| //===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===// | 
 | // | 
 | // This pass is designed to be a very quick global transformation that | 
 | // eliminates global common subexpressions from a function.  It does this by | 
 | // using an existing value numbering implementation to identify the common | 
 | // subexpressions, eliminating them when possible. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "llvm/iMemory.h" | 
 | #include "llvm/Type.h" | 
 | #include "llvm/Analysis/Dominators.h" | 
 | #include "llvm/Analysis/ValueNumbering.h" | 
 | #include "llvm/Support/InstIterator.h" | 
 | #include "Support/Statistic.h" | 
 | #include <algorithm> | 
 |  | 
 | namespace { | 
 |   Statistic<> NumInstRemoved("gcse", "Number of instructions removed"); | 
 |   Statistic<> NumLoadRemoved("gcse", "Number of loads removed"); | 
 |   Statistic<> NumNonInsts   ("gcse", "Number of instructions removed due " | 
 |                              "to non-instruction values"); | 
 |  | 
 |   class GCSE : public FunctionPass { | 
 |     std::set<Instruction*>  WorkList; | 
 |     DominatorSet           *DomSetInfo; | 
 |     ValueNumbering         *VN; | 
 |   public: | 
 |     virtual bool runOnFunction(Function &F); | 
 |  | 
 |   private: | 
 |     bool EliminateRedundancies(Instruction *I,std::vector<Value*> &EqualValues); | 
 |     Instruction *EliminateCSE(Instruction *I, Instruction *Other); | 
 |     void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI); | 
 |  | 
 |     // This transformation requires dominator and immediate dominator info | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.setPreservesCFG(); | 
 |       AU.addRequired<DominatorSet>(); | 
 |       AU.addRequired<ImmediateDominators>(); | 
 |       AU.addRequired<ValueNumbering>(); | 
 |     } | 
 |   }; | 
 |  | 
 |   RegisterOpt<GCSE> X("gcse", "Global Common Subexpression Elimination"); | 
 | } | 
 |  | 
 | // createGCSEPass - The public interface to this file... | 
 | Pass *createGCSEPass() { return new GCSE(); } | 
 |  | 
 |  | 
 | // GCSE::runOnFunction - This is the main transformation entry point for a | 
 | // function. | 
 | // | 
 | bool GCSE::runOnFunction(Function &F) { | 
 |   bool Changed = false; | 
 |  | 
 |   // Get pointers to the analysis results that we will be using... | 
 |   DomSetInfo = &getAnalysis<DominatorSet>(); | 
 |   VN = &getAnalysis<ValueNumbering>(); | 
 |  | 
 |   // Step #1: Add all instructions in the function to the worklist for | 
 |   // processing.  All of the instructions are considered to be our | 
 |   // subexpressions to eliminate if possible. | 
 |   // | 
 |   WorkList.insert(inst_begin(F), inst_end(F)); | 
 |  | 
 |   // Step #2: WorkList processing.  Iterate through all of the instructions, | 
 |   // checking to see if there are any additionally defined subexpressions in the | 
 |   // program.  If so, eliminate them! | 
 |   // | 
 |   while (!WorkList.empty()) { | 
 |     Instruction &I = **WorkList.begin(); // Get an instruction from the worklist | 
 |     WorkList.erase(WorkList.begin()); | 
 |  | 
 |     // If this instruction computes a value, try to fold together common | 
 |     // instructions that compute it. | 
 |     // | 
 |     if (I.getType() != Type::VoidTy) { | 
 |       std::vector<Value*> EqualValues; | 
 |       VN->getEqualNumberNodes(&I, EqualValues); | 
 |  | 
 |       if (!EqualValues.empty()) | 
 |         Changed |= EliminateRedundancies(&I, EqualValues); | 
 |     } | 
 |   } | 
 |  | 
 |   // When the worklist is empty, return whether or not we changed anything... | 
 |   return Changed; | 
 | } | 
 |  | 
 | bool GCSE::EliminateRedundancies(Instruction *I, | 
 |                                  std::vector<Value*> &EqualValues) { | 
 |   // If the EqualValues set contains any non-instruction values, then we know | 
 |   // that all of the instructions can be replaced with the non-instruction value | 
 |   // because it is guaranteed to dominate all of the instructions in the | 
 |   // function.  We only have to do hard work if all we have are instructions. | 
 |   // | 
 |   for (unsigned i = 0, e = EqualValues.size(); i != e; ++i) | 
 |     if (!isa<Instruction>(EqualValues[i])) { | 
 |       // Found a non-instruction.  Replace all instructions with the | 
 |       // non-instruction. | 
 |       // | 
 |       Value *Replacement = EqualValues[i]; | 
 |  | 
 |       // Make sure we get I as well... | 
 |       EqualValues[i] = I; | 
 |  | 
 |       // Replace all instructions with the Replacement value. | 
 |       for (i = 0; i != e; ++i) | 
 |         if (Instruction *I = dyn_cast<Instruction>(EqualValues[i])) { | 
 |           // Change all users of I to use Replacement. | 
 |           I->replaceAllUsesWith(Replacement); | 
 |  | 
 |           if (isa<LoadInst>(I)) | 
 |             ++NumLoadRemoved; // Keep track of loads eliminated | 
 |           ++NumInstRemoved;   // Keep track of number of instructions eliminated | 
 |           ++NumNonInsts;      // Keep track of number of insts repl with values | 
 |  | 
 |           // Erase the instruction from the program. | 
 |           I->getParent()->getInstList().erase(I); | 
 |           WorkList.erase(I); | 
 |         } | 
 |        | 
 |       return true; | 
 |     } | 
 |    | 
 |   // Remove duplicate entries from EqualValues... | 
 |   std::sort(EqualValues.begin(), EqualValues.end()); | 
 |   EqualValues.erase(std::unique(EqualValues.begin(), EqualValues.end()), | 
 |                     EqualValues.end()); | 
 |  | 
 |   // From this point on, EqualValues is logically a vector of instructions. | 
 |   // | 
 |   bool Changed = false; | 
 |   EqualValues.push_back(I); // Make sure I is included... | 
 |   while (EqualValues.size() > 1) { | 
 |     // FIXME, this could be done better than simple iteration! | 
 |     Instruction *Test = cast<Instruction>(EqualValues.back()); | 
 |     EqualValues.pop_back(); | 
 |      | 
 |     for (unsigned i = 0, e = EqualValues.size(); i != e; ++i) | 
 |       if (Instruction *Ret = EliminateCSE(Test, | 
 |                                           cast<Instruction>(EqualValues[i]))) { | 
 |         if (Ret == Test)          // Eliminated EqualValues[i] | 
 |           EqualValues[i] = Test;  // Make sure that we reprocess I at some point | 
 |         Changed = true; | 
 |         break; | 
 |       } | 
 |   } | 
 |   return Changed; | 
 | } | 
 |  | 
 |  | 
 | // ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all | 
 | // uses of the instruction use First now instead. | 
 | // | 
 | void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) { | 
 |   Instruction &Second = *SI; | 
 |    | 
 |   //cerr << "DEL " << (void*)Second << Second; | 
 |  | 
 |   // Add the first instruction back to the worklist | 
 |   WorkList.insert(First); | 
 |  | 
 |   // Add all uses of the second instruction to the worklist | 
 |   for (Value::use_iterator UI = Second.use_begin(), UE = Second.use_end(); | 
 |        UI != UE; ++UI) | 
 |     WorkList.insert(cast<Instruction>(*UI)); | 
 |      | 
 |   // Make all users of 'Second' now use 'First' | 
 |   Second.replaceAllUsesWith(First); | 
 |  | 
 |   // Erase the second instruction from the program | 
 |   Second.getParent()->getInstList().erase(SI); | 
 | } | 
 |  | 
 | // EliminateCSE - The two instruction I & Other have been found to be common | 
 | // subexpressions.  This function is responsible for eliminating one of them, | 
 | // and for fixing the worklist to be correct.  The instruction that is preserved | 
 | // is returned from the function if the other is eliminated, otherwise null is | 
 | // returned. | 
 | // | 
 | Instruction *GCSE::EliminateCSE(Instruction *I, Instruction *Other) { | 
 |   assert(I != Other); | 
 |  | 
 |   WorkList.erase(I); | 
 |   WorkList.erase(Other); // Other may not actually be on the worklist anymore... | 
 |  | 
 |   // Handle the easy case, where both instructions are in the same basic block | 
 |   BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent(); | 
 |   Instruction *Ret = 0; | 
 |  | 
 |   if (BB1 == BB2) { | 
 |     // Eliminate the second occuring instruction.  Add all uses of the second | 
 |     // instruction to the worklist. | 
 |     // | 
 |     // Scan the basic block looking for the "first" instruction | 
 |     BasicBlock::iterator BI = BB1->begin(); | 
 |     while (&*BI != I && &*BI != Other) { | 
 |       ++BI; | 
 |       assert(BI != BB1->end() && "Instructions not found in parent BB!"); | 
 |     } | 
 |  | 
 |     // Keep track of which instructions occurred first & second | 
 |     Instruction *First = BI; | 
 |     Instruction *Second = I != First ? I : Other; // Get iterator to second inst | 
 |     BI = Second; | 
 |  | 
 |     // Destroy Second, using First instead. | 
 |     ReplaceInstWithInst(First, BI); | 
 |     Ret = First; | 
 |  | 
 |     // Otherwise, the two instructions are in different basic blocks.  If one | 
 |     // dominates the other instruction, we can simply use it | 
 |     // | 
 |   } else if (DomSetInfo->dominates(BB1, BB2)) {    // I dom Other? | 
 |     ReplaceInstWithInst(I, Other); | 
 |     Ret = I; | 
 |   } else if (DomSetInfo->dominates(BB2, BB1)) {    // Other dom I? | 
 |     ReplaceInstWithInst(Other, I); | 
 |     Ret = Other; | 
 |   } else { | 
 |     // This code is disabled because it has several problems: | 
 |     // One, the actual assumption is wrong, as shown by this code: | 
 |     // int "test"(int %X, int %Y) { | 
 |     //         %Z = add int %X, %Y | 
 |     //         ret int %Z | 
 |     // Unreachable: | 
 |     //         %Q = add int %X, %Y | 
 |     //         ret int %Q | 
 |     // } | 
 |     // | 
 |     // Here there are no shared dominators.  Additionally, this had the habit of | 
 |     // moving computations where they were not always computed.  For example, in | 
 |     // a case like this: | 
 |     //  if (c) { | 
 |     //    if (d)  ... | 
 |     //    else ... X+Y ... | 
 |     //  } else { | 
 |     //    ... X+Y ... | 
 |     //  } | 
 |     //  | 
 |     // In thiscase, the expression would be hoisted to outside the 'if' stmt, | 
 |     // causing the expression to be evaluated, even for the if (d) path, which | 
 |     // could cause problems, if, for example, it caused a divide by zero.  In | 
 |     // general the problem this case is trying to solve is better addressed with | 
 |     // PRE than GCSE. | 
 |     // | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (isa<LoadInst>(Ret)) | 
 |     ++NumLoadRemoved;  // Keep track of loads eliminated | 
 |   ++NumInstRemoved;   // Keep track of number of instructions eliminated | 
 |  | 
 |   // Add all users of Ret to the worklist... | 
 |   for (Value::use_iterator I = Ret->use_begin(), E = Ret->use_end(); I != E;++I) | 
 |     if (Instruction *Inst = dyn_cast<Instruction>(*I)) | 
 |       WorkList.insert(Inst); | 
 |  | 
 |   return Ret; | 
 | } |