| //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the implementation of the scalar evolution analysis |
| // engine, which is used primarily to analyze expressions involving induction |
| // variables in loops. |
| // |
| // There are several aspects to this library. First is the representation of |
| // scalar expressions, which are represented as subclasses of the SCEV class. |
| // These classes are used to represent certain types of subexpressions that we |
| // can handle. We only create one SCEV of a particular shape, so |
| // pointer-comparisons for equality are legal. |
| // |
| // One important aspect of the SCEV objects is that they are never cyclic, even |
| // if there is a cycle in the dataflow for an expression (ie, a PHI node). If |
| // the PHI node is one of the idioms that we can represent (e.g., a polynomial |
| // recurrence) then we represent it directly as a recurrence node, otherwise we |
| // represent it as a SCEVUnknown node. |
| // |
| // In addition to being able to represent expressions of various types, we also |
| // have folders that are used to build the *canonical* representation for a |
| // particular expression. These folders are capable of using a variety of |
| // rewrite rules to simplify the expressions. |
| // |
| // Once the folders are defined, we can implement the more interesting |
| // higher-level code, such as the code that recognizes PHI nodes of various |
| // types, computes the execution count of a loop, etc. |
| // |
| // TODO: We should use these routines and value representations to implement |
| // dependence analysis! |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // There are several good references for the techniques used in this analysis. |
| // |
| // Chains of recurrences -- a method to expedite the evaluation |
| // of closed-form functions |
| // Olaf Bachmann, Paul S. Wang, Eugene V. Zima |
| // |
| // On computational properties of chains of recurrences |
| // Eugene V. Zima |
| // |
| // Symbolic Evaluation of Chains of Recurrences for Loop Optimization |
| // Robert A. van Engelen |
| // |
| // Efficient Symbolic Analysis for Optimizing Compilers |
| // Robert A. van Engelen |
| // |
| // Using the chains of recurrences algebra for data dependence testing and |
| // induction variable substitution |
| // MS Thesis, Johnie Birch |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "scalar-evolution" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/GlobalAlias.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Operator.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ConstantRange.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/InstIterator.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumArrayLenItCounts, |
| "Number of trip counts computed with array length"); |
| STATISTIC(NumTripCountsComputed, |
| "Number of loops with predictable loop counts"); |
| STATISTIC(NumTripCountsNotComputed, |
| "Number of loops without predictable loop counts"); |
| STATISTIC(NumBruteForceTripCountsComputed, |
| "Number of loops with trip counts computed by force"); |
| |
| static cl::opt<unsigned> |
| MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, |
| cl::desc("Maximum number of iterations SCEV will " |
| "symbolically execute a constant " |
| "derived loop"), |
| cl::init(100)); |
| |
| static RegisterPass<ScalarEvolution> |
| R("scalar-evolution", "Scalar Evolution Analysis", false, true); |
| char ScalarEvolution::ID = 0; |
| |
| //===----------------------------------------------------------------------===// |
| // SCEV class definitions |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of the SCEV class. |
| // |
| |
| SCEV::~SCEV() {} |
| |
| void SCEV::dump() const { |
| print(errs()); |
| errs() << '\n'; |
| } |
| |
| bool SCEV::isZero() const { |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) |
| return SC->getValue()->isZero(); |
| return false; |
| } |
| |
| bool SCEV::isOne() const { |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) |
| return SC->getValue()->isOne(); |
| return false; |
| } |
| |
| bool SCEV::isAllOnesValue() const { |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) |
| return SC->getValue()->isAllOnesValue(); |
| return false; |
| } |
| |
| SCEVCouldNotCompute::SCEVCouldNotCompute() : |
| SCEV(FoldingSetNodeID(), scCouldNotCompute) {} |
| |
| bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { |
| llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
| return false; |
| } |
| |
| const Type *SCEVCouldNotCompute::getType() const { |
| llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
| return 0; |
| } |
| |
| bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { |
| llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
| return false; |
| } |
| |
| bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { |
| llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); |
| return false; |
| } |
| |
| void SCEVCouldNotCompute::print(raw_ostream &OS) const { |
| OS << "***COULDNOTCOMPUTE***"; |
| } |
| |
| bool SCEVCouldNotCompute::classof(const SCEV *S) { |
| return S->getSCEVType() == scCouldNotCompute; |
| } |
| |
| const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { |
| FoldingSetNodeID ID; |
| ID.AddInteger(scConstant); |
| ID.AddPointer(V); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = SCEVAllocator.Allocate<SCEVConstant>(); |
| new (S) SCEVConstant(ID, V); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| const SCEV *ScalarEvolution::getConstant(const APInt& Val) { |
| return getConstant(ConstantInt::get(getContext(), Val)); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { |
| return getConstant( |
| ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); |
| } |
| |
| const Type *SCEVConstant::getType() const { return V->getType(); } |
| |
| void SCEVConstant::print(raw_ostream &OS) const { |
| WriteAsOperand(OS, V, false); |
| } |
| |
| SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID, |
| unsigned SCEVTy, const SCEV *op, const Type *ty) |
| : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} |
| |
| bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { |
| return Op->dominates(BB, DT); |
| } |
| |
| bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { |
| return Op->properlyDominates(BB, DT); |
| } |
| |
| SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID, |
| const SCEV *op, const Type *ty) |
| : SCEVCastExpr(ID, scTruncate, op, ty) { |
| assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && |
| (Ty->isInteger() || isa<PointerType>(Ty)) && |
| "Cannot truncate non-integer value!"); |
| } |
| |
| void SCEVTruncateExpr::print(raw_ostream &OS) const { |
| OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; |
| } |
| |
| SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID, |
| const SCEV *op, const Type *ty) |
| : SCEVCastExpr(ID, scZeroExtend, op, ty) { |
| assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && |
| (Ty->isInteger() || isa<PointerType>(Ty)) && |
| "Cannot zero extend non-integer value!"); |
| } |
| |
| void SCEVZeroExtendExpr::print(raw_ostream &OS) const { |
| OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; |
| } |
| |
| SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID, |
| const SCEV *op, const Type *ty) |
| : SCEVCastExpr(ID, scSignExtend, op, ty) { |
| assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && |
| (Ty->isInteger() || isa<PointerType>(Ty)) && |
| "Cannot sign extend non-integer value!"); |
| } |
| |
| void SCEVSignExtendExpr::print(raw_ostream &OS) const { |
| OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; |
| } |
| |
| void SCEVCommutativeExpr::print(raw_ostream &OS) const { |
| assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); |
| const char *OpStr = getOperationStr(); |
| OS << "(" << *Operands[0]; |
| for (unsigned i = 1, e = Operands.size(); i != e; ++i) |
| OS << OpStr << *Operands[i]; |
| OS << ")"; |
| } |
| |
| bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| if (!getOperand(i)->dominates(BB, DT)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| if (!getOperand(i)->properlyDominates(BB, DT)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { |
| return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); |
| } |
| |
| bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { |
| return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT); |
| } |
| |
| void SCEVUDivExpr::print(raw_ostream &OS) const { |
| OS << "(" << *LHS << " /u " << *RHS << ")"; |
| } |
| |
| const Type *SCEVUDivExpr::getType() const { |
| // In most cases the types of LHS and RHS will be the same, but in some |
| // crazy cases one or the other may be a pointer. ScalarEvolution doesn't |
| // depend on the type for correctness, but handling types carefully can |
| // avoid extra casts in the SCEVExpander. The LHS is more likely to be |
| // a pointer type than the RHS, so use the RHS' type here. |
| return RHS->getType(); |
| } |
| |
| bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { |
| // Add recurrences are never invariant in the function-body (null loop). |
| if (!QueryLoop) |
| return false; |
| |
| // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. |
| if (QueryLoop->contains(L->getHeader())) |
| return false; |
| |
| // This recurrence is variant w.r.t. QueryLoop if any of its operands |
| // are variant. |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (!getOperand(i)->isLoopInvariant(QueryLoop)) |
| return false; |
| |
| // Otherwise it's loop-invariant. |
| return true; |
| } |
| |
| void SCEVAddRecExpr::print(raw_ostream &OS) const { |
| OS << "{" << *Operands[0]; |
| for (unsigned i = 1, e = Operands.size(); i != e; ++i) |
| OS << ",+," << *Operands[i]; |
| OS << "}<" << L->getHeader()->getName() + ">"; |
| } |
| |
| void SCEVFieldOffsetExpr::print(raw_ostream &OS) const { |
| // LLVM struct fields don't have names, so just print the field number. |
| OS << "offsetof(" << *STy << ", " << FieldNo << ")"; |
| } |
| |
| void SCEVAllocSizeExpr::print(raw_ostream &OS) const { |
| OS << "sizeof(" << *AllocTy << ")"; |
| } |
| |
| bool SCEVUnknown::isLoopInvariant(const Loop *L) const { |
| // All non-instruction values are loop invariant. All instructions are loop |
| // invariant if they are not contained in the specified loop. |
| // Instructions are never considered invariant in the function body |
| // (null loop) because they are defined within the "loop". |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| return L && !L->contains(I->getParent()); |
| return true; |
| } |
| |
| bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { |
| if (Instruction *I = dyn_cast<Instruction>(getValue())) |
| return DT->dominates(I->getParent(), BB); |
| return true; |
| } |
| |
| bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { |
| if (Instruction *I = dyn_cast<Instruction>(getValue())) |
| return DT->properlyDominates(I->getParent(), BB); |
| return true; |
| } |
| |
| const Type *SCEVUnknown::getType() const { |
| return V->getType(); |
| } |
| |
| void SCEVUnknown::print(raw_ostream &OS) const { |
| WriteAsOperand(OS, V, false); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SCEV Utilities |
| //===----------------------------------------------------------------------===// |
| |
| static bool CompareTypes(const Type *A, const Type *B) { |
| if (A->getTypeID() != B->getTypeID()) |
| return A->getTypeID() < B->getTypeID(); |
| if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { |
| const IntegerType *BI = cast<IntegerType>(B); |
| return AI->getBitWidth() < BI->getBitWidth(); |
| } |
| if (const PointerType *AI = dyn_cast<PointerType>(A)) { |
| const PointerType *BI = cast<PointerType>(B); |
| return CompareTypes(AI->getElementType(), BI->getElementType()); |
| } |
| if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { |
| const ArrayType *BI = cast<ArrayType>(B); |
| if (AI->getNumElements() != BI->getNumElements()) |
| return AI->getNumElements() < BI->getNumElements(); |
| return CompareTypes(AI->getElementType(), BI->getElementType()); |
| } |
| if (const VectorType *AI = dyn_cast<VectorType>(A)) { |
| const VectorType *BI = cast<VectorType>(B); |
| if (AI->getNumElements() != BI->getNumElements()) |
| return AI->getNumElements() < BI->getNumElements(); |
| return CompareTypes(AI->getElementType(), BI->getElementType()); |
| } |
| if (const StructType *AI = dyn_cast<StructType>(A)) { |
| const StructType *BI = cast<StructType>(B); |
| if (AI->getNumElements() != BI->getNumElements()) |
| return AI->getNumElements() < BI->getNumElements(); |
| for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) |
| if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || |
| CompareTypes(BI->getElementType(i), AI->getElementType(i))) |
| return CompareTypes(AI->getElementType(i), BI->getElementType(i)); |
| } |
| return false; |
| } |
| |
| namespace { |
| /// SCEVComplexityCompare - Return true if the complexity of the LHS is less |
| /// than the complexity of the RHS. This comparator is used to canonicalize |
| /// expressions. |
| class SCEVComplexityCompare { |
| LoopInfo *LI; |
| public: |
| explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} |
| |
| bool operator()(const SCEV *LHS, const SCEV *RHS) const { |
| // Fast-path: SCEVs are uniqued so we can do a quick equality check. |
| if (LHS == RHS) |
| return false; |
| |
| // Primarily, sort the SCEVs by their getSCEVType(). |
| if (LHS->getSCEVType() != RHS->getSCEVType()) |
| return LHS->getSCEVType() < RHS->getSCEVType(); |
| |
| // Aside from the getSCEVType() ordering, the particular ordering |
| // isn't very important except that it's beneficial to be consistent, |
| // so that (a + b) and (b + a) don't end up as different expressions. |
| |
| // Sort SCEVUnknown values with some loose heuristics. TODO: This is |
| // not as complete as it could be. |
| if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { |
| const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); |
| |
| // Order pointer values after integer values. This helps SCEVExpander |
| // form GEPs. |
| if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) |
| return false; |
| if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) |
| return true; |
| |
| // Compare getValueID values. |
| if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) |
| return LU->getValue()->getValueID() < RU->getValue()->getValueID(); |
| |
| // Sort arguments by their position. |
| if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { |
| const Argument *RA = cast<Argument>(RU->getValue()); |
| return LA->getArgNo() < RA->getArgNo(); |
| } |
| |
| // For instructions, compare their loop depth, and their opcode. |
| // This is pretty loose. |
| if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { |
| Instruction *RV = cast<Instruction>(RU->getValue()); |
| |
| // Compare loop depths. |
| if (LI->getLoopDepth(LV->getParent()) != |
| LI->getLoopDepth(RV->getParent())) |
| return LI->getLoopDepth(LV->getParent()) < |
| LI->getLoopDepth(RV->getParent()); |
| |
| // Compare opcodes. |
| if (LV->getOpcode() != RV->getOpcode()) |
| return LV->getOpcode() < RV->getOpcode(); |
| |
| // Compare the number of operands. |
| if (LV->getNumOperands() != RV->getNumOperands()) |
| return LV->getNumOperands() < RV->getNumOperands(); |
| } |
| |
| return false; |
| } |
| |
| // Compare constant values. |
| if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { |
| const SCEVConstant *RC = cast<SCEVConstant>(RHS); |
| if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth()) |
| return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth(); |
| return LC->getValue()->getValue().ult(RC->getValue()->getValue()); |
| } |
| |
| // Compare addrec loop depths. |
| if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { |
| const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); |
| if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) |
| return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); |
| } |
| |
| // Lexicographically compare n-ary expressions. |
| if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { |
| const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); |
| for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { |
| if (i >= RC->getNumOperands()) |
| return false; |
| if (operator()(LC->getOperand(i), RC->getOperand(i))) |
| return true; |
| if (operator()(RC->getOperand(i), LC->getOperand(i))) |
| return false; |
| } |
| return LC->getNumOperands() < RC->getNumOperands(); |
| } |
| |
| // Lexicographically compare udiv expressions. |
| if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { |
| const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); |
| if (operator()(LC->getLHS(), RC->getLHS())) |
| return true; |
| if (operator()(RC->getLHS(), LC->getLHS())) |
| return false; |
| if (operator()(LC->getRHS(), RC->getRHS())) |
| return true; |
| if (operator()(RC->getRHS(), LC->getRHS())) |
| return false; |
| return false; |
| } |
| |
| // Compare cast expressions by operand. |
| if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { |
| const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); |
| return operator()(LC->getOperand(), RC->getOperand()); |
| } |
| |
| // Compare offsetof expressions. |
| if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) { |
| const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS); |
| if (CompareTypes(LA->getStructType(), RA->getStructType()) || |
| CompareTypes(RA->getStructType(), LA->getStructType())) |
| return CompareTypes(LA->getStructType(), RA->getStructType()); |
| return LA->getFieldNo() < RA->getFieldNo(); |
| } |
| |
| // Compare sizeof expressions by the allocation type. |
| if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) { |
| const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS); |
| return CompareTypes(LA->getAllocType(), RA->getAllocType()); |
| } |
| |
| llvm_unreachable("Unknown SCEV kind!"); |
| return false; |
| } |
| }; |
| } |
| |
| /// GroupByComplexity - Given a list of SCEV objects, order them by their |
| /// complexity, and group objects of the same complexity together by value. |
| /// When this routine is finished, we know that any duplicates in the vector are |
| /// consecutive and that complexity is monotonically increasing. |
| /// |
| /// Note that we go take special precautions to ensure that we get determinstic |
| /// results from this routine. In other words, we don't want the results of |
| /// this to depend on where the addresses of various SCEV objects happened to |
| /// land in memory. |
| /// |
| static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, |
| LoopInfo *LI) { |
| if (Ops.size() < 2) return; // Noop |
| if (Ops.size() == 2) { |
| // This is the common case, which also happens to be trivially simple. |
| // Special case it. |
| if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) |
| std::swap(Ops[0], Ops[1]); |
| return; |
| } |
| |
| // Do the rough sort by complexity. |
| std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); |
| |
| // Now that we are sorted by complexity, group elements of the same |
| // complexity. Note that this is, at worst, N^2, but the vector is likely to |
| // be extremely short in practice. Note that we take this approach because we |
| // do not want to depend on the addresses of the objects we are grouping. |
| for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { |
| const SCEV *S = Ops[i]; |
| unsigned Complexity = S->getSCEVType(); |
| |
| // If there are any objects of the same complexity and same value as this |
| // one, group them. |
| for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { |
| if (Ops[j] == S) { // Found a duplicate. |
| // Move it to immediately after i'th element. |
| std::swap(Ops[i+1], Ops[j]); |
| ++i; // no need to rescan it. |
| if (i == e-2) return; // Done! |
| } |
| } |
| } |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Simple SCEV method implementations |
| //===----------------------------------------------------------------------===// |
| |
| /// BinomialCoefficient - Compute BC(It, K). The result has width W. |
| /// Assume, K > 0. |
| static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, |
| ScalarEvolution &SE, |
| const Type* ResultTy) { |
| // Handle the simplest case efficiently. |
| if (K == 1) |
| return SE.getTruncateOrZeroExtend(It, ResultTy); |
| |
| // We are using the following formula for BC(It, K): |
| // |
| // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! |
| // |
| // Suppose, W is the bitwidth of the return value. We must be prepared for |
| // overflow. Hence, we must assure that the result of our computation is |
| // equal to the accurate one modulo 2^W. Unfortunately, division isn't |
| // safe in modular arithmetic. |
| // |
| // However, this code doesn't use exactly that formula; the formula it uses |
| // is something like the following, where T is the number of factors of 2 in |
| // K! (i.e. trailing zeros in the binary representation of K!), and ^ is |
| // exponentiation: |
| // |
| // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) |
| // |
| // This formula is trivially equivalent to the previous formula. However, |
| // this formula can be implemented much more efficiently. The trick is that |
| // K! / 2^T is odd, and exact division by an odd number *is* safe in modular |
| // arithmetic. To do exact division in modular arithmetic, all we have |
| // to do is multiply by the inverse. Therefore, this step can be done at |
| // width W. |
| // |
| // The next issue is how to safely do the division by 2^T. The way this |
| // is done is by doing the multiplication step at a width of at least W + T |
| // bits. This way, the bottom W+T bits of the product are accurate. Then, |
| // when we perform the division by 2^T (which is equivalent to a right shift |
| // by T), the bottom W bits are accurate. Extra bits are okay; they'll get |
| // truncated out after the division by 2^T. |
| // |
| // In comparison to just directly using the first formula, this technique |
| // is much more efficient; using the first formula requires W * K bits, |
| // but this formula less than W + K bits. Also, the first formula requires |
| // a division step, whereas this formula only requires multiplies and shifts. |
| // |
| // It doesn't matter whether the subtraction step is done in the calculation |
| // width or the input iteration count's width; if the subtraction overflows, |
| // the result must be zero anyway. We prefer here to do it in the width of |
| // the induction variable because it helps a lot for certain cases; CodeGen |
| // isn't smart enough to ignore the overflow, which leads to much less |
| // efficient code if the width of the subtraction is wider than the native |
| // register width. |
| // |
| // (It's possible to not widen at all by pulling out factors of 2 before |
| // the multiplication; for example, K=2 can be calculated as |
| // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires |
| // extra arithmetic, so it's not an obvious win, and it gets |
| // much more complicated for K > 3.) |
| |
| // Protection from insane SCEVs; this bound is conservative, |
| // but it probably doesn't matter. |
| if (K > 1000) |
| return SE.getCouldNotCompute(); |
| |
| unsigned W = SE.getTypeSizeInBits(ResultTy); |
| |
| // Calculate K! / 2^T and T; we divide out the factors of two before |
| // multiplying for calculating K! / 2^T to avoid overflow. |
| // Other overflow doesn't matter because we only care about the bottom |
| // W bits of the result. |
| APInt OddFactorial(W, 1); |
| unsigned T = 1; |
| for (unsigned i = 3; i <= K; ++i) { |
| APInt Mult(W, i); |
| unsigned TwoFactors = Mult.countTrailingZeros(); |
| T += TwoFactors; |
| Mult = Mult.lshr(TwoFactors); |
| OddFactorial *= Mult; |
| } |
| |
| // We need at least W + T bits for the multiplication step |
| unsigned CalculationBits = W + T; |
| |
| // Calcuate 2^T, at width T+W. |
| APInt DivFactor = APInt(CalculationBits, 1).shl(T); |
| |
| // Calculate the multiplicative inverse of K! / 2^T; |
| // this multiplication factor will perform the exact division by |
| // K! / 2^T. |
| APInt Mod = APInt::getSignedMinValue(W+1); |
| APInt MultiplyFactor = OddFactorial.zext(W+1); |
| MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); |
| MultiplyFactor = MultiplyFactor.trunc(W); |
| |
| // Calculate the product, at width T+W |
| const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), |
| CalculationBits); |
| const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); |
| for (unsigned i = 1; i != K; ++i) { |
| const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); |
| Dividend = SE.getMulExpr(Dividend, |
| SE.getTruncateOrZeroExtend(S, CalculationTy)); |
| } |
| |
| // Divide by 2^T |
| const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); |
| |
| // Truncate the result, and divide by K! / 2^T. |
| |
| return SE.getMulExpr(SE.getConstant(MultiplyFactor), |
| SE.getTruncateOrZeroExtend(DivResult, ResultTy)); |
| } |
| |
| /// evaluateAtIteration - Return the value of this chain of recurrences at |
| /// the specified iteration number. We can evaluate this recurrence by |
| /// multiplying each element in the chain by the binomial coefficient |
| /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: |
| /// |
| /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) |
| /// |
| /// where BC(It, k) stands for binomial coefficient. |
| /// |
| const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, |
| ScalarEvolution &SE) const { |
| const SCEV *Result = getStart(); |
| for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| // The computation is correct in the face of overflow provided that the |
| // multiplication is performed _after_ the evaluation of the binomial |
| // coefficient. |
| const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); |
| if (isa<SCEVCouldNotCompute>(Coeff)) |
| return Coeff; |
| |
| Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); |
| } |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SCEV Expression folder implementations |
| //===----------------------------------------------------------------------===// |
| |
| const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, |
| const Type *Ty) { |
| assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && |
| "This is not a truncating conversion!"); |
| assert(isSCEVable(Ty) && |
| "This is not a conversion to a SCEVable type!"); |
| Ty = getEffectiveSCEVType(Ty); |
| |
| FoldingSetNodeID ID; |
| ID.AddInteger(scTruncate); |
| ID.AddPointer(Op); |
| ID.AddPointer(Ty); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| |
| // Fold if the operand is constant. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| return getConstant( |
| cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); |
| |
| // trunc(trunc(x)) --> trunc(x) |
| if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) |
| return getTruncateExpr(ST->getOperand(), Ty); |
| |
| // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing |
| if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) |
| return getTruncateOrSignExtend(SS->getOperand(), Ty); |
| |
| // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing |
| if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) |
| return getTruncateOrZeroExtend(SZ->getOperand(), Ty); |
| |
| // If the input value is a chrec scev, truncate the chrec's operands. |
| if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { |
| SmallVector<const SCEV *, 4> Operands; |
| for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) |
| Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); |
| return getAddRecExpr(Operands, AddRec->getLoop()); |
| } |
| |
| // The cast wasn't folded; create an explicit cast node. |
| // Recompute the insert position, as it may have been invalidated. |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>(); |
| new (S) SCEVTruncateExpr(ID, Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, |
| const Type *Ty) { |
| assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| "This is not an extending conversion!"); |
| assert(isSCEVable(Ty) && |
| "This is not a conversion to a SCEVable type!"); |
| Ty = getEffectiveSCEVType(Ty); |
| |
| // Fold if the operand is constant. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { |
| const Type *IntTy = getEffectiveSCEVType(Ty); |
| Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); |
| if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); |
| return getConstant(cast<ConstantInt>(C)); |
| } |
| |
| // zext(zext(x)) --> zext(x) |
| if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) |
| return getZeroExtendExpr(SZ->getOperand(), Ty); |
| |
| // Before doing any expensive analysis, check to see if we've already |
| // computed a SCEV for this Op and Ty. |
| FoldingSetNodeID ID; |
| ID.AddInteger(scZeroExtend); |
| ID.AddPointer(Op); |
| ID.AddPointer(Ty); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| |
| // If the input value is a chrec scev, and we can prove that the value |
| // did not overflow the old, smaller, value, we can zero extend all of the |
| // operands (often constants). This allows analysis of something like |
| // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) |
| if (AR->isAffine()) { |
| const SCEV *Start = AR->getStart(); |
| const SCEV *Step = AR->getStepRecurrence(*this); |
| unsigned BitWidth = getTypeSizeInBits(AR->getType()); |
| const Loop *L = AR->getLoop(); |
| |
| // If we have special knowledge that this addrec won't overflow, |
| // we don't need to do any further analysis. |
| if (AR->hasNoUnsignedWrap()) |
| return getAddRecExpr(getZeroExtendExpr(Start, Ty), |
| getZeroExtendExpr(Step, Ty), |
| L); |
| |
| // Check whether the backedge-taken count is SCEVCouldNotCompute. |
| // Note that this serves two purposes: It filters out loops that are |
| // simply not analyzable, and it covers the case where this code is |
| // being called from within backedge-taken count analysis, such that |
| // attempting to ask for the backedge-taken count would likely result |
| // in infinite recursion. In the later case, the analysis code will |
| // cope with a conservative value, and it will take care to purge |
| // that value once it has finished. |
| const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); |
| if (!isa<SCEVCouldNotCompute>(MaxBECount)) { |
| // Manually compute the final value for AR, checking for |
| // overflow. |
| |
| // Check whether the backedge-taken count can be losslessly casted to |
| // the addrec's type. The count is always unsigned. |
| const SCEV *CastedMaxBECount = |
| getTruncateOrZeroExtend(MaxBECount, Start->getType()); |
| const SCEV *RecastedMaxBECount = |
| getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); |
| if (MaxBECount == RecastedMaxBECount) { |
| const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); |
| // Check whether Start+Step*MaxBECount has no unsigned overflow. |
| const SCEV *ZMul = |
| getMulExpr(CastedMaxBECount, |
| getTruncateOrZeroExtend(Step, Start->getType())); |
| const SCEV *Add = getAddExpr(Start, ZMul); |
| const SCEV *OperandExtendedAdd = |
| getAddExpr(getZeroExtendExpr(Start, WideTy), |
| getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), |
| getZeroExtendExpr(Step, WideTy))); |
| if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr(getZeroExtendExpr(Start, Ty), |
| getZeroExtendExpr(Step, Ty), |
| L); |
| |
| // Similar to above, only this time treat the step value as signed. |
| // This covers loops that count down. |
| const SCEV *SMul = |
| getMulExpr(CastedMaxBECount, |
| getTruncateOrSignExtend(Step, Start->getType())); |
| Add = getAddExpr(Start, SMul); |
| OperandExtendedAdd = |
| getAddExpr(getZeroExtendExpr(Start, WideTy), |
| getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), |
| getSignExtendExpr(Step, WideTy))); |
| if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr(getZeroExtendExpr(Start, Ty), |
| getSignExtendExpr(Step, Ty), |
| L); |
| } |
| |
| // If the backedge is guarded by a comparison with the pre-inc value |
| // the addrec is safe. Also, if the entry is guarded by a comparison |
| // with the start value and the backedge is guarded by a comparison |
| // with the post-inc value, the addrec is safe. |
| if (isKnownPositive(Step)) { |
| const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - |
| getUnsignedRange(Step).getUnsignedMax()); |
| if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || |
| (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && |
| isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, |
| AR->getPostIncExpr(*this), N))) |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr(getZeroExtendExpr(Start, Ty), |
| getZeroExtendExpr(Step, Ty), |
| L); |
| } else if (isKnownNegative(Step)) { |
| const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - |
| getSignedRange(Step).getSignedMin()); |
| if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) && |
| (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) || |
| isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, |
| AR->getPostIncExpr(*this), N))) |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr(getZeroExtendExpr(Start, Ty), |
| getSignExtendExpr(Step, Ty), |
| L); |
| } |
| } |
| } |
| |
| // The cast wasn't folded; create an explicit cast node. |
| // Recompute the insert position, as it may have been invalidated. |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>(); |
| new (S) SCEVZeroExtendExpr(ID, Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, |
| const Type *Ty) { |
| assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| "This is not an extending conversion!"); |
| assert(isSCEVable(Ty) && |
| "This is not a conversion to a SCEVable type!"); |
| Ty = getEffectiveSCEVType(Ty); |
| |
| // Fold if the operand is constant. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { |
| const Type *IntTy = getEffectiveSCEVType(Ty); |
| Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); |
| if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); |
| return getConstant(cast<ConstantInt>(C)); |
| } |
| |
| // sext(sext(x)) --> sext(x) |
| if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) |
| return getSignExtendExpr(SS->getOperand(), Ty); |
| |
| // Before doing any expensive analysis, check to see if we've already |
| // computed a SCEV for this Op and Ty. |
| FoldingSetNodeID ID; |
| ID.AddInteger(scSignExtend); |
| ID.AddPointer(Op); |
| ID.AddPointer(Ty); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| |
| // If the input value is a chrec scev, and we can prove that the value |
| // did not overflow the old, smaller, value, we can sign extend all of the |
| // operands (often constants). This allows analysis of something like |
| // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) |
| if (AR->isAffine()) { |
| const SCEV *Start = AR->getStart(); |
| const SCEV *Step = AR->getStepRecurrence(*this); |
| unsigned BitWidth = getTypeSizeInBits(AR->getType()); |
| const Loop *L = AR->getLoop(); |
| |
| // If we have special knowledge that this addrec won't overflow, |
| // we don't need to do any further analysis. |
| if (AR->hasNoSignedWrap()) |
| return getAddRecExpr(getSignExtendExpr(Start, Ty), |
| getSignExtendExpr(Step, Ty), |
| L); |
| |
| // Check whether the backedge-taken count is SCEVCouldNotCompute. |
| // Note that this serves two purposes: It filters out loops that are |
| // simply not analyzable, and it covers the case where this code is |
| // being called from within backedge-taken count analysis, such that |
| // attempting to ask for the backedge-taken count would likely result |
| // in infinite recursion. In the later case, the analysis code will |
| // cope with a conservative value, and it will take care to purge |
| // that value once it has finished. |
| const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); |
| if (!isa<SCEVCouldNotCompute>(MaxBECount)) { |
| // Manually compute the final value for AR, checking for |
| // overflow. |
| |
| // Check whether the backedge-taken count can be losslessly casted to |
| // the addrec's type. The count is always unsigned. |
| const SCEV *CastedMaxBECount = |
| getTruncateOrZeroExtend(MaxBECount, Start->getType()); |
| const SCEV *RecastedMaxBECount = |
| getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); |
| if (MaxBECount == RecastedMaxBECount) { |
| const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); |
| // Check whether Start+Step*MaxBECount has no signed overflow. |
| const SCEV *SMul = |
| getMulExpr(CastedMaxBECount, |
| getTruncateOrSignExtend(Step, Start->getType())); |
| const SCEV *Add = getAddExpr(Start, SMul); |
| const SCEV *OperandExtendedAdd = |
| getAddExpr(getSignExtendExpr(Start, WideTy), |
| getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), |
| getSignExtendExpr(Step, WideTy))); |
| if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr(getSignExtendExpr(Start, Ty), |
| getSignExtendExpr(Step, Ty), |
| L); |
| |
| // Similar to above, only this time treat the step value as unsigned. |
| // This covers loops that count up with an unsigned step. |
| const SCEV *UMul = |
| getMulExpr(CastedMaxBECount, |
| getTruncateOrZeroExtend(Step, Start->getType())); |
| Add = getAddExpr(Start, UMul); |
| OperandExtendedAdd = |
| getAddExpr(getSignExtendExpr(Start, WideTy), |
| getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), |
| getZeroExtendExpr(Step, WideTy))); |
| if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr(getSignExtendExpr(Start, Ty), |
| getZeroExtendExpr(Step, Ty), |
| L); |
| } |
| |
| // If the backedge is guarded by a comparison with the pre-inc value |
| // the addrec is safe. Also, if the entry is guarded by a comparison |
| // with the start value and the backedge is guarded by a comparison |
| // with the post-inc value, the addrec is safe. |
| if (isKnownPositive(Step)) { |
| const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - |
| getSignedRange(Step).getSignedMax()); |
| if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || |
| (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && |
| isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, |
| AR->getPostIncExpr(*this), N))) |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr(getSignExtendExpr(Start, Ty), |
| getSignExtendExpr(Step, Ty), |
| L); |
| } else if (isKnownNegative(Step)) { |
| const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - |
| getSignedRange(Step).getSignedMin()); |
| if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || |
| (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && |
| isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, |
| AR->getPostIncExpr(*this), N))) |
| // Return the expression with the addrec on the outside. |
| return getAddRecExpr(getSignExtendExpr(Start, Ty), |
| getSignExtendExpr(Step, Ty), |
| L); |
| } |
| } |
| } |
| |
| // The cast wasn't folded; create an explicit cast node. |
| // Recompute the insert position, as it may have been invalidated. |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>(); |
| new (S) SCEVSignExtendExpr(ID, Op, Ty); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| /// getAnyExtendExpr - Return a SCEV for the given operand extended with |
| /// unspecified bits out to the given type. |
| /// |
| const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, |
| const Type *Ty) { |
| assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| "This is not an extending conversion!"); |
| assert(isSCEVable(Ty) && |
| "This is not a conversion to a SCEVable type!"); |
| Ty = getEffectiveSCEVType(Ty); |
| |
| // Sign-extend negative constants. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) |
| if (SC->getValue()->getValue().isNegative()) |
| return getSignExtendExpr(Op, Ty); |
| |
| // Peel off a truncate cast. |
| if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { |
| const SCEV *NewOp = T->getOperand(); |
| if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) |
| return getAnyExtendExpr(NewOp, Ty); |
| return getTruncateOrNoop(NewOp, Ty); |
| } |
| |
| // Next try a zext cast. If the cast is folded, use it. |
| const SCEV *ZExt = getZeroExtendExpr(Op, Ty); |
| if (!isa<SCEVZeroExtendExpr>(ZExt)) |
| return ZExt; |
| |
| // Next try a sext cast. If the cast is folded, use it. |
| const SCEV *SExt = getSignExtendExpr(Op, Ty); |
| if (!isa<SCEVSignExtendExpr>(SExt)) |
| return SExt; |
| |
| // If the expression is obviously signed, use the sext cast value. |
| if (isa<SCEVSMaxExpr>(Op)) |
| return SExt; |
| |
| // Absent any other information, use the zext cast value. |
| return ZExt; |
| } |
| |
| /// CollectAddOperandsWithScales - Process the given Ops list, which is |
| /// a list of operands to be added under the given scale, update the given |
| /// map. This is a helper function for getAddRecExpr. As an example of |
| /// what it does, given a sequence of operands that would form an add |
| /// expression like this: |
| /// |
| /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) |
| /// |
| /// where A and B are constants, update the map with these values: |
| /// |
| /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) |
| /// |
| /// and add 13 + A*B*29 to AccumulatedConstant. |
| /// This will allow getAddRecExpr to produce this: |
| /// |
| /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) |
| /// |
| /// This form often exposes folding opportunities that are hidden in |
| /// the original operand list. |
| /// |
| /// Return true iff it appears that any interesting folding opportunities |
| /// may be exposed. This helps getAddRecExpr short-circuit extra work in |
| /// the common case where no interesting opportunities are present, and |
| /// is also used as a check to avoid infinite recursion. |
| /// |
| static bool |
| CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, |
| SmallVector<const SCEV *, 8> &NewOps, |
| APInt &AccumulatedConstant, |
| const SmallVectorImpl<const SCEV *> &Ops, |
| const APInt &Scale, |
| ScalarEvolution &SE) { |
| bool Interesting = false; |
| |
| // Iterate over the add operands. |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); |
| if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { |
| APInt NewScale = |
| Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); |
| if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { |
| // A multiplication of a constant with another add; recurse. |
| Interesting |= |
| CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, |
| cast<SCEVAddExpr>(Mul->getOperand(1)) |
| ->getOperands(), |
| NewScale, SE); |
| } else { |
| // A multiplication of a constant with some other value. Update |
| // the map. |
| SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); |
| const SCEV *Key = SE.getMulExpr(MulOps); |
| std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = |
| M.insert(std::make_pair(Key, NewScale)); |
| if (Pair.second) { |
| NewOps.push_back(Pair.first->first); |
| } else { |
| Pair.first->second += NewScale; |
| // The map already had an entry for this value, which may indicate |
| // a folding opportunity. |
| Interesting = true; |
| } |
| } |
| } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { |
| // Pull a buried constant out to the outside. |
| if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) |
| Interesting = true; |
| AccumulatedConstant += Scale * C->getValue()->getValue(); |
| } else { |
| // An ordinary operand. Update the map. |
| std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = |
| M.insert(std::make_pair(Ops[i], Scale)); |
| if (Pair.second) { |
| NewOps.push_back(Pair.first->first); |
| } else { |
| Pair.first->second += Scale; |
| // The map already had an entry for this value, which may indicate |
| // a folding opportunity. |
| Interesting = true; |
| } |
| } |
| } |
| |
| return Interesting; |
| } |
| |
| namespace { |
| struct APIntCompare { |
| bool operator()(const APInt &LHS, const APInt &RHS) const { |
| return LHS.ult(RHS); |
| } |
| }; |
| } |
| |
| /// getAddExpr - Get a canonical add expression, or something simpler if |
| /// possible. |
| const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, |
| bool HasNUW, bool HasNSW) { |
| assert(!Ops.empty() && "Cannot get empty add!"); |
| if (Ops.size() == 1) return Ops[0]; |
| #ifndef NDEBUG |
| for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
| assert(getEffectiveSCEVType(Ops[i]->getType()) == |
| getEffectiveSCEVType(Ops[0]->getType()) && |
| "SCEVAddExpr operand types don't match!"); |
| #endif |
| |
| // Sort by complexity, this groups all similar expression types together. |
| GroupByComplexity(Ops, LI); |
| |
| // If there are any constants, fold them together. |
| unsigned Idx = 0; |
| if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { |
| ++Idx; |
| assert(Idx < Ops.size()); |
| while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { |
| // We found two constants, fold them together! |
| Ops[0] = getConstant(LHSC->getValue()->getValue() + |
| RHSC->getValue()->getValue()); |
| if (Ops.size() == 2) return Ops[0]; |
| Ops.erase(Ops.begin()+1); // Erase the folded element |
| LHSC = cast<SCEVConstant>(Ops[0]); |
| } |
| |
| // If we are left with a constant zero being added, strip it off. |
| if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { |
| Ops.erase(Ops.begin()); |
| --Idx; |
| } |
| } |
| |
| if (Ops.size() == 1) return Ops[0]; |
| |
| // Okay, check to see if the same value occurs in the operand list twice. If |
| // so, merge them together into an multiply expression. Since we sorted the |
| // list, these values are required to be adjacent. |
| const Type *Ty = Ops[0]->getType(); |
| for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) |
| if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 |
| // Found a match, merge the two values into a multiply, and add any |
| // remaining values to the result. |
| const SCEV *Two = getIntegerSCEV(2, Ty); |
| const SCEV *Mul = getMulExpr(Ops[i], Two); |
| if (Ops.size() == 2) |
| return Mul; |
| Ops.erase(Ops.begin()+i, Ops.begin()+i+2); |
| Ops.push_back(Mul); |
| return getAddExpr(Ops, HasNUW, HasNSW); |
| } |
| |
| // Check for truncates. If all the operands are truncated from the same |
| // type, see if factoring out the truncate would permit the result to be |
| // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) |
| // if the contents of the resulting outer trunc fold to something simple. |
| for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { |
| const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); |
| const Type *DstType = Trunc->getType(); |
| const Type *SrcType = Trunc->getOperand()->getType(); |
| SmallVector<const SCEV *, 8> LargeOps; |
| bool Ok = true; |
| // Check all the operands to see if they can be represented in the |
| // source type of the truncate. |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { |
| if (T->getOperand()->getType() != SrcType) { |
| Ok = false; |
| break; |
| } |
| LargeOps.push_back(T->getOperand()); |
| } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { |
| // This could be either sign or zero extension, but sign extension |
| // is much more likely to be foldable here. |
| LargeOps.push_back(getSignExtendExpr(C, SrcType)); |
| } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { |
| SmallVector<const SCEV *, 8> LargeMulOps; |
| for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { |
| if (const SCEVTruncateExpr *T = |
| dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { |
| if (T->getOperand()->getType() != SrcType) { |
| Ok = false; |
| break; |
| } |
| LargeMulOps.push_back(T->getOperand()); |
| } else if (const SCEVConstant *C = |
| dyn_cast<SCEVConstant>(M->getOperand(j))) { |
| // This could be either sign or zero extension, but sign extension |
| // is much more likely to be foldable here. |
| LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); |
| } else { |
| Ok = false; |
| break; |
| } |
| } |
| if (Ok) |
| LargeOps.push_back(getMulExpr(LargeMulOps)); |
| } else { |
| Ok = false; |
| break; |
| } |
| } |
| if (Ok) { |
| // Evaluate the expression in the larger type. |
| const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); |
| // If it folds to something simple, use it. Otherwise, don't. |
| if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) |
| return getTruncateExpr(Fold, DstType); |
| } |
| } |
| |
| // Skip past any other cast SCEVs. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) |
| ++Idx; |
| |
| // If there are add operands they would be next. |
| if (Idx < Ops.size()) { |
| bool DeletedAdd = false; |
| while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { |
| // If we have an add, expand the add operands onto the end of the operands |
| // list. |
| Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); |
| Ops.erase(Ops.begin()+Idx); |
| DeletedAdd = true; |
| } |
| |
| // If we deleted at least one add, we added operands to the end of the list, |
| // and they are not necessarily sorted. Recurse to resort and resimplify |
| // any operands we just aquired. |
| if (DeletedAdd) |
| return getAddExpr(Ops); |
| } |
| |
| // Skip over the add expression until we get to a multiply. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
| ++Idx; |
| |
| // Check to see if there are any folding opportunities present with |
| // operands multiplied by constant values. |
| if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { |
| uint64_t BitWidth = getTypeSizeInBits(Ty); |
| DenseMap<const SCEV *, APInt> M; |
| SmallVector<const SCEV *, 8> NewOps; |
| APInt AccumulatedConstant(BitWidth, 0); |
| if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, |
| Ops, APInt(BitWidth, 1), *this)) { |
| // Some interesting folding opportunity is present, so its worthwhile to |
| // re-generate the operands list. Group the operands by constant scale, |
| // to avoid multiplying by the same constant scale multiple times. |
| std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; |
| for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), |
| E = NewOps.end(); I != E; ++I) |
| MulOpLists[M.find(*I)->second].push_back(*I); |
| // Re-generate the operands list. |
| Ops.clear(); |
| if (AccumulatedConstant != 0) |
| Ops.push_back(getConstant(AccumulatedConstant)); |
| for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator |
| I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) |
| if (I->first != 0) |
| Ops.push_back(getMulExpr(getConstant(I->first), |
| getAddExpr(I->second))); |
| if (Ops.empty()) |
| return getIntegerSCEV(0, Ty); |
| if (Ops.size() == 1) |
| return Ops[0]; |
| return getAddExpr(Ops); |
| } |
| } |
| |
| // If we are adding something to a multiply expression, make sure the |
| // something is not already an operand of the multiply. If so, merge it into |
| // the multiply. |
| for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { |
| const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); |
| for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { |
| const SCEV *MulOpSCEV = Mul->getOperand(MulOp); |
| for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) |
| if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { |
| // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) |
| const SCEV *InnerMul = Mul->getOperand(MulOp == 0); |
| if (Mul->getNumOperands() != 2) { |
| // If the multiply has more than two operands, we must get the |
| // Y*Z term. |
| SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); |
| MulOps.erase(MulOps.begin()+MulOp); |
| InnerMul = getMulExpr(MulOps); |
| } |
| const SCEV *One = getIntegerSCEV(1, Ty); |
| const SCEV *AddOne = getAddExpr(InnerMul, One); |
| const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); |
| if (Ops.size() == 2) return OuterMul; |
| if (AddOp < Idx) { |
| Ops.erase(Ops.begin()+AddOp); |
| Ops.erase(Ops.begin()+Idx-1); |
| } else { |
| Ops.erase(Ops.begin()+Idx); |
| Ops.erase(Ops.begin()+AddOp-1); |
| } |
| Ops.push_back(OuterMul); |
| return getAddExpr(Ops); |
| } |
| |
| // Check this multiply against other multiplies being added together. |
| for (unsigned OtherMulIdx = Idx+1; |
| OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); |
| ++OtherMulIdx) { |
| const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); |
| // If MulOp occurs in OtherMul, we can fold the two multiplies |
| // together. |
| for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); |
| OMulOp != e; ++OMulOp) |
| if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { |
| // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) |
| const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); |
| if (Mul->getNumOperands() != 2) { |
| SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), |
| Mul->op_end()); |
| MulOps.erase(MulOps.begin()+MulOp); |
| InnerMul1 = getMulExpr(MulOps); |
| } |
| const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); |
| if (OtherMul->getNumOperands() != 2) { |
| SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), |
| OtherMul->op_end()); |
| MulOps.erase(MulOps.begin()+OMulOp); |
| InnerMul2 = getMulExpr(MulOps); |
| } |
| const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); |
| const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); |
| if (Ops.size() == 2) return OuterMul; |
| Ops.erase(Ops.begin()+Idx); |
| Ops.erase(Ops.begin()+OtherMulIdx-1); |
| Ops.push_back(OuterMul); |
| return getAddExpr(Ops); |
| } |
| } |
| } |
| } |
| |
| // If there are any add recurrences in the operands list, see if any other |
| // added values are loop invariant. If so, we can fold them into the |
| // recurrence. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) |
| ++Idx; |
| |
| // Scan over all recurrences, trying to fold loop invariants into them. |
| for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { |
| // Scan all of the other operands to this add and add them to the vector if |
| // they are loop invariant w.r.t. the recurrence. |
| SmallVector<const SCEV *, 8> LIOps; |
| const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { |
| LIOps.push_back(Ops[i]); |
| Ops.erase(Ops.begin()+i); |
| --i; --e; |
| } |
| |
| // If we found some loop invariants, fold them into the recurrence. |
| if (!LIOps.empty()) { |
| // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} |
| LIOps.push_back(AddRec->getStart()); |
| |
| SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), |
| AddRec->op_end()); |
| AddRecOps[0] = getAddExpr(LIOps); |
| |
| const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); |
| // If all of the other operands were loop invariant, we are done. |
| if (Ops.size() == 1) return NewRec; |
| |
| // Otherwise, add the folded AddRec by the non-liv parts. |
| for (unsigned i = 0;; ++i) |
| if (Ops[i] == AddRec) { |
| Ops[i] = NewRec; |
| break; |
| } |
| return getAddExpr(Ops); |
| } |
| |
| // Okay, if there weren't any loop invariants to be folded, check to see if |
| // there are multiple AddRec's with the same loop induction variable being |
| // added together. If so, we can fold them. |
| for (unsigned OtherIdx = Idx+1; |
| OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) |
| if (OtherIdx != Idx) { |
| const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); |
| if (AddRec->getLoop() == OtherAddRec->getLoop()) { |
| // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} |
| SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), |
| AddRec->op_end()); |
| for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { |
| if (i >= NewOps.size()) { |
| NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, |
| OtherAddRec->op_end()); |
| break; |
| } |
| NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); |
| } |
| const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); |
| |
| if (Ops.size() == 2) return NewAddRec; |
| |
| Ops.erase(Ops.begin()+Idx); |
| Ops.erase(Ops.begin()+OtherIdx-1); |
| Ops.push_back(NewAddRec); |
| return getAddExpr(Ops); |
| } |
| } |
| |
| // Otherwise couldn't fold anything into this recurrence. Move onto the |
| // next one. |
| } |
| |
| // Okay, it looks like we really DO need an add expr. Check to see if we |
| // already have one, otherwise create a new one. |
| FoldingSetNodeID ID; |
| ID.AddInteger(scAddExpr); |
| ID.AddInteger(Ops.size()); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| ID.AddPointer(Ops[i]); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEVAddExpr *S = SCEVAllocator.Allocate<SCEVAddExpr>(); |
| new (S) SCEVAddExpr(ID, Ops); |
| UniqueSCEVs.InsertNode(S, IP); |
| if (HasNUW) S->setHasNoUnsignedWrap(true); |
| if (HasNSW) S->setHasNoSignedWrap(true); |
| return S; |
| } |
| |
| |
| /// getMulExpr - Get a canonical multiply expression, or something simpler if |
| /// possible. |
| const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, |
| bool HasNUW, bool HasNSW) { |
| assert(!Ops.empty() && "Cannot get empty mul!"); |
| #ifndef NDEBUG |
| for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
| assert(getEffectiveSCEVType(Ops[i]->getType()) == |
| getEffectiveSCEVType(Ops[0]->getType()) && |
| "SCEVMulExpr operand types don't match!"); |
| #endif |
| |
| // Sort by complexity, this groups all similar expression types together. |
| GroupByComplexity(Ops, LI); |
| |
| // If there are any constants, fold them together. |
| unsigned Idx = 0; |
| if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { |
| |
| // C1*(C2+V) -> C1*C2 + C1*V |
| if (Ops.size() == 2) |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) |
| if (Add->getNumOperands() == 2 && |
| isa<SCEVConstant>(Add->getOperand(0))) |
| return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), |
| getMulExpr(LHSC, Add->getOperand(1))); |
| |
| |
| ++Idx; |
| while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { |
| // We found two constants, fold them together! |
| ConstantInt *Fold = ConstantInt::get(getContext(), |
| LHSC->getValue()->getValue() * |
| RHSC->getValue()->getValue()); |
| Ops[0] = getConstant(Fold); |
| Ops.erase(Ops.begin()+1); // Erase the folded element |
| if (Ops.size() == 1) return Ops[0]; |
| LHSC = cast<SCEVConstant>(Ops[0]); |
| } |
| |
| // If we are left with a constant one being multiplied, strip it off. |
| if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { |
| Ops.erase(Ops.begin()); |
| --Idx; |
| } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { |
| // If we have a multiply of zero, it will always be zero. |
| return Ops[0]; |
| } |
| } |
| |
| // Skip over the add expression until we get to a multiply. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
| ++Idx; |
| |
| if (Ops.size() == 1) |
| return Ops[0]; |
| |
| // If there are mul operands inline them all into this expression. |
| if (Idx < Ops.size()) { |
| bool DeletedMul = false; |
| while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { |
| // If we have an mul, expand the mul operands onto the end of the operands |
| // list. |
| Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); |
| Ops.erase(Ops.begin()+Idx); |
| DeletedMul = true; |
| } |
| |
| // If we deleted at least one mul, we added operands to the end of the list, |
| // and they are not necessarily sorted. Recurse to resort and resimplify |
| // any operands we just aquired. |
| if (DeletedMul) |
| return getMulExpr(Ops); |
| } |
| |
| // If there are any add recurrences in the operands list, see if any other |
| // added values are loop invariant. If so, we can fold them into the |
| // recurrence. |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) |
| ++Idx; |
| |
| // Scan over all recurrences, trying to fold loop invariants into them. |
| for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { |
| // Scan all of the other operands to this mul and add them to the vector if |
| // they are loop invariant w.r.t. the recurrence. |
| SmallVector<const SCEV *, 8> LIOps; |
| const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { |
| LIOps.push_back(Ops[i]); |
| Ops.erase(Ops.begin()+i); |
| --i; --e; |
| } |
| |
| // If we found some loop invariants, fold them into the recurrence. |
| if (!LIOps.empty()) { |
| // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} |
| SmallVector<const SCEV *, 4> NewOps; |
| NewOps.reserve(AddRec->getNumOperands()); |
| if (LIOps.size() == 1) { |
| const SCEV *Scale = LIOps[0]; |
| for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) |
| NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); |
| } else { |
| for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { |
| SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end()); |
| MulOps.push_back(AddRec->getOperand(i)); |
| NewOps.push_back(getMulExpr(MulOps)); |
| } |
| } |
| |
| const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); |
| |
| // If all of the other operands were loop invariant, we are done. |
| if (Ops.size() == 1) return NewRec; |
| |
| // Otherwise, multiply the folded AddRec by the non-liv parts. |
| for (unsigned i = 0;; ++i) |
| if (Ops[i] == AddRec) { |
| Ops[i] = NewRec; |
| break; |
| } |
| return getMulExpr(Ops); |
| } |
| |
| // Okay, if there weren't any loop invariants to be folded, check to see if |
| // there are multiple AddRec's with the same loop induction variable being |
| // multiplied together. If so, we can fold them. |
| for (unsigned OtherIdx = Idx+1; |
| OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) |
| if (OtherIdx != Idx) { |
| const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); |
| if (AddRec->getLoop() == OtherAddRec->getLoop()) { |
| // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} |
| const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; |
| const SCEV *NewStart = getMulExpr(F->getStart(), |
| G->getStart()); |
| const SCEV *B = F->getStepRecurrence(*this); |
| const SCEV *D = G->getStepRecurrence(*this); |
| const SCEV *NewStep = getAddExpr(getMulExpr(F, D), |
| getMulExpr(G, B), |
| getMulExpr(B, D)); |
| const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, |
| F->getLoop()); |
| if (Ops.size() == 2) return NewAddRec; |
| |
| Ops.erase(Ops.begin()+Idx); |
| Ops.erase(Ops.begin()+OtherIdx-1); |
| Ops.push_back(NewAddRec); |
| return getMulExpr(Ops); |
| } |
| } |
| |
| // Otherwise couldn't fold anything into this recurrence. Move onto the |
| // next one. |
| } |
| |
| // Okay, it looks like we really DO need an mul expr. Check to see if we |
| // already have one, otherwise create a new one. |
| FoldingSetNodeID ID; |
| ID.AddInteger(scMulExpr); |
| ID.AddInteger(Ops.size()); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| ID.AddPointer(Ops[i]); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEVMulExpr *S = SCEVAllocator.Allocate<SCEVMulExpr>(); |
| new (S) SCEVMulExpr(ID, Ops); |
| UniqueSCEVs.InsertNode(S, IP); |
| if (HasNUW) S->setHasNoUnsignedWrap(true); |
| if (HasNSW) S->setHasNoSignedWrap(true); |
| return S; |
| } |
| |
| /// getUDivExpr - Get a canonical unsigned division expression, or something |
| /// simpler if possible. |
| const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, |
| const SCEV *RHS) { |
| assert(getEffectiveSCEVType(LHS->getType()) == |
| getEffectiveSCEVType(RHS->getType()) && |
| "SCEVUDivExpr operand types don't match!"); |
| |
| if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { |
| if (RHSC->getValue()->equalsInt(1)) |
| return LHS; // X udiv 1 --> x |
| if (RHSC->isZero()) |
| return getIntegerSCEV(0, LHS->getType()); // value is undefined |
| |
| // Determine if the division can be folded into the operands of |
| // its operands. |
| // TODO: Generalize this to non-constants by using known-bits information. |
| const Type *Ty = LHS->getType(); |
| unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); |
| unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; |
| // For non-power-of-two values, effectively round the value up to the |
| // nearest power of two. |
| if (!RHSC->getValue()->getValue().isPowerOf2()) |
| ++MaxShiftAmt; |
| const IntegerType *ExtTy = |
| IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); |
| // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) |
| if (const SCEVConstant *Step = |
| dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) |
| if (!Step->getValue()->getValue() |
| .urem(RHSC->getValue()->getValue()) && |
| getZeroExtendExpr(AR, ExtTy) == |
| getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), |
| getZeroExtendExpr(Step, ExtTy), |
| AR->getLoop())) { |
| SmallVector<const SCEV *, 4> Operands; |
| for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) |
| Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); |
| return getAddRecExpr(Operands, AR->getLoop()); |
| } |
| // (A*B)/C --> A*(B/C) if safe and B/C can be folded. |
| if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { |
| SmallVector<const SCEV *, 4> Operands; |
| for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) |
| Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); |
| if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) |
| // Find an operand that's safely divisible. |
| for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { |
| const SCEV *Op = M->getOperand(i); |
| const SCEV *Div = getUDivExpr(Op, RHSC); |
| if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { |
| const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands(); |
| Operands = SmallVector<const SCEV *, 4>(MOperands.begin(), |
| MOperands.end()); |
| Operands[i] = Div; |
| return getMulExpr(Operands); |
| } |
| } |
| } |
| // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. |
| if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { |
| SmallVector<const SCEV *, 4> Operands; |
| for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) |
| Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); |
| if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { |
| Operands.clear(); |
| for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { |
| const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); |
| if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) |
| break; |
| Operands.push_back(Op); |
| } |
| if (Operands.size() == A->getNumOperands()) |
| return getAddExpr(Operands); |
| } |
| } |
| |
| // Fold if both operands are constant. |
| if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { |
| Constant *LHSCV = LHSC->getValue(); |
| Constant *RHSCV = RHSC->getValue(); |
| return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, |
| RHSCV))); |
| } |
| } |
| |
| FoldingSetNodeID ID; |
| ID.AddInteger(scUDivExpr); |
| ID.AddPointer(LHS); |
| ID.AddPointer(RHS); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>(); |
| new (S) SCEVUDivExpr(ID, LHS, RHS); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| |
| /// getAddRecExpr - Get an add recurrence expression for the specified loop. |
| /// Simplify the expression as much as possible. |
| const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, |
| const SCEV *Step, const Loop *L, |
| bool HasNUW, bool HasNSW) { |
| SmallVector<const SCEV *, 4> Operands; |
| Operands.push_back(Start); |
| if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) |
| if (StepChrec->getLoop() == L) { |
| Operands.insert(Operands.end(), StepChrec->op_begin(), |
| StepChrec->op_end()); |
| return getAddRecExpr(Operands, L); |
| } |
| |
| Operands.push_back(Step); |
| return getAddRecExpr(Operands, L, HasNUW, HasNSW); |
| } |
| |
| /// getAddRecExpr - Get an add recurrence expression for the specified loop. |
| /// Simplify the expression as much as possible. |
| const SCEV * |
| ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, |
| const Loop *L, |
| bool HasNUW, bool HasNSW) { |
| if (Operands.size() == 1) return Operands[0]; |
| #ifndef NDEBUG |
| for (unsigned i = 1, e = Operands.size(); i != e; ++i) |
| assert(getEffectiveSCEVType(Operands[i]->getType()) == |
| getEffectiveSCEVType(Operands[0]->getType()) && |
| "SCEVAddRecExpr operand types don't match!"); |
| #endif |
| |
| if (Operands.back()->isZero()) { |
| Operands.pop_back(); |
| return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X |
| } |
| |
| // Canonicalize nested AddRecs in by nesting them in order of loop depth. |
| if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { |
| const Loop* NestedLoop = NestedAR->getLoop(); |
| if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { |
| SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), |
| NestedAR->op_end()); |
| Operands[0] = NestedAR->getStart(); |
| // AddRecs require their operands be loop-invariant with respect to their |
| // loops. Don't perform this transformation if it would break this |
| // requirement. |
| bool AllInvariant = true; |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) |
| if (!Operands[i]->isLoopInvariant(L)) { |
| AllInvariant = false; |
| break; |
| } |
| if (AllInvariant) { |
| NestedOperands[0] = getAddRecExpr(Operands, L); |
| AllInvariant = true; |
| for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) |
| if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { |
| AllInvariant = false; |
| break; |
| } |
| if (AllInvariant) |
| // Ok, both add recurrences are valid after the transformation. |
| return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); |
| } |
| // Reset Operands to its original state. |
| Operands[0] = NestedAR; |
| } |
| } |
| |
| FoldingSetNodeID ID; |
| ID.AddInteger(scAddRecExpr); |
| ID.AddInteger(Operands.size()); |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) |
| ID.AddPointer(Operands[i]); |
| ID.AddPointer(L); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEVAddRecExpr *S = SCEVAllocator.Allocate<SCEVAddRecExpr>(); |
| new (S) SCEVAddRecExpr(ID, Operands, L); |
| UniqueSCEVs.InsertNode(S, IP); |
| if (HasNUW) S->setHasNoUnsignedWrap(true); |
| if (HasNSW) S->setHasNoSignedWrap(true); |
| return S; |
| } |
| |
| const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, |
| const SCEV *RHS) { |
| SmallVector<const SCEV *, 2> Ops; |
| Ops.push_back(LHS); |
| Ops.push_back(RHS); |
| return getSMaxExpr(Ops); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { |
| assert(!Ops.empty() && "Cannot get empty smax!"); |
| if (Ops.size() == 1) return Ops[0]; |
| #ifndef NDEBUG |
| for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
| assert(getEffectiveSCEVType(Ops[i]->getType()) == |
| getEffectiveSCEVType(Ops[0]->getType()) && |
| "SCEVSMaxExpr operand types don't match!"); |
| #endif |
| |
| // Sort by complexity, this groups all similar expression types together. |
| GroupByComplexity(Ops, LI); |
| |
| // If there are any constants, fold them together. |
| unsigned Idx = 0; |
| if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { |
| ++Idx; |
| assert(Idx < Ops.size()); |
| while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { |
| // We found two constants, fold them together! |
| ConstantInt *Fold = ConstantInt::get(getContext(), |
| APIntOps::smax(LHSC->getValue()->getValue(), |
| RHSC->getValue()->getValue())); |
| Ops[0] = getConstant(Fold); |
| Ops.erase(Ops.begin()+1); // Erase the folded element |
| if (Ops.size() == 1) return Ops[0]; |
| LHSC = cast<SCEVConstant>(Ops[0]); |
| } |
| |
| // If we are left with a constant minimum-int, strip it off. |
| if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { |
| Ops.erase(Ops.begin()); |
| --Idx; |
| } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { |
| // If we have an smax with a constant maximum-int, it will always be |
| // maximum-int. |
| return Ops[0]; |
| } |
| } |
| |
| if (Ops.size() == 1) return Ops[0]; |
| |
| // Find the first SMax |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) |
| ++Idx; |
| |
| // Check to see if one of the operands is an SMax. If so, expand its operands |
| // onto our operand list, and recurse to simplify. |
| if (Idx < Ops.size()) { |
| bool DeletedSMax = false; |
| while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { |
| Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); |
| Ops.erase(Ops.begin()+Idx); |
| DeletedSMax = true; |
| } |
| |
| if (DeletedSMax) |
| return getSMaxExpr(Ops); |
| } |
| |
| // Okay, check to see if the same value occurs in the operand list twice. If |
| // so, delete one. Since we sorted the list, these values are required to |
| // be adjacent. |
| for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) |
| if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y |
| Ops.erase(Ops.begin()+i, Ops.begin()+i+1); |
| --i; --e; |
| } |
| |
| if (Ops.size() == 1) return Ops[0]; |
| |
| assert(!Ops.empty() && "Reduced smax down to nothing!"); |
| |
| // Okay, it looks like we really DO need an smax expr. Check to see if we |
| // already have one, otherwise create a new one. |
| FoldingSetNodeID ID; |
| ID.AddInteger(scSMaxExpr); |
| ID.AddInteger(Ops.size()); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| ID.AddPointer(Ops[i]); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>(); |
| new (S) SCEVSMaxExpr(ID, Ops); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, |
| const SCEV *RHS) { |
| SmallVector<const SCEV *, 2> Ops; |
| Ops.push_back(LHS); |
| Ops.push_back(RHS); |
| return getUMaxExpr(Ops); |
| } |
| |
| const SCEV * |
| ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { |
| assert(!Ops.empty() && "Cannot get empty umax!"); |
| if (Ops.size() == 1) return Ops[0]; |
| #ifndef NDEBUG |
| for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
| assert(getEffectiveSCEVType(Ops[i]->getType()) == |
| getEffectiveSCEVType(Ops[0]->getType()) && |
| "SCEVUMaxExpr operand types don't match!"); |
| #endif |
| |
| // Sort by complexity, this groups all similar expression types together. |
| GroupByComplexity(Ops, LI); |
| |
| // If there are any constants, fold them together. |
| unsigned Idx = 0; |
| if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { |
| ++Idx; |
| assert(Idx < Ops.size()); |
| while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { |
| // We found two constants, fold them together! |
| ConstantInt *Fold = ConstantInt::get(getContext(), |
| APIntOps::umax(LHSC->getValue()->getValue(), |
| RHSC->getValue()->getValue())); |
| Ops[0] = getConstant(Fold); |
| Ops.erase(Ops.begin()+1); // Erase the folded element |
| if (Ops.size() == 1) return Ops[0]; |
| LHSC = cast<SCEVConstant>(Ops[0]); |
| } |
| |
| // If we are left with a constant minimum-int, strip it off. |
| if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { |
| Ops.erase(Ops.begin()); |
| --Idx; |
| } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { |
| // If we have an umax with a constant maximum-int, it will always be |
| // maximum-int. |
| return Ops[0]; |
| } |
| } |
| |
| if (Ops.size() == 1) return Ops[0]; |
| |
| // Find the first UMax |
| while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) |
| ++Idx; |
| |
| // Check to see if one of the operands is a UMax. If so, expand its operands |
| // onto our operand list, and recurse to simplify. |
| if (Idx < Ops.size()) { |
| bool DeletedUMax = false; |
| while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { |
| Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); |
| Ops.erase(Ops.begin()+Idx); |
| DeletedUMax = true; |
| } |
| |
| if (DeletedUMax) |
| return getUMaxExpr(Ops); |
| } |
| |
| // Okay, check to see if the same value occurs in the operand list twice. If |
| // so, delete one. Since we sorted the list, these values are required to |
| // be adjacent. |
| for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) |
| if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y |
| Ops.erase(Ops.begin()+i, Ops.begin()+i+1); |
| --i; --e; |
| } |
| |
| if (Ops.size() == 1) return Ops[0]; |
| |
| assert(!Ops.empty() && "Reduced umax down to nothing!"); |
| |
| // Okay, it looks like we really DO need a umax expr. Check to see if we |
| // already have one, otherwise create a new one. |
| FoldingSetNodeID ID; |
| ID.AddInteger(scUMaxExpr); |
| ID.AddInteger(Ops.size()); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| ID.AddPointer(Ops[i]); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>(); |
| new (S) SCEVUMaxExpr(ID, Ops); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, |
| const SCEV *RHS) { |
| // ~smax(~x, ~y) == smin(x, y). |
| return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); |
| } |
| |
| const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, |
| const SCEV *RHS) { |
| // ~umax(~x, ~y) == umin(x, y) |
| return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); |
| } |
| |
| const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy, |
| unsigned FieldNo) { |
| // If we have TargetData we can determine the constant offset. |
| if (TD) { |
| const Type *IntPtrTy = TD->getIntPtrType(getContext()); |
| const StructLayout &SL = *TD->getStructLayout(STy); |
| uint64_t Offset = SL.getElementOffset(FieldNo); |
| return getIntegerSCEV(Offset, IntPtrTy); |
| } |
| |
| // Field 0 is always at offset 0. |
| if (FieldNo == 0) { |
| const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); |
| return getIntegerSCEV(0, Ty); |
| } |
| |
| // Okay, it looks like we really DO need an offsetof expr. Check to see if we |
| // already have one, otherwise create a new one. |
| FoldingSetNodeID ID; |
| ID.AddInteger(scFieldOffset); |
| ID.AddPointer(STy); |
| ID.AddInteger(FieldNo); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>(); |
| const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); |
| new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) { |
| // If we have TargetData we can determine the constant size. |
| if (TD && AllocTy->isSized()) { |
| const Type *IntPtrTy = TD->getIntPtrType(getContext()); |
| return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy); |
| } |
| |
| // Expand an array size into the element size times the number |
| // of elements. |
| if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) { |
| const SCEV *E = getAllocSizeExpr(ATy->getElementType()); |
| return getMulExpr( |
| E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()), |
| ATy->getNumElements()))); |
| } |
| |
| // Expand a vector size into the element size times the number |
| // of elements. |
| if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) { |
| const SCEV *E = getAllocSizeExpr(VTy->getElementType()); |
| return getMulExpr( |
| E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()), |
| VTy->getNumElements()))); |
| } |
| |
| // Okay, it looks like we really DO need a sizeof expr. Check to see if we |
| // already have one, otherwise create a new one. |
| FoldingSetNodeID ID; |
| ID.AddInteger(scAllocSize); |
| ID.AddPointer(AllocTy); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>(); |
| const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); |
| new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| const SCEV *ScalarEvolution::getUnknown(Value *V) { |
| // Don't attempt to do anything other than create a SCEVUnknown object |
| // here. createSCEV only calls getUnknown after checking for all other |
| // interesting possibilities, and any other code that calls getUnknown |
| // is doing so in order to hide a value from SCEV canonicalization. |
| |
| FoldingSetNodeID ID; |
| ID.AddInteger(scUnknown); |
| ID.AddPointer(V); |
| void *IP = 0; |
| if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; |
| SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>(); |
| new (S) SCEVUnknown(ID, V); |
| UniqueSCEVs.InsertNode(S, IP); |
| return S; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Basic SCEV Analysis and PHI Idiom Recognition Code |
| // |
| |
| /// isSCEVable - Test if values of the given type are analyzable within |
| /// the SCEV framework. This primarily includes integer types, and it |
| /// can optionally include pointer types if the ScalarEvolution class |
| /// has access to target-specific information. |
| bool ScalarEvolution::isSCEVable(const Type *Ty) const { |
| // Integers and pointers are always SCEVable. |
| return Ty->isInteger() || isa<PointerType>(Ty); |
| } |
| |
| /// getTypeSizeInBits - Return the size in bits of the specified type, |
| /// for which isSCEVable must return true. |
| uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { |
| assert(isSCEVable(Ty) && "Type is not SCEVable!"); |
| |
| // If we have a TargetData, use it! |
| if (TD) |
| return TD->getTypeSizeInBits(Ty); |
| |
| // Integer types have fixed sizes. |
| if (Ty->isInteger()) |
| return Ty->getPrimitiveSizeInBits(); |
| |
| // The only other support type is pointer. Without TargetData, conservatively |
| // assume pointers are 64-bit. |
| assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!"); |
| return 64; |
| } |
| |
| /// getEffectiveSCEVType - Return a type with the same bitwidth as |
| /// the given type and which represents how SCEV will treat the given |
| /// type, for which isSCEVable must return true. For pointer types, |
| /// this is the pointer-sized integer type. |
| const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { |
| assert(isSCEVable(Ty) && "Type is not SCEVable!"); |
| |
| if (Ty->isInteger()) |
| return Ty; |
| |
| // The only other support type is pointer. |
| assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); |
| if (TD) return TD->getIntPtrType(getContext()); |
| |
| // Without TargetData, conservatively assume pointers are 64-bit. |
| return Type::getInt64Ty(getContext()); |
| } |
| |
| const SCEV *ScalarEvolution::getCouldNotCompute() { |
| return &CouldNotCompute; |
| } |
| |
| /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the |
| /// expression and create a new one. |
| const SCEV *ScalarEvolution::getSCEV(Value *V) { |
| assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); |
| |
| std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); |
| if (I != Scalars.end()) return I->second; |
| const SCEV *S = createSCEV(V); |
| Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); |
| return S; |
| } |
| |
| /// getIntegerSCEV - Given a SCEVable type, create a constant for the |
| /// specified signed integer value and return a SCEV for the constant. |
| const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { |
| const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); |
| return getConstant(ConstantInt::get(ITy, Val)); |
| } |
| |
| /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V |
| /// |
| const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { |
| if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) |
| return getConstant( |
| cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); |
| |
| const Type *Ty = V->getType(); |
| Ty = getEffectiveSCEVType(Ty); |
| return getMulExpr(V, |
| getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); |
| } |
| |
| /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V |
| const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { |
| if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) |
| return getConstant( |
| cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); |
| |
| const Type *Ty = V->getType(); |
| Ty = getEffectiveSCEVType(Ty); |
| const SCEV *AllOnes = |
| getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); |
| return getMinusSCEV(AllOnes, V); |
| } |
| |
| /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. |
| /// |
| const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, |
| const SCEV *RHS) { |
| // X - Y --> X + -Y |
| return getAddExpr(LHS, getNegativeSCEV(RHS)); |
| } |
| |
| /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the |
| /// input value to the specified type. If the type must be extended, it is zero |
| /// extended. |
| const SCEV * |
| ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, |
| const Type *Ty) { |
| const Type *SrcTy = V->getType(); |
| assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && |
| (Ty->isInteger() || isa<PointerType>(Ty)) && |
| "Cannot truncate or zero extend with non-integer arguments!"); |
| if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) |
| return V; // No conversion |
| if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) |
| return getTruncateExpr(V, Ty); |
| return getZeroExtendExpr(V, Ty); |
| } |
| |
| /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the |
| /// input value to the specified type. If the type must be extended, it is sign |
| /// extended. |
| const SCEV * |
| ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, |
| const Type *Ty) { |
| const Type *SrcTy = V->getType(); |
| assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && |
| (Ty->isInteger() || isa<PointerType>(Ty)) && |
| "Cannot truncate or zero extend with non-integer arguments!"); |
| if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) |
| return V; // No conversion |
| if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) |
| return getTruncateExpr(V, Ty); |
| return getSignExtendExpr(V, Ty); |
| } |
| |
| /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the |
| /// input value to the specified type. If the type must be extended, it is zero |
| /// extended. The conversion must not be narrowing. |
| const SCEV * |
| ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { |
| const Type *SrcTy = V->getType(); |
| assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && |
| (Ty->isInteger() || isa<PointerType>(Ty)) && |
| "Cannot noop or zero extend with non-integer arguments!"); |
| assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && |
| "getNoopOrZeroExtend cannot truncate!"); |
| if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) |
| return V; // No conversion |
| return getZeroExtendExpr(V, Ty); |
| } |
| |
| /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the |
| /// input value to the specified type. If the type must be extended, it is sign |
| /// extended. The conversion must not be narrowing. |
| const SCEV * |
| ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { |
| const Type *SrcTy = V->getType(); |
| assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && |
| (Ty->isInteger() || isa<PointerType>(Ty)) && |
| "Cannot noop or sign extend with non-integer arguments!"); |
| assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && |
| "getNoopOrSignExtend cannot truncate!"); |
| if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) |
| return V; // No conversion |
| return getSignExtendExpr(V, Ty); |
| } |
| |
| /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of |
| /// the input value to the specified type. If the type must be extended, |
| /// it is extended with unspecified bits. The conversion must not be |
| /// narrowing. |
| const SCEV * |
| ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { |
| const Type *SrcTy = V->getType(); |
| assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && |
| (Ty->isInteger() || isa<PointerType>(Ty)) && |
| "Cannot noop or any extend with non-integer arguments!"); |
| assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && |
| "getNoopOrAnyExtend cannot truncate!"); |
| if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) |
| return V; // No conversion |
| return getAnyExtendExpr(V, Ty); |
| } |
| |
| /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the |
| /// input value to the specified type. The conversion must not be widening. |
| const SCEV * |
| ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { |
| const Type *SrcTy = V->getType(); |
| assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && |
| (Ty->isInteger() || isa<PointerType>(Ty)) && |
| "Cannot truncate or noop with non-integer arguments!"); |
| assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && |
| "getTruncateOrNoop cannot extend!"); |
| if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) |
| return V; // No conversion |
| return getTruncateExpr(V, Ty); |
| } |
| |
| /// getUMaxFromMismatchedTypes - Promote the operands to the wider of |
| /// the types using zero-extension, and then perform a umax operation |
| /// with them. |
| const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, |
| const SCEV *RHS) { |
| const SCEV *PromotedLHS = LHS; |
| const SCEV *PromotedRHS = RHS; |
| |
| if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) |
| PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); |
| else |
| PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); |
| |
| return getUMaxExpr(PromotedLHS, PromotedRHS); |
| } |
| |
| /// getUMinFromMismatchedTypes - Promote the operands to the wider of |
| /// the types using zero-extension, and then perform a umin operation |
| /// with them. |
| const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, |
| const SCEV *RHS) { |
| const SCEV *PromotedLHS = LHS; |
| const SCEV *PromotedRHS = RHS; |
| |
| if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) |
| PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); |
| else |
| PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); |
| |
| return getUMinExpr(PromotedLHS, PromotedRHS); |
| } |
| |
| /// PushDefUseChildren - Push users of the given Instruction |
| /// onto the given Worklist. |
| static void |
| PushDefUseChildren(Instruction *I, |
| SmallVectorImpl<Instruction *> &Worklist) { |
| // Push the def-use children onto the Worklist stack. |
| for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); |
| UI != UE; ++UI) |
| Worklist.push_back(cast<Instruction>(UI)); |
| } |
| |
| /// ForgetSymbolicValue - This looks up computed SCEV values for all |
| /// instructions that depend on the given instruction and removes them from |
| /// the Scalars map if they reference SymName. This is used during PHI |
| /// resolution. |
| void |
| ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) { |
| SmallVector<Instruction *, 16> Worklist; |
| PushDefUseChildren(I, Worklist); |
| |
| SmallPtrSet<Instruction *, 8> Visited; |
| Visited.insert(I); |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.pop_back_val(); |
| if (!Visited.insert(I)) continue; |
| |
| std::map<SCEVCallbackVH, const SCEV*>::iterator It = |
| Scalars.find(static_cast<Value *>(I)); |
| if (It != Scalars.end()) { |
| // Short-circuit the def-use traversal if the symbolic name |
| // ceases to appear in expressions. |
| if (!It->second->hasOperand(SymName)) |
| continue; |
| |
| // SCEVUnknown for a PHI either means that it has an unrecognized |
| // structure, or it's a PHI that's in the progress of being computed |
| // by createNodeForPHI. In the former case, additional loop trip |
| // count information isn't going to change anything. In the later |
| // case, createNodeForPHI will perform the necessary updates on its |
| // own when it gets to that point. |
| if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { |
| ValuesAtScopes.erase(It->second); |
| Scalars.erase(It); |
| } |
| } |
| |
| PushDefUseChildren(I, Worklist); |
| } |
| } |
| |
| /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in |
| /// a loop header, making it a potential recurrence, or it doesn't. |
| /// |
| const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { |
| if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. |
| if (const Loop *L = LI->getLoopFor(PN->getParent())) |
| if (L->getHeader() == PN->getParent()) { |
| // If it lives in the loop header, it has two incoming values, one |
| // from outside the loop, and one from inside. |
| unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); |
| unsigned BackEdge = IncomingEdge^1; |
| |
| // While we are analyzing this PHI node, handle its value symbolically. |
| const SCEV *SymbolicName = getUnknown(PN); |
| assert(Scalars.find(PN) == Scalars.end() && |
| "PHI node already processed?"); |
| Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); |
| |
| // Using this symbolic name for the PHI, analyze the value coming around |
| // the back-edge. |
| Value *BEValueV = PN->getIncomingValue(BackEdge); |
| const SCEV *BEValue = getSCEV(BEValueV); |
| |
| // NOTE: If BEValue is loop invariant, we know that the PHI node just |
| // has a special value for the first iteration of the loop. |
| |
| // If the value coming around the backedge is an add with the symbolic |
| // value we just inserted, then we found a simple induction variable! |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { |
| // If there is a single occurrence of the symbolic value, replace it |
| // with a recurrence. |
| unsigned FoundIndex = Add->getNumOperands(); |
| for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| if (Add->getOperand(i) == SymbolicName) |
| if (FoundIndex == e) { |
| FoundIndex = i; |
| break; |
| } |
| |
| if (FoundIndex != Add->getNumOperands()) { |
| // Create an add with everything but the specified operand. |
| SmallVector<const SCEV *, 8> Ops; |
| for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| if (i != FoundIndex) |
| Ops.push_back(Add->getOperand(i)); |
| const SCEV *Accum = getAddExpr(Ops); |
| |
| // This is not a valid addrec if the step amount is varying each |
| // loop iteration, but is not itself an addrec in this loop. |
| if (Accum->isLoopInvariant(L) || |
| (isa<SCEVAddRecExpr>(Accum) && |
| cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { |
| const SCEV *StartVal = |
| getSCEV(PN->getIncomingValue(IncomingEdge)); |
| const SCEVAddRecExpr *PHISCEV = |
| cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L)); |
| |
| // If the increment doesn't overflow, then neither the addrec nor the |
| // post-increment will overflow. |
| if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) |
| if (OBO->getOperand(0) == PN && |
| getSCEV(OBO->getOperand(1)) == |
| PHISCEV->getStepRecurrence(*this)) { |
| const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this); |
| if (OBO->hasNoUnsignedWrap()) { |
| const_cast<SCEVAddRecExpr *>(PHISCEV) |
| ->setHasNoUnsignedWrap(true); |
| const_cast<SCEVAddRecExpr *>(PostInc) |
| ->setHasNoUnsignedWrap(true); |
| } |
| if (OBO->hasNoSignedWrap()) { |
| const_cast<SCEVAddRecExpr *>(PHISCEV) |
| ->setHasNoSignedWrap(true); |
| const_cast<SCEVAddRecExpr *>(PostInc) |
| ->setHasNoSignedWrap(true); |
| } |
| } |
| |
| // Okay, for the entire analysis of this edge we assumed the PHI |
| // to be symbolic. We now need to go back and purge all of the |
| // entries for the scalars that use the symbolic expression. |
| ForgetSymbolicName(PN, SymbolicName); |
| Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; |
| return PHISCEV; |
| } |
| } |
| } else if (const SCEVAddRecExpr *AddRec = |
| dyn_cast<SCEVAddRecExpr>(BEValue)) { |
| // Otherwise, this could be a loop like this: |
| // i = 0; for (j = 1; ..; ++j) { .... i = j; } |
| // In this case, j = {1,+,1} and BEValue is j. |
| // Because the other in-value of i (0) fits the evolution of BEValue |
| // i really is an addrec evolution. |
| if (AddRec->getLoop() == L && AddRec->isAffine()) { |
| const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); |
| |
| // If StartVal = j.start - j.stride, we can use StartVal as the |
| // initial step of the addrec evolution. |
| if (StartVal == getMinusSCEV(AddRec->getOperand(0), |
| AddRec->getOperand(1))) { |
| const SCEV *PHISCEV = |
| getAddRecExpr(StartVal, AddRec->getOperand(1), L); |
| |
| // Okay, for the entire analysis of this edge we assumed the PHI |
| // to be symbolic. We now need to go back and purge all of the |
| // entries for the scalars that use the symbolic expression. |
| ForgetSymbolicName(PN, SymbolicName); |
| Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; |
| return PHISCEV; |
| } |
| } |
| } |
| |
| return SymbolicName; |
| } |
| |
| // It's tempting to recognize PHIs with a unique incoming value, however |
| // this leads passes like indvars to break LCSSA form. Fortunately, such |
| // PHIs are rare, as instcombine zaps them. |
| |
| // If it's not a loop phi, we can't handle it yet. |
| return getUnknown(PN); |
| } |
| |
| /// createNodeForGEP - Expand GEP instructions into add and multiply |
| /// operations. This allows them to be analyzed by regular SCEV code. |
| /// |
| const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) { |
| |
| const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); |
| Value *Base = GEP->getOperand(0); |
| // Don't attempt to analyze GEPs over unsized objects. |
| if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) |
| return getUnknown(GEP); |
| const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy); |
| gep_type_iterator GTI = gep_type_begin(GEP); |
| for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), |
| E = GEP->op_end(); |
| I != E; ++I) { |
| Value *Index = *I; |
| // Compute the (potentially symbolic) offset in bytes for this index. |
| if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { |
| // For a struct, add the member offset. |
| unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); |
| TotalOffset = getAddExpr(TotalOffset, |
| getFieldOffsetExpr(STy, FieldNo)); |
| } else { |
| // For an array, add the element offset, explicitly scaled. |
| const SCEV *LocalOffset = getSCEV(Index); |
| if (!isa<PointerType>(LocalOffset->getType())) |
| // Getelementptr indicies are signed. |
| LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy); |
| LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI)); |
| TotalOffset = getAddExpr(TotalOffset, LocalOffset); |
| } |
| } |
| return getAddExpr(getSCEV(Base), TotalOffset); |
| } |
| |
| /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is |
| /// guaranteed to end in (at every loop iteration). It is, at the same time, |
| /// the minimum number of times S is divisible by 2. For example, given {4,+,8} |
| /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. |
| uint32_t |
| ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) |
| return C->getValue()->getValue().countTrailingZeros(); |
| |
| if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) |
| return std::min(GetMinTrailingZeros(T->getOperand()), |
| (uint32_t)getTypeSizeInBits(T->getType())); |
| |
| if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { |
| uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); |
| return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? |
| getTypeSizeInBits(E->getType()) : OpRes; |
| } |
| |
| if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { |
| uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); |
| return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? |
| getTypeSizeInBits(E->getType()) : OpRes; |
| } |
| |
| if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { |
| // The result is the min of all operands results. |
| uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); |
| for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) |
| MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); |
| return MinOpRes; |
| } |
| |
| if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { |
| // The result is the sum of all operands results. |
| uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); |
| uint32_t BitWidth = getTypeSizeInBits(M->getType()); |
| for (unsigned i = 1, e = M->getNumOperands(); |
| SumOpRes != BitWidth && i != e; ++i) |
| SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), |
| BitWidth); |
| return SumOpRes; |
| } |
| |
| if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { |
| // The result is the min of all operands results. |
| uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); |
| for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) |
| MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); |
| return MinOpRes; |
| } |
| |
| if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { |
| // The result is the min of all operands results. |
| uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); |
| for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) |
| MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); |
| return MinOpRes; |
| } |
| |
| if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { |
| // The result is the min of all operands results. |
| uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); |
| for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) |
| MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); |
| return MinOpRes; |
| } |
| |
| if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { |
| // For a SCEVUnknown, ask ValueTracking. |
| unsigned BitWidth = getTypeSizeInBits(U->getType()); |
| APInt Mask = APInt::getAllOnesValue(BitWidth); |
| APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); |
| ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); |
| return Zeros.countTrailingOnes(); |
| } |
| |
| // SCEVUDivExpr |
| return 0; |
| } |
| |
| /// getUnsignedRange - Determine the unsigned range for a particular SCEV. |
| /// |
| ConstantRange |
| ScalarEvolution::getUnsignedRange(const SCEV *S) { |
| |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) |
| return ConstantRange(C->getValue()->getValue()); |
| |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| ConstantRange X = getUnsignedRange(Add->getOperand(0)); |
| for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) |
| X = X.add(getUnsignedRange(Add->getOperand(i))); |
| return X; |
| } |
| |
| if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { |
| ConstantRange X = getUnsignedRange(Mul->getOperand(0)); |
| for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) |
| X = X.multiply(getUnsignedRange(Mul->getOperand(i))); |
| return X; |
| } |
| |
| if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { |
| ConstantRange X = getUnsignedRange(SMax->getOperand(0)); |
| for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) |
| X = X.smax(getUnsignedRange(SMax->getOperand(i))); |
| return X; |
| } |
| |
| if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { |
| ConstantRange X = getUnsignedRange(UMax->getOperand(0)); |
| for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) |
| X = X.umax(getUnsignedRange(UMax->getOperand(i))); |
| return X; |
| } |
| |
| if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { |
| ConstantRange X = getUnsignedRange(UDiv->getLHS()); |
| ConstantRange Y = getUnsignedRange(UDiv->getRHS()); |
| return X.udiv(Y); |
| } |
| |
| if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { |
| ConstantRange X = getUnsignedRange(ZExt->getOperand()); |
| return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth()); |
| } |
| |
| if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { |
| ConstantRange X = getUnsignedRange(SExt->getOperand()); |
| return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth()); |
| } |
| |
| if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { |
| ConstantRange X = getUnsignedRange(Trunc->getOperand()); |
| return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth()); |
| } |
| |
| ConstantRange FullSet(getTypeSizeInBits(S->getType()), true); |
| |
| if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { |
| const SCEV *T = getBackedgeTakenCount(AddRec->getLoop()); |
| const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T); |
| if (!Trip) return FullSet; |
| |
| // TODO: non-affine addrec |
| if (AddRec->isAffine()) { |
| const Type *Ty = AddRec->getType(); |
| const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); |
| if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) { |
| MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); |
| |
| const SCEV *Start = AddRec->getStart(); |
| const SCEV *Step = AddRec->getStepRecurrence(*this); |
| const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); |
| |
| // Check for overflow. |
| // TODO: This is very conservative. |
| if (!(Step->isOne() && |
| isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) && |
| !(Step->isAllOnesValue() && |
| isKnownPredicate(ICmpInst::ICMP_UGT, Start, End))) |
| return FullSet; |
| |
| ConstantRange StartRange = getUnsignedRange(Start); |
| ConstantRange EndRange = getUnsignedRange(End); |
| APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), |
| EndRange.getUnsignedMin()); |
| APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), |
| EndRange.getUnsignedMax()); |
| if (Min.isMinValue() && Max.isMaxValue()) |
| return FullSet; |
| return ConstantRange(Min, Max+1); |
| } |
| } |
| } |
| |
| if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { |
| // For a SCEVUnknown, ask ValueTracking. |
| unsigned BitWidth = getTypeSizeInBits(U->getType()); |
| APInt Mask = APInt::getAllOnesValue(BitWidth); |
| APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); |
| ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); |
| if (Ones == ~Zeros + 1) |
| return FullSet; |
| return ConstantRange(Ones, ~Zeros + 1); |
| } |
| |
| return FullSet; |
| } |
| |
| /// getSignedRange - Determine the signed range for a particular SCEV. |
| /// |
| ConstantRange |
| ScalarEvolution::getSignedRange(const SCEV *S) { |
| |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) |
| return ConstantRange(C->getValue()->getValue()); |
| |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| ConstantRange X = getSignedRange(Add->getOperand(0)); |
| for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) |
| X = X.add(getSignedRange(Add->getOperand(i))); |
| return X; |
| } |
| |
| if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { |
| ConstantRange X = getSignedRange(Mul->getOperand(0)); |
| for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) |
| X = X.multiply(getSignedRange(Mul->getOperand(i))); |
| return X; |
| } |
| |
| if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { |
| ConstantRange X = getSignedRange(SMax->getOperand(0)); |
| for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) |
| X = X.smax(getSignedRange(SMax->getOperand(i))); |
| return X; |
| } |
| |
| if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { |
| ConstantRange X = getSignedRange(UMax->getOperand(0)); |
| for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) |
| X = X.umax(getSignedRange(UMax->getOperand(i))); |
| return X; |
| } |
| |
| if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { |
| ConstantRange X = getSignedRange(UDiv->getLHS()); |
| ConstantRange Y = getSignedRange(UDiv->getRHS()); |
| return X.udiv(Y); |
| } |
| |
| if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { |
| ConstantRange X = getSignedRange(ZExt->getOperand()); |
| return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth()); |
| } |
| |
| if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { |
| ConstantRange X = getSignedRange(SExt->getOperand()); |
| return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth()); |
| } |
| |
| if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { |
| ConstantRange X = getSignedRange(Trunc->getOperand()); |
| return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth()); |
| } |
| |
| ConstantRange FullSet(getTypeSizeInBits(S->getType()), true); |
| |
| if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { |
| const SCEV *T = getBackedgeTakenCount(AddRec->getLoop()); |
| const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T); |
| if (!Trip) return FullSet; |
| |
| // TODO: non-affine addrec |
| if (AddRec->isAffine()) { |
| const Type *Ty = AddRec->getType(); |
| const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); |
| if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) { |
| MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); |
| |
| const SCEV *Start = AddRec->getStart(); |
| const SCEV *Step = AddRec->getStepRecurrence(*this); |
| const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); |
| |
| // Check for overflow. |
| // TODO: This is very conservative. |
| if (!(Step->isOne() && |
| isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) && |
| !(Step->isAllOnesValue() && |
| isKnownPredicate(ICmpInst::ICMP_SGT, Start, End))) |
| return FullSet; |
| |
| ConstantRange StartRange = getSignedRange(Start); |
| ConstantRange EndRange = getSignedRange(End); |
| APInt Min = APIntOps::smin(StartRange.getSignedMin(), |
| EndRange.getSignedMin()); |
| APInt Max = APIntOps::smax(StartRange.getSignedMax(), |
| EndRange.getSignedMax()); |
| if (Min.isMinSignedValue() && Max.isMaxSignedValue()) |
| return FullSet; |
| return ConstantRange(Min, Max+1); |
| } |
| } |
| } |
| |
| if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { |
| // For a SCEVUnknown, ask ValueTracking. |
| unsigned BitWidth = getTypeSizeInBits(U->getType()); |
| unsigned NS = ComputeNumSignBits(U->getValue(), TD); |
| if (NS == 1) |
| return FullSet; |
| return |
| ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), |
| APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1); |
| } |
| |
| return FullSet; |
| } |
| |
| /// createSCEV - We know that there is no SCEV for the specified value. |
| /// Analyze the expression. |
| /// |
| const SCEV *ScalarEvolution::createSCEV(Value *V) { |
| if (!isSCEVable(V->getType())) |
| return getUnknown(V); |
| |
| unsigned Opcode = Instruction::UserOp1; |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| Opcode = I->getOpcode(); |
| else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| Opcode = CE->getOpcode(); |
| else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) |
| return getConstant(CI); |
| else if (isa<ConstantPointerNull>(V)) |
| return getIntegerSCEV(0, V->getType()); |
| else if (isa<UndefValue>(V)) |
| return getIntegerSCEV(0, V->getType()); |
| else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) |
| return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); |
| else |
| return getUnknown(V); |
| |
| Operator *U = cast<Operator>(V); |
| switch (Opcode) { |
| case Instruction::Add: |
| // Don't transfer the NSW and NUW bits from the Add instruction to the |
| // Add expression, because the Instruction may be guarded by control |
| // flow and the no-overflow bits may not be valid for the expression in |
| // any context. |
| return getAddExpr(getSCEV(U->getOperand(0)), |
| getSCEV(U->getOperand(1))); |
| case Instruction::Mul: |
| // Don't transfer the NSW and NUW bits from the Mul instruction to the |
| // Mul expression, as with Add. |
| return getMulExpr(getSCEV(U->getOperand(0)), |
| getSCEV(U->getOperand(1))); |
| case Instruction::UDiv: |
| return getUDivExpr(getSCEV(U->getOperand(0)), |
| getSCEV(U->getOperand(1))); |
| case Instruction::Sub: |
| return getMinusSCEV(getSCEV(U->getOperand(0)), |
| getSCEV(U->getOperand(1))); |
| case Instruction::And: |
| // For an expression like x&255 that merely masks off the high bits, |
| // use zext(trunc(x)) as the SCEV expression. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| if (CI->isNullValue()) |
| return getSCEV(U->getOperand(1)); |
| if (CI->isAllOnesValue()) |
| return getSCEV(U->getOperand(0)); |
| const APInt &A = CI->getValue(); |
| |
| // Instcombine's ShrinkDemandedConstant may strip bits out of |
| // constants, obscuring what would otherwise be a low-bits mask. |
| // Use ComputeMaskedBits to compute what ShrinkDemandedConstant |
| // knew about to reconstruct a low-bits mask value. |
| unsigned LZ = A.countLeadingZeros(); |
| unsigned BitWidth = A.getBitWidth(); |
| APInt AllOnes = APInt::getAllOnesValue(BitWidth); |
| APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); |
| ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); |
| |
| APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); |
| |
| if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) |
| return |
| getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), |
| IntegerType::get(getContext(), BitWidth - LZ)), |
| U->getType()); |
| } |
| break; |
| |
| case Instruction::Or: |
| // If the RHS of the Or is a constant, we may have something like: |
| // X*4+1 which got turned into X*4|1. Handle this as an Add so loop |
| // optimizations will transparently handle this case. |
| // |
| // In order for this transformation to be safe, the LHS must be of the |
| // form X*(2^n) and the Or constant must be less than 2^n. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| const SCEV *LHS = getSCEV(U->getOperand(0)); |
| const APInt &CIVal = CI->getValue(); |
| if (GetMinTrailingZeros(LHS) >= |
| (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { |
| // Build a plain add SCEV. |
| const SCEV *S = getAddExpr(LHS, getSCEV(CI)); |
| // If the LHS of the add was an addrec and it has no-wrap flags, |
| // transfer the no-wrap flags, since an or won't introduce a wrap. |
| if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { |
| const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); |
| if (OldAR->hasNoUnsignedWrap()) |
| const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); |
| if (OldAR->hasNoSignedWrap()) |
| const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); |
| } |
| return S; |
| } |
| } |
| break; |
| case Instruction::Xor: |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| // If the RHS of the xor is a signbit, then this is just an add. |
| // Instcombine turns add of signbit into xor as a strength reduction step. |
| if (CI->getValue().isSignBit()) |
| return getAddExpr(getSCEV(U->getOperand(0)), |
| getSCEV(U->getOperand(1))); |
| |
| // If the RHS of xor is -1, then this is a not operation. |
| if (CI->isAllOnesValue()) |
| return getNotSCEV(getSCEV(U->getOperand(0))); |
| |
| // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. |
| // This is a variant of the check for xor with -1, and it handles |
| // the case where instcombine has trimmed non-demanded bits out |
| // of an xor with -1. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) |
| if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) |
| if (BO->getOpcode() == Instruction::And && |
| LCI->getValue() == CI->getValue()) |
| if (const SCEVZeroExtendExpr *Z = |
| dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { |
| const Type *UTy = U->getType(); |
| const SCEV *Z0 = Z->getOperand(); |
| const Type *Z0Ty = Z0->getType(); |
| unsigned Z0TySize = getTypeSizeInBits(Z0Ty); |
| |
| // If C is a low-bits mask, the zero extend is zerving to |
| // mask off the high bits. Complement the operand and |
| // re-apply the zext. |
| if (APIntOps::isMask(Z0TySize, CI->getValue())) |
| return getZeroExtendExpr(getNotSCEV(Z0), UTy); |
| |
| // If C is a single bit, it may be in the sign-bit position |
| // before the zero-extend. In this case, represent the xor |
| // using an add, which is equivalent, and re-apply the zext. |
| APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); |
| if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && |
| Trunc.isSignBit()) |
| return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), |
| UTy); |
| } |
| } |
| break; |
| |
| case Instruction::Shl: |
| // Turn shift left of a constant amount into a multiply. |
| if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); |
| Constant *X = ConstantInt::get(getContext(), |
| APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); |
| return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); |
| } |
| break; |
| |
| case Instruction::LShr: |
| // Turn logical shift right of a constant into a unsigned divide. |
| if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); |
| Constant *X = ConstantInt::get(getContext(), |
| APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); |
| return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); |
| } |
| break; |
| |
| case Instruction::AShr: |
| // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) |
| if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) |
| if (L->getOpcode() == Instruction::Shl && |
| L->getOperand(1) == U->getOperand(1)) { |
| unsigned BitWidth = getTypeSizeInBits(U->getType()); |
| uint64_t Amt = BitWidth - CI->getZExtValue(); |
| if (Amt == BitWidth) |
| return getSCEV(L->getOperand(0)); // shift by zero --> noop |
| if (Amt > BitWidth) |
| return getIntegerSCEV(0, U->getType()); // value is undefined |
| return |
| getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), |
| IntegerType::get(getContext(), Amt)), |
| U->getType()); |
| } |
| break; |
| |
| case Instruction::Trunc: |
| return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); |
| |
| case Instruction::ZExt: |
| return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); |
| |
| case Instruction::SExt: |
| return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); |
| |
| case Instruction::BitCast: |
| // BitCasts are no-op casts so we just eliminate the cast. |
| if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) |
| return getSCEV(U->getOperand(0)); |
| break; |
| |
| // It's tempting to handle inttoptr and ptrtoint, however this can |
| // lead to pointer expressions which cannot be expanded to GEPs |
| // (because they may overflow). For now, the only pointer-typed |
| // expressions we handle are GEPs and address literals. |
| |
| case Instruction::GetElementPtr: |
| return createNodeForGEP(U); |
| |
| case Instruction::PHI: |
| return createNodeForPHI(cast<PHINode>(U)); |
| |
| case Instruction::Select: |
| // This could be a smax or umax that was lowered earlier. |
| // Try to recover it. |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { |
| Value *LHS = ICI->getOperand(0); |
| Value *RHS = ICI->getOperand(1); |
| switch (ICI->getPredicate()) { |
| case ICmpInst::ICMP_SLT: |
| case ICmpInst::ICMP_SLE: |
| std::swap(LHS, RHS); |
| // fall through |
| case ICmpInst::ICMP_SGT: |
| case ICmpInst::ICMP_SGE: |
| if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) |
| return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); |
| else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) |
| return getSMinExpr(getSCEV(LHS), getSCEV(RHS)); |
| break; |
| case ICmpInst::ICMP_ULT: |
| case ICmpInst::ICMP_ULE: |
| std::swap(LHS, RHS); |
| // fall through |
| case ICmpInst::ICMP_UGT: |
| case ICmpInst::ICMP_UGE: |
| if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) |
| return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); |
| else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) |
| return getUMinExpr(getSCEV(LHS), getSCEV(RHS)); |
| break; |
| case ICmpInst::ICMP_NE: |
| // n != 0 ? n : 1 -> umax(n, 1) |
| if (LHS == U->getOperand(1) && |
| isa<ConstantInt>(U->getOperand(2)) && |
| cast<ConstantInt>(U->getOperand(2))->isOne() && |
| isa<ConstantInt>(RHS) && |
| cast<ConstantInt>(RHS)->isZero()) |
| return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2))); |
| break; |
| case ICmpInst::ICMP_EQ: |
| // n == 0 ? 1 : n -> umax(n, 1) |
| if (LHS == U->getOperand(2) && |
| isa<ConstantInt>(U->getOperand(1)) && |
| cast<ConstantInt>(U->getOperand(1))->isOne() && |
| isa<ConstantInt>(RHS) && |
| cast<ConstantInt>(RHS)->isZero()) |
| return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1))); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| default: // We cannot analyze this expression. |
| break; |
| } |
| |
| return getUnknown(V); |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Iteration Count Computation Code |
| // |
| |
| /// getBackedgeTakenCount - If the specified loop has a predictable |
| /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute |
| /// object. The backedge-taken count is the number of times the loop header |
| /// will be branched to from within the loop. This is one less than the |
| /// trip count of the loop, since it doesn't count the first iteration, |
| /// when the header is branched to from outside the loop. |
| /// |
| /// Note that it is not valid to call this method on a loop without a |
| /// loop-invariant backedge-taken count (see |
| /// hasLoopInvariantBackedgeTakenCount). |
| /// |
| const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { |
| return getBackedgeTakenInfo(L).Exact; |
| } |
| |
| /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except |
| /// return the least SCEV value that is known never to be less than the |
| /// actual backedge taken count. |
| const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { |
| return getBackedgeTakenInfo(L).Max; |
| } |
| |
| /// PushLoopPHIs - Push PHI nodes in the header of the given loop |
| /// onto the given Worklist. |
| static void |
| PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { |
| BasicBlock *Header = L->getHeader(); |
| |
| // Push all Loop-header PHIs onto the Worklist stack. |
| for (BasicBlock::iterator I = Header->begin(); |
| PHINode *PN = dyn_cast<PHINode>(I); ++I) |
| Worklist.push_back(PN); |
| } |
| |
| const ScalarEvolution::BackedgeTakenInfo & |
| ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { |
| // Initially insert a CouldNotCompute for this loop. If the insertion |
| // succeeds, procede to actually compute a backedge-taken count and |
| // update the value. The temporary CouldNotCompute value tells SCEV |
| // code elsewhere that it shouldn't attempt to request a new |
| // backedge-taken count, which could result in infinite recursion. |
| std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = |
| BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); |
| if (Pair.second) { |
| BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); |
| if (ItCount.Exact != getCouldNotCompute()) { |
| assert(ItCount.Exact->isLoopInvariant(L) && |
| ItCount.Max->isLoopInvariant(L) && |
| "Computed trip count isn't loop invariant for loop!"); |
| ++NumTripCountsComputed; |
| |
| // Update the value in the map. |
| Pair.first->second = ItCount; |
| } else { |
| if (ItCount.Max != getCouldNotCompute()) |
| // Update the value in the map. |
| Pair.first->second = ItCount; |
| if (isa<PHINode>(L->getHeader()->begin())) |
| // Only count loops that have phi nodes as not being computable. |
| ++NumTripCountsNotComputed; |
| } |
| |
| // Now that we know more about the trip count for this loop, forget any |
| // existing SCEV values for PHI nodes in this loop since they are only |
| // conservative estimates made without the benefit of trip count |
| // information. This is similar to the code in forgetLoop, except that |
| // it handles SCEVUnknown PHI nodes specially. |
| if (ItCount.hasAnyInfo()) { |
| SmallVector<Instruction *, 16> Worklist; |
| PushLoopPHIs(L, Worklist); |
| |
| SmallPtrSet<Instruction *, 8> Visited; |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.pop_back_val(); |
| if (!Visited.insert(I)) continue; |
| |
| std::map<SCEVCallbackVH, const SCEV*>::iterator It = |
| Scalars.find(static_cast<Value *>(I)); |
| if (It != Scalars.end()) { |
| // SCEVUnknown for a PHI either means that it has an unrecognized |
| // structure, or it's a PHI that's in the progress of being computed |
| // by createNodeForPHI. In the former case, additional loop trip |
| // count information isn't going to change anything. In the later |
| // case, createNodeForPHI will perform the necessary updates on its |
| // own when it gets to that point. |
| if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { |
| ValuesAtScopes.erase(It->second); |
| Scalars.erase(It); |
| } |
| if (PHINode *PN = dyn_cast<PHINode>(I)) |
| ConstantEvolutionLoopExitValue.erase(PN); |
| } |
| |
| PushDefUseChildren(I, Worklist); |
| } |
| } |
| } |
| return Pair.first->second; |
| } |
| |
| /// forgetLoop - This method should be called by the client when it has |
| /// changed a loop in a way that may effect ScalarEvolution's ability to |
| /// compute a trip count, or if the loop is deleted. |
| void ScalarEvolution::forgetLoop(const Loop *L) { |
| // Drop any stored trip count value. |
| BackedgeTakenCounts.erase(L); |
| |
| // Drop information about expressions based on loop-header PHIs. |
| SmallVector<Instruction *, 16> Worklist; |
| PushLoopPHIs(L, Worklist); |
| |
| SmallPtrSet<Instruction *, 8> Visited; |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.pop_back_val(); |
| if (!Visited.insert(I)) continue; |
| |
| std::map<SCEVCallbackVH, const SCEV*>::iterator It = |
| Scalars.find(static_cast<Value *>(I)); |
| if (It != Scalars.end()) { |
| ValuesAtScopes.erase(It->second); |
| Scalars.erase(It); |
| if (PHINode *PN = dyn_cast<PHINode>(I)) |
| ConstantEvolutionLoopExitValue.erase(PN); |
| } |
| |
| PushDefUseChildren(I, Worklist); |
| } |
| } |
| |
| /// ComputeBackedgeTakenCount - Compute the number of times the backedge |
| /// of the specified loop will execute. |
| ScalarEvolution::BackedgeTakenInfo |
| ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { |
| SmallVector<BasicBlock*, 8> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| |
| // Examine all exits and pick the most conservative values. |
| const SCEV *BECount = getCouldNotCompute(); |
| const SCEV *MaxBECount = getCouldNotCompute(); |
| bool CouldNotComputeBECount = false; |
| for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { |
| BackedgeTakenInfo NewBTI = |
| ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); |
| |
| if (NewBTI.Exact == getCouldNotCompute()) { |
| // We couldn't compute an exact value for this exit, so |
| // we won't be able to compute an exact value for the loop. |
| CouldNotComputeBECount = true; |
| BECount = getCouldNotCompute(); |
| } else if (!CouldNotComputeBECount) { |
| if (BECount == getCouldNotCompute()) |
| BECount = NewBTI.Exact; |
| else |
| BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); |
| } |
| if (MaxBECount == getCouldNotCompute()) |
| MaxBECount = NewBTI.Max; |
| else if (NewBTI.Max != getCouldNotCompute()) |
| MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); |
| } |
| |
| return BackedgeTakenInfo(BECount, MaxBECount); |
| } |
| |
| /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge |
| /// of the specified loop will execute if it exits via the specified block. |
| ScalarEvolution::BackedgeTakenInfo |
| ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, |
| BasicBlock *ExitingBlock) { |
| |
| // Okay, we've chosen an exiting block. See what condition causes us to |
| // exit at this block. |
| // |
| // FIXME: we should be able to handle switch instructions (with a single exit) |
| BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); |
| if (ExitBr == 0) return getCouldNotCompute(); |
| assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); |
| |
| // At this point, we know we have a conditional branch that determines whether |
| // the loop is exited. However, we don't know if the branch is executed each |
| // time through the loop. If not, then the execution count of the branch will |
| // not be equal to the trip count of the loop. |
| // |
| // Currently we check for this by checking to see if the Exit branch goes to |
| // the loop header. If so, we know it will always execute the same number of |
| // times as the loop. We also handle the case where the exit block *is* the |
| // loop header. This is common for un-rotated loops. |
| // |
| // If both of those tests fail, walk up the unique predecessor chain to the |
| // header, stopping if there is an edge that doesn't exit the loop. If the |
| // header is reached, the execution count of the branch will be equal to the |
| // trip count of the loop. |
| // |
| // More extensive analysis could be done to handle more cases here. |
| // |
| if (ExitBr->getSuccessor(0) != L->getHeader() && |
| ExitBr->getSuccessor(1) != L->getHeader() && |
| ExitBr->getParent() != L->getHeader()) { |
| // The simple checks failed, try climbing the unique predecessor chain |
| // up to the header. |
| bool Ok = false; |
| for (BasicBlock *BB = ExitBr->getParent(); BB; ) { |
| BasicBlock *Pred = BB->getUniquePredecessor(); |
| if (!Pred) |
| return getCouldNotCompute(); |
| TerminatorInst *PredTerm = Pred->getTerminator(); |
| for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { |
| BasicBlock *PredSucc = PredTerm->getSuccessor(i); |
| if (PredSucc == BB) |
| continue; |
| // If the predecessor has a successor that isn't BB and isn't |
| // outside the loop, assume the worst. |
| if (L->contains(PredSucc)) |
| return getCouldNotCompute(); |
| } |
| if (Pred == L->getHeader()) { |
| Ok = true; |
| break; |
| } |
| BB = Pred; |
| } |
| if (!Ok) |
| return getCouldNotCompute(); |
| } |
| |
| // Procede to the next level to examine the exit condition expression. |
| return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), |
| ExitBr->getSuccessor(0), |
| ExitBr->getSuccessor(1)); |
| } |
| |
| /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the |
| /// backedge of the specified loop will execute if its exit condition |
| /// were a conditional branch of ExitCond, TBB, and FBB. |
| ScalarEvolution::BackedgeTakenInfo |
| ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, |
| Value *ExitCond, |
| BasicBlock *TBB, |
| BasicBlock *FBB) { |
| // Check if the controlling expression for this loop is an And or Or. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { |
| if (BO->getOpcode() == Instruction::And) { |
| // Recurse on the operands of the and. |
| BackedgeTakenInfo BTI0 = |
| ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); |
| BackedgeTakenInfo BTI1 = |
| ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); |
| const SCEV *BECount = getCouldNotCompute(); |
| const SCEV *MaxBECount = getCouldNotCompute(); |
| if (L->contains(TBB)) { |
| // Both conditions must be true for the loop to continue executing. |
| // Choose the less conservative count. |
| if (BTI0.Exact == getCouldNotCompute() || |
| BTI1.Exact == getCouldNotCompute()) |
| BECount = getCouldNotCompute(); |
| else |
| BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); |
| if (BTI0.Max == getCouldNotCompute()) |
| MaxBECount = BTI1.Max; |
| else if (BTI1.Max == getCouldNotCompute()) |
| MaxBECount = BTI0.Max; |
| else |
| MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); |
| } else { |
| // Both conditions must be true for the loop to exit. |
| assert(L->contains(FBB) && "Loop block has no successor in loop!"); |
| if (BTI0.Exact != getCouldNotCompute() && |
| BTI1.Exact != getCouldNotCompute()) |
| BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); |
| if (BTI0.Max != getCouldNotCompute() && |
| BTI1.Max != getCouldNotCompute()) |
| MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); |
| } |
| |
| return BackedgeTakenInfo(BECount, MaxBECount); |
| } |
| if (BO->getOpcode() == Instruction::Or) { |
| // Recurse on the operands of the or. |
| BackedgeTakenInfo BTI0 = |
| ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); |
| BackedgeTakenInfo BTI1 = |
| ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); |
| const SCEV *BECount = getCouldNotCompute(); |
| const SCEV *MaxBECount = getCouldNotCompute(); |
| if (L->contains(FBB)) { |
| // Both conditions must be false for the loop to continue executing. |
| // Choose the less conservative count. |
| if (BTI0.Exact == getCouldNotCompute() || |
| BTI1.Exact == getCouldNotCompute()) |
| BECount = getCouldNotCompute(); |
| else |
| BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); |
| if (BTI0.Max == getCouldNotCompute()) |
| MaxBECount = BTI1.Max; |
| else if (BTI1.Max == getCouldNotCompute()) |
| MaxBECount = BTI0.Max; |
| else |
| MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); |
| } else { |
| // Both conditions must be false for the loop to exit. |
| assert(L->contains(TBB) && "Loop block has no successor in loop!"); |
| if (BTI0.Exact != getCouldNotCompute() && |
| BTI1.Exact != getCouldNotCompute()) |
| BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); |
| if (BTI0.Max != getCouldNotCompute() && |
| BTI1.Max != getCouldNotCompute()) |
| MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); |
| } |
| |
| return BackedgeTakenInfo(BECount, MaxBECount); |
| } |
| } |
| |
| // With an icmp, it may be feasible to compute an exact backedge-taken count. |
| // Procede to the next level to examine the icmp. |
| if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) |
| return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); |
| |
| // If it's not an integer or pointer comparison then compute it the hard way. |
| return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); |
| } |
| |
| /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the |
| /// backedge of the specified loop will execute if its exit condition |
| /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. |
| ScalarEvolution::BackedgeTakenInfo |
| ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, |
| ICmpInst *ExitCond, |
| BasicBlock *TBB, |
| BasicBlock *FBB) { |
| |
| // If the condition was exit on true, convert the condition to exit on false |
| ICmpInst::Predicate Cond; |
| if (!L->contains(FBB)) |
| Cond = ExitCond->getPredicate(); |
| else |
| Cond = ExitCond->getInversePredicate(); |
| |
| // Handle common loops like: for (X = "string"; *X; ++X) |
| if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) |
| if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { |
| const SCEV *ItCnt = |
| ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); |
| if (!isa<SCEVCouldNotCompute>(ItCnt)) { |
| unsigned BitWidth = getTypeSizeInBits(ItCnt->getType()); |
| return BackedgeTakenInfo(ItCnt, |
| isa<SCEVConstant>(ItCnt) ? ItCnt : |
| getConstant(APInt::getMaxValue(BitWidth)-1)); |
| } |
| } |
| |
| const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); |
| const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); |
| |
| // Try to evaluate any dependencies out of the loop. |
| LHS = getSCEVAtScope(LHS, L); |
| RHS = getSCEVAtScope(RHS, L); |
| |
| // At this point, we would like to compute how many iterations of the |
| // loop the predicate will return true for these inputs. |
| if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { |
| // If there is a loop-invariant, force it into the RHS. |
| std::swap(LHS, RHS); |
| Cond = ICmpInst::getSwappedPredicate(Cond); |
| } |
| |
| // If we have a comparison of a chrec against a constant, try to use value |
| // ranges to answer this query. |
| if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) |
| if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) |
| if (AddRec->getLoop() == L) { |
| // Form the constant range. |
| ConstantRange CompRange( |
| ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); |
| |
| const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); |
| if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; |
| } |
| |
| switch (Cond) { |
| case ICmpInst::ICMP_NE: { // while (X != Y) |
| // Convert to: while (X-Y != 0) |
| const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); |
| if (!isa<SCEVCouldNotCompute>(TC)) return TC; |
| break; |
| } |
| case ICmpInst::ICMP_EQ: { // while (X == Y) |
| // Convert to: while (X-Y == 0) |
| const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); |
| if (!isa<SCEVCouldNotCompute>(TC)) return TC; |
| break; |
| } |
| case ICmpInst::ICMP_SLT: { |
| BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); |
| if (BTI.hasAnyInfo()) return BTI; |
| break; |
| } |
| case ICmpInst::ICMP_SGT: { |
| BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), |
| getNotSCEV(RHS), L, true); |
| if (BTI.hasAnyInfo()) return BTI; |
| break; |
| } |
| case ICmpInst::ICMP_ULT: { |
| BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); |
| if (BTI.hasAnyInfo()) return BTI; |
| break; |
| } |
| case ICmpInst::ICMP_UGT: { |
| BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), |
| getNotSCEV(RHS), L, false); |
| if (BTI.hasAnyInfo()) return BTI; |
| break; |
| } |
| default: |
| #if 0 |
| errs() << "ComputeBackedgeTakenCount "; |
| if (ExitCond->getOperand(0)->getType()->isUnsigned()) |
| errs() << "[unsigned] "; |
| errs() << *LHS << " " |
| << Instruction::getOpcodeName(Instruction::ICmp) |
| << " " << *RHS << "\n"; |
| #endif |
| break; |
| } |
| return |
| ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); |
| } |
| |
| static ConstantInt * |
| EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, |
| ScalarEvolution &SE) { |
| const SCEV *InVal = SE.getConstant(C); |
| const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); |
| assert(isa<SCEVConstant>(Val) && |
| "Evaluation of SCEV at constant didn't fold correctly?"); |
| return cast<SCEVConstant>(Val)->getValue(); |
| } |
| |
| /// GetAddressedElementFromGlobal - Given a global variable with an initializer |
| /// and a GEP expression (missing the pointer index) indexing into it, return |
| /// the addressed element of the initializer or null if the index expression is |
| /// invalid. |
| static Constant * |
| GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV, |
| const std::vector<ConstantInt*> &Indices) { |
| Constant *Init = GV->getInitializer(); |
| for (unsigned i = 0, e = Indices.size(); i != e; ++i) { |
| uint64_t Idx = Indices[i]->getZExtValue(); |
| if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { |
| assert(Idx < CS->getNumOperands() && "Bad struct index!"); |
| Init = cast<Constant>(CS->getOperand(Idx)); |
| } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { |
| if (Idx >= CA->getNumOperands()) return 0; // Bogus program |
| Init = cast<Constant>(CA->getOperand(Idx)); |
| } else if (isa<ConstantAggregateZero>(Init)) { |
| if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { |
| assert(Idx < STy->getNumElements() && "Bad struct index!"); |
| Init = Constant::getNullValue(STy->getElementType(Idx)); |
| } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { |
| if (Idx >= ATy->getNumElements()) return 0; // Bogus program |
| Init = Constant::getNullValue(ATy->getElementType()); |
| } else { |
| llvm_unreachable("Unknown constant aggregate type!"); |
| } |
| return 0; |
| } else { |
| return 0; // Unknown initializer type |
| } |
| } |
| return Init; |
| } |
| |
| /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of |
| /// 'icmp op load X, cst', try to see if we can compute the backedge |
| /// execution count. |
| const SCEV * |
| ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( |
| LoadInst *LI, |
| Constant *RHS, |
| const Loop *L, |
| ICmpInst::Predicate predicate) { |
| if (LI->isVolatile()) return getCouldNotCompute(); |
| |
| // Check to see if the loaded pointer is a getelementptr of a global. |
| GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); |
| if (!GEP) return getCouldNotCompute(); |
| |
| // Make sure that it is really a constant global we are gepping, with an |
| // initializer, and make sure the first IDX is really 0. |
| GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); |
| if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || |
| GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || |
| !cast<Constant>(GEP->getOperand(1))->isNullValue()) |
| return getCouldNotCompute(); |
| |
| // Okay, we allow one non-constant index into the GEP instruction. |
| Value *VarIdx = 0; |
| std::vector<ConstantInt*> Indexes; |
| unsigned VarIdxNum = 0; |
| for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { |
| Indexes.push_back(CI); |
| } else if (!isa<ConstantInt>(GEP->getOperand(i))) { |
| if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. |
| VarIdx = GEP->getOperand(i); |
| VarIdxNum = i-2; |
| Indexes.push_back(0); |
| } |
| |
| // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. |
| // Check to see if X is a loop variant variable value now. |
| const SCEV *Idx = getSCEV(VarIdx); |
| Idx = getSCEVAtScope(Idx, L); |
| |
| // We can only recognize very limited forms of loop index expressions, in |
| // particular, only affine AddRec's like {C1,+,C2}. |
| const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); |
| if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || |
| !isa<SCEVConstant>(IdxExpr->getOperand(0)) || |
| !isa<SCEVConstant>(IdxExpr->getOperand(1))) |
| return getCouldNotCompute(); |
| |
| unsigned MaxSteps = MaxBruteForceIterations; |
| for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { |
| ConstantInt *ItCst = ConstantInt::get( |
| cast<IntegerType>(IdxExpr->getType()), IterationNum); |
| ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); |
| |
| // Form the GEP offset. |
| Indexes[VarIdxNum] = Val; |
| |
| Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes); |
| if (Result == 0) break; // Cannot compute! |
| |
| // Evaluate the condition for this iteration. |
| Result = ConstantExpr::getICmp(predicate, Result, RHS); |
| if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure |
| if (cast<ConstantInt>(Result)->getValue().isMinValue()) { |
| #if 0 |
| errs() << "\n***\n*** Computed loop count " << *ItCst |
| << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() |
| << "***\n"; |
| #endif |
| ++NumArrayLenItCounts; |
| return getConstant(ItCst); // Found terminating iteration! |
| } |
| } |
| return getCouldNotCompute(); |
| } |
| |
| |
| /// CanConstantFold - Return true if we can constant fold an instruction of the |
| /// specified type, assuming that all operands were constants. |
| static bool CanConstantFold(const Instruction *I) { |
| if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || |
| isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) |
| return true; |
| |
| if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| if (const Function *F = CI->getCalledFunction()) |
| return canConstantFoldCallTo(F); |
| return false; |
| } |
| |
| /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node |
| /// in the loop that V is derived from. We allow arbitrary operations along the |
| /// way, but the operands of an operation must either be constants or a value |
| /// derived from a constant PHI. If this expression does not fit with these |
| /// constraints, return null. |
| static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { |
| // If this is not an instruction, or if this is an instruction outside of the |
| // loop, it can't be derived from a loop PHI. |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (I == 0 || !L->contains(I->getParent())) return 0; |
| |
| if (PHINode *PN = dyn_cast<PHINode>(I)) { |
| if (L->getHeader() == I->getParent()) |
| return PN; |
| else |
| // We don't currently keep track of the control flow needed to evaluate |
| // PHIs, so we cannot handle PHIs inside of loops. |
| return 0; |
| } |
| |
| // If we won't be able to constant fold this expression even if the operands |
| // are constants, return early. |
| if (!CanConstantFold(I)) return 0; |
| |
| // Otherwise, we can evaluate this instruction if all of its operands are |
| // constant or derived from a PHI node themselves. |
| PHINode *PHI = 0; |
| for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) |
| if (!(isa<Constant>(I->getOperand(Op)) || |
| isa<GlobalValue>(I->getOperand(Op)))) { |
| PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); |
| if (P == 0) return 0; // Not evolving from PHI |
| if (PHI == 0) |
| PHI = P; |
| else if (PHI != P) |
| return 0; // Evolving from multiple different PHIs. |
| } |
| |
| // This is a expression evolving from a constant PHI! |
| return PHI; |
| } |
| |
| /// EvaluateExpression - Given an expression that passes the |
| /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node |
| /// in the loop has the value PHIVal. If we can't fold this expression for some |
| /// reason, return null. |
| static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { |
| if (isa<PHINode>(V)) return PHIVal; |
| if (Constant *C = dyn_cast<Constant>(V)) return C; |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; |
| Instruction *I = cast<Instruction>(V); |
| LLVMContext &Context = I->getParent()->getContext(); |
| |
| std::vector<Constant*> Operands; |
| Operands.resize(I->getNumOperands()); |
| |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); |
| if (Operands[i] == 0) return 0; |
| } |
| |
| if (const CmpInst *CI = dyn_cast<CmpInst>(I)) |
| return ConstantFoldCompareInstOperands(CI->getPredicate(), |
| &Operands[0], Operands.size(), |
| Context); |
| else |
| return ConstantFoldInstOperands(I->getOpcode(), I->getType(), |
| &Operands[0], Operands.size(), |
| Context); |
| } |
| |
| /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is |
| /// in the header of its containing loop, we know the loop executes a |
| /// constant number of times, and the PHI node is just a recurrence |
| /// involving constants, fold it. |
| Constant * |
| ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, |
| const APInt& BEs, |
| const Loop *L) { |
| std::map<PHINode*, Constant*>::iterator I = |
| ConstantEvolutionLoopExitValue.find(PN); |
| if (I != ConstantEvolutionLoopExitValue.end()) |
| return I->second; |
| |
| if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) |
| return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. |
| |
| Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; |
| |
| // Since the loop is canonicalized, the PHI node must have two entries. One |
| // entry must be a constant (coming in from outside of the loop), and the |
| // second must be derived from the same PHI. |
| bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); |
| Constant *StartCST = |
| dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); |
| if (StartCST == 0) |
| return RetVal = 0; // Must be a constant. |
| |
| Value *BEValue = PN->getIncomingValue(SecondIsBackedge); |
| PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); |
| if (PN2 != PN) |
| return RetVal = 0; // Not derived from same PHI. |
| |
| // Execute the loop symbolically to determine the exit value. |
| if (BEs.getActiveBits() >= 32) |
| return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! |
| |
| unsigned NumIterations = BEs.getZExtValue(); // must be in range |
| unsigned IterationNum = 0; |
| for (Constant *PHIVal = StartCST; ; ++IterationNum) { |
| if (IterationNum == NumIterations) |
| return RetVal = PHIVal; // Got exit value! |
| |
| // Compute the value of the PHI node for the next iteration. |
| Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); |
| if (NextPHI == PHIVal) |
| return RetVal = NextPHI; // Stopped evolving! |
| if (NextPHI == 0) |
| return 0; // Couldn't evaluate! |
| PHIVal = NextPHI; |
| } |
| } |
| |
| /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a |
| /// constant number of times (the condition evolves only from constants), |
| /// try to evaluate a few iterations of the loop until we get the exit |
| /// condition gets a value of ExitWhen (true or false). If we cannot |
| /// evaluate the trip count of the loop, return getCouldNotCompute(). |
| const SCEV * |
| ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, |
| Value *Cond, |
| bool ExitWhen) { |
| PHINode *PN = getConstantEvolvingPHI(Cond, L); |
| if (PN == 0) return getCouldNotCompute(); |
| |
| // Since the loop is canonicalized, the PHI node must have two entries. One |
| // entry must be a constant (coming in from outside of the loop), and the |
| // second must be derived from the same PHI. |
| bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); |
| Constant *StartCST = |
| dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); |
| if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. |
| |
| Value *BEValue = PN->getIncomingValue(SecondIsBackedge); |
| PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); |
| if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI. |
| |
| // Okay, we find a PHI node that defines the trip count of this loop. Execute |
| // the loop symbolically to determine when the condition gets a value of |
| // "ExitWhen". |
| unsigned IterationNum = 0; |
| unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. |
| for (Constant *PHIVal = StartCST; |
| IterationNum != MaxIterations; ++IterationNum) { |
| ConstantInt *CondVal = |
| dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); |
| |
| // Couldn't symbolically evaluate. |
| if (!CondVal) return getCouldNotCompute(); |
| |
| if (CondVal->getValue() == uint64_t(ExitWhen)) { |
| ++NumBruteForceTripCountsComputed; |
| return getConstant(Type::getInt32Ty(getContext()), IterationNum); |
| } |
| |
| // Compute the value of the PHI node for the next iteration. |
| Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); |
| if (NextPHI == 0 || NextPHI == PHIVal) |
| return getCouldNotCompute();// Couldn't evaluate or not making progress... |
| PHIVal = NextPHI; |
| } |
| |
| // Too many iterations were needed to evaluate. |
| return getCouldNotCompute(); |
| } |
| |
| /// getSCEVAtScope - Return a SCEV expression for the specified value |
| /// at the specified scope in the program. The L value specifies a loop |
| /// nest to evaluate the expression at, where null is the top-level or a |
| /// specified loop is immediately inside of the loop. |
| /// |
| /// This method can be used to compute the exit value for a variable defined |
| /// in a loop by querying what the value will hold in the parent loop. |
| /// |
| /// In the case that a relevant loop exit value cannot be computed, the |
| /// original value V is returned. |
| const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { |
| // Check to see if we've folded this expression at this loop before. |
| std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; |
| std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = |
| Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); |
| if (!Pair.second) |
| return Pair.first->second ? Pair.first->second : V; |
| |
| // Otherwise compute it. |
| const SCEV *C = computeSCEVAtScope(V, L); |
| ValuesAtScopes[V][L] = C; |
| return C; |
| } |
| |
| const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { |
| if (isa<SCEVConstant>(V)) return V; |
| |
| // If this instruction is evolved from a constant-evolving PHI, compute the |
| // exit value from the loop without using SCEVs. |
| if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { |
| if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { |
| const Loop *LI = (*this->LI)[I->getParent()]; |
| if (LI && LI->getParentLoop() == L) // Looking for loop exit value. |
| if (PHINode *PN = dyn_cast<PHINode>(I)) |
| if (PN->getParent() == LI->getHeader()) { |
| // Okay, there is no closed form solution for the PHI node. Check |
| // to see if the loop that contains it has a known backedge-taken |
| // count. If so, we may be able to force computation of the exit |
| // value. |
| const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); |
| if (const SCEVConstant *BTCC = |
| dyn_cast<SCEVConstant>(BackedgeTakenCount)) { |
| // Okay, we know how many times the containing loop executes. If |
| // this is a constant evolving PHI node, get the final value at |
| // the specified iteration number. |
| Constant *RV = getConstantEvolutionLoopExitValue(PN, |
| BTCC->getValue()->getValue(), |
| LI); |
| if (RV) return getSCEV(RV); |
| } |
| } |
| |
| // Okay, this is an expression that we cannot symbolically evaluate |
| // into a SCEV. Check to see if it's possible to symbolically evaluate |
| // the arguments into constants, and if so, try to constant propagate the |
| // result. This is particularly useful for computing loop exit values. |
| if (CanConstantFold(I)) { |
| std::vector<Constant*> Operands; |
| Operands.reserve(I->getNumOperands()); |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| Value *Op = I->getOperand(i); |
| if (Constant *C = dyn_cast<Constant>(Op)) { |
| Operands.push_back(C); |
| } else { |
| // If any of the operands is non-constant and if they are |
| // non-integer and non-pointer, don't even try to analyze them |
| // with scev techniques. |
| if (!isSCEVable(Op->getType())) |
| return V; |
| |
| const SCEV* OpV = getSCEVAtScope(Op, L); |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { |
| Constant *C = SC->getValue(); |
| if (C->getType() != Op->getType()) |
| C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, |
| Op->getType(), |
| false), |
| C, Op->getType()); |
| Operands.push_back(C); |
| } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { |
| if (Constant *C = dyn_cast<Constant>(SU->getValue())) { |
| if (C->getType() != Op->getType()) |
| C = |
| ConstantExpr::getCast(CastInst::getCastOpcode(C, false, |
| Op->getType(), |
| false), |
| C, Op->getType()); |
| Operands.push_back(C); |
| } else |
| return V; |
| } else { |
| return V; |
| } |
| } |
| } |
| |
| Constant *C; |
| if (const CmpInst *CI = dyn_cast<CmpInst>(I)) |
| C = ConstantFoldCompareInstOperands(CI->getPredicate(), |
| &Operands[0], Operands.size(), |
| getContext()); |
| else |
| C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), |
| &Operands[0], Operands.size(), |
| getContext()); |
| return getSCEV(C); |
| } |
| } |
| |
| // This is some other type of SCEVUnknown, just return it. |
| return V; |
| } |
| |
| if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { |
| // Avoid performing the look-up in the common case where the specified |
| // expression has no loop-variant portions. |
| for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { |
| const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); |
| if (OpAtScope != Comm->getOperand(i)) { |
| // Okay, at least one of these operands is loop variant but might be |
| // foldable. Build a new instance of the folded commutative expression. |
| SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), |
| Comm->op_begin()+i); |
| NewOps.push_back(OpAtScope); |
| |
| for (++i; i != e; ++i) { |
| OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); |
| NewOps.push_back(OpAtScope); |
| } |
| if (isa<SCEVAddExpr>(Comm)) |
| return getAddExpr(NewOps); |
| if (isa<SCEVMulExpr>(Comm)) |
| return getMulExpr(NewOps); |
| if (isa<SCEVSMaxExpr>(Comm)) |
| return getSMaxExpr(NewOps); |
| if (isa<SCEVUMaxExpr>(Comm)) |
| return getUMaxExpr(NewOps); |
| llvm_unreachable("Unknown commutative SCEV type!"); |
| } |
| } |
| // If we got here, all operands are loop invariant. |
| return Comm; |
| } |
| |
| if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { |
| const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); |
| const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); |
| if (LHS == Div->getLHS() && RHS == Div->getRHS()) |
| return Div; // must be loop invariant |
| return getUDivExpr(LHS, RHS); |
| } |
| |
| // If this is a loop recurrence for a loop that does not contain L, then we |
| // are dealing with the final value computed by the loop. |
| if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { |
| if (!L || !AddRec->getLoop()->contains(L->getHeader())) { |
| // To evaluate this recurrence, we need to know how many times the AddRec |
| // loop iterates. Compute this now. |
| const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); |
| if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; |
| |
| // Then, evaluate the AddRec. |
| return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); |
| } |
| return AddRec; |
| } |
| |
| if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { |
| const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); |
| if (Op == Cast->getOperand()) |
| return Cast; // must be loop invariant |
| return getZeroExtendExpr(Op, Cast->getType()); |
| } |
| |
| if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { |
| const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); |
| if (Op == Cast->getOperand()) |
| return Cast; // must be loop invariant |
| return getSignExtendExpr(Op, Cast->getType()); |
| } |
| |
| if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { |
| const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); |
| if (Op == Cast->getOperand()) |
| return Cast; // must be loop invariant |
| return getTruncateExpr(Op, Cast->getType()); |
| } |
| |
| if (isa<SCEVTargetDataConstant>(V)) |
| return V; |
| |
| llvm_unreachable("Unknown SCEV type!"); |
| return 0; |
| } |
| |
| /// getSCEVAtScope - This is a convenience function which does |
| /// getSCEVAtScope(getSCEV(V), L). |
| const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { |
| return getSCEVAtScope(getSCEV(V), L); |
| } |
| |
| /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the |
| /// following equation: |
| /// |
| /// A * X = B (mod N) |
| /// |
| /// where N = 2^BW and BW is the common bit width of A and B. The signedness of |
| /// A and B isn't important. |
| /// |
| /// If the equation does not have a solution, SCEVCouldNotCompute is returned. |
| static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, |
| ScalarEvolution &SE) { |
| uint32_t BW = A.getBitWidth(); |
| assert(BW == B.getBitWidth() && "Bit widths must be the same."); |
| assert(A != 0 && "A must be non-zero."); |
| |
| // 1. D = gcd(A, N) |
| // |
| // The gcd of A and N may have only one prime factor: 2. The number of |
| // trailing zeros in A is its multiplicity |
| uint32_t Mult2 = A.countTrailingZeros(); |
| // D = 2^Mult2 |
| |
| // 2. Check if B is divisible by D. |
| // |
| // B is divisible by D if and only if the multiplicity of prime factor 2 for B |
| // is not less than multiplicity of this prime factor for D. |
| if (B.countTrailingZeros() < Mult2) |
| return SE.getCouldNotCompute(); |
| |
| // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic |
| // modulo (N / D). |
| // |
| // (N / D) may need BW+1 bits in its representation. Hence, we'll use this |
| // bit width during computations. |
| APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D |
| APInt Mod(BW + 1, 0); |
| Mod.set(BW - Mult2); // Mod = N / D |
| APInt I = AD.multiplicativeInverse(Mod); |
| |
| // 4. Compute the minimum unsigned root of the equation: |
| // I * (B / D) mod (N / D) |
| APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); |
| |
| // The result is guaranteed to be less than 2^BW so we may truncate it to BW |
| // bits. |
| return SE.getConstant(Result.trunc(BW)); |
| } |
| |
| /// SolveQuadraticEquation - Find the roots of the quadratic equation for the |
| /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which |
| /// might be the same) or two SCEVCouldNotCompute objects. |
| /// |
| static std::pair<const SCEV *,const SCEV *> |
| SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { |
| assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); |
| const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); |
| const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); |
| const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); |
| |
| // We currently can only solve this if the coefficients are constants. |
| if (!LC || !MC || !NC) { |
| const SCEV *CNC = SE.getCouldNotCompute(); |
| return std::make_pair(CNC, CNC); |
| } |
| |
| uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); |
| const APInt &L = LC->getValue()->getValue(); |
| const APInt &M = MC->getValue()->getValue(); |
| const APInt &N = NC->getValue()->getValue(); |
| APInt Two(BitWidth, 2); |
| APInt Four(BitWidth, 4); |
| |
| { |
| using namespace APIntOps; |
| const APInt& C = L; |
| // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C |
| // The B coefficient is M-N/2 |
| APInt B(M); |
| B -= sdiv(N,Two); |
| |
| // The A coefficient is N/2 |
| APInt A(N.sdiv(Two)); |
| |
| // Compute the B^2-4ac term. |
| APInt SqrtTerm(B); |
| SqrtTerm *= B; |
| SqrtTerm -= Four * (A * C); |
| |
| // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest |
| // integer value or else APInt::sqrt() will assert. |
| APInt SqrtVal(SqrtTerm.sqrt()); |
| |
| // Compute the two solutions for the quadratic formula. |
| // The divisions must be performed as signed divisions. |
| APInt NegB(-B); |
| APInt TwoA( A << 1 ); |
| if (TwoA.isMinValue()) { |
| const SCEV *CNC = SE.getCouldNotCompute(); |
| return std::make_pair(CNC, CNC); |
| } |
| |
| LLVMContext &Context = SE.getContext(); |
| |
| ConstantInt *Solution1 = |
| ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); |
| ConstantInt *Solution2 = |
| ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); |
| |
| return std::make_pair(SE.getConstant(Solution1), |
| SE.getConstant(Solution2)); |
| } // end APIntOps namespace |
| } |
| |
| /// HowFarToZero - Return the number of times a backedge comparing the specified |
| /// value to zero will execute. If not computable, return CouldNotCompute. |
| const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { |
| // If the value is a constant |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { |
| // If the value is already zero, the branch will execute zero times. |
| if (C->getValue()->isZero()) return C; |
| return getCouldNotCompute(); // Otherwise it will loop infinitely. |
| } |
| |
| const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); |
| if (!AddRec || AddRec->getLoop() != L) |
| return getCouldNotCompute(); |
| |
| if (AddRec->isAffine()) { |
| // If this is an affine expression, the execution count of this branch is |
| // the minimum unsigned root of the following equation: |
| // |
| // Start + Step*N = 0 (mod 2^BW) |
| // |
| // equivalent to: |
| // |
| // Step*N = -Start (mod 2^BW) |
| // |
| // where BW is the common bit width of Start and Step. |
| |
| // Get the initial value for the loop. |
| const SCEV *Start = getSCEVAtScope(AddRec->getStart(), |
| L->getParentLoop()); |
| const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), |
| L->getParentLoop()); |
| |
| if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { |
| // For now we handle only constant steps. |
| |
| // First, handle unitary steps. |
| if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: |
| return getNegativeSCEV(Start); // N = -Start (as unsigned) |
| if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: |
| return Start; // N = Start (as unsigned) |
| |
| // Then, try to solve the above equation provided that Start is constant. |
| if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) |
| return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), |
| -StartC->getValue()->getValue(), |
| *this); |
| } |
| } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { |
| // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of |
| // the quadratic equation to solve it. |
| std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, |
| *this); |
| const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); |
| const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); |
| if (R1) { |
| #if 0 |
| errs() << "HFTZ: " << *V << " - sol#1: " << *R1 |
| << " sol#2: " << *R2 << "\n"; |
| #endif |
| // Pick the smallest positive root value. |
| if (ConstantInt *CB = |
| dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, |
| R1->getValue(), R2->getValue()))) { |
| if (CB->getZExtValue() == false) |
| std::swap(R1, R2); // R1 is the minimum root now. |
| |
| // We can only use this value if the chrec ends up with an exact zero |
| // value at this index. When solving for "X*X != 5", for example, we |
| // should not accept a root of 2. |
| const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); |
| if (Val->isZero()) |
| return R1; // We found a quadratic root! |
| } |
| } |
| } |
| |
| return getCouldNotCompute(); |
| } |
| |
| /// HowFarToNonZero - Return the number of times a backedge checking the |
| /// specified value for nonzero will execute. If not computable, return |
| /// CouldNotCompute |
| const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { |
| // Loops that look like: while (X == 0) are very strange indeed. We don't |
| // handle them yet except for the trivial case. This could be expanded in the |
| // future as needed. |
| |
| // If the value is a constant, check to see if it is known to be non-zero |
| // already. If so, the backedge will execute zero times. |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { |
| if (!C->getValue()->isNullValue()) |
| return getIntegerSCEV(0, C->getType()); |
| return getCouldNotCompute(); // Otherwise it will loop infinitely. |
| } |
| |
| // We could implement others, but I really doubt anyone writes loops like |
| // this, and if they did, they would already be constant folded. |
| return getCouldNotCompute(); |
| } |
| |
| /// getLoopPredecessor - If the given loop's header has exactly one unique |
| /// predecessor outside the loop, return it. Otherwise return null. |
| /// |
| BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *Pred = 0; |
| for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); |
| PI != E; ++PI) |
| if (!L->contains(*PI)) { |
| if (Pred && Pred != *PI) return 0; // Multiple predecessors. |
| Pred = *PI; |
| } |
| return Pred; |
| } |
| |
| /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB |
| /// (which may not be an immediate predecessor) which has exactly one |
| /// successor from which BB is reachable, or null if no such block is |
| /// found. |
| /// |
| BasicBlock * |
| ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { |
| // If the block has a unique predecessor, then there is no path from the |
| // predecessor to the block that does not go through the direct edge |
| // from the predecessor to the block. |
| if (BasicBlock *Pred = BB->getSinglePredecessor()) |
| return Pred; |
| |
| // A loop's header is defined to be a block that dominates the loop. |
| // If the header has a unique predecessor outside the loop, it must be |
| // a block that has exactly one successor that can reach the loop. |
| if (Loop *L = LI->getLoopFor(BB)) |
| return getLoopPredecessor(L); |
| |
| return 0; |
| } |
| |
| /// HasSameValue - SCEV structural equivalence is usually sufficient for |
| /// testing whether two expressions are equal, however for the purposes of |
| /// looking for a condition guarding a loop, it can be useful to be a little |
| /// more general, since a front-end may have replicated the controlling |
| /// expression. |
| /// |
| static bool HasSameValue(const SCEV *A, const SCEV *B) { |
| // Quick check to see if they are the same SCEV. |
| if (A == B) return true; |
| |
| // Otherwise, if they're both SCEVUnknown, it's possible that they hold |
| // two different instructions with the same value. Check for this case. |
| if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) |
| if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) |
| if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) |
| if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) |
| if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) |
| return true; |
| |
| // Otherwise assume they may have a different value. |
| return false; |
| } |
| |
| bool ScalarEvolution::isKnownNegative(const SCEV *S) { |
| return getSignedRange(S).getSignedMax().isNegative(); |
| } |
| |
| bool ScalarEvolution::isKnownPositive(const SCEV *S) { |
| return getSignedRange(S).getSignedMin().isStrictlyPositive(); |
| } |
| |
| bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { |
| return !getSignedRange(S).getSignedMin().isNegative(); |
| } |
| |
| bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { |
| return !getSignedRange(S).getSignedMax().isStrictlyPositive(); |
| } |
| |
| bool ScalarEvolution::isKnownNonZero(const SCEV *S) { |
| return isKnownNegative(S) || isKnownPositive(S); |
| } |
| |
| bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS) { |
| |
| if (HasSameValue(LHS, RHS)) |
| return ICmpInst::isTrueWhenEqual(Pred); |
| |
| switch (Pred) { |
| default: |
| llvm_unreachable("Unexpected ICmpInst::Predicate value!"); |
| break; |
| case ICmpInst::ICMP_SGT: |
| Pred = ICmpInst::ICMP_SLT; |
| std::swap(LHS, RHS); |
| case ICmpInst::ICMP_SLT: { |
| ConstantRange LHSRange = getSignedRange(LHS); |
| ConstantRange RHSRange = getSignedRange(RHS); |
| if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) |
| return true; |
| if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) |
| return false; |
| break; |
| } |
| case ICmpInst::ICMP_SGE: |
| Pred = ICmpInst::ICMP_SLE; |
| std::swap(LHS, RHS); |
| case ICmpInst::ICMP_SLE: { |
| ConstantRange LHSRange = getSignedRange(LHS); |
| ConstantRange RHSRange = getSignedRange(RHS); |
| if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) |
| return true; |
| if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) |
| return false; |
| break; |
| } |
| case ICmpInst::ICMP_UGT: |
| Pred = ICmpInst::ICMP_ULT; |
| std::swap(LHS, RHS); |
| case ICmpInst::ICMP_ULT: { |
| ConstantRange LHSRange = getUnsignedRange(LHS); |
| ConstantRange RHSRange = getUnsignedRange(RHS); |
| if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) |
| return true; |
| if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) |
| return false; |
| break; |
| } |
| case ICmpInst::ICMP_UGE: |
| Pred = ICmpInst::ICMP_ULE; |
| std::swap(LHS, RHS); |
| case ICmpInst::ICMP_ULE: { |
| ConstantRange LHSRange = getUnsignedRange(LHS); |
| ConstantRange RHSRange = getUnsignedRange(RHS); |
| if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) |
| return true; |
| if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) |
| return false; |
| break; |
| } |
| case ICmpInst::ICMP_NE: { |
| if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) |
| return true; |
| if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) |
| return true; |
| |
| const SCEV *Diff = getMinusSCEV(LHS, RHS); |
| if (isKnownNonZero(Diff)) |
| return true; |
| break; |
| } |
| case ICmpInst::ICMP_EQ: |
| // The check at the top of the function catches the case where |
| // the values are known to be equal. |
| break; |
| } |
| return false; |
| } |
| |
| /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is |
| /// protected by a conditional between LHS and RHS. This is used to |
| /// to eliminate casts. |
| bool |
| ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, |
| ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS) { |
| // Interpret a null as meaning no loop, where there is obviously no guard |
| // (interprocedural conditions notwithstanding). |
| if (!L) return true; |
| |
| BasicBlock *Latch = L->getLoopLatch(); |
| if (!Latch) |
| return false; |
| |
| BranchInst *LoopContinuePredicate = |
| dyn_cast<BranchInst>(Latch->getTerminator()); |
| if (!LoopContinuePredicate || |
| LoopContinuePredicate->isUnconditional()) |
| return false; |
| |
| return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS, |
| LoopContinuePredicate->getSuccessor(0) != L->getHeader()); |
| } |
| |
| /// isLoopGuardedByCond - Test whether entry to the loop is protected |
| /// by a conditional between LHS and RHS. This is used to help avoid max |
| /// expressions in loop trip counts, and to eliminate casts. |
| bool |
| ScalarEvolution::isLoopGuardedByCond(const Loop *L, |
| ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS) { |
| // Interpret a null as meaning no loop, where there is obviously no guard |
| // (interprocedural conditions notwithstanding). |
| if (!L) return false; |
| |
| BasicBlock *Predecessor = getLoopPredecessor(L); |
| BasicBlock *PredecessorDest = L->getHeader(); |
| |
| // Starting at the loop predecessor, climb up the predecessor chain, as long |
| // as there are predecessors that can be found that have unique successors |
| // leading to the original header. |
| for (; Predecessor; |
| PredecessorDest = Predecessor, |
| Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { |
| |
| BranchInst *LoopEntryPredicate = |
| dyn_cast<BranchInst>(Predecessor->getTerminator()); |
| if (!LoopEntryPredicate || |
| LoopEntryPredicate->isUnconditional()) |
| continue; |
| |
| if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, |
| LoopEntryPredicate->getSuccessor(0) != PredecessorDest)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// isImpliedCond - Test whether the condition described by Pred, LHS, |
| /// and RHS is true whenever the given Cond value evaluates to true. |
| bool ScalarEvolution::isImpliedCond(Value *CondValue, |
| ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS, |
| bool Inverse) { |
| // Recursivly handle And and Or conditions. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { |
| if (BO->getOpcode() == Instruction::And) { |
| if (!Inverse) |
| return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || |
| isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); |
| } else if (BO->getOpcode() == Instruction::Or) { |
| if (Inverse) |
| return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || |
| isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); |
| } |
| } |
| |
| ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); |
| if (!ICI) return false; |
| |
| // Bail if the ICmp's operands' types are wider than the needed type |
| // before attempting to call getSCEV on them. This avoids infinite |
| // recursion, since the analysis of widening casts can require loop |
| // exit condition information for overflow checking, which would |
| // lead back here. |
| if (getTypeSizeInBits(LHS->getType()) < |
| getTypeSizeInBits(ICI->getOperand(0)->getType())) |
| return false; |
| |
| // Now that we found a conditional branch that dominates the loop, check to |
| // see if it is the comparison we are looking for. |
| ICmpInst::Predicate FoundPred; |
| if (Inverse) |
| FoundPred = ICI->getInversePredicate(); |
| else |
| FoundPred = ICI->getPredicate(); |
| |
| const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); |
| const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); |
| |
| // Balance the types. The case where FoundLHS' type is wider than |
| // LHS' type is checked for above. |
| if (getTypeSizeInBits(LHS->getType()) > |
| getTypeSizeInBits(FoundLHS->getType())) { |
| if (CmpInst::isSigned(Pred)) { |
| FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); |
| FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); |
| } else { |
| FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); |
| FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); |
| } |
| } |
| |
| // Canonicalize the query to match the way instcombine will have |
| // canonicalized the comparison. |
| // First, put a constant operand on the right. |
| if (isa<SCEVConstant>(LHS)) { |
| std::swap(LHS, RHS); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| // Then, canonicalize comparisons with boundary cases. |
| if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { |
| const APInt &RA = RC->getValue()->getValue(); |
| switch (Pred) { |
| default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); |
| case ICmpInst::ICMP_EQ: |
| case ICmpInst::ICMP_NE: |
| break; |
| case ICmpInst::ICMP_UGE: |
| if ((RA - 1).isMinValue()) { |
| Pred = ICmpInst::ICMP_NE; |
| RHS = getConstant(RA - 1); |
| break; |
| } |
| if (RA.isMaxValue()) { |
| Pred = ICmpInst::ICMP_EQ; |
| break; |
| } |
| if (RA.isMinValue()) return true; |
| break; |
| case ICmpInst::ICMP_ULE: |
| if ((RA + 1).isMaxValue()) { |
| Pred = ICmpInst::ICMP_NE; |
| RHS = getConstant(RA + 1); |
| break; |
| } |
| if (RA.isMinValue()) { |
| Pred = ICmpInst::ICMP_EQ; |
| break; |
| } |
| if (RA.isMaxValue()) return true; |
| break; |
| case ICmpInst::ICMP_SGE: |
| if ((RA - 1).isMinSignedValue()) { |
| Pred = ICmpInst::ICMP_NE; |
| RHS = getConstant(RA - 1); |
| break; |
| } |
| if (RA.isMaxSignedValue()) { |
| Pred = ICmpInst::ICMP_EQ; |
| break; |
| } |
| if (RA.isMinSignedValue()) return true; |
| break; |
| case ICmpInst::ICMP_SLE: |
| if ((RA + 1).isMaxSignedValue()) { |
| Pred = ICmpInst::ICMP_NE; |
| RHS = getConstant(RA + 1); |
| break; |
| } |
| if (RA.isMinSignedValue()) { |
| Pred = ICmpInst::ICMP_EQ; |
| break; |
| } |
| if (RA.isMaxSignedValue()) return true; |
| break; |
| case ICmpInst::ICMP_UGT: |
| if (RA.isMinValue()) { |
| Pred = ICmpInst::ICMP_NE; |
| break; |
| } |
| if ((RA + 1).isMaxValue()) { |
| Pred = ICmpInst::ICMP_EQ; |
| RHS = getConstant(RA + 1); |
| break; |
| } |
| if (RA.isMaxValue()) return false; |
| break; |
| case ICmpInst::ICMP_ULT: |
| if (RA.isMaxValue()) { |
| Pred = ICmpInst::ICMP_NE; |
| break; |
| } |
| if ((RA - 1).isMinValue()) { |
| Pred = ICmpInst::ICMP_EQ; |
| RHS = getConstant(RA - 1); |
| break; |
| } |
| if (RA.isMinValue()) return false; |
| break; |
| case ICmpInst::ICMP_SGT: |
| if (RA.isMinSignedValue()) { |
| Pred = ICmpInst::ICMP_NE; |
| break; |
| } |
| if ((RA + 1).isMaxSignedValue()) { |
| Pred = ICmpInst::ICMP_EQ; |
| RHS = getConstant(RA + 1); |
| break; |
| } |
| if (RA.isMaxSignedValue()) return false; |
| break; |
| case ICmpInst::ICMP_SLT: |
| if (RA.isMaxSignedValue()) { |
| Pred = ICmpInst::ICMP_NE; |
| break; |
| } |
| if ((RA - 1).isMinSignedValue()) { |
| Pred = ICmpInst::ICMP_EQ; |
| RHS = getConstant(RA - 1); |
| break; |
| } |
| if (RA.isMinSignedValue()) return false; |
| break; |
| } |
| } |
| |
| // Check to see if we can make the LHS or RHS match. |
| if (LHS == FoundRHS || RHS == FoundLHS) { |
| if (isa<SCEVConstant>(RHS)) { |
| std::swap(FoundLHS, FoundRHS); |
| FoundPred = ICmpInst::getSwappedPredicate(FoundPred); |
| } else { |
| std::swap(LHS, RHS); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| } |
| |
| // Check whether the found predicate is the same as the desired predicate. |
| if (FoundPred == Pred) |
| return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); |
| |
| // Check whether swapping the found predicate makes it the same as the |
| // desired predicate. |
| if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { |
| if (isa<SCEVConstant>(RHS)) |
| return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); |
| else |
| return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), |
| RHS, LHS, FoundLHS, FoundRHS); |
| } |
| |
| // Check whether the actual condition is beyond sufficient. |
| if (FoundPred == ICmpInst::ICMP_EQ) |
| if (ICmpInst::isTrueWhenEqual(Pred)) |
| if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) |
| return true; |
| if (Pred == ICmpInst::ICMP_NE) |
| if (!ICmpInst::isTrueWhenEqual(FoundPred)) |
| if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) |
| return true; |
| |
| // Otherwise assume the worst. |
| return false; |
| } |
| |
| /// isImpliedCondOperands - Test whether the condition described by Pred, |
| /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS, |
| /// and FoundRHS is true. |
| bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS, |
| const SCEV *FoundLHS, |
| const SCEV *FoundRHS) { |
| return isImpliedCondOperandsHelper(Pred, LHS, RHS, |
| FoundLHS, FoundRHS) || |
| // ~x < ~y --> x > y |
| isImpliedCondOperandsHelper(Pred, LHS, RHS, |
| getNotSCEV(FoundRHS), |
| getNotSCEV(FoundLHS)); |
| } |
| |
| /// isImpliedCondOperandsHelper - Test whether the condition described by |
| /// Pred, LHS, and RHS is true whenever the condition desribed by Pred, |
| /// FoundLHS, and FoundRHS is true. |
| bool |
| ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, |
| const SCEV *LHS, const SCEV *RHS, |
| const SCEV *FoundLHS, |
| const SCEV *FoundRHS) { |
| switch (Pred) { |
| default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); |
| case ICmpInst::ICMP_EQ: |
| case ICmpInst::ICMP_NE: |
| if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) |
| return true; |
| break; |
| case ICmpInst::ICMP_SLT: |
| case ICmpInst::ICMP_SLE: |
| if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) && |
| isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS)) |
| return true; |
| break; |
| case ICmpInst::ICMP_SGT: |
| case ICmpInst::ICMP_SGE: |
| if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) && |
| isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS)) |
| return true; |
| break; |
| case ICmpInst::ICMP_ULT: |
| case ICmpInst::ICMP_ULE: |
| if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) && |
| isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS)) |
| return true; |
| break; |
| case ICmpInst::ICMP_UGT: |
| case ICmpInst::ICMP_UGE: |
| if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) && |
| isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS)) |
| return true; |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// getBECount - Subtract the end and start values and divide by the step, |
| /// rounding up, to get the number of times the backedge is executed. Return |
| /// CouldNotCompute if an intermediate computation overflows. |
| const SCEV *ScalarEvolution::getBECount(const SCEV *Start, |
| const SCEV *End, |
| const SCEV *Step, |
| bool NoWrap) { |
| const Type *Ty = Start->getType(); |
| const SCEV *NegOne = getIntegerSCEV(-1, Ty); |
| const SCEV *Diff = getMinusSCEV(End, Start); |
| const SCEV *RoundUp = getAddExpr(Step, NegOne); |
| |
| // Add an adjustment to the difference between End and Start so that |
| // the division will effectively round up. |
| const SCEV *Add = getAddExpr(Diff, RoundUp); |
| |
| if (!NoWrap) { |
| // Check Add for unsigned overflow. |
| // TODO: More sophisticated things could be done here. |
| const Type *WideTy = IntegerType::get(getContext(), |
| getTypeSizeInBits(Ty) + 1); |
| const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); |
| const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); |
| const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); |
| if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) |
| return getCouldNotCompute(); |
| } |
| |
| return getUDivExpr(Add, Step); |
| } |
| |
| /// HowManyLessThans - Return the number of times a backedge containing the |
| /// specified less-than comparison will execute. If not computable, return |
| /// CouldNotCompute. |
| ScalarEvolution::BackedgeTakenInfo |
| ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, |
| const Loop *L, bool isSigned) { |
| // Only handle: "ADDREC < LoopInvariant". |
| if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); |
| |
| const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); |
| if (!AddRec || AddRec->getLoop() != L) |
| return getCouldNotCompute(); |
| |
| // Check to see if we have a flag which makes analysis easy. |
| bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : |
| AddRec->hasNoUnsignedWrap(); |
| |
| if (AddRec->isAffine()) { |
| // FORNOW: We only support unit strides. |
| unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); |
| const SCEV *Step = AddRec->getStepRecurrence(*this); |
| |
| // TODO: handle non-constant strides. |
| const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); |
| if (!CStep || CStep->isZero()) |
| return getCouldNotCompute(); |
| if (CStep->isOne()) { |
| // With unit stride, the iteration never steps past the limit value. |
| } else if (CStep->getValue()->getValue().isStrictlyPositive()) { |
| if (NoWrap) { |
| // We know the iteration won't step past the maximum value for its type. |
| ; |
| } else if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { |
| // Test whether a positive iteration iteration can step past the limit |
| // value and past the maximum value for its type in a single step. |
| if (isSigned) { |
| APInt Max = APInt::getSignedMaxValue(BitWidth); |
| if ((Max - CStep->getValue()->getValue()) |
| .slt(CLimit->getValue()->getValue())) |
| return getCouldNotCompute(); |
| } else { |
| APInt Max = APInt::getMaxValue(BitWidth); |
| if ((Max - CStep->getValue()->getValue()) |
| .ult(CLimit->getValue()->getValue())) |
| return getCouldNotCompute(); |
| } |
| } else |
| // TODO: handle non-constant limit values below. |
| return getCouldNotCompute(); |
| } else |
| // TODO: handle negative strides below. |
| return getCouldNotCompute(); |
| |
| // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant |
| // m. So, we count the number of iterations in which {n,+,s} < m is true. |
| // Note that we cannot simply return max(m-n,0)/s because it's not safe to |
| // treat m-n as signed nor unsigned due to overflow possibility. |
| |
| // First, we get the value of the LHS in the first iteration: n |
| const SCEV *Start = AddRec->getOperand(0); |
| |
| // Determine the minimum constant start value. |
| const SCEV *MinStart = getConstant(isSigned ? |
| getSignedRange(Start).getSignedMin() : |
| getUnsignedRange(Start).getUnsignedMin()); |
| |
| // If we know that the condition is true in order to enter the loop, |
| // then we know that it will run exactly (m-n)/s times. Otherwise, we |
| // only know that it will execute (max(m,n)-n)/s times. In both cases, |
| // the division must round up. |
| const SCEV *End = RHS; |
| if (!isLoopGuardedByCond(L, |
| isSigned ? ICmpInst::ICMP_SLT : |
| ICmpInst::ICMP_ULT, |
| getMinusSCEV(Start, Step), RHS)) |
| End = isSigned ? getSMaxExpr(RHS, Start) |
| : getUMaxExpr(RHS, Start); |
| |
| // Determine the maximum constant end value. |
| const SCEV *MaxEnd = getConstant(isSigned ? |
| getSignedRange(End).getSignedMax() : |
| getUnsignedRange(End).getUnsignedMax()); |
| |
| // Finally, we subtract these two values and divide, rounding up, to get |
| // the number of times the backedge is executed. |
| const SCEV *BECount = getBECount(Start, End, Step, NoWrap); |
| |
| // The maximum backedge count is similar, except using the minimum start |
| // value and the maximum end value. |
| const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); |
| |
| return BackedgeTakenInfo(BECount, MaxBECount); |
| } |
| |
| return getCouldNotCompute(); |
| } |
| |
| /// getNumIterationsInRange - Return the number of iterations of this loop that |
| /// produce values in the specified constant range. Another way of looking at |
| /// this is that it returns the first iteration number where the value is not in |
| /// the condition, thus computing the exit count. If the iteration count can't |
| /// be computed, an instance of SCEVCouldNotCompute is returned. |
| const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, |
| ScalarEvolution &SE) const { |
| if (Range.isFullSet()) // Infinite loop. |
| return SE.getCouldNotCompute(); |
| |
| // If the start is a non-zero constant, shift the range to simplify things. |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) |
| if (!SC->getValue()->isZero()) { |
| SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); |
| Operands[0] = SE.getIntegerSCEV(0, SC->getType()); |
| const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); |
| if (const SCEVAddRecExpr *ShiftedAddRec = |
| dyn_cast<SCEVAddRecExpr>(Shifted)) |
| return ShiftedAddRec->getNumIterationsInRange( |
| Range.subtract(SC->getValue()->getValue()), SE); |
| // This is strange and shouldn't happen. |
| return SE.getCouldNotCompute(); |
| } |
| |
| // The only time we can solve this is when we have all constant indices. |
| // Otherwise, we cannot determine the overflow conditions. |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| if (!isa<SCEVConstant>(getOperand(i))) |
| return SE.getCouldNotCompute(); |
| |
| |
| // Okay at this point we know that all elements of the chrec are constants and |
| // that the start element is zero. |
| |
| // First check to see if the range contains zero. If not, the first |
| // iteration exits. |
| unsigned BitWidth = SE.getTypeSizeInBits(getType()); |
| if (!Range.contains(APInt(BitWidth, 0))) |
| return SE.getIntegerSCEV(0, getType()); |
| |
| if (isAffine()) { |
| // If this is an affine expression then we have this situation: |
| // Solve {0,+,A} in Range === Ax in Range |
| |
| // We know that zero is in the range. If A is positive then we know that |
| // the upper value of the range must be the first possible exit value. |
| // If A is negative then the lower of the range is the last possible loop |
| // value. Also note that we already checked for a full range. |
| APInt One(BitWidth,1); |
| APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); |
| APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); |
| |
| // The exit value should be (End+A)/A. |
| APInt ExitVal = (End + A).udiv(A); |
| ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); |
| |
| // Evaluate at the exit value. If we really did fall out of the valid |
| // range, then we computed our trip count, otherwise wrap around or other |
| // things must have happened. |
| ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); |
| if (Range.contains(Val->getValue())) |
| return SE.getCouldNotCompute(); // Something strange happened |
| |
| // Ensure that the previous value is in the range. This is a sanity check. |
| assert(Range.contains( |
| EvaluateConstantChrecAtConstant(this, |
| ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && |
| "Linear scev computation is off in a bad way!"); |
| return SE.getConstant(ExitValue); |
| } else if (isQuadratic()) { |
| // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the |
| // quadratic equation to solve it. To do this, we must frame our problem in |
| // terms of figuring out when zero is crossed, instead of when |
| // Range.getUpper() is crossed. |
| SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); |
| NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); |
| const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); |
| |
| // Next, solve the constructed addrec |
| std::pair<const SCEV *,const SCEV *> Roots = |
| SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); |
| const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); |
| const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); |
| if (R1) { |
| // Pick the smallest positive root value. |
| if (ConstantInt *CB = |
| dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, |
| R1->getValue(), R2->getValue()))) { |
| if (CB->getZExtValue() == false) |
| std::swap(R1, R2); // R1 is the minimum root now. |
| |
| // Make sure the root is not off by one. The returned iteration should |
| // not be in the range, but the previous one should be. When solving |
| // for "X*X < 5", for example, we should not return a root of 2. |
| ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, |
| R1->getValue(), |
| SE); |
| if (Range.contains(R1Val->getValue())) { |
| // The next iteration must be out of the range... |
| ConstantInt *NextVal = |
| ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); |
| |
| R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); |
| if (!Range.contains(R1Val->getValue())) |
| return SE.getConstant(NextVal); |
| return SE.getCouldNotCompute(); // Something strange happened |
| } |
| |
| // If R1 was not in the range, then it is a good return value. Make |
| // sure that R1-1 WAS in the range though, just in case. |
| ConstantInt *NextVal = |
| ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); |
| R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); |
| if (Range.contains(R1Val->getValue())) |
| return R1; |
| return SE.getCouldNotCompute(); // Something strange happened |
| } |
| } |
| } |
| |
| return SE.getCouldNotCompute(); |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SCEVCallbackVH Class Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void ScalarEvolution::SCEVCallbackVH::deleted() { |
| assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); |
| if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) |
| SE->ConstantEvolutionLoopExitValue.erase(PN); |
| SE->Scalars.erase(getValPtr()); |
| // this now dangles! |
| } |
| |
| void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { |
| assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); |
| |
| // Forget all the expressions associated with users of the old value, |
| // so that future queries will recompute the expressions using the new |
| // value. |
| SmallVector<User *, 16> Worklist; |
| SmallPtrSet<User *, 8> Visited; |
| Value *Old = getValPtr(); |
| bool DeleteOld = false; |
| for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); |
| UI != UE; ++UI) |
| Worklist.push_back(*UI); |
| while (!Worklist.empty()) { |
| User *U = Worklist.pop_back_val(); |
| // Deleting the Old value will cause this to dangle. Postpone |
| // that until everything else is done. |
| if (U == Old) { |
| DeleteOld = true; |
| continue; |
| } |
| if (!Visited.insert(U)) |
| continue; |
| if (PHINode *PN = dyn_cast<PHINode>(U)) |
| SE->ConstantEvolutionLoopExitValue.erase(PN); |
| SE->Scalars.erase(U); |
| for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); |
| UI != UE; ++UI) |
| Worklist.push_back(*UI); |
| } |
| // Delete the Old value if it (indirectly) references itself. |
| if (DeleteOld) { |
| if (PHINode *PN = dyn_cast<PHINode>(Old)) |
| SE->ConstantEvolutionLoopExitValue.erase(PN); |
| SE->Scalars.erase(Old); |
| // this now dangles! |
| } |
| // this may dangle! |
| } |
| |
| ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) |
| : CallbackVH(V), SE(se) {} |
| |
| //===----------------------------------------------------------------------===// |
| // ScalarEvolution Class Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ScalarEvolution::ScalarEvolution() |
| : FunctionPass(&ID) { |
| } |
| |
| bool ScalarEvolution::runOnFunction(Function &F) { |
| this->F = &F; |
| LI = &getAnalysis<LoopInfo>(); |
| TD = getAnalysisIfAvailable<TargetData>(); |
| return false; |
| } |
| |
| void ScalarEvolution::releaseMemory() { |
| Scalars.clear(); |
| BackedgeTakenCounts.clear(); |
| ConstantEvolutionLoopExitValue.clear(); |
| ValuesAtScopes.clear(); |
| UniqueSCEVs.clear(); |
| SCEVAllocator.Reset(); |
| } |
| |
| void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequiredTransitive<LoopInfo>(); |
| } |
| |
| bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { |
| return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); |
| } |
| |
| static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, |
| const Loop *L) { |
| // Print all inner loops first |
| for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) |
| PrintLoopInfo(OS, SE, *I); |
| |
| OS << "Loop " << L->getHeader()->getName() << ": "; |
| |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| L->getExitBlocks(ExitBlocks); |
| if (ExitBlocks.size() != 1) |
| OS << "<multiple exits> "; |
| |
| if (SE->hasLoopInvariantBackedgeTakenCount(L)) { |
| OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); |
| } else { |
| OS << "Unpredictable backedge-taken count. "; |
| } |
| |
| OS << "\n"; |
| OS << "Loop " << L->getHeader()->getName() << ": "; |
| |
| if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { |
| OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); |
| } else { |
| OS << "Unpredictable max backedge-taken count. "; |
| } |
| |
| OS << "\n"; |
| } |
| |
| void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { |
| // ScalarEvolution's implementaiton of the print method is to print |
| // out SCEV values of all instructions that are interesting. Doing |
| // this potentially causes it to create new SCEV objects though, |
| // which technically conflicts with the const qualifier. This isn't |
| // observable from outside the class though, so casting away the |
| // const isn't dangerous. |
| ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); |
| |
| OS << "Classifying expressions for: " << F->getName() << "\n"; |
| for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) |
| if (isSCEVable(I->getType())) { |
| OS << *I << '\n'; |
| OS << " --> "; |
| const SCEV *SV = SE.getSCEV(&*I); |
| SV->print(OS); |
| |
| const Loop *L = LI->getLoopFor((*I).getParent()); |
| |
| const SCEV *AtUse = SE.getSCEVAtScope(SV, L); |
| if (AtUse != SV) { |
| OS << " --> "; |
| AtUse->print(OS); |
| } |
| |
| if (L) { |
| OS << "\t\t" "Exits: "; |
| const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); |
| if (!ExitValue->isLoopInvariant(L)) { |
| OS << "<<Unknown>>"; |
| } else { |
| OS << *ExitValue; |
| } |
| } |
| |
| OS << "\n"; |
| } |
| |
| OS << "Determining loop execution counts for: " << F->getName() << "\n"; |
| for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) |
| PrintLoopInfo(OS, &SE, *I); |
| } |
| |