| |
| bool ParseRegister(X86Operand &Op); |
| |
| bool ParseOperand(X86Operand &Op); |
| |
| bool ParseMemOperand(X86Operand &Op); |
| |
| /// @name Auto-generated Match Functions |
| /// { |
| |
| bool MatchInstruction(SmallVectorImpl<X86Operand> &Operands, |
| MCInst &Inst); |
| |
| /// MatchRegisterName - Match the given string to a register name, or 0 if |
| /// there is no match. |
| unsigned MatchRegisterName(const StringRef &Name); |
| |
| /// } |
| |
| public: |
| X86ATTAsmParser(const Target &T, MCAsmParser &_Parser) |
| : TargetAsmParser(T), Parser(_Parser) {} |
| |
| virtual bool ParseInstruction(const StringRef &Name, MCInst &Inst); |
| }; |
| |
| } // end anonymous namespace |
| |
| |
| namespace { |
| |
| /// X86Operand - Instances of this class represent a parsed X86 machine |
| /// instruction. |
| struct X86Operand { |
| enum { |
| Token, |
| Register, |
| Immediate, |
| Memory |
| } Kind; |
| |
| union { |
| struct { |
| const char *Data; |
| unsigned Length; |
| } Tok; |
| |
| struct { |
| unsigned RegNo; |
| } Reg; |
| |
| struct { |
| const MCExpr *Val; |
| } Imm; |
| |
| struct { |
| unsigned SegReg; |
| const MCExpr *Disp; |
| unsigned BaseReg; |
| unsigned IndexReg; |
| unsigned Scale; |
| } Mem; |
| }; |
| |
| StringRef getToken() const { |
| assert(Kind == Token && "Invalid access!"); |
| return StringRef(Tok.Data, Tok.Length); |
| } |
| |
| unsigned getReg() const { |
| assert(Kind == Register && "Invalid access!"); |
| return Reg.RegNo; |
| } |
| |
| const MCExpr *getImm() const { |
| assert(Kind == Immediate && "Invalid access!"); |
| return Imm.Val; |
| } |
| |
| const MCExpr *getMemDisp() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.Disp; |
| } |
| unsigned getMemSegReg() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.SegReg; |
| } |
| unsigned getMemBaseReg() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.BaseReg; |
| } |
| unsigned getMemIndexReg() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.IndexReg; |
| } |
| unsigned getMemScale() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.Scale; |
| } |
| |
| bool isToken() const {return Kind == Token; } |
| |
| bool isImm() const { return Kind == Immediate; } |
| |
| bool isImmSExt8() const { |
| // Accept immediates which fit in 8 bits when sign extended, and |
| // non-absolute immediates. |
| if (!isImm()) |
| return false; |
| |
| if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { |
| int64_t Value = CE->getValue(); |
| return Value == (int64_t) (int8_t) Value; |
| } |
| |
| return true; |
| } |
| |
| bool isMem() const { return Kind == Memory; } |
| |
| bool isReg() const { return Kind == Register; } |
| |
| void addRegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(getReg())); |
| } |
| |
| void addImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateExpr(getImm())); |
| } |
| |
| void addImmSExt8Operands(MCInst &Inst, unsigned N) const { |
| // FIXME: Support user customization of the render method. |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateExpr(getImm())); |
| } |
| |
| void addMemOperands(MCInst &Inst, unsigned N) const { |
| assert((N == 4 || N == 5) && "Invalid number of operands!"); |
| |
| Inst.addOperand(MCOperand::CreateReg(getMemBaseReg())); |
| Inst.addOperand(MCOperand::CreateImm(getMemScale())); |
| Inst.addOperand(MCOperand::CreateReg(getMemIndexReg())); |
| Inst.addOperand(MCOperand::CreateExpr(getMemDisp())); |
| |
| // FIXME: What a hack. |
| if (N == 5) |
| Inst.addOperand(MCOperand::CreateReg(getMemSegReg())); |
| } |
| |
| static X86Operand CreateToken(StringRef Str) { |
| X86Operand Res; |
| Res.Kind = Token; |
| Res.Tok.Data = Str.data(); |
| Res.Tok.Length = Str.size(); |
| return Res; |
| } |
| |
| static X86Operand CreateReg(unsigned RegNo) { |
| X86Operand Res; |
| Res.Kind = Register; |
| Res.Reg.RegNo = RegNo; |
| return Res; |
| } |
| |
| static X86Operand CreateImm(const MCExpr *Val) { |
| X86Operand Res; |
| Res.Kind = Immediate; |
| Res.Imm.Val = Val; |
| return Res; |
| } |
| |
| static X86Operand CreateMem(unsigned SegReg, const MCExpr *Disp, |
| unsigned BaseReg, unsigned IndexReg, |
| unsigned Scale) { |
| // We should never just have a displacement, that would be an immediate. |
| assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!"); |
| |
| // The scale should always be one of {1,2,4,8}. |
| assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) && |
| "Invalid scale!"); |
| X86Operand Res; |
| Res.Kind = Memory; |
| Res.Mem.SegReg = SegReg; |
| Res.Mem.Disp = Disp; |
| Res.Mem.BaseReg = BaseReg; |
| Res.Mem.IndexReg = IndexReg; |
| Res.Mem.Scale = Scale; |
| return Res; |
| } |
| }; |
| |
| } // end anonymous namespace. |
| |
| |
| bool X86ATTAsmParser::ParseRegister(X86Operand &Op) { |
| const AsmToken &TokPercent = getLexer().getTok(); |
| assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!"); |
| getLexer().Lex(); // Eat percent token. |
| |
| const AsmToken &Tok = getLexer().getTok(); |
| assert(TokPercent.is(AsmToken::Identifier) && "Invalid token kind!"); |
| |
| // FIXME: Validate register for the current architecture; we have to do |
| // validation later, so maybe there is no need for this here. |
| unsigned RegNo; |
| |
| RegNo = MatchRegisterName(Tok.getString()); |
| if (RegNo == 0) |
| return Error(Tok.getLoc(), "invalid register name"); |
| |
| Op = X86Operand::CreateReg(RegNo); |
| getLexer().Lex(); // Eat identifier token. |
| |
| return false; |
| } |
| |
| bool X86ATTAsmParser::ParseOperand(X86Operand &Op) { |
| switch (getLexer().getKind()) { |
| default: |
| return ParseMemOperand(Op); |
| case AsmToken::Percent: |
| // FIXME: if a segment register, this could either be just the seg reg, or |
| // the start of a memory operand. |
| return ParseRegister(Op); |
| case AsmToken::Dollar: { |
| // $42 -> immediate. |
| getLexer().Lex(); |
| const MCExpr *Val; |
| if (getParser().ParseExpression(Val)) |
| return true; |
| Op = X86Operand::CreateImm(Val); |
| return false; |
| } |
| } |
| } |
| |
| /// ParseMemOperand: segment: disp(basereg, indexreg, scale) |
| bool X86ATTAsmParser::ParseMemOperand(X86Operand &Op) { |
| // FIXME: If SegReg ':' (e.g. %gs:), eat and remember. |
| unsigned SegReg = 0; |
| |
| // We have to disambiguate a parenthesized expression "(4+5)" from the start |
| // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The |
| // only way to do this without lookahead is to eat the ( and see what is after |
| // it. |
| const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); |
| if (getLexer().isNot(AsmToken::LParen)) { |
| if (getParser().ParseExpression(Disp)) return true; |
| |
| // After parsing the base expression we could either have a parenthesized |
| // memory address or not. If not, return now. If so, eat the (. |
| if (getLexer().isNot(AsmToken::LParen)) { |
| // Unless we have a segment register, treat this as an immediate. |
| if (SegReg) |
| Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 1); |
| else |
| Op = X86Operand::CreateImm(Disp); |
| return false; |
| } |
| |
| // Eat the '('. |
| getLexer().Lex(); |
| } else { |
| // Okay, we have a '('. We don't know if this is an expression or not, but |
| // so we have to eat the ( to see beyond it. |
| getLexer().Lex(); // Eat the '('. |
| |
| if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) { |
| // Nothing to do here, fall into the code below with the '(' part of the |
| // memory operand consumed. |
| } else { |
| // It must be an parenthesized expression, parse it now. |
| if (getParser().ParseParenExpression(Disp)) |
| return true; |
| |
| // After parsing the base expression we could either have a parenthesized |
| // memory address or not. If not, return now. If so, eat the (. |
| if (getLexer().isNot(AsmToken::LParen)) { |
| // Unless we have a segment register, treat this as an immediate. |
| if (SegReg) |
| Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 1); |
| else |
| Op = X86Operand::CreateImm(Disp); |
| return false; |
| } |
| |
| // Eat the '('. |
| getLexer().Lex(); |
| } |
| } |
| |
| // If we reached here, then we just ate the ( of the memory operand. Process |
| // the rest of the memory operand. |
| unsigned BaseReg = 0, IndexReg = 0, Scale = 1; |
| |
| if (getLexer().is(AsmToken::Percent)) { |
| if (ParseRegister(Op)) |
| return true; |
| BaseReg = Op.getReg(); |
| } |
| |
| if (getLexer().is(AsmToken::Comma)) { |
| getLexer().Lex(); // Eat the comma. |
| |
| // Following the comma we should have either an index register, or a scale |
| // value. We don't support the later form, but we want to parse it |
| // correctly. |
| // |
| // Not that even though it would be completely consistent to support syntax |
| // like "1(%eax,,1)", the assembler doesn't. |
| if (getLexer().is(AsmToken::Percent)) { |
| if (ParseRegister(Op)) |
| return true; |
| IndexReg = Op.getReg(); |
| |
| if (getLexer().isNot(AsmToken::RParen)) { |
| // Parse the scale amount: |
| // ::= ',' [scale-expression] |
| if (getLexer().isNot(AsmToken::Comma)) |
| return true; |
| getLexer().Lex(); // Eat the comma. |
| |
| if (getLexer().isNot(AsmToken::RParen)) { |
| SMLoc Loc = getLexer().getTok().getLoc(); |
| |
| int64_t ScaleVal; |
| if (getParser().ParseAbsoluteExpression(ScaleVal)) |
| return true; |
| |
| // Validate the scale amount. |
| if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8) |
| return Error(Loc, "scale factor in address must be 1, 2, 4 or 8"); |
| Scale = (unsigned)ScaleVal; |
| } |
| } |
| } else if (getLexer().isNot(AsmToken::RParen)) { |
| // Otherwise we have the unsupported form of a scale amount without an |
| // index. |
| SMLoc Loc = getLexer().getTok().getLoc(); |
| |
| int64_t Value; |
| if (getParser().ParseAbsoluteExpression(Value)) |
| return true; |
| |
| return Error(Loc, "cannot have scale factor without index register"); |
| } |
| } |
| |
| // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. |
| if (getLexer().isNot(AsmToken::RParen)) |
| return Error(getLexer().getTok().getLoc(), |
| "unexpected token in memory operand"); |
| getLexer().Lex(); // Eat the ')'. |
| |
| Op = X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale); |
| return false; |
| } |
| |
| bool X86ATTAsmParser::ParseInstruction(const StringRef &Name, MCInst &Inst) { |
| SmallVector<X86Operand, 8> Operands; |
| |
| Operands.push_back(X86Operand::CreateToken(Name)); |
| |
| SMLoc Loc = getLexer().getTok().getLoc(); |
| if (getLexer().isNot(AsmToken::EndOfStatement)) { |
| |
| // Parse '*' modifier. |
| if (getLexer().is(AsmToken::Star)) { |
| getLexer().Lex(); // Eat the star. |
| Operands.push_back(X86Operand::CreateToken("*")); |
| } |
| |
| // Read the first operand. |
| Operands.push_back(X86Operand()); |
| if (ParseOperand(Operands.back())) |
| return true; |
| |
| while (getLexer().is(AsmToken::Comma)) { |
| getLexer().Lex(); // Eat the comma. |
| |
| // Parse and remember the operand. |
| Operands.push_back(X86Operand()); |
| if (ParseOperand(Operands.back())) |
| return true; |
| } |
| } |
| |
| if (!MatchInstruction(Operands, Inst)) |
| return false; |
| |
| // FIXME: We should give nicer diagnostics about the exact failure. |
| |
| Error(Loc, "unrecognized instruction"); |
| return true; |
| } |
| |
| // Force static initialization. |
| extern "C" void LLVMInitializeX86AsmParser() { |
| RegisterAsmParser<X86ATTAsmParser> X(TheX86_32Target); |
| RegisterAsmParser<X86ATTAsmParser> Y(TheX86_64Target); |
| } |
| |
| #include "X86GenAsmMatcher.inc" |