| //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// | 
 | // | 
 | // This file implements sparse conditional constant propagation and merging: | 
 | // | 
 | // Specifically, this: | 
 | //   * Assumes values are constant unless proven otherwise | 
 | //   * Assumes BasicBlocks are dead unless proven otherwise | 
 | //   * Proves values to be constant, and replaces them with constants | 
 | //   * Proves conditional branches to be unconditional | 
 | // | 
 | // Notice that: | 
 | //   * This pass has a habit of making definitions be dead.  It is a good idea | 
 | //     to to run a DCE pass sometime after running this pass. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "llvm/ConstantHandling.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/InstVisitor.h" | 
 | #include "Support/Debug.h" | 
 | #include "Support/Statistic.h" | 
 | #include "Support/STLExtras.h" | 
 | #include <algorithm> | 
 | #include <set> | 
 |  | 
 | // InstVal class - This class represents the different lattice values that an  | 
 | // instruction may occupy.  It is a simple class with value semantics. | 
 | // | 
 | namespace { | 
 |   Statistic<> NumInstRemoved("sccp", "Number of instructions removed"); | 
 |  | 
 | class InstVal { | 
 |   enum {  | 
 |     undefined,           // This instruction has no known value | 
 |     constant,            // This instruction has a constant value | 
 |     overdefined          // This instruction has an unknown value | 
 |   } LatticeValue;        // The current lattice position | 
 |   Constant *ConstantVal; // If Constant value, the current value | 
 | public: | 
 |   inline InstVal() : LatticeValue(undefined), ConstantVal(0) {} | 
 |  | 
 |   // markOverdefined - Return true if this is a new status to be in... | 
 |   inline bool markOverdefined() { | 
 |     if (LatticeValue != overdefined) { | 
 |       LatticeValue = overdefined; | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   // markConstant - Return true if this is a new status for us... | 
 |   inline bool markConstant(Constant *V) { | 
 |     if (LatticeValue != constant) { | 
 |       LatticeValue = constant; | 
 |       ConstantVal = V; | 
 |       return true; | 
 |     } else { | 
 |       assert(ConstantVal == V && "Marking constant with different value"); | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   inline bool isUndefined()   const { return LatticeValue == undefined; } | 
 |   inline bool isConstant()    const { return LatticeValue == constant; } | 
 |   inline bool isOverdefined() const { return LatticeValue == overdefined; } | 
 |  | 
 |   inline Constant *getConstant() const { return ConstantVal; } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // SCCP Class | 
 | // | 
 | // This class does all of the work of Sparse Conditional Constant Propagation. | 
 | // | 
 | namespace { | 
 | class SCCP : public FunctionPass, public InstVisitor<SCCP> { | 
 |   std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable | 
 |   std::map<Value*, InstVal> ValueState;  // The state each value is in... | 
 |  | 
 |   std::vector<Instruction*> InstWorkList;// The instruction work list | 
 |   std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list | 
 | public: | 
 |  | 
 |   // runOnFunction - Run the Sparse Conditional Constant Propagation algorithm, | 
 |   // and return true if the function was modified. | 
 |   // | 
 |   bool runOnFunction(Function &F); | 
 |  | 
 |   virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |     AU.setPreservesCFG(); | 
 |   } | 
 |  | 
 |  | 
 |   //===--------------------------------------------------------------------===// | 
 |   // The implementation of this class | 
 |   // | 
 | private: | 
 |   friend class InstVisitor<SCCP>;        // Allow callbacks from visitor | 
 |  | 
 |   // markValueOverdefined - Make a value be marked as "constant".  If the value | 
 |   // is not already a constant, add it to the instruction work list so that  | 
 |   // the users of the instruction are updated later. | 
 |   // | 
 |   inline bool markConstant(Instruction *I, Constant *V) { | 
 |     if (ValueState[I].markConstant(V)) { | 
 |       DEBUG(std::cerr << "markConstant: " << V << " = " << I); | 
 |       InstWorkList.push_back(I); | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   // markValueOverdefined - Make a value be marked as "overdefined". If the | 
 |   // value is not already overdefined, add it to the instruction work list so | 
 |   // that the users of the instruction are updated later. | 
 |   // | 
 |   inline bool markOverdefined(Value *V) { | 
 |     if (ValueState[V].markOverdefined()) { | 
 |       if (Instruction *I = dyn_cast<Instruction>(V)) { | 
 | 	DEBUG(std::cerr << "markOverdefined: " << V); | 
 | 	InstWorkList.push_back(I);  // Only instructions go on the work list | 
 |       } | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   // getValueState - Return the InstVal object that corresponds to the value. | 
 |   // This function is neccesary because not all values should start out in the | 
 |   // underdefined state... Argument's should be overdefined, and | 
 |   // constants should be marked as constants.  If a value is not known to be an | 
 |   // Instruction object, then use this accessor to get its value from the map. | 
 |   // | 
 |   inline InstVal &getValueState(Value *V) { | 
 |     std::map<Value*, InstVal>::iterator I = ValueState.find(V); | 
 |     if (I != ValueState.end()) return I->second;  // Common case, in the map | 
 |        | 
 |     if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant | 
 |       ValueState[CPV].markConstant(CPV); | 
 |     } else if (isa<Argument>(V)) {                // Arguments are overdefined | 
 |       ValueState[V].markOverdefined(); | 
 |     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
 |       // The address of a global is a constant... | 
 |       ValueState[V].markConstant(ConstantPointerRef::get(GV)); | 
 |     } | 
 |     // All others are underdefined by default... | 
 |     return ValueState[V]; | 
 |   } | 
 |  | 
 |   // markExecutable - Mark a basic block as executable, adding it to the BB  | 
 |   // work list if it is not already executable... | 
 |   //  | 
 |   void markExecutable(BasicBlock *BB) { | 
 |     if (BBExecutable.count(BB)) { | 
 |       // BB is already executable, but we may have just made an edge feasible | 
 |       // that wasn't before.  Add the PHI nodes to the work list so that they | 
 |       // can be rechecked. | 
 |       for (BasicBlock::iterator I = BB->begin(); | 
 |            PHINode *PN = dyn_cast<PHINode>(I); ++I) | 
 |         visitPHINode(*PN); | 
 |  | 
 |     } else { | 
 |       DEBUG(std::cerr << "Marking BB Executable: " << *BB); | 
 |       BBExecutable.insert(BB);   // Basic block is executable! | 
 |       BBWorkList.push_back(BB);  // Add the block to the work list! | 
 |     } | 
 |   } | 
 |  | 
 |  | 
 |   // visit implementations - Something changed in this instruction... Either an  | 
 |   // operand made a transition, or the instruction is newly executable.  Change | 
 |   // the value type of I to reflect these changes if appropriate. | 
 |   // | 
 |   void visitPHINode(PHINode &I); | 
 |  | 
 |   // Terminators | 
 |   void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ } | 
 |   void visitTerminatorInst(TerminatorInst &TI); | 
 |  | 
 |   void visitCastInst(CastInst &I); | 
 |   void visitBinaryOperator(Instruction &I); | 
 |   void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } | 
 |  | 
 |   // Instructions that cannot be folded away... | 
 |   void visitStoreInst     (Instruction &I) { /*returns void*/ } | 
 |   void visitLoadInst      (Instruction &I) { markOverdefined(&I); } | 
 |   void visitGetElementPtrInst(GetElementPtrInst &I); | 
 |   void visitCallInst      (Instruction &I) { markOverdefined(&I); } | 
 |   void visitInvokeInst    (Instruction &I) { markOverdefined(&I); } | 
 |   void visitAllocationInst(Instruction &I) { markOverdefined(&I); } | 
 |   void visitVarArgInst    (Instruction &I) { markOverdefined(&I); } | 
 |   void visitFreeInst      (Instruction &I) { /*returns void*/ } | 
 |  | 
 |   void visitInstruction(Instruction &I) { | 
 |     // If a new instruction is added to LLVM that we don't handle... | 
 |     std::cerr << "SCCP: Don't know how to handle: " << I; | 
 |     markOverdefined(&I);   // Just in case | 
 |   } | 
 |  | 
 |   // getFeasibleSuccessors - Return a vector of booleans to indicate which | 
 |   // successors are reachable from a given terminator instruction. | 
 |   // | 
 |   void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); | 
 |  | 
 |   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic | 
 |   // block to the 'To' basic block is currently feasible... | 
 |   // | 
 |   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); | 
 |  | 
 |   // OperandChangedState - This method is invoked on all of the users of an | 
 |   // instruction that was just changed state somehow....  Based on this | 
 |   // information, we need to update the specified user of this instruction. | 
 |   // | 
 |   void OperandChangedState(User *U) { | 
 |     // Only instructions use other variable values! | 
 |     Instruction &I = cast<Instruction>(*U); | 
 |     if (BBExecutable.count(I.getParent()))   // Inst is executable? | 
 |       visit(I); | 
 |   } | 
 | }; | 
 |  | 
 |   RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); | 
 | } // end anonymous namespace | 
 |  | 
 |  | 
 | // createSCCPPass - This is the public interface to this file... | 
 | // | 
 | Pass *createSCCPPass() { | 
 |   return new SCCP(); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // SCCP Class Implementation | 
 |  | 
 |  | 
 | // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, | 
 | // and return true if the function was modified. | 
 | // | 
 | bool SCCP::runOnFunction(Function &F) { | 
 |   // Mark the first block of the function as being executable... | 
 |   markExecutable(&F.front()); | 
 |  | 
 |   // Process the work lists until their are empty! | 
 |   while (!BBWorkList.empty() || !InstWorkList.empty()) { | 
 |     // Process the instruction work list... | 
 |     while (!InstWorkList.empty()) { | 
 |       Instruction *I = InstWorkList.back(); | 
 |       InstWorkList.pop_back(); | 
 |  | 
 |       DEBUG(std::cerr << "\nPopped off I-WL: " << I); | 
 |        | 
 |       // "I" got into the work list because it either made the transition from | 
 |       // bottom to constant, or to Overdefined. | 
 |       // | 
 |       // Update all of the users of this instruction's value... | 
 |       // | 
 |       for_each(I->use_begin(), I->use_end(), | 
 | 	       bind_obj(this, &SCCP::OperandChangedState)); | 
 |     } | 
 |  | 
 |     // Process the basic block work list... | 
 |     while (!BBWorkList.empty()) { | 
 |       BasicBlock *BB = BBWorkList.back(); | 
 |       BBWorkList.pop_back(); | 
 |  | 
 |       DEBUG(std::cerr << "\nPopped off BBWL: " << BB); | 
 |  | 
 |       // Notify all instructions in this basic block that they are newly | 
 |       // executable. | 
 |       visit(BB); | 
 |     } | 
 |   } | 
 |  | 
 |   if (DebugFlag) { | 
 |     for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) | 
 |       if (!BBExecutable.count(I)) | 
 |         std::cerr << "BasicBlock Dead:" << *I; | 
 |   } | 
 |  | 
 |   // Iterate over all of the instructions in a function, replacing them with | 
 |   // constants if we have found them to be of constant values. | 
 |   // | 
 |   bool MadeChanges = false; | 
 |   for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) | 
 |     for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { | 
 |       Instruction &Inst = *BI; | 
 |       InstVal &IV = ValueState[&Inst]; | 
 |       if (IV.isConstant()) { | 
 |         Constant *Const = IV.getConstant(); | 
 |         DEBUG(std::cerr << "Constant: " << Const << " = " << Inst); | 
 |  | 
 |         // Replaces all of the uses of a variable with uses of the constant. | 
 |         Inst.replaceAllUsesWith(Const); | 
 |  | 
 |         // Remove the operator from the list of definitions... and delete it. | 
 |         BI = BB->getInstList().erase(BI); | 
 |  | 
 |         // Hey, we just changed something! | 
 |         MadeChanges = true; | 
 |         ++NumInstRemoved; | 
 |       } else { | 
 |         ++BI; | 
 |       } | 
 |     } | 
 |  | 
 |   // Reset state so that the next invocation will have empty data structures | 
 |   BBExecutable.clear(); | 
 |   ValueState.clear(); | 
 |   std::vector<Instruction*>().swap(InstWorkList); | 
 |   std::vector<BasicBlock*>().swap(BBWorkList); | 
 |  | 
 |   return MadeChanges; | 
 | } | 
 |  | 
 |  | 
 | // getFeasibleSuccessors - Return a vector of booleans to indicate which | 
 | // successors are reachable from a given terminator instruction. | 
 | // | 
 | void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) { | 
 |   Succs.resize(TI.getNumSuccessors()); | 
 |   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { | 
 |     if (BI->isUnconditional()) { | 
 |       Succs[0] = true; | 
 |     } else { | 
 |       InstVal &BCValue = getValueState(BI->getCondition()); | 
 |       if (BCValue.isOverdefined()) { | 
 |         // Overdefined condition variables mean the branch could go either way. | 
 |         Succs[0] = Succs[1] = true; | 
 |       } else if (BCValue.isConstant()) { | 
 |         // Constant condition variables mean the branch can only go a single way | 
 |         Succs[BCValue.getConstant() == ConstantBool::False] = true; | 
 |       } | 
 |     } | 
 |   } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) { | 
 |     // Invoke instructions successors are always executable. | 
 |     Succs[0] = Succs[1] = true; | 
 |   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { | 
 |     InstVal &SCValue = getValueState(SI->getCondition()); | 
 |     if (SCValue.isOverdefined()) {  // Overdefined condition? | 
 |       // All destinations are executable! | 
 |       Succs.assign(TI.getNumSuccessors(), true); | 
 |     } else if (SCValue.isConstant()) { | 
 |       Constant *CPV = SCValue.getConstant(); | 
 |       // Make sure to skip the "default value" which isn't a value | 
 |       for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { | 
 |         if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... | 
 |           Succs[i] = true; | 
 |           return; | 
 |         } | 
 |       } | 
 |  | 
 |       // Constant value not equal to any of the branches... must execute | 
 |       // default branch then... | 
 |       Succs[0] = true; | 
 |     } | 
 |   } else { | 
 |     std::cerr << "SCCP: Don't know how to handle: " << TI; | 
 |     Succs.assign(TI.getNumSuccessors(), true); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // isEdgeFeasible - Return true if the control flow edge from the 'From' basic | 
 | // block to the 'To' basic block is currently feasible... | 
 | // | 
 | bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { | 
 |   assert(BBExecutable.count(To) && "Dest should always be alive!"); | 
 |  | 
 |   // Make sure the source basic block is executable!! | 
 |   if (!BBExecutable.count(From)) return false; | 
 |    | 
 |   // Check to make sure this edge itself is actually feasible now... | 
 |   TerminatorInst *FT = From->getTerminator(); | 
 |   std::vector<bool> SuccFeasible; | 
 |   getFeasibleSuccessors(*FT, SuccFeasible); | 
 |  | 
 |   // Check all edges from From to To.  If any are feasible, return true. | 
 |   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) | 
 |     if (FT->getSuccessor(i) == To && SuccFeasible[i]) | 
 |       return true; | 
 |      | 
 |   // Otherwise, none of the edges are actually feasible at this time... | 
 |   return false; | 
 | } | 
 |  | 
 | // visit Implementations - Something changed in this instruction... Either an | 
 | // operand made a transition, or the instruction is newly executable.  Change | 
 | // the value type of I to reflect these changes if appropriate.  This method | 
 | // makes sure to do the following actions: | 
 | // | 
 | // 1. If a phi node merges two constants in, and has conflicting value coming | 
 | //    from different branches, or if the PHI node merges in an overdefined | 
 | //    value, then the PHI node becomes overdefined. | 
 | // 2. If a phi node merges only constants in, and they all agree on value, the | 
 | //    PHI node becomes a constant value equal to that. | 
 | // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant | 
 | // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined | 
 | // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined | 
 | // 6. If a conditional branch has a value that is constant, make the selected | 
 | //    destination executable | 
 | // 7. If a conditional branch has a value that is overdefined, make all | 
 | //    successors executable. | 
 | // | 
 | void SCCP::visitPHINode(PHINode &PN) { | 
 |   if (getValueState(&PN).isOverdefined()) return;  // Quick exit | 
 |  | 
 |   // Look at all of the executable operands of the PHI node.  If any of them | 
 |   // are overdefined, the PHI becomes overdefined as well.  If they are all | 
 |   // constant, and they agree with each other, the PHI becomes the identical | 
 |   // constant.  If they are constant and don't agree, the PHI is overdefined. | 
 |   // If there are no executable operands, the PHI remains undefined. | 
 |   // | 
 |   Constant *OperandVal = 0; | 
 |   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { | 
 |     InstVal &IV = getValueState(PN.getIncomingValue(i)); | 
 |     if (IV.isUndefined()) continue;  // Doesn't influence PHI node. | 
 |      | 
 |     if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { | 
 |       if (IV.isOverdefined()) {   // PHI node becomes overdefined! | 
 |         markOverdefined(&PN); | 
 |         return; | 
 |       } | 
 |  | 
 |       if (OperandVal == 0) {   // Grab the first value... | 
 |         OperandVal = IV.getConstant(); | 
 |       } else {                // Another value is being merged in! | 
 |         // There is already a reachable operand.  If we conflict with it, | 
 |         // then the PHI node becomes overdefined.  If we agree with it, we | 
 |         // can continue on. | 
 |          | 
 |         // Check to see if there are two different constants merging... | 
 |         if (IV.getConstant() != OperandVal) { | 
 |           // Yes there is.  This means the PHI node is not constant. | 
 |           // You must be overdefined poor PHI. | 
 |           // | 
 |           markOverdefined(&PN);         // The PHI node now becomes overdefined | 
 |           return;    // I'm done analyzing you | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If we exited the loop, this means that the PHI node only has constant | 
 |   // arguments that agree with each other(and OperandVal is the constant) or | 
 |   // OperandVal is null because there are no defined incoming arguments.  If | 
 |   // this is the case, the PHI remains undefined. | 
 |   // | 
 |   if (OperandVal) | 
 |     markConstant(&PN, OperandVal);      // Aquire operand value | 
 | } | 
 |  | 
 | void SCCP::visitTerminatorInst(TerminatorInst &TI) { | 
 |   std::vector<bool> SuccFeasible; | 
 |   getFeasibleSuccessors(TI, SuccFeasible); | 
 |  | 
 |   // Mark all feasible successors executable... | 
 |   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) | 
 |     if (SuccFeasible[i]) { | 
 |       BasicBlock *Succ = TI.getSuccessor(i); | 
 |       markExecutable(Succ); | 
 |     } | 
 | } | 
 |  | 
 | void SCCP::visitCastInst(CastInst &I) { | 
 |   Value *V = I.getOperand(0); | 
 |   InstVal &VState = getValueState(V); | 
 |   if (VState.isOverdefined()) {        // Inherit overdefinedness of operand | 
 |     markOverdefined(&I); | 
 |   } else if (VState.isConstant()) {    // Propagate constant value | 
 |     Constant *Result = | 
 |       ConstantFoldCastInstruction(VState.getConstant(), I.getType()); | 
 |  | 
 |     if (Result) { | 
 |       // This instruction constant folds! | 
 |       markConstant(&I, Result); | 
 |     } else { | 
 |       markOverdefined(&I);   // Don't know how to fold this instruction.  :( | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Handle BinaryOperators and Shift Instructions... | 
 | void SCCP::visitBinaryOperator(Instruction &I) { | 
 |   InstVal &V1State = getValueState(I.getOperand(0)); | 
 |   InstVal &V2State = getValueState(I.getOperand(1)); | 
 |   if (V1State.isOverdefined() || V2State.isOverdefined()) { | 
 |     markOverdefined(&I); | 
 |   } else if (V1State.isConstant() && V2State.isConstant()) { | 
 |     Constant *Result = 0; | 
 |     if (isa<BinaryOperator>(I)) | 
 |       Result = ConstantFoldBinaryInstruction(I.getOpcode(), | 
 |                                              V1State.getConstant(), | 
 |                                              V2State.getConstant()); | 
 |     else if (isa<ShiftInst>(I)) | 
 |       Result = ConstantFoldShiftInstruction(I.getOpcode(), | 
 |                                             V1State.getConstant(), | 
 |                                             V2State.getConstant()); | 
 |     if (Result) | 
 |       markConstant(&I, Result);      // This instruction constant folds! | 
 |     else | 
 |       markOverdefined(&I);   // Don't know how to fold this instruction.  :( | 
 |   } | 
 | } | 
 |  | 
 | // Handle getelementptr instructions... if all operands are constants then we | 
 | // can turn this into a getelementptr ConstantExpr. | 
 | // | 
 | void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) { | 
 |   std::vector<Constant*> Operands; | 
 |   Operands.reserve(I.getNumOperands()); | 
 |  | 
 |   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { | 
 |     InstVal &State = getValueState(I.getOperand(i)); | 
 |     if (State.isUndefined()) | 
 |       return;  // Operands are not resolved yet... | 
 |     else if (State.isOverdefined()) { | 
 |       markOverdefined(&I); | 
 |       return; | 
 |     } | 
 |     assert(State.isConstant() && "Unknown state!"); | 
 |     Operands.push_back(State.getConstant()); | 
 |   } | 
 |  | 
 |   Constant *Ptr = Operands[0]; | 
 |   Operands.erase(Operands.begin());  // Erase the pointer from idx list... | 
 |  | 
 |   markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Operands));   | 
 | } |