| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> |
| <html> |
| <head> |
| <title>LLVM Assembly Language Reference Manual</title> |
| <link rel="stylesheet" href="llvm.css" type="text/css"> |
| </head> |
| <body> |
| <div class="doc_title"> LLVM Language Reference Manual </div> |
| <ol> |
| <li><a href="#abstract">Abstract</a></li> |
| <li><a href="#introduction">Introduction</a></li> |
| <li><a href="#identifiers">Identifiers</a></li> |
| <li><a href="#typesystem">Type System</a> |
| <ol> |
| <li><a href="#t_primitive">Primitive Types</a> |
| <ol> |
| <li><a href="#t_classifications">Type Classifications</a></li> |
| </ol> |
| </li> |
| <li><a href="#t_derived">Derived Types</a> |
| <ol> |
| <li><a href="#t_array">Array Type</a></li> |
| <li><a href="#t_function">Function Type</a></li> |
| <li><a href="#t_pointer">Pointer Type</a></li> |
| <li><a href="#t_struct">Structure Type</a></li> |
| <!-- <li><a href="#t_packed" >Packed Type</a> --> |
| </ol> |
| </li> |
| </ol> |
| </li> |
| <li><a href="#highlevel">High Level Structure</a> |
| <ol> |
| <li><a href="#modulestructure">Module Structure</a></li> |
| <li><a href="#globalvars">Global Variables</a></li> |
| <li><a href="#functionstructure">Function Structure</a></li> |
| </ol> |
| </li> |
| <li><a href="#instref">Instruction Reference</a> |
| <ol> |
| <li><a href="#terminators">Terminator Instructions</a> |
| <ol> |
| <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li> |
| <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li> |
| <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li> |
| <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li> |
| <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#binaryops">Binary Operations</a> |
| <ol> |
| <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li> |
| <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li> |
| <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li> |
| <li><a href="#i_div">'<tt>div</tt>' Instruction</a></li> |
| <li><a href="#i_rem">'<tt>rem</tt>' Instruction</a></li> |
| <li><a href="#i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a></li> |
| </ol> |
| </li> |
| <li><a href="#bitwiseops">Bitwise Binary Operations</a> |
| <ol> |
| <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li> |
| <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li> |
| <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li> |
| <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li> |
| <li><a href="#i_shr">'<tt>shr</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#memoryops">Memory Access Operations</a> |
| <ol> |
| <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li> |
| <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li> |
| <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li> |
| <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li> |
| <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li> |
| <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#otherops">Other Operations</a> |
| <ol> |
| <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li> |
| <li><a href="#i_cast">'<tt>cast .. to</tt>' Instruction</a></li> |
| <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li> |
| <li><a href="#i_vanext">'<tt>vanext</tt>' Instruction</a></li> |
| <li><a href="#i_vaarg">'<tt>vaarg</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| </ol> |
| </li> |
| <li><a href="#intrinsics">Intrinsic Functions</a> |
| <ol> |
| <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a> |
| <ol> |
| <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li> |
| <li><a href="#i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li> |
| <li><a href="#i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| </ol> |
| </li> |
| </ol> |
| <div class="doc_text"> |
| <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> |
| and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></b></p> |
| <p> </p> |
| </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="abstract">Abstract </a></div> |
| <!-- *********************************************************************** --> |
| <div class="doc_text"> |
| <p>This document is a reference manual for the LLVM assembly language. |
| LLVM is an SSA based representation that provides type safety, |
| low-level operations, flexibility, and the capability of representing |
| 'all' high-level languages cleanly. It is the common code |
| representation used throughout all phases of the LLVM compilation |
| strategy.</p> |
| </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="introduction">Introduction</a> </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_text"> |
| <p>The LLVM code representation is designed to be used in three |
| different forms: as an in-memory compiler IR, as an on-disk bytecode |
| representation (suitable for fast loading by a Just-In-Time compiler), |
| and as a human readable assembly language representation. This allows |
| LLVM to provide a powerful intermediate representation for efficient |
| compiler transformations and analysis, while providing a natural means |
| to debug and visualize the transformations. The three different forms |
| of LLVM are all equivalent. This document describes the human readable |
| representation and notation.</p> |
| <p>The LLVM representation aims to be a light-weight and low-level |
| while being expressive, typed, and extensible at the same time. It |
| aims to be a "universal IR" of sorts, by being at a low enough level |
| that high-level ideas may be cleanly mapped to it (similar to how |
| microprocessors are "universal IR's", allowing many source languages to |
| be mapped to them). By providing type information, LLVM can be used as |
| the target of optimizations: for example, through pointer analysis, it |
| can be proven that a C automatic variable is never accessed outside of |
| the current function... allowing it to be promoted to a simple SSA |
| value instead of a memory location.</p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div> |
| <div class="doc_text"> |
| <p>It is important to note that this document describes 'well formed' |
| LLVM assembly language. There is a difference between what the parser |
| accepts and what is considered 'well formed'. For example, the |
| following instruction is syntactically okay, but not well formed:</p> |
| <pre> %x = <a href="#i_add">add</a> int 1, %x<br></pre> |
| <p>...because the definition of <tt>%x</tt> does not dominate all of |
| its uses. The LLVM infrastructure provides a verification pass that may |
| be used to verify that an LLVM module is well formed. This pass is |
| automatically run by the parser after parsing input assembly, and by |
| the optimizer before it outputs bytecode. The violations pointed out |
| by the verifier pass indicate bugs in transformation passes or input to |
| the parser.</p> |
| <!-- Describe the typesetting conventions here. --> </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="identifiers">Identifiers</a> </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_text"> |
| <p>LLVM uses three different forms of identifiers, for different |
| purposes:</p> |
| <ol> |
| <li>Numeric constants are represented as you would expect: 12, -3 |
| 123.421, etc. Floating point constants have an optional hexidecimal |
| notation.</li> |
| <li>Named values are represented as a string of characters with a '%' |
| prefix. For example, %foo, %DivisionByZero, |
| %a.really.long.identifier. The actual regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. |
| Identifiers which require other characters in their names can be |
| surrounded with quotes. In this way, anything except a <tt>"</tt> |
| character can be used in a name.</li> |
| <li>Unnamed values are represented as an unsigned numeric value with |
| a '%' prefix. For example, %12, %2, %44.</li> |
| </ol> |
| <p>LLVM requires the values start with a '%' sign for two reasons: |
| Compilers don't need to worry about name clashes with reserved words, |
| and the set of reserved words may be expanded in the future without |
| penalty. Additionally, unnamed identifiers allow a compiler to quickly |
| come up with a temporary variable without having to avoid symbol table |
| conflicts.</p> |
| <p>Reserved words in LLVM are very similar to reserved words in other |
| languages. There are keywords for different opcodes ('<tt><a |
| href="#i_add">add</a></tt>', '<tt><a href="#i_cast">cast</a></tt>', '<tt><a |
| href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a |
| href="#t_void">void</a></tt>', '<tt><a href="#t_uint">uint</a></tt>', |
| etc...), and others. These reserved words cannot conflict with |
| variable names, because none of them start with a '%' character.</p> |
| <p>Here is an example of LLVM code to multiply the integer variable '<tt>%X</tt>' |
| by 8:</p> |
| <p>The easy way:</p> |
| <pre> %result = <a href="#i_mul">mul</a> uint %X, 8<br></pre> |
| <p>After strength reduction:</p> |
| <pre> %result = <a href="#i_shl">shl</a> uint %X, ubyte 3<br></pre> |
| <p>And the hard way:</p> |
| <pre> <a href="#i_add">add</a> uint %X, %X <i>; yields {uint}:%0</i> |
| <a |
| href="#i_add">add</a> uint %0, %0 <i>; yields {uint}:%1</i> |
| %result = <a |
| href="#i_add">add</a> uint %1, %1<br></pre> |
| <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several |
| important lexical features of LLVM:</p> |
| <ol> |
| <li>Comments are delimited with a '<tt>;</tt>' and go until the end |
| of line.</li> |
| <li>Unnamed temporaries are created when the result of a computation |
| is not assigned to a named value.</li> |
| <li>Unnamed temporaries are numbered sequentially</li> |
| </ol> |
| <p>...and it also show a convention that we follow in this document. |
| When demonstrating instructions, we will follow an instruction with a |
| comment that defines the type and name of value produced. Comments are |
| shown in italic text.</p> |
| <p>The one non-intuitive notation for constants is the optional |
| hexidecimal form of floating point constants. For example, the form '<tt>double |
| 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double |
| 4.5e+15</tt>' which is also supported by the parser. The only time |
| hexadecimal floating point constants are useful (and the only time that |
| they are generated by the disassembler) is when an FP constant has to |
| be emitted that is not representable as a decimal floating point number |
| exactly. For example, NaN's, infinities, and other special cases are |
| represented in their IEEE hexadecimal format so that assembly and |
| disassembly do not cause any bits to change in the constants.</p> |
| </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="typesystem">Type System</a> </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_text"> |
| <p>The LLVM type system is one of the most important features of the |
| intermediate representation. Being typed enables a number of |
| optimizations to be performed on the IR directly, without having to do |
| extra analyses on the side before the transformation. A strong type |
| system makes it easier to read the generated code and enables novel |
| analyses and transformations that are not feasible to perform on normal |
| three address code representations.</p> |
| <!-- The written form for the type system was heavily influenced by the |
| syntactic problems with types in the C language<sup><a |
| href="#rw_stroustrup">1</a></sup>.<p> --> </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div> |
| <div class="doc_text"> |
| <p>The primitive types are the fundemental building blocks of the LLVM |
| system. The current set of primitive types are as follows:</p> |
| <p> |
| <table border="0" align="center"> |
| <tbody> |
| <tr> |
| <td> |
| <table border="1" cellspacing="0" cellpadding="4" align="center"> |
| <tbody> |
| <tr> |
| <td><tt>void</tt></td> |
| <td>No value</td> |
| </tr> |
| <tr> |
| <td><tt>ubyte</tt></td> |
| <td>Unsigned 8 bit value</td> |
| </tr> |
| <tr> |
| <td><tt>ushort</tt></td> |
| <td>Unsigned 16 bit value</td> |
| </tr> |
| <tr> |
| <td><tt>uint</tt></td> |
| <td>Unsigned 32 bit value</td> |
| </tr> |
| <tr> |
| <td><tt>ulong</tt></td> |
| <td>Unsigned 64 bit value</td> |
| </tr> |
| <tr> |
| <td><tt>float</tt></td> |
| <td>32 bit floating point value</td> |
| </tr> |
| <tr> |
| <td><tt>label</tt></td> |
| <td>Branch destination</td> |
| </tr> |
| </tbody> |
| </table> |
| </td> |
| <td valign="top"> |
| <table border="1" cellspacing="0" cellpadding="4" align="center""> |
| <tbody> |
| <tr> |
| <td><tt>bool</tt></td> |
| <td>True or False value</td> |
| </tr> |
| <tr> |
| <td><tt>sbyte</tt></td> |
| <td>Signed 8 bit value</td> |
| </tr> |
| <tr> |
| <td><tt>short</tt></td> |
| <td>Signed 16 bit value</td> |
| </tr> |
| <tr> |
| <td><tt>int</tt></td> |
| <td>Signed 32 bit value</td> |
| </tr> |
| <tr> |
| <td><tt>long</tt></td> |
| <td>Signed 64 bit value</td> |
| </tr> |
| <tr> |
| <td><tt>double</tt></td> |
| <td>64 bit floating point value</td> |
| </tr> |
| </tbody> |
| </table> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_classifications">Type |
| Classifications</a> </div> |
| <div class="doc_text"> |
| <p>These different primitive types fall into a few useful |
| classifications:</p> |
| <p> |
| <table border="1" cellspacing="0" cellpadding="4" align="center"> |
| <tbody> |
| <tr> |
| <td><a name="t_signed">signed</a></td> |
| <td><tt>sbyte, short, int, long, float, double</tt></td> |
| </tr> |
| <tr> |
| <td><a name="t_unsigned">unsigned</a></td> |
| <td><tt>ubyte, ushort, uint, ulong</tt></td> |
| </tr> |
| <tr> |
| <td><a name="t_integer">integer</a></td> |
| <td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td> |
| </tr> |
| <tr> |
| <td><a name="t_integral">integral</a></td> |
| <td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td> |
| </tr> |
| <tr> |
| <td><a name="t_floating">floating point</a></td> |
| <td><tt>float, double</tt></td> |
| </tr> |
| <tr> |
| <td><a name="t_firstclass">first class</a></td> |
| <td><tt>bool, ubyte, sbyte, ushort, short,<br> |
| uint, int, ulong, long, float, double, <a href="#t_pointer">pointer</a></tt></td> |
| </tr> |
| </tbody> |
| </table> |
| </p> |
| <p>The <a href="#t_firstclass">first class</a> types are perhaps the |
| most important. Values of these types are the only ones which can be |
| produced by instructions, passed as arguments, or used as operands to |
| instructions. This means that all structures and arrays must be |
| manipulated either by pointer or by component.</p> |
| </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div> |
| <div class="doc_text"> |
| <p>The real power in LLVM comes from the derived types in the system. |
| This is what allows a programmer to represent arrays, functions, |
| pointers, and other useful types. Note that these derived types may be |
| recursive: For example, it is possible to have a two dimensional array.</p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div> |
| <div class="doc_text"> |
| <h5>Overview:</h5> |
| <p>The array type is a very simple derived type that arranges elements |
| sequentially in memory. The array type requires a size (number of |
| elements) and an underlying data type.</p> |
| <h5>Syntax:</h5> |
| <pre> [<# elements> x <elementtype>]<br></pre> |
| <p>The number of elements is a constant integer value, elementtype may |
| be any type with a size.</p> |
| <h5>Examples:</h5> |
| <p> <tt>[40 x int ]</tt>: Array of 40 integer values.<br> |
| <tt>[41 x int ]</tt>: Array of 41 integer values.<br> |
| <tt>[40 x uint]</tt>: Array of 40 unsigned integer values.</p> |
| <p> </p> |
| <p>Here are some examples of multidimensional arrays:</p> |
| <p> |
| <table border="0" cellpadding="0" cellspacing="0"> |
| <tbody> |
| <tr> |
| <td><tt>[3 x [4 x int]]</tt></td> |
| <td>: 3x4 array integer values.</td> |
| </tr> |
| <tr> |
| <td><tt>[12 x [10 x float]]</tt></td> |
| <td>: 12x10 array of single precision floating point values.</td> |
| </tr> |
| <tr> |
| <td><tt>[2 x [3 x [4 x uint]]]</tt></td> |
| <td>: 2x3x4 array of unsigned integer values.</td> |
| </tr> |
| </tbody> |
| </table> |
| </p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div> |
| <div class="doc_text"> |
| <h5>Overview:</h5> |
| <p>The function type can be thought of as a function signature. It |
| consists of a return type and a list of formal parameter types. |
| Function types are usually used when to build virtual function tables |
| (which are structures of pointers to functions), for indirect function |
| calls, and when defining a function.</p> |
| <h5>Syntax:</h5> |
| <pre> <returntype> (<parameter list>)<br></pre> |
| <p>Where '<tt><parameter list></tt>' is a comma-separated list of |
| type specifiers. Optionally, the parameter list may include a type <tt>...</tt>, |
| which indicates that the function takes a variable number of arguments. |
| Variable argument functions can access their arguments with the <a |
| href="#int_varargs">variable argument handling intrinsic</a> functions.</p> |
| <h5>Examples:</h5> |
| <p> |
| <table border="0" cellpadding="0" cellspacing="0"> |
| <tbody> |
| <tr> |
| <td><tt>int (int)</tt></td> |
| <td>: function taking an <tt>int</tt>, returning an <tt>int</tt></td> |
| </tr> |
| <tr> |
| <td><tt>float (int, int *) *</tt></td> |
| <td>: <a href="#t_pointer">Pointer</a> to a function that takes |
| an <tt>int</tt> and a <a href="#t_pointer">pointer</a> to <tt>int</tt>, |
| returning <tt>float</tt>.</td> |
| </tr> |
| <tr> |
| <td><tt>int (sbyte *, ...)</tt></td> |
| <td>: A vararg function that takes at least one <a |
| href="#t_pointer">pointer</a> to <tt>sbyte</tt> (signed char in C), |
| which returns an integer. This is the signature for <tt>printf</tt> |
| in LLVM.</td> |
| </tr> |
| </tbody> |
| </table> |
| </p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div> |
| <div class="doc_text"> |
| <h5>Overview:</h5> |
| <p>The structure type is used to represent a collection of data members |
| together in memory. The packing of the field types is defined to match |
| the ABI of the underlying processor. The elements of a structure may |
| be any type that has a size.</p> |
| <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> |
| and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a |
| field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' |
| instruction.</p> |
| <h5>Syntax:</h5> |
| <pre> { <type list> }<br></pre> |
| <h5>Examples:</h5> |
| <p> |
| <table border="0" cellpadding="0" cellspacing="0"> |
| <tbody> |
| <tr> |
| <td><tt>{ int, int, int }</tt></td> |
| <td>: a triple of three <tt>int</tt> values</td> |
| </tr> |
| <tr> |
| <td><tt>{ float, int (int) * }</tt></td> |
| <td>: A pair, where the first element is a <tt>float</tt> and the |
| second element is a <a href="#t_pointer">pointer</a> to a <a |
| href="t_function">function</a> that takes an <tt>int</tt>, returning |
| an <tt>int</tt>.</td> |
| </tr> |
| </tbody> |
| </table> |
| </p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div> |
| <div class="doc_text"> |
| <h5>Overview:</h5> |
| <p>As in many languages, the pointer type represents a pointer or |
| reference to another object, which must live in memory.</p> |
| <h5>Syntax:</h5> |
| <pre> <type> *<br></pre> |
| <h5>Examples:</h5> |
| <p> |
| <table border="0" cellpadding="0" cellspacing="0"> |
| <tbody> |
| <tr> |
| <td><tt>[4x int]*</tt></td> |
| <td>: <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> |
| of four <tt>int</tt> values</td> |
| </tr> |
| <tr> |
| <td><tt>int (int *) *</tt></td> |
| <td>: A <a href="#t_pointer">pointer</a> to a <a |
| href="t_function">function</a> that takes an <tt>int</tt>, returning |
| an <tt>int</tt>.</td> |
| </tr> |
| </tbody> |
| </table> |
| </p> |
| </div> |
| <!-- _______________________________________________________________________ --><!-- |
| <div class="doc_subsubsection"> |
| <a name="t_packed">Packed Type</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| Mention/decide that packed types work with saturation or not. Maybe have a packed+saturated type in addition to just a packed type.<p> |
| |
| Packed types should be 'nonsaturated' because standard data types are not saturated. Maybe have a saturated packed type?<p> |
| |
| </div> |
| |
| --><!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div> |
| <!-- *********************************************************************** --><!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="modulestructure">Module Structure</a> </div> |
| <div class="doc_text"> |
| <p>LLVM programs are composed of "Module"s, each of which is a |
| translation unit of the input programs. Each module consists of |
| functions, global variables, and symbol table entries. Modules may be |
| combined together with the LLVM linker, which merges function (and |
| global variable) definitions, resolves forward declarations, and merges |
| symbol table entries. Here is an example of the "hello world" module:</p> |
| <pre><i>; Declare the string constant as a global constant...</i> |
| <a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a |
| href="#globalvars">constant</a> <a href="#t_array">[13 x sbyte]</a> c"hello world\0A\00" <i>; [13 x sbyte]*</i> |
| |
| <i>; External declaration of the puts function</i> |
| <a href="#functionstructure">declare</a> int %puts(sbyte*) <i>; int(sbyte*)* </i> |
| |
| <i>; Definition of main function</i> |
| int %main() { <i>; int()* </i> |
| <i>; Convert [13x sbyte]* to sbyte *...</i> |
| %cast210 = <a |
| href="#i_getelementptr">getelementptr</a> [13 x sbyte]* %.LC0, long 0, long 0 <i>; sbyte*</i> |
| |
| <i>; Call puts function to write out the string to stdout...</i> |
| <a |
| href="#i_call">call</a> int %puts(sbyte* %cast210) <i>; int</i> |
| <a |
| href="#i_ret">ret</a> int 0<br>}<br></pre> |
| <p>This example is made up of a <a href="#globalvars">global variable</a> |
| named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" |
| function, and a <a href="#functionstructure">function definition</a> |
| for "<tt>main</tt>".</p> |
| <a name="linkage"> In general, a module is made up of a list of global |
| values, where both functions and global variables are global values. |
| Global values are represented by a pointer to a memory location (in |
| this case, a pointer to an array of char, and a pointer to a function), |
| and have one of the following linkage types:</a> |
| <p> </p> |
| <dl> |
| <a name="linkage_internal"> <dt><tt><b>internal</b></tt> </dt> |
| <dd>Global values with internal linkage are only directly accessible |
| by objects in the current module. In particular, linking code into a |
| module with an internal global value may cause the internal to be |
| renamed as necessary to avoid collisions. Because the symbol is |
| internal to the module, all references can be updated. This |
| corresponds to the notion of the '<tt>static</tt>' keyword in C, or the |
| idea of "anonymous namespaces" in C++. |
| <p> </p> |
| </dd> |
| </a><a name="linkage_linkonce"> <dt><tt><b>linkonce</b></tt>: </dt> |
| <dd>"<tt>linkonce</tt>" linkage is similar to <tt>internal</tt> |
| linkage, with the twist that linking together two modules defining the |
| same <tt>linkonce</tt> globals will cause one of the globals to be |
| discarded. This is typically used to implement inline functions. |
| Unreferenced <tt>linkonce</tt> globals are allowed to be discarded. |
| <p> </p> |
| </dd> |
| </a><a name="linkage_weak"> <dt><tt><b>weak</b></tt>: </dt> |
| <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> |
| linkage, except that unreferenced <tt>weak</tt> globals may not be |
| discarded. This is used to implement constructs in C such as "<tt>int |
| X;</tt>" at global scope. |
| <p> </p> |
| </dd> |
| </a><a name="linkage_appending"> <dt><tt><b>appending</b></tt>: </dt> |
| <dd>"<tt>appending</tt>" linkage may only be applied to global |
| variables of pointer to array type. When two global variables with |
| appending linkage are linked together, the two global arrays are |
| appended together. This is the LLVM, typesafe, equivalent of having |
| the system linker append together "sections" with identical names when |
| .o files are linked. |
| <p> </p> |
| </dd> |
| </a><a name="linkage_external"> <dt><tt><b>externally visible</b></tt>:</dt> |
| <dd>If none of the above identifiers are used, the global is |
| externally visible, meaning that it participates in linkage and can be |
| used to resolve external symbol references. |
| <p> </p> |
| </dd> |
| </a> |
| </dl> |
| <p> </p> |
| <p><a name="linkage_external">For example, since the "<tt>.LC0</tt>" |
| variable is defined to be internal, if another module defined a "<tt>.LC0</tt>" |
| variable and was linked with this one, one of the two would be renamed, |
| preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are |
| external (i.e., lacking any linkage declarations), they are accessible |
| outside of the current module. It is illegal for a function <i>declaration</i> |
| to have any linkage type other than "externally visible".</a></p> |
| </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="globalvars">Global Variables</a> </div> |
| <div class="doc_text"> |
| <p>Global variables define regions of memory allocated at compilation |
| time instead of run-time. Global variables may optionally be |
| initialized. A variable may be defined as a global "constant", which |
| indicates that the contents of the variable will never be modified |
| (opening options for optimization). Constants must always have an |
| initial value.</p> |
| <p>As SSA values, global variables define pointer values that are in |
| scope (i.e. they dominate) for all basic blocks in the program. Global |
| variables always define a pointer to their "content" type because they |
| describe a region of memory, and all memory objects in LLVM are |
| accessed through pointers.</p> |
| </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="functionstructure">Functions</a> </div> |
| <div class="doc_text"> |
| <p>LLVM function definitions are composed of a (possibly empty) |
| argument list, an opening curly brace, a list of basic blocks, and a |
| closing curly brace. LLVM function declarations are defined with the "<tt>declare</tt>" |
| keyword, a function name, and a function signature.</p> |
| <p>A function definition contains a list of basic blocks, forming the |
| CFG for the function. Each basic block may optionally start with a |
| label (giving the basic block a symbol table entry), contains a list of |
| instructions, and ends with a <a href="#terminators">terminator</a> |
| instruction (such as a branch or function return).</p> |
| <p>The first basic block in program is special in two ways: it is |
| immediately executed on entrance to the function, and it is not allowed |
| to have predecessor basic blocks (i.e. there can not be any branches to |
| the entry block of a function). Because the block can have no |
| predecessors, it also cannot have any <a href="#i_phi">PHI nodes</a>.</p> |
| </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="instref">Instruction Reference</a> </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_text"> |
| <p>The LLVM instruction set consists of several different |
| classifications of instructions: <a href="#terminators">terminator |
| instructions</a>, <a href="#binaryops">binary instructions</a>, <a |
| href="#memoryops">memory instructions</a>, and <a href="#otherops">other |
| instructions</a>.</p> |
| </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="terminators">Terminator |
| Instructions</a> </div> |
| <div class="doc_text"> |
| <p>As mentioned <a href="#functionstructure">previously</a>, every |
| basic block in a program ends with a "Terminator" instruction, which |
| indicates which block should be executed after the current block is |
| finished. These terminator instructions typically yield a '<tt>void</tt>' |
| value: they produce control flow, not values (the one exception being |
| the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p> |
| <p>There are five different terminator instructions: the '<a |
| href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>' |
| instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction, |
| the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, and the '<a |
| href="#i_unwind"><tt>unwind</tt></a>' instruction.</p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> ret <type> <value> <i>; Return a value from a non-void function</i> |
| ret void <i>; Return from void function</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>ret</tt>' instruction is used to return control flow (and a |
| value) from a function, back to the caller.</p> |
| <p>There are two forms of the '<tt>ret</tt>' instructruction: one that |
| returns a value and then causes control flow, and one that just causes |
| control flow to occur.</p> |
| <h5>Arguments:</h5> |
| <p>The '<tt>ret</tt>' instruction may return any '<a |
| href="#t_firstclass">first class</a>' type. Notice that a function is |
| not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>' |
| instruction inside of the function that returns a value that does not |
| match the return type of the function.</p> |
| <h5>Semantics:</h5> |
| <p>When the '<tt>ret</tt>' instruction is executed, control flow |
| returns back to the calling function's context. If the caller is a "<a |
| href="#i_call"><tt>call</tt></a> instruction, execution continues at |
| the instruction after the call. If the caller was an "<a |
| href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues |
| at the beginning "normal" of the destination block. If the instruction |
| returns a value, that value shall set the call or invoke instruction's |
| return value.</p> |
| <h5>Example:</h5> |
| <pre> ret int 5 <i>; Return an integer value of 5</i> |
| ret void <i>; Return from a void function</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> br bool <cond>, label <iftrue>, label <iffalse><br> br label <dest> <i>; Unconditional branch</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>br</tt>' instruction is used to cause control flow to |
| transfer to a different basic block in the current function. There are |
| two forms of this instruction, corresponding to a conditional branch |
| and an unconditional branch.</p> |
| <h5>Arguments:</h5> |
| <p>The conditional branch form of the '<tt>br</tt>' instruction takes a |
| single '<tt>bool</tt>' value and two '<tt>label</tt>' values. The |
| unconditional form of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' |
| value as a target.</p> |
| <h5>Semantics:</h5> |
| <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>' |
| argument is evaluated. If the value is <tt>true</tt>, control flows |
| to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>, |
| control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p> |
| <h5>Example:</h5> |
| <pre>Test:<br> %cond = <a href="#i_setcc">seteq</a> int %a, %b<br> br bool %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a |
| href="#i_ret">ret</a> int 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> int 0<br></pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_switch">'<tt>switch</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> switch uint <value>, label <defaultdest> [ int <val>, label &dest>, ... ]<br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>switch</tt>' instruction is used to transfer control flow |
| to one of several different places. It is a generalization of the '<tt>br</tt>' |
| instruction, allowing a branch to occur to one of many possible |
| destinations.</p> |
| <h5>Arguments:</h5> |
| <p>The '<tt>switch</tt>' instruction uses three parameters: a '<tt>uint</tt>' |
| comparison value '<tt>value</tt>', a default '<tt>label</tt>' |
| destination, and an array of pairs of comparison value constants and '<tt>label</tt>'s.</p> |
| <h5>Semantics:</h5> |
| <p>The <tt>switch</tt> instruction specifies a table of values and |
| destinations. When the '<tt>switch</tt>' instruction is executed, this |
| table is searched for the given value. If the value is found, the |
| corresponding destination is branched to, otherwise the default value |
| it transfered to.</p> |
| <h5>Implementation:</h5> |
| <p>Depending on properties of the target machine and the particular <tt>switch</tt> |
| instruction, this instruction may be code generated as a series of |
| chained conditional branches, or with a lookup table.</p> |
| <h5>Example:</h5> |
| <pre> <i>; Emulate a conditional br instruction</i> |
| %Val = <a |
| href="#i_cast">cast</a> bool %value to uint<br> switch uint %Val, label %truedest [int 0, label %falsedest ]<br><br> <i>; Emulate an unconditional br instruction</i> |
| switch uint 0, label %dest [ ] |
| |
| <i>; Implement a jump table:</i> |
| switch uint %val, label %otherwise [ int 0, label %onzero, |
| int 1, label %onone, |
| int 2, label %ontwo ] |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_invoke">'<tt>invoke</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = invoke <ptr to function ty> %<function ptr val>(<function args>)<br> to label <normal label> except label <exception label><br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>invoke</tt>' instruction causes control to transfer to a |
| specified function, with the possibility of control flow transfer to |
| either the '<tt>normal</tt>' <tt>label</tt> label or the '<tt>exception</tt>'<tt>label</tt>. |
| If the callee function returns with the "<tt><a href="#i_ret">ret</a></tt>" |
| instruction, control flow will return to the "normal" label. If the |
| callee (or any indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>" |
| instruction, control is interrupted, and continued at the dynamically |
| nearest "except" label.</p> |
| <h5>Arguments:</h5> |
| <p>This instruction requires several arguments:</p> |
| <ol> |
| <li>'<tt>ptr to function ty</tt>': shall be the signature of the |
| pointer to function value being invoked. In most cases, this is a |
| direct function invocation, but indirect <tt>invoke</tt>s are just as |
| possible, branching off an arbitrary pointer to function value. </li> |
| <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer |
| to a function to be invoked. </li> |
| <li>'<tt>function args</tt>': argument list whose types match the |
| function signature argument types. If the function signature indicates |
| the function accepts a variable number of arguments, the extra |
| arguments can be specified. </li> |
| <li>'<tt>normal label</tt>': the label reached when the called |
| function executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li> |
| <li>'<tt>exception label</tt>': the label reached when a callee |
| returns with the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li> |
| </ol> |
| <h5>Semantics:</h5> |
| <p>This instruction is designed to operate as a standard '<tt><a |
| href="#i_call">call</a></tt>' instruction in most regards. The |
| primary difference is that it establishes an association with a label, |
| which is used by the runtime library to unwind the stack.</p> |
| <p>This instruction is used in languages with destructors to ensure |
| that proper cleanup is performed in the case of either a <tt>longjmp</tt> |
| or a thrown exception. Additionally, this is important for |
| implementation of '<tt>catch</tt>' clauses in high-level languages that |
| support them.</p> |
| <h5>Example:</h5> |
| <pre> %retval = invoke int %Test(int 15)<br> to label %Continue<br> except label %TestCleanup <i>; {int}:retval set</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> unwind<br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing |
| control flow at the first callee in the dynamic call stack which used |
| an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the |
| call. This is primarily used to implement exception handling.</p> |
| <h5>Semantics:</h5> |
| <p>The '<tt>unwind</tt>' intrinsic causes execution of the current |
| function to immediately halt. The dynamic call stack is then searched |
| for the first <a href="#i_invoke"><tt>invoke</tt></a> instruction on |
| the call stack. Once found, execution continues at the "exceptional" |
| destination block specified by the <tt>invoke</tt> instruction. If |
| there is no <tt>invoke</tt> instruction in the dynamic call chain, |
| undefined behavior results.</p> |
| </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div> |
| <div class="doc_text"> |
| <p>Binary operators are used to do most of the computation in a |
| program. They require two operands, execute an operation on them, and |
| produce a single value. The result value of a binary operator is not |
| necessarily the same type as its operands.</p> |
| <p>There are several different binary operators:</p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = add <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p> |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>add</tt>' instruction must be either <a |
| href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> |
| values. Both arguments must have identical types.</p> |
| <h5>Semantics:</h5> |
| <p>The value produced is the integer or floating point sum of the two |
| operands.</p> |
| <h5>Example:</h5> |
| <pre> <result> = add int 4, %var <i>; yields {int}:result = 4 + %var</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = sub <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>sub</tt>' instruction returns the difference of its two |
| operands.</p> |
| <p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>' |
| instruction present in most other intermediate representations.</p> |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>sub</tt>' instruction must be either <a |
| href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> |
| values. Both arguments must have identical types.</p> |
| <h5>Semantics:</h5> |
| <p>The value produced is the integer or floating point difference of |
| the two operands.</p> |
| <h5>Example:</h5> |
| <pre> <result> = sub int 4, %var <i>; yields {int}:result = 4 - %var</i> |
| <result> = sub int 0, %val <i>; yields {int}:result = -%var</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = mul <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>mul</tt>' instruction returns the product of its two |
| operands.</p> |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>mul</tt>' instruction must be either <a |
| href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> |
| values. Both arguments must have identical types.</p> |
| <h5>Semantics:</h5> |
| <p>The value produced is the integer or floating point product of the |
| two operands.</p> |
| <p>There is no signed vs unsigned multiplication. The appropriate |
| action is taken based on the type of the operand.</p> |
| <h5>Example:</h5> |
| <pre> <result> = mul int 4, %var <i>; yields {int}:result = 4 * %var</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_div">'<tt>div</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = div <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>div</tt>' instruction returns the quotient of its two |
| operands.</p> |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>div</tt>' instruction must be either <a |
| href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> |
| values. Both arguments must have identical types.</p> |
| <h5>Semantics:</h5> |
| <p>The value produced is the integer or floating point quotient of the |
| two operands.</p> |
| <h5>Example:</h5> |
| <pre> <result> = div int 4, %var <i>; yields {int}:result = 4 / %var</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_rem">'<tt>rem</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = rem <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>rem</tt>' instruction returns the remainder from the |
| division of its two operands.</p> |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>rem</tt>' instruction must be either <a |
| href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> |
| values. Both arguments must have identical types.</p> |
| <h5>Semantics:</h5> |
| <p>This returns the <i>remainder</i> of a division (where the result |
| has the same sign as the divisor), not the <i>modulus</i> (where the |
| result has the same sign as the dividend) of a value. For more |
| information about the difference, see: <a |
| href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The |
| Math Forum</a>.</p> |
| <h5>Example:</h5> |
| <pre> <result> = rem int 4, %var <i>; yields {int}:result = 4 % %var</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_setcc">'<tt>set<i>cc</i></tt>' |
| Instructions</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = seteq <ty> <var1>, <var2> <i>; yields {bool}:result</i> |
| <result> = setne <ty> <var1>, <var2> <i>; yields {bool}:result</i> |
| <result> = setlt <ty> <var1>, <var2> <i>; yields {bool}:result</i> |
| <result> = setgt <ty> <var1>, <var2> <i>; yields {bool}:result</i> |
| <result> = setle <ty> <var1>, <var2> <i>; yields {bool}:result</i> |
| <result> = setge <ty> <var1>, <var2> <i>; yields {bool}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>set<i>cc</i></tt>' family of instructions returns a boolean |
| value based on a comparison of their two operands.</p> |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>set<i>cc</i></tt>' instructions must |
| be of <a href="#t_firstclass">first class</a> type (it is not possible |
| to compare '<tt>label</tt>'s, '<tt>array</tt>'s, '<tt>structure</tt>' |
| or '<tt>void</tt>' values, etc...). Both arguments must have identical |
| types.</p> |
| <h5>Semantics:</h5> |
| <p>The '<tt>seteq</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' |
| value if both operands are equal.<br> |
| The '<tt>setne</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' |
| value if both operands are unequal.<br> |
| The '<tt>setlt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' |
| value if the first operand is less than the second operand.<br> |
| The '<tt>setgt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' |
| value if the first operand is greater than the second operand.<br> |
| The '<tt>setle</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' |
| value if the first operand is less than or equal to the second operand.<br> |
| The '<tt>setge</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' |
| value if the first operand is greater than or equal to the second |
| operand.</p> |
| <h5>Example:</h5> |
| <pre> <result> = seteq int 4, 5 <i>; yields {bool}:result = false</i> |
| <result> = setne float 4, 5 <i>; yields {bool}:result = true</i> |
| <result> = setlt uint 4, 5 <i>; yields {bool}:result = true</i> |
| <result> = setgt sbyte 4, 5 <i>; yields {bool}:result = false</i> |
| <result> = setle sbyte 4, 5 <i>; yields {bool}:result = true</i> |
| <result> = setge sbyte 4, 5 <i>; yields {bool}:result = false</i> |
| </pre> |
| </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary |
| Operations</a> </div> |
| <div class="doc_text"> |
| <p>Bitwise binary operators are used to do various forms of |
| bit-twiddling in a program. They are generally very efficient |
| instructions, and can commonly be strength reduced from other |
| instructions. They require two operands, execute an operation on them, |
| and produce a single value. The resulting value of the bitwise binary |
| operators is always the same type as its first operand.</p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = and <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>and</tt>' instruction returns the bitwise logical and of |
| its two operands.</p> |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>and</tt>' instruction must be <a |
| href="#t_integral">integral</a> values. Both arguments must have |
| identical types.</p> |
| <h5>Semantics:</h5> |
| <p>The truth table used for the '<tt>and</tt>' instruction is:</p> |
| <p> </p> |
| <center> |
| <table border="1" cellspacing="0" cellpadding="4"> |
| <tbody> |
| <tr> |
| <td>In0</td> |
| <td>In1</td> |
| <td>Out</td> |
| </tr> |
| <tr> |
| <td>0</td> |
| <td>0</td> |
| <td>0</td> |
| </tr> |
| <tr> |
| <td>0</td> |
| <td>1</td> |
| <td>0</td> |
| </tr> |
| <tr> |
| <td>1</td> |
| <td>0</td> |
| <td>0</td> |
| </tr> |
| <tr> |
| <td>1</td> |
| <td>1</td> |
| <td>1</td> |
| </tr> |
| </tbody> |
| </table> |
| </center> |
| <h5>Example:</h5> |
| <pre> <result> = and int 4, %var <i>; yields {int}:result = 4 & %var</i> |
| <result> = and int 15, 40 <i>; yields {int}:result = 8</i> |
| <result> = and int 4, 8 <i>; yields {int}:result = 0</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = or <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive |
| or of its two operands.</p> |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>or</tt>' instruction must be <a |
| href="#t_integral">integral</a> values. Both arguments must have |
| identical types.</p> |
| <h5>Semantics:</h5> |
| <p>The truth table used for the '<tt>or</tt>' instruction is:</p> |
| <p> </p> |
| <center> |
| <table border="1" cellspacing="0" cellpadding="4"> |
| <tbody> |
| <tr> |
| <td>In0</td> |
| <td>In1</td> |
| <td>Out</td> |
| </tr> |
| <tr> |
| <td>0</td> |
| <td>0</td> |
| <td>0</td> |
| </tr> |
| <tr> |
| <td>0</td> |
| <td>1</td> |
| <td>1</td> |
| </tr> |
| <tr> |
| <td>1</td> |
| <td>0</td> |
| <td>1</td> |
| </tr> |
| <tr> |
| <td>1</td> |
| <td>1</td> |
| <td>1</td> |
| </tr> |
| </tbody> |
| </table> |
| </center> |
| <h5>Example:</h5> |
| <pre> <result> = or int 4, %var <i>; yields {int}:result = 4 | %var</i> |
| <result> = or int 15, 40 <i>; yields {int}:result = 47</i> |
| <result> = or int 4, 8 <i>; yields {int}:result = 12</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = xor <ty> <var1>, <var2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive |
| or of its two operands. The <tt>xor</tt> is used to implement the |
| "one's complement" operation, which is the "~" operator in C.</p> |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>xor</tt>' instruction must be <a |
| href="#t_integral">integral</a> values. Both arguments must have |
| identical types.</p> |
| <h5>Semantics:</h5> |
| <p>The truth table used for the '<tt>xor</tt>' instruction is:</p> |
| <p> </p> |
| <center> |
| <table border="1" cellspacing="0" cellpadding="4"> |
| <tbody> |
| <tr> |
| <td>In0</td> |
| <td>In1</td> |
| <td>Out</td> |
| </tr> |
| <tr> |
| <td>0</td> |
| <td>0</td> |
| <td>0</td> |
| </tr> |
| <tr> |
| <td>0</td> |
| <td>1</td> |
| <td>1</td> |
| </tr> |
| <tr> |
| <td>1</td> |
| <td>0</td> |
| <td>1</td> |
| </tr> |
| <tr> |
| <td>1</td> |
| <td>1</td> |
| <td>0</td> |
| </tr> |
| </tbody> |
| </table> |
| </center> |
| <p> </p> |
| <h5>Example:</h5> |
| <pre> <result> = xor int 4, %var <i>; yields {int}:result = 4 ^ %var</i> |
| <result> = xor int 15, 40 <i>; yields {int}:result = 39</i> |
| <result> = xor int 4, 8 <i>; yields {int}:result = 12</i> |
| <result> = xor int %V, -1 <i>; yields {int}:result = ~%V</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = shl <ty> <var1>, ubyte <var2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>shl</tt>' instruction returns the first operand shifted to |
| the left a specified number of bits.</p> |
| <h5>Arguments:</h5> |
| <p>The first argument to the '<tt>shl</tt>' instruction must be an <a |
| href="#t_integer">integer</a> type. The second argument must be an '<tt>ubyte</tt>' |
| type.</p> |
| <h5>Semantics:</h5> |
| <p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p> |
| <h5>Example:</h5> |
| <pre> <result> = shl int 4, ubyte %var <i>; yields {int}:result = 4 << %var</i> |
| <result> = shl int 4, ubyte 2 <i>; yields {int}:result = 16</i> |
| <result> = shl int 1, ubyte 10 <i>; yields {int}:result = 1024</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_shr">'<tt>shr</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = shr <ty> <var1>, ubyte <var2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>shr</tt>' instruction returns the first operand shifted to |
| the right a specified number of bits.</p> |
| <h5>Arguments:</h5> |
| <p>The first argument to the '<tt>shr</tt>' instruction must be an <a |
| href="#t_integer">integer</a> type. The second argument must be an '<tt>ubyte</tt>' |
| type.</p> |
| <h5>Semantics:</h5> |
| <p>If the first argument is a <a href="#t_signed">signed</a> type, the |
| most significant bit is duplicated in the newly free'd bit positions. |
| If the first argument is unsigned, zero bits shall fill the empty |
| positions.</p> |
| <h5>Example:</h5> |
| <pre> <result> = shr int 4, ubyte %var <i>; yields {int}:result = 4 >> %var</i> |
| <result> = shr uint 4, ubyte 1 <i>; yields {uint}:result = 2</i> |
| <result> = shr int 4, ubyte 2 <i>; yields {int}:result = 1</i> |
| <result> = shr sbyte 4, ubyte 3 <i>; yields {sbyte}:result = 0</i> |
| <result> = shr sbyte -2, ubyte 1 <i>; yields {sbyte}:result = -1</i> |
| </pre> |
| </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="memoryops">Memory Access |
| Operations</a></div> |
| <div class="doc_text"> |
| <p>A key design point of an SSA-based representation is how it |
| represents memory. In LLVM, no memory locations are in SSA form, which |
| makes things very simple. This section describes how to read, write, |
| allocate and free memory in LLVM.</p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_malloc">'<tt>malloc</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = malloc <type>, uint <NumElements> <i>; yields {type*}:result</i> |
| <result> = malloc <type> <i>; yields {type*}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>malloc</tt>' instruction allocates memory from the system |
| heap and returns a pointer to it.</p> |
| <h5>Arguments:</h5> |
| <p>The the '<tt>malloc</tt>' instruction allocates <tt>sizeof(<type>)*NumElements</tt> |
| bytes of memory from the operating system, and returns a pointer of the |
| appropriate type to the program. The second form of the instruction is |
| a shorter version of the first instruction that defaults to allocating |
| one element.</p> |
| <p>'<tt>type</tt>' must be a sized type.</p> |
| <h5>Semantics:</h5> |
| <p>Memory is allocated using the system "<tt>malloc</tt>" function, and |
| a pointer is returned.</p> |
| <h5>Example:</h5> |
| <pre> %array = malloc [4 x ubyte ] <i>; yields {[%4 x ubyte]*}:array</i> |
| |
| %size = <a |
| href="#i_add">add</a> uint 2, 2 <i>; yields {uint}:size = uint 4</i> |
| %array1 = malloc ubyte, uint 4 <i>; yields {ubyte*}:array1</i> |
| %array2 = malloc [12 x ubyte], uint %size <i>; yields {[12 x ubyte]*}:array2</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_free">'<tt>free</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> free <type> <value> <i>; yields {void}</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>free</tt>' instruction returns memory back to the unused |
| memory heap, to be reallocated in the future.</p> |
| <p> </p> |
| <h5>Arguments:</h5> |
| <p>'<tt>value</tt>' shall be a pointer value that points to a value |
| that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' |
| instruction.</p> |
| <h5>Semantics:</h5> |
| <p>Access to the memory pointed to by the pointer is not longer defined |
| after this instruction executes.</p> |
| <h5>Example:</h5> |
| <pre> %array = <a href="#i_malloc">malloc</a> [4 x ubyte] <i>; yields {[4 x ubyte]*}:array</i> |
| free [4 x ubyte]* %array |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_alloca">'<tt>alloca</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = alloca <type>, uint <NumElements> <i>; yields {type*}:result</i> |
| <result> = alloca <type> <i>; yields {type*}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>alloca</tt>' instruction allocates memory on the current |
| stack frame of the procedure that is live until the current function |
| returns to its caller.</p> |
| <h5>Arguments:</h5> |
| <p>The the '<tt>alloca</tt>' instruction allocates <tt>sizeof(<type>)*NumElements</tt> |
| bytes of memory on the runtime stack, returning a pointer of the |
| appropriate type to the program. The second form of the instruction is |
| a shorter version of the first that defaults to allocating one element.</p> |
| <p>'<tt>type</tt>' may be any sized type.</p> |
| <h5>Semantics:</h5> |
| <p>Memory is allocated, a pointer is returned. '<tt>alloca</tt>'d |
| memory is automatically released when the function returns. The '<tt>alloca</tt>' |
| instruction is commonly used to represent automatic variables that must |
| have an address available. When the function returns (either with the <tt><a |
| href="#i_ret">ret</a></tt> or <tt><a href="#i_invoke">invoke</a></tt> |
| instructions), the memory is reclaimed.</p> |
| <h5>Example:</h5> |
| <pre> %ptr = alloca int <i>; yields {int*}:ptr</i> |
| %ptr = alloca int, uint 4 <i>; yields {int*}:ptr</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = load <ty>* <pointer><br> <result> = volatile load <ty>* <pointer><br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>load</tt>' instruction is used to read from memory.</p> |
| <h5>Arguments:</h5> |
| <p>The argument to the '<tt>load</tt>' instruction specifies the memory |
| address to load from. The pointer must point to a <a |
| href="t_firstclass">first class</a> type. If the <tt>load</tt> is |
| marked as <tt>volatile</tt> then the optimizer is not allowed to modify |
| the number or order of execution of this <tt>load</tt> with other |
| volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt> |
| instructions. </p> |
| <h5>Semantics:</h5> |
| <p>The location of memory pointed to is loaded.</p> |
| <h5>Examples:</h5> |
| <pre> %ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i> |
| <a |
| href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i> |
| %val = load int* %ptr <i>; yields {int}:val = int 3</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>' |
| Instruction</a> </div> |
| <h5>Syntax:</h5> |
| <pre> store <ty> <value>, <ty>* <pointer> <i>; yields {void}</i> |
| volatile store <ty> <value>, <ty>* <pointer> <i>; yields {void}</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>store</tt>' instruction is used to write to memory.</p> |
| <h5>Arguments:</h5> |
| <p>There are two arguments to the '<tt>store</tt>' instruction: a value |
| to store and an address to store it into. The type of the '<tt><pointer></tt>' |
| operand must be a pointer to the type of the '<tt><value></tt>' |
| operand. If the <tt>store</tt> is marked as <tt>volatile</tt> then the |
| optimizer is not allowed to modify the number or order of execution of |
| this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a |
| href="#i_store">store</a></tt> instructions.</p> |
| <h5>Semantics:</h5> |
| <p>The contents of memory are updated to contain '<tt><value></tt>' |
| at the location specified by the '<tt><pointer></tt>' operand.</p> |
| <h5>Example:</h5> |
| <pre> %ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i> |
| <a |
| href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i> |
| %val = load int* %ptr <i>; yields {int}:val = int 3</i> |
| </pre> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_getelementptr">'<tt>getelementptr</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = getelementptr <ty>* <ptrval>{, long <aidx>|, ubyte <sidx>}*<br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>getelementptr</tt>' instruction is used to get the address |
| of a subelement of an aggregate data structure.</p> |
| <h5>Arguments:</h5> |
| <p>This instruction takes a list of <tt>long</tt> values and <tt>ubyte</tt> |
| constants that indicate what form of addressing to perform. The actual |
| types of the arguments provided depend on the type of the first pointer |
| argument. The '<tt>getelementptr</tt>' instruction is used to index |
| down through the type levels of a structure.</p> |
| <p>For example, let's consider a C code fragment and how it gets |
| compiled to LLVM:</p> |
| <pre>struct RT {<br> char A;<br> int B[10][20];<br> char C;<br>};<br>struct ST {<br> int X;<br> double Y;<br> struct RT Z;<br>};<br><br>int *foo(struct ST *s) {<br> return &s[1].Z.B[5][13];<br>}<br></pre> |
| <p>The LLVM code generated by the GCC frontend is:</p> |
| <pre>%RT = type { sbyte, [10 x [20 x int]], sbyte }<br>%ST = type { int, double, %RT }<br><br>int* "foo"(%ST* %s) {<br> %reg = getelementptr %ST* %s, long 1, ubyte 2, ubyte 1, long 5, long 13<br> ret int* %reg<br>}<br></pre> |
| <h5>Semantics:</h5> |
| <p>The index types specified for the '<tt>getelementptr</tt>' |
| instruction depend on the pointer type that is being index into. <a |
| href="t_pointer">Pointer</a> and <a href="t_array">array</a> types |
| require '<tt>long</tt>' values, and <a href="t_struct">structure</a> |
| types require '<tt>ubyte</tt>' <b>constants</b>.</p> |
| <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>' |
| type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ int, |
| double, %RT }</tt>' type, a structure. The second index indexes into |
| the third element of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ |
| sbyte, [10 x [20 x int]], sbyte }</tt>' type, another structure. The |
| third index indexes into the second element of the structure, yielding |
| a '<tt>[10 x [20 x int]]</tt>' type, an array. The two dimensions of |
| the array are subscripted into, yielding an '<tt>int</tt>' type. The '<tt>getelementptr</tt>' |
| instruction return a pointer to this element, thus yielding a '<tt>int*</tt>' |
| type.</p> |
| <p>Note that it is perfectly legal to index partially through a |
| structure, returning a pointer to an inner element. Because of this, |
| the LLVM code for the given testcase is equivalent to:</p> |
| <pre>int* "foo"(%ST* %s) {<br> %t1 = getelementptr %ST* %s , long 1 <i>; yields %ST*:%t1</i> |
| %t2 = getelementptr %ST* %t1, long 0, ubyte 2 <i>; yields %RT*:%t2</i> |
| %t3 = getelementptr %RT* %t2, long 0, ubyte 1 <i>; yields [10 x [20 x int]]*:%t3</i> |
| %t4 = getelementptr [10 x [20 x int]]* %t3, long 0, long 5 <i>; yields [20 x int]*:%t4</i> |
| %t5 = getelementptr [20 x int]* %t4, long 0, long 13 <i>; yields int*:%t5</i> |
| ret int* %t5 |
| } |
| </pre> |
| <h5>Example:</h5> |
| <pre> <i>; yields [12 x ubyte]*:aptr</i> |
| %aptr = getelementptr {int, [12 x ubyte]}* %sptr, long 0, ubyte 1<br></pre> |
| <h5> Note To The Novice:</h5> |
| When using indexing into global arrays with the '<tt>getelementptr</tt>' |
| instruction, you must remember that the </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div> |
| <div class="doc_text"> |
| <p>The instructions in this catagory are the "miscellaneous" |
| instructions, which defy better classification.</p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = phi <ty> [ <val0>, <label0>], ...<br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>phi</tt>' instruction is used to implement the φ node in |
| the SSA graph representing the function.</p> |
| <h5>Arguments:</h5> |
| <p>The type of the incoming values are specified with the first type |
| field. After this, the '<tt>phi</tt>' instruction takes a list of pairs |
| as arguments, with one pair for each predecessor basic block of the |
| current block. Only values of <a href="#t_firstclass">first class</a> |
| type may be used as the value arguments to the PHI node. Only labels |
| may be used as the label arguments.</p> |
| <p>There must be no non-phi instructions between the start of a basic |
| block and the PHI instructions: i.e. PHI instructions must be first in |
| a basic block.</p> |
| <h5>Semantics:</h5> |
| <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the |
| value specified by the parameter, depending on which basic block we |
| came from in the last <a href="#terminators">terminator</a> instruction.</p> |
| <h5>Example:</h5> |
| <pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi uint [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add uint %indvar, 1<br> br label %Loop<br></pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_cast">'<tt>cast .. to</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = cast <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>cast</tt>' instruction is used as the primitive means to |
| convert integers to floating point, change data type sizes, and break |
| type safety (by casting pointers).</p> |
| <h5>Arguments:</h5> |
| <p>The '<tt>cast</tt>' instruction takes a value to cast, which must be |
| a first class value, and a type to cast it to, which must also be a <a |
| href="#t_firstclass">first class</a> type.</p> |
| <h5>Semantics:</h5> |
| <p>This instruction follows the C rules for explicit casts when |
| determining how the data being cast must change to fit in its new |
| container.</p> |
| <p>When casting to bool, any value that would be considered true in the |
| context of a C '<tt>if</tt>' condition is converted to the boolean '<tt>true</tt>' |
| values, all else are '<tt>false</tt>'.</p> |
| <p>When extending an integral value from a type of one signness to |
| another (for example '<tt>sbyte</tt>' to '<tt>ulong</tt>'), the value |
| is sign-extended if the <b>source</b> value is signed, and |
| zero-extended if the source value is unsigned. <tt>bool</tt> values |
| are always zero extended into either zero or one.</p> |
| <h5>Example:</h5> |
| <pre> %X = cast int 257 to ubyte <i>; yields ubyte:1</i> |
| %Y = cast int 123 to bool <i>; yields bool:true</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_call">'<tt>call</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = call <ty>* <fnptrval>(<param list>)<br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>call</tt>' instruction represents a simple function call.</p> |
| <h5>Arguments:</h5> |
| <p>This instruction requires several arguments:</p> |
| <ol> |
| <li> |
| <p>'<tt>ty</tt>': shall be the signature of the pointer to function |
| value being invoked. The argument types must match the types implied |
| by this signature.</p> |
| </li> |
| <li> |
| <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a |
| function to be invoked. In most cases, this is a direct function |
| invocation, but indirect <tt>call</tt>s are just as possible, |
| calling an arbitrary pointer to function values.</p> |
| </li> |
| <li> |
| <p>'<tt>function args</tt>': argument list whose types match the |
| function signature argument types. If the function signature |
| indicates the function accepts a variable number of arguments, the |
| extra arguments can be specified.</p> |
| </li> |
| </ol> |
| <h5>Semantics:</h5> |
| <p>The '<tt>call</tt>' instruction is used to cause control flow to |
| transfer to a specified function, with its incoming arguments bound to |
| the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>' |
| instruction in the called function, control flow continues with the |
| instruction after the function call, and the return value of the |
| function is bound to the result argument. This is a simpler case of |
| the <a href="#i_invoke">invoke</a> instruction.</p> |
| <h5>Example:</h5> |
| <pre> %retval = call int %test(int %argc)<br> call int(sbyte*, ...) *%printf(sbyte* %msg, int 12, sbyte 42);<br></pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_vanext">'<tt>vanext</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <resultarglist> = vanext <va_list> <arglist>, <argty><br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>vanext</tt>' instruction is used to access arguments passed |
| through the "variable argument" area of a function call. It is used to |
| implement the <tt>va_arg</tt> macro in C.</p> |
| <h5>Arguments:</h5> |
| <p>This instruction takes a <tt>valist</tt> value and the type of the |
| argument. It returns another <tt>valist</tt>.</p> |
| <h5>Semantics:</h5> |
| <p>The '<tt>vanext</tt>' instruction advances the specified <tt>valist</tt> |
| past an argument of the specified type. In conjunction with the <a |
| href="#i_vaarg"><tt>vaarg</tt></a> instruction, it is used to implement |
| the <tt>va_arg</tt> macro available in C. For more information, see |
| the variable argument handling <a href="#int_varargs">Intrinsic |
| Functions</a>.</p> |
| <p>It is legal for this instruction to be called in a function which |
| does not take a variable number of arguments, for example, the <tt>vfprintf</tt> |
| function.</p> |
| <p><tt>vanext</tt> is an LLVM instruction instead of an <a |
| href="#intrinsics">intrinsic function</a> because it takes an type as |
| an argument.</p> |
| <h5>Example:</h5> |
| <p>See the <a href="#int_varargs">variable argument processing</a> |
| section.</p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_vaarg">'<tt>vaarg</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <resultval> = vaarg <va_list> <arglist>, <argty><br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>vaarg</tt>' instruction is used to access arguments passed |
| through the "variable argument" area of a function call. It is used to |
| implement the <tt>va_arg</tt> macro in C.</p> |
| <h5>Arguments:</h5> |
| <p>This instruction takes a <tt>valist</tt> value and the type of the |
| argument. It returns a value of the specified argument type.</p> |
| <h5>Semantics:</h5> |
| <p>The '<tt>vaarg</tt>' instruction loads an argument of the specified |
| type from the specified <tt>va_list</tt>. In conjunction with the <a |
| href="#i_vanext"><tt>vanext</tt></a> instruction, it is used to |
| implement the <tt>va_arg</tt> macro available in C. For more |
| information, see the variable argument handling <a href="#int_varargs">Intrinsic |
| Functions</a>.</p> |
| <p>It is legal for this instruction to be called in a function which |
| does not take a variable number of arguments, for example, the <tt>vfprintf</tt> |
| function.</p> |
| <p><tt>vaarg</tt> is an LLVM instruction instead of an <a |
| href="#intrinsics">intrinsic function</a> because it takes an type as |
| an argument.</p> |
| <h5>Example:</h5> |
| <p>See the <a href="#int_varargs">variable argument processing</a> |
| section.</p> |
| </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_text"> |
| <p>LLVM supports the notion of an "intrinsic function". These |
| functions have well known names and semantics, and are required to |
| follow certain restrictions. Overall, these instructions represent an |
| extension mechanism for the LLVM language that does not require |
| changing all of the transformations in LLVM to add to the language (or |
| the bytecode reader/writer, the parser, etc...).</p> |
| <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" |
| prefix, this prefix is reserved in LLVM for intrinsic names, thus |
| functions may not be named this. Intrinsic functions must always be |
| external functions: you cannot define the body of intrinsic functions. |
| Intrinsic functions may only be used in call or invoke instructions: it |
| is illegal to take the address of an intrinsic function. Additionally, |
| because intrinsic functions are part of the LLVM language, it is |
| required that they all be documented here if any are added.</p> |
| <p>Unless an intrinsic function is target-specific, there must be a |
| lowering pass to eliminate the intrinsic or all backends must support |
| the intrinsic function.</p> |
| </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="int_varargs">Variable Argument |
| Handling Intrinsics</a> </div> |
| <div class="doc_text"> |
| <p>Variable argument support is defined in LLVM with the <a |
| href="#i_vanext"><tt>vanext</tt></a> instruction and these three |
| intrinsic functions. These functions are related to the similarly |
| named macros defined in the <tt><stdarg.h></tt> header file.</p> |
| <p>All of these functions operate on arguments that use a |
| target-specific value type "<tt>va_list</tt>". The LLVM assembly |
| language reference manual does not define what this type is, so all |
| transformations should be prepared to handle intrinsics with any type |
| used.</p> |
| <p>This example shows how the <a href="#i_vanext"><tt>vanext</tt></a> |
| instruction and the variable argument handling intrinsic functions are |
| used.</p> |
| <pre>int %test(int %X, ...) {<br> ; Initialize variable argument processing<br> %ap = call sbyte*()* %<a |
| href="#i_va_start">llvm.va_start</a>()<br><br> ; Read a single integer argument<br> %tmp = vaarg sbyte* %ap, int<br><br> ; Advance to the next argument<br> %ap2 = vanext sbyte* %ap, int<br><br> ; Demonstrate usage of llvm.va_copy and llvm.va_end<br> %aq = call sbyte* (sbyte*)* %<a |
| href="#i_va_copy">llvm.va_copy</a>(sbyte* %ap2)<br> call void %<a |
| href="#i_va_end">llvm.va_end</a>(sbyte* %aq)<br><br> ; Stop processing of arguments.<br> call void %<a |
| href="#i_va_end">llvm.va_end</a>(sbyte* %ap2)<br> ret int %tmp<br>}<br></pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_va_start">'<tt>llvm.va_start</tt>' |
| Intrinsic</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> call va_list ()* %llvm.va_start()<br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>llvm.va_start</tt>' intrinsic returns a new <tt><arglist></tt> |
| for subsequent use by the variable argument intrinsics.</p> |
| <h5>Semantics:</h5> |
| <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt> |
| macro available in C. In a target-dependent way, it initializes and |
| returns a <tt>va_list</tt> element, so that the next <tt>vaarg</tt> |
| will produce the first variable argument passed to the function. Unlike |
| the C <tt>va_start</tt> macro, this intrinsic does not need to know the |
| last argument of the function, the compiler can figure that out.</p> |
| <p>Note that this intrinsic function is only legal to be called from |
| within the body of a variable argument function.</p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_va_end">'<tt>llvm.va_end</tt>' |
| Intrinsic</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> call void (va_list)* %llvm.va_end(va_list <arglist>)<br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt><arglist></tt> |
| which has been initialized previously with <tt><a href="#i_va_start">llvm.va_start</a></tt> |
| or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p> |
| <h5>Arguments:</h5> |
| <p>The argument is a <tt>va_list</tt> to destroy.</p> |
| <h5>Semantics:</h5> |
| <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt> |
| macro available in C. In a target-dependent way, it destroys the <tt>va_list</tt>. |
| Calls to <a href="#i_va_start"><tt>llvm.va_start</tt></a> and <a |
| href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly |
| with calls to <tt>llvm.va_end</tt>.</p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_va_copy">'<tt>llvm.va_copy</tt>' |
| Intrinsic</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> call va_list (va_list)* %llvm.va_copy(va_list <destarglist>)<br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument |
| position from the source argument list to the destination argument list.</p> |
| <h5>Arguments:</h5> |
| <p>The argument is the <tt>va_list</tt> to copy.</p> |
| <h5>Semantics:</h5> |
| <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> |
| macro available in C. In a target-dependent way, it copies the source <tt>va_list</tt> |
| element into the returned list. This intrinsic is necessary because the <tt><a |
| href="i_va_start">llvm.va_start</a></tt> intrinsic may be arbitrarily |
| complex and require memory allocation, for example.</p> |
| </div> |
| <!-- *********************************************************************** --> |
| <hr> |
| <div class="doc_footer"> |
| <address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address> |
| <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a> <br> |
| Last modified: $Date$ </div> |
| </body> |
| </html> |