| //===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tablegen backend emits a DAG instruction selector. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "DAGISelEmitter.h" |
| #include "Record.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include <algorithm> |
| #include <set> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Helpers for working with extended types. |
| |
| /// FilterVTs - Filter a list of VT's according to a predicate. |
| /// |
| template<typename T> |
| static std::vector<MVT::ValueType> |
| FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) { |
| std::vector<MVT::ValueType> Result; |
| for (unsigned i = 0, e = InVTs.size(); i != e; ++i) |
| if (Filter(InVTs[i])) |
| Result.push_back(InVTs[i]); |
| return Result; |
| } |
| |
| /// isExtIntegerVT - Return true if the specified extended value type is |
| /// integer, or isInt. |
| static bool isExtIntegerVT(unsigned char VT) { |
| return VT == MVT::isInt || |
| (VT < MVT::LAST_VALUETYPE && MVT::isInteger((MVT::ValueType)VT)); |
| } |
| |
| /// isExtFloatingPointVT - Return true if the specified extended value type is |
| /// floating point, or isFP. |
| static bool isExtFloatingPointVT(unsigned char VT) { |
| return VT == MVT::isFP || |
| (VT < MVT::LAST_VALUETYPE && MVT::isFloatingPoint((MVT::ValueType)VT)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SDTypeConstraint implementation |
| // |
| |
| SDTypeConstraint::SDTypeConstraint(Record *R) { |
| OperandNo = R->getValueAsInt("OperandNum"); |
| |
| if (R->isSubClassOf("SDTCisVT")) { |
| ConstraintType = SDTCisVT; |
| x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); |
| } else if (R->isSubClassOf("SDTCisInt")) { |
| ConstraintType = SDTCisInt; |
| } else if (R->isSubClassOf("SDTCisFP")) { |
| ConstraintType = SDTCisFP; |
| } else if (R->isSubClassOf("SDTCisSameAs")) { |
| ConstraintType = SDTCisSameAs; |
| x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); |
| } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { |
| ConstraintType = SDTCisVTSmallerThanOp; |
| x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = |
| R->getValueAsInt("OtherOperandNum"); |
| } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { |
| ConstraintType = SDTCisOpSmallerThanOp; |
| x.SDTCisOpSmallerThanOp_Info.BigOperandNum = |
| R->getValueAsInt("BigOperandNum"); |
| } else { |
| std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; |
| exit(1); |
| } |
| } |
| |
| /// getOperandNum - Return the node corresponding to operand #OpNo in tree |
| /// N, which has NumResults results. |
| TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, |
| TreePatternNode *N, |
| unsigned NumResults) const { |
| assert(NumResults == 1 && "We only work with single result nodes so far!"); |
| |
| if (OpNo < NumResults) |
| return N; // FIXME: need value # |
| else |
| return N->getChild(OpNo-NumResults); |
| } |
| |
| /// ApplyTypeConstraint - Given a node in a pattern, apply this type |
| /// constraint to the nodes operands. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, throw an |
| /// exception. |
| bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, |
| const SDNodeInfo &NodeInfo, |
| TreePattern &TP) const { |
| unsigned NumResults = NodeInfo.getNumResults(); |
| assert(NumResults == 1 && "We only work with single result nodes so far!"); |
| |
| // Check that the number of operands is sane. |
| if (NodeInfo.getNumOperands() >= 0) { |
| if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) |
| TP.error(N->getOperator()->getName() + " node requires exactly " + |
| itostr(NodeInfo.getNumOperands()) + " operands!"); |
| } |
| |
| const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo(); |
| |
| TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); |
| |
| switch (ConstraintType) { |
| default: assert(0 && "Unknown constraint type!"); |
| case SDTCisVT: |
| // Operand must be a particular type. |
| return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); |
| case SDTCisInt: { |
| // If there is only one integer type supported, this must be it. |
| std::vector<MVT::ValueType> IntVTs = |
| FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger); |
| |
| // If we found exactly one supported integer type, apply it. |
| if (IntVTs.size() == 1) |
| return NodeToApply->UpdateNodeType(IntVTs[0], TP); |
| return NodeToApply->UpdateNodeType(MVT::isInt, TP); |
| } |
| case SDTCisFP: { |
| // If there is only one FP type supported, this must be it. |
| std::vector<MVT::ValueType> FPVTs = |
| FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint); |
| |
| // If we found exactly one supported FP type, apply it. |
| if (FPVTs.size() == 1) |
| return NodeToApply->UpdateNodeType(FPVTs[0], TP); |
| return NodeToApply->UpdateNodeType(MVT::isFP, TP); |
| } |
| case SDTCisSameAs: { |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); |
| return NodeToApply->UpdateNodeType(OtherNode->getExtType(), TP) | |
| OtherNode->UpdateNodeType(NodeToApply->getExtType(), TP); |
| } |
| case SDTCisVTSmallerThanOp: { |
| // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must |
| // have an integer type that is smaller than the VT. |
| if (!NodeToApply->isLeaf() || |
| !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || |
| !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() |
| ->isSubClassOf("ValueType")) |
| TP.error(N->getOperator()->getName() + " expects a VT operand!"); |
| MVT::ValueType VT = |
| getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); |
| if (!MVT::isInteger(VT)) |
| TP.error(N->getOperator()->getName() + " VT operand must be integer!"); |
| |
| TreePatternNode *OtherNode = |
| getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); |
| |
| // It must be integer. |
| bool MadeChange = false; |
| MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP); |
| |
| if (OtherNode->hasTypeSet() && OtherNode->getType() <= VT) |
| OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. |
| return false; |
| } |
| case SDTCisOpSmallerThanOp: { |
| TreePatternNode *BigOperand = |
| getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); |
| |
| // Both operands must be integer or FP, but we don't care which. |
| bool MadeChange = false; |
| |
| if (isExtIntegerVT(NodeToApply->getExtType())) |
| MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP); |
| else if (isExtFloatingPointVT(NodeToApply->getExtType())) |
| MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP); |
| if (isExtIntegerVT(BigOperand->getExtType())) |
| MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP); |
| else if (isExtFloatingPointVT(BigOperand->getExtType())) |
| MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP); |
| |
| std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes(); |
| |
| if (isExtIntegerVT(NodeToApply->getExtType())) { |
| VTs = FilterVTs(VTs, MVT::isInteger); |
| } else if (isExtFloatingPointVT(NodeToApply->getExtType())) { |
| VTs = FilterVTs(VTs, MVT::isFloatingPoint); |
| } else { |
| VTs.clear(); |
| } |
| |
| switch (VTs.size()) { |
| default: // Too many VT's to pick from. |
| case 0: break; // No info yet. |
| case 1: |
| // Only one VT of this flavor. Cannot ever satisify the constraints. |
| return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw |
| case 2: |
| // If we have exactly two possible types, the little operand must be the |
| // small one, the big operand should be the big one. Common with |
| // float/double for example. |
| assert(VTs[0] < VTs[1] && "Should be sorted!"); |
| MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); |
| MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); |
| break; |
| } |
| return MadeChange; |
| } |
| } |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SDNodeInfo implementation |
| // |
| SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { |
| EnumName = R->getValueAsString("Opcode"); |
| SDClassName = R->getValueAsString("SDClass"); |
| Record *TypeProfile = R->getValueAsDef("TypeProfile"); |
| NumResults = TypeProfile->getValueAsInt("NumResults"); |
| NumOperands = TypeProfile->getValueAsInt("NumOperands"); |
| |
| // Parse the properties. |
| Properties = 0; |
| ListInit *LI = R->getValueAsListInit("Properties"); |
| for (unsigned i = 0, e = LI->getSize(); i != e; ++i) { |
| DefInit *DI = dynamic_cast<DefInit*>(LI->getElement(i)); |
| assert(DI && "Properties list must be list of defs!"); |
| if (DI->getDef()->getName() == "SDNPCommutative") { |
| Properties |= 1 << SDNPCommutative; |
| } else if (DI->getDef()->getName() == "SDNPAssociative") { |
| Properties |= 1 << SDNPAssociative; |
| } else { |
| std::cerr << "Unknown SD Node property '" << DI->getDef()->getName() |
| << "' on node '" << R->getName() << "'!\n"; |
| exit(1); |
| } |
| } |
| |
| |
| // Parse the type constraints. |
| ListInit *Constraints = TypeProfile->getValueAsListInit("Constraints"); |
| for (unsigned i = 0, e = Constraints->getSize(); i != e; ++i) { |
| assert(dynamic_cast<DefInit*>(Constraints->getElement(i)) && |
| "Constraints list should contain constraint definitions!"); |
| Record *Constraint = |
| static_cast<DefInit*>(Constraints->getElement(i))->getDef(); |
| TypeConstraints.push_back(Constraint); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TreePatternNode implementation |
| // |
| |
| TreePatternNode::~TreePatternNode() { |
| #if 0 // FIXME: implement refcounted tree nodes! |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| delete getChild(i); |
| #endif |
| } |
| |
| /// UpdateNodeType - Set the node type of N to VT if VT contains |
| /// information. If N already contains a conflicting type, then throw an |
| /// exception. This returns true if any information was updated. |
| /// |
| bool TreePatternNode::UpdateNodeType(unsigned char VT, TreePattern &TP) { |
| if (VT == MVT::isUnknown || getExtType() == VT) return false; |
| if (getExtType() == MVT::isUnknown) { |
| setType(VT); |
| return true; |
| } |
| |
| // If we are told this is to be an int or FP type, and it already is, ignore |
| // the advice. |
| if ((VT == MVT::isInt && isExtIntegerVT(getExtType())) || |
| (VT == MVT::isFP && isExtFloatingPointVT(getExtType()))) |
| return false; |
| |
| // If we know this is an int or fp type, and we are told it is a specific one, |
| // take the advice. |
| if ((getExtType() == MVT::isInt && isExtIntegerVT(VT)) || |
| (getExtType() == MVT::isFP && isExtFloatingPointVT(VT))) { |
| setType(VT); |
| return true; |
| } |
| |
| TP.error("Type inference contradiction found in node " + |
| getOperator()->getName() + "!"); |
| return true; // unreachable |
| } |
| |
| |
| void TreePatternNode::print(std::ostream &OS) const { |
| if (isLeaf()) { |
| OS << *getLeafValue(); |
| } else { |
| OS << "(" << getOperator()->getName(); |
| } |
| |
| switch (getExtType()) { |
| case MVT::Other: OS << ":Other"; break; |
| case MVT::isInt: OS << ":isInt"; break; |
| case MVT::isFP : OS << ":isFP"; break; |
| case MVT::isUnknown: ; /*OS << ":?";*/ break; |
| default: OS << ":" << getType(); break; |
| } |
| |
| if (!isLeaf()) { |
| if (getNumChildren() != 0) { |
| OS << " "; |
| getChild(0)->print(OS); |
| for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { |
| OS << ", "; |
| getChild(i)->print(OS); |
| } |
| } |
| OS << ")"; |
| } |
| |
| if (!PredicateFn.empty()) |
| OS << "<<P:" << PredicateFn << ">>"; |
| if (TransformFn) |
| OS << "<<X:" << TransformFn->getName() << ">>"; |
| if (!getName().empty()) |
| OS << ":$" << getName(); |
| |
| } |
| void TreePatternNode::dump() const { |
| print(std::cerr); |
| } |
| |
| /// isIsomorphicTo - Return true if this node is recursively isomorphic to |
| /// the specified node. For this comparison, all of the state of the node |
| /// is considered, except for the assigned name. Nodes with differing names |
| /// that are otherwise identical are considered isomorphic. |
| bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const { |
| if (N == this) return true; |
| if (N->isLeaf() != isLeaf() || getExtType() != N->getExtType() || |
| getPredicateFn() != N->getPredicateFn() || |
| getTransformFn() != N->getTransformFn()) |
| return false; |
| |
| if (isLeaf()) { |
| if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) |
| if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) |
| return DI->getDef() == NDI->getDef(); |
| return getLeafValue() == N->getLeafValue(); |
| } |
| |
| if (N->getOperator() != getOperator() || |
| N->getNumChildren() != getNumChildren()) return false; |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (!getChild(i)->isIsomorphicTo(N->getChild(i))) |
| return false; |
| return true; |
| } |
| |
| /// clone - Make a copy of this tree and all of its children. |
| /// |
| TreePatternNode *TreePatternNode::clone() const { |
| TreePatternNode *New; |
| if (isLeaf()) { |
| New = new TreePatternNode(getLeafValue()); |
| } else { |
| std::vector<TreePatternNode*> CChildren; |
| CChildren.reserve(Children.size()); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| CChildren.push_back(getChild(i)->clone()); |
| New = new TreePatternNode(getOperator(), CChildren); |
| } |
| New->setName(getName()); |
| New->setType(getExtType()); |
| New->setPredicateFn(getPredicateFn()); |
| New->setTransformFn(getTransformFn()); |
| return New; |
| } |
| |
| /// SubstituteFormalArguments - Replace the formal arguments in this tree |
| /// with actual values specified by ArgMap. |
| void TreePatternNode:: |
| SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { |
| if (isLeaf()) return; |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = getChild(i); |
| if (Child->isLeaf()) { |
| Init *Val = Child->getLeafValue(); |
| if (dynamic_cast<DefInit*>(Val) && |
| static_cast<DefInit*>(Val)->getDef()->getName() == "node") { |
| // We found a use of a formal argument, replace it with its value. |
| Child = ArgMap[Child->getName()]; |
| assert(Child && "Couldn't find formal argument!"); |
| setChild(i, Child); |
| } |
| } else { |
| getChild(i)->SubstituteFormalArguments(ArgMap); |
| } |
| } |
| } |
| |
| |
| /// InlinePatternFragments - If this pattern refers to any pattern |
| /// fragments, inline them into place, giving us a pattern without any |
| /// PatFrag references. |
| TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { |
| if (isLeaf()) return this; // nothing to do. |
| Record *Op = getOperator(); |
| |
| if (!Op->isSubClassOf("PatFrag")) { |
| // Just recursively inline children nodes. |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| setChild(i, getChild(i)->InlinePatternFragments(TP)); |
| return this; |
| } |
| |
| // Otherwise, we found a reference to a fragment. First, look up its |
| // TreePattern record. |
| TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op); |
| |
| // Verify that we are passing the right number of operands. |
| if (Frag->getNumArgs() != Children.size()) |
| TP.error("'" + Op->getName() + "' fragment requires " + |
| utostr(Frag->getNumArgs()) + " operands!"); |
| |
| TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); |
| |
| // Resolve formal arguments to their actual value. |
| if (Frag->getNumArgs()) { |
| // Compute the map of formal to actual arguments. |
| std::map<std::string, TreePatternNode*> ArgMap; |
| for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) |
| ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); |
| |
| FragTree->SubstituteFormalArguments(ArgMap); |
| } |
| |
| FragTree->setName(getName()); |
| |
| // Get a new copy of this fragment to stitch into here. |
| //delete this; // FIXME: implement refcounting! |
| return FragTree; |
| } |
| |
| /// getIntrinsicType - Check to see if the specified record has an intrinsic |
| /// type which should be applied to it. This infer the type of register |
| /// references from the register file information, for example. |
| /// |
| static unsigned char getIntrinsicType(Record *R, bool NotRegisters, |
| TreePattern &TP) { |
| // Check to see if this is a register or a register class... |
| if (R->isSubClassOf("RegisterClass")) { |
| if (NotRegisters) return MVT::isUnknown; |
| return getValueType(R->getValueAsDef("RegType")); |
| } else if (R->isSubClassOf("PatFrag")) { |
| // Pattern fragment types will be resolved when they are inlined. |
| return MVT::isUnknown; |
| } else if (R->isSubClassOf("Register")) { |
| //const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo(); |
| // TODO: if a register appears in exactly one regclass, we could use that |
| // type info. |
| return MVT::isUnknown; |
| } else if (R->isSubClassOf("ValueType")) { |
| // Using a VTSDNode. |
| return MVT::Other; |
| } else if (R->getName() == "node") { |
| // Placeholder. |
| return MVT::isUnknown; |
| } |
| |
| TP.error("Unknown node flavor used in pattern: " + R->getName()); |
| return MVT::Other; |
| } |
| |
| /// ApplyTypeConstraints - Apply all of the type constraints relevent to |
| /// this node and its children in the tree. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, throw an |
| /// exception. |
| bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { |
| if (isLeaf()) { |
| if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) |
| // If it's a regclass or something else known, include the type. |
| return UpdateNodeType(getIntrinsicType(DI->getDef(), NotRegisters, TP), |
| TP); |
| return false; |
| } |
| |
| // special handling for set, which isn't really an SDNode. |
| if (getOperator()->getName() == "set") { |
| assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!"); |
| bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); |
| MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); |
| |
| // Types of operands must match. |
| MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtType(), TP); |
| MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtType(), TP); |
| MadeChange |= UpdateNodeType(MVT::isVoid, TP); |
| return MadeChange; |
| } else if (getOperator()->isSubClassOf("SDNode")) { |
| const SDNodeInfo &NI = TP.getDAGISelEmitter().getSDNodeInfo(getOperator()); |
| |
| bool MadeChange = NI.ApplyTypeConstraints(this, TP); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| return MadeChange; |
| } else if (getOperator()->isSubClassOf("Instruction")) { |
| const DAGInstruction &Inst = |
| TP.getDAGISelEmitter().getInstruction(getOperator()); |
| |
| assert(Inst.getNumResults() == 1 && "Only supports one result instrs!"); |
| // Apply the result type to the node |
| bool MadeChange = UpdateNodeType(Inst.getResultType(0), TP); |
| |
| if (getNumChildren() != Inst.getNumOperands()) |
| TP.error("Instruction '" + getOperator()->getName() + " expects " + |
| utostr(Inst.getNumOperands()) + " operands, not " + |
| utostr(getNumChildren()) + " operands!"); |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { |
| MadeChange |= getChild(i)->UpdateNodeType(Inst.getOperandType(i), TP); |
| MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); |
| } |
| return MadeChange; |
| } else { |
| assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); |
| |
| // Node transforms always take one operand, and take and return the same |
| // type. |
| if (getNumChildren() != 1) |
| TP.error("Node transform '" + getOperator()->getName() + |
| "' requires one operand!"); |
| bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); |
| MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); |
| return MadeChange; |
| } |
| } |
| |
| /// canPatternMatch - If it is impossible for this pattern to match on this |
| /// target, fill in Reason and return false. Otherwise, return true. This is |
| /// used as a santity check for .td files (to prevent people from writing stuff |
| /// that can never possibly work), and to prevent the pattern permuter from |
| /// generating stuff that is useless. |
| bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){ |
| if (isLeaf()) return true; |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (!getChild(i)->canPatternMatch(Reason, ISE)) |
| return false; |
| |
| // If this node is a commutative operator, check that the LHS isn't an |
| // immediate. |
| const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator()); |
| if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) { |
| // Scan all of the operands of the node and make sure that only the last one |
| // is a constant node. |
| for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) |
| if (!getChild(i)->isLeaf() && |
| getChild(i)->getOperator()->getName() == "imm") { |
| Reason = "Immediate value must be on the RHS of commutative operators!"; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TreePattern implementation |
| // |
| |
| TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, |
| DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { |
| isInputPattern = isInput; |
| for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) |
| Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); |
| } |
| |
| TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, |
| DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { |
| isInputPattern = isInput; |
| Trees.push_back(ParseTreePattern(Pat)); |
| } |
| |
| TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, |
| DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { |
| isInputPattern = isInput; |
| Trees.push_back(Pat); |
| } |
| |
| |
| |
| void TreePattern::error(const std::string &Msg) const { |
| dump(); |
| throw "In " + TheRecord->getName() + ": " + Msg; |
| } |
| |
| TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { |
| Record *Operator = Dag->getNodeType(); |
| |
| if (Operator->isSubClassOf("ValueType")) { |
| // If the operator is a ValueType, then this must be "type cast" of a leaf |
| // node. |
| if (Dag->getNumArgs() != 1) |
| error("Type cast only takes one operand!"); |
| |
| Init *Arg = Dag->getArg(0); |
| TreePatternNode *New; |
| if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { |
| Record *R = DI->getDef(); |
| if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { |
| Dag->setArg(0, new DagInit(R, |
| std::vector<std::pair<Init*, std::string> >())); |
| TreePatternNode *TPN = ParseTreePattern(Dag); |
| TPN->setName(Dag->getArgName(0)); |
| return TPN; |
| } |
| |
| New = new TreePatternNode(DI); |
| } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { |
| New = ParseTreePattern(DI); |
| } else { |
| Arg->dump(); |
| error("Unknown leaf value for tree pattern!"); |
| return 0; |
| } |
| |
| // Apply the type cast. |
| New->UpdateNodeType(getValueType(Operator), *this); |
| return New; |
| } |
| |
| // Verify that this is something that makes sense for an operator. |
| if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && |
| !Operator->isSubClassOf("Instruction") && |
| !Operator->isSubClassOf("SDNodeXForm") && |
| Operator->getName() != "set") |
| error("Unrecognized node '" + Operator->getName() + "'!"); |
| |
| // Check to see if this is something that is illegal in an input pattern. |
| if (isInputPattern && (Operator->isSubClassOf("Instruction") || |
| Operator->isSubClassOf("SDNodeXForm"))) |
| error("Cannot use '" + Operator->getName() + "' in an input pattern!"); |
| |
| std::vector<TreePatternNode*> Children; |
| |
| for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { |
| Init *Arg = Dag->getArg(i); |
| if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { |
| Children.push_back(ParseTreePattern(DI)); |
| Children.back()->setName(Dag->getArgName(i)); |
| } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) { |
| Record *R = DefI->getDef(); |
| // Direct reference to a leaf DagNode or PatFrag? Turn it into a |
| // TreePatternNode if its own. |
| if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { |
| Dag->setArg(i, new DagInit(R, |
| std::vector<std::pair<Init*, std::string> >())); |
| --i; // Revisit this node... |
| } else { |
| TreePatternNode *Node = new TreePatternNode(DefI); |
| Node->setName(Dag->getArgName(i)); |
| Children.push_back(Node); |
| |
| // Input argument? |
| if (R->getName() == "node") { |
| if (Dag->getArgName(i).empty()) |
| error("'node' argument requires a name to match with operand list"); |
| Args.push_back(Dag->getArgName(i)); |
| } |
| } |
| } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { |
| TreePatternNode *Node = new TreePatternNode(II); |
| if (!Dag->getArgName(i).empty()) |
| error("Constant int argument should not have a name!"); |
| Children.push_back(Node); |
| } else { |
| std::cerr << '"'; |
| Arg->dump(); |
| std::cerr << "\": "; |
| error("Unknown leaf value for tree pattern!"); |
| } |
| } |
| |
| return new TreePatternNode(Operator, Children); |
| } |
| |
| /// InferAllTypes - Infer/propagate as many types throughout the expression |
| /// patterns as possible. Return true if all types are infered, false |
| /// otherwise. Throw an exception if a type contradiction is found. |
| bool TreePattern::InferAllTypes() { |
| bool MadeChange = true; |
| while (MadeChange) { |
| MadeChange = false; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); |
| } |
| |
| bool HasUnresolvedTypes = false; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); |
| return !HasUnresolvedTypes; |
| } |
| |
| void TreePattern::print(std::ostream &OS) const { |
| OS << getRecord()->getName(); |
| if (!Args.empty()) { |
| OS << "(" << Args[0]; |
| for (unsigned i = 1, e = Args.size(); i != e; ++i) |
| OS << ", " << Args[i]; |
| OS << ")"; |
| } |
| OS << ": "; |
| |
| if (Trees.size() > 1) |
| OS << "[\n"; |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) { |
| OS << "\t"; |
| Trees[i]->print(OS); |
| OS << "\n"; |
| } |
| |
| if (Trees.size() > 1) |
| OS << "]\n"; |
| } |
| |
| void TreePattern::dump() const { print(std::cerr); } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DAGISelEmitter implementation |
| // |
| |
| // Parse all of the SDNode definitions for the target, populating SDNodes. |
| void DAGISelEmitter::ParseNodeInfo() { |
| std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); |
| while (!Nodes.empty()) { |
| SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); |
| Nodes.pop_back(); |
| } |
| } |
| |
| /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms |
| /// map, and emit them to the file as functions. |
| void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) { |
| OS << "\n// Node transformations.\n"; |
| std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); |
| while (!Xforms.empty()) { |
| Record *XFormNode = Xforms.back(); |
| Record *SDNode = XFormNode->getValueAsDef("Opcode"); |
| std::string Code = XFormNode->getValueAsCode("XFormFunction"); |
| SDNodeXForms.insert(std::make_pair(XFormNode, |
| std::make_pair(SDNode, Code))); |
| |
| if (!Code.empty()) { |
| std::string ClassName = getSDNodeInfo(SDNode).getSDClassName(); |
| const char *C2 = ClassName == "SDNode" ? "N" : "inN"; |
| |
| OS << "inline SDOperand Transform_" << XFormNode->getName() |
| << "(SDNode *" << C2 << ") {\n"; |
| if (ClassName != "SDNode") |
| OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; |
| OS << Code << "\n}\n"; |
| } |
| |
| Xforms.pop_back(); |
| } |
| } |
| |
| |
| |
| /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td |
| /// file, building up the PatternFragments map. After we've collected them all, |
| /// inline fragments together as necessary, so that there are no references left |
| /// inside a pattern fragment to a pattern fragment. |
| /// |
| /// This also emits all of the predicate functions to the output file. |
| /// |
| void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) { |
| std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); |
| |
| // First step, parse all of the fragments and emit predicate functions. |
| OS << "\n// Predicate functions.\n"; |
| for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { |
| DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); |
| TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); |
| PatternFragments[Fragments[i]] = P; |
| |
| // Validate the argument list, converting it to map, to discard duplicates. |
| std::vector<std::string> &Args = P->getArgList(); |
| std::set<std::string> OperandsMap(Args.begin(), Args.end()); |
| |
| if (OperandsMap.count("")) |
| P->error("Cannot have unnamed 'node' values in pattern fragment!"); |
| |
| // Parse the operands list. |
| DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); |
| if (OpsList->getNodeType()->getName() != "ops") |
| P->error("Operands list should start with '(ops ... '!"); |
| |
| // Copy over the arguments. |
| Args.clear(); |
| for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { |
| if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || |
| static_cast<DefInit*>(OpsList->getArg(j))-> |
| getDef()->getName() != "node") |
| P->error("Operands list should all be 'node' values."); |
| if (OpsList->getArgName(j).empty()) |
| P->error("Operands list should have names for each operand!"); |
| if (!OperandsMap.count(OpsList->getArgName(j))) |
| P->error("'" + OpsList->getArgName(j) + |
| "' does not occur in pattern or was multiply specified!"); |
| OperandsMap.erase(OpsList->getArgName(j)); |
| Args.push_back(OpsList->getArgName(j)); |
| } |
| |
| if (!OperandsMap.empty()) |
| P->error("Operands list does not contain an entry for operand '" + |
| *OperandsMap.begin() + "'!"); |
| |
| // If there is a code init for this fragment, emit the predicate code and |
| // keep track of the fact that this fragment uses it. |
| std::string Code = Fragments[i]->getValueAsCode("Predicate"); |
| if (!Code.empty()) { |
| assert(!P->getOnlyTree()->isLeaf() && "Can't be a leaf!"); |
| std::string ClassName = |
| getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); |
| const char *C2 = ClassName == "SDNode" ? "N" : "inN"; |
| |
| OS << "inline bool Predicate_" << Fragments[i]->getName() |
| << "(SDNode *" << C2 << ") {\n"; |
| if (ClassName != "SDNode") |
| OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; |
| OS << Code << "\n}\n"; |
| P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName()); |
| } |
| |
| // If there is a node transformation corresponding to this, keep track of |
| // it. |
| Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); |
| if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? |
| P->getOnlyTree()->setTransformFn(Transform); |
| } |
| |
| OS << "\n\n"; |
| |
| // Now that we've parsed all of the tree fragments, do a closure on them so |
| // that there are not references to PatFrags left inside of them. |
| for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), |
| E = PatternFragments.end(); I != E; ++I) { |
| TreePattern *ThePat = I->second; |
| ThePat->InlinePatternFragments(); |
| |
| // Infer as many types as possible. Don't worry about it if we don't infer |
| // all of them, some may depend on the inputs of the pattern. |
| try { |
| ThePat->InferAllTypes(); |
| } catch (...) { |
| // If this pattern fragment is not supported by this target (no types can |
| // satisfy its constraints), just ignore it. If the bogus pattern is |
| // actually used by instructions, the type consistency error will be |
| // reported there. |
| } |
| |
| // If debugging, print out the pattern fragment result. |
| DEBUG(ThePat->dump()); |
| } |
| } |
| |
| /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an |
| /// instruction input. Return true if this is a real use. |
| static bool HandleUse(TreePattern *I, TreePatternNode *Pat, |
| std::map<std::string, TreePatternNode*> &InstInputs) { |
| // No name -> not interesting. |
| if (Pat->getName().empty()) { |
| if (Pat->isLeaf()) { |
| DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); |
| if (DI && DI->getDef()->isSubClassOf("RegisterClass")) |
| I->error("Input " + DI->getDef()->getName() + " must be named!"); |
| |
| } |
| return false; |
| } |
| |
| Record *Rec; |
| if (Pat->isLeaf()) { |
| DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); |
| if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); |
| Rec = DI->getDef(); |
| } else { |
| assert(Pat->getNumChildren() == 0 && "can't be a use with children!"); |
| Rec = Pat->getOperator(); |
| } |
| |
| TreePatternNode *&Slot = InstInputs[Pat->getName()]; |
| if (!Slot) { |
| Slot = Pat; |
| } else { |
| Record *SlotRec; |
| if (Slot->isLeaf()) { |
| SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); |
| } else { |
| assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); |
| SlotRec = Slot->getOperator(); |
| } |
| |
| // Ensure that the inputs agree if we've already seen this input. |
| if (Rec != SlotRec) |
| I->error("All $" + Pat->getName() + " inputs must agree with each other"); |
| if (Slot->getExtType() != Pat->getExtType()) |
| I->error("All $" + Pat->getName() + " inputs must agree with each other"); |
| } |
| return true; |
| } |
| |
| /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is |
| /// part of "I", the instruction), computing the set of inputs and outputs of |
| /// the pattern. Report errors if we see anything naughty. |
| void DAGISelEmitter:: |
| FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, |
| std::map<std::string, TreePatternNode*> &InstInputs, |
| std::map<std::string, Record*> &InstResults) { |
| if (Pat->isLeaf()) { |
| bool isUse = HandleUse(I, Pat, InstInputs); |
| if (!isUse && Pat->getTransformFn()) |
| I->error("Cannot specify a transform function for a non-input value!"); |
| return; |
| } else if (Pat->getOperator()->getName() != "set") { |
| // If this is not a set, verify that the children nodes are not void typed, |
| // and recurse. |
| for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { |
| if (Pat->getChild(i)->getExtType() == MVT::isVoid) |
| I->error("Cannot have void nodes inside of patterns!"); |
| FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults); |
| } |
| |
| // If this is a non-leaf node with no children, treat it basically as if |
| // it were a leaf. This handles nodes like (imm). |
| bool isUse = false; |
| if (Pat->getNumChildren() == 0) |
| isUse = HandleUse(I, Pat, InstInputs); |
| |
| if (!isUse && Pat->getTransformFn()) |
| I->error("Cannot specify a transform function for a non-input value!"); |
| return; |
| } |
| |
| // Otherwise, this is a set, validate and collect instruction results. |
| if (Pat->getNumChildren() == 0) |
| I->error("set requires operands!"); |
| else if (Pat->getNumChildren() & 1) |
| I->error("set requires an even number of operands"); |
| |
| if (Pat->getTransformFn()) |
| I->error("Cannot specify a transform function on a set node!"); |
| |
| // Check the set destinations. |
| unsigned NumValues = Pat->getNumChildren()/2; |
| for (unsigned i = 0; i != NumValues; ++i) { |
| TreePatternNode *Dest = Pat->getChild(i); |
| if (!Dest->isLeaf()) |
| I->error("set destination should be a virtual register!"); |
| |
| DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); |
| if (!Val) |
| I->error("set destination should be a virtual register!"); |
| |
| if (!Val->getDef()->isSubClassOf("RegisterClass")) |
| I->error("set destination should be a virtual register!"); |
| if (Dest->getName().empty()) |
| I->error("set destination must have a name!"); |
| if (InstResults.count(Dest->getName())) |
| I->error("cannot set '" + Dest->getName() +"' multiple times"); |
| InstResults[Dest->getName()] = Val->getDef(); |
| |
| // Verify and collect info from the computation. |
| FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues), |
| InstInputs, InstResults); |
| } |
| } |
| |
| |
| /// ParseInstructions - Parse all of the instructions, inlining and resolving |
| /// any fragments involved. This populates the Instructions list with fully |
| /// resolved instructions. |
| void DAGISelEmitter::ParseInstructions() { |
| std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); |
| |
| for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { |
| ListInit *LI = 0; |
| |
| if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) |
| LI = Instrs[i]->getValueAsListInit("Pattern"); |
| |
| // If there is no pattern, only collect minimal information about the |
| // instruction for its operand list. We have to assume that there is one |
| // result, as we have no detailed info. |
| if (!LI || LI->getSize() == 0) { |
| std::vector<MVT::ValueType> ResultTypes; |
| std::vector<MVT::ValueType> OperandTypes; |
| |
| CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); |
| |
| // Doesn't even define a result? |
| if (InstInfo.OperandList.size() == 0) |
| continue; |
| |
| // Assume the first operand is the result. |
| ResultTypes.push_back(InstInfo.OperandList[0].Ty); |
| |
| // The rest are inputs. |
| for (unsigned j = 1, e = InstInfo.OperandList.size(); j != e; ++j) |
| OperandTypes.push_back(InstInfo.OperandList[j].Ty); |
| |
| // Create and insert the instruction. |
| Instructions.insert(std::make_pair(Instrs[i], |
| DAGInstruction(0, ResultTypes, OperandTypes))); |
| continue; // no pattern. |
| } |
| |
| // Parse the instruction. |
| TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); |
| // Inline pattern fragments into it. |
| I->InlinePatternFragments(); |
| |
| // Infer as many types as possible. If we cannot infer all of them, we can |
| // never do anything with this instruction pattern: report it to the user. |
| if (!I->InferAllTypes()) |
| I->error("Could not infer all types in pattern!"); |
| |
| // InstInputs - Keep track of all of the inputs of the instruction, along |
| // with the record they are declared as. |
| std::map<std::string, TreePatternNode*> InstInputs; |
| |
| // InstResults - Keep track of all the virtual registers that are 'set' |
| // in the instruction, including what reg class they are. |
| std::map<std::string, Record*> InstResults; |
| |
| // Verify that the top-level forms in the instruction are of void type, and |
| // fill in the InstResults map. |
| for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { |
| TreePatternNode *Pat = I->getTree(j); |
| if (Pat->getExtType() != MVT::isVoid) { |
| I->dump(); |
| I->error("Top-level forms in instruction pattern should have" |
| " void types"); |
| } |
| |
| // Find inputs and outputs, and verify the structure of the uses/defs. |
| FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults); |
| } |
| |
| // Now that we have inputs and outputs of the pattern, inspect the operands |
| // list for the instruction. This determines the order that operands are |
| // added to the machine instruction the node corresponds to. |
| unsigned NumResults = InstResults.size(); |
| |
| // Parse the operands list from the (ops) list, validating it. |
| std::vector<std::string> &Args = I->getArgList(); |
| assert(Args.empty() && "Args list should still be empty here!"); |
| CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); |
| |
| // Check that all of the results occur first in the list. |
| std::vector<MVT::ValueType> ResultTypes; |
| for (unsigned i = 0; i != NumResults; ++i) { |
| if (i == CGI.OperandList.size()) |
| I->error("'" + InstResults.begin()->first + |
| "' set but does not appear in operand list!"); |
| const std::string &OpName = CGI.OperandList[i].Name; |
| |
| // Check that it exists in InstResults. |
| Record *R = InstResults[OpName]; |
| if (R == 0) |
| I->error("Operand $" + OpName + " should be a set destination: all " |
| "outputs must occur before inputs in operand list!"); |
| |
| if (CGI.OperandList[i].Rec != R) |
| I->error("Operand $" + OpName + " class mismatch!"); |
| |
| // Remember the return type. |
| ResultTypes.push_back(CGI.OperandList[i].Ty); |
| |
| // Okay, this one checks out. |
| InstResults.erase(OpName); |
| } |
| |
| // Loop over the inputs next. Make a copy of InstInputs so we can destroy |
| // the copy while we're checking the inputs. |
| std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); |
| |
| std::vector<TreePatternNode*> ResultNodeOperands; |
| std::vector<MVT::ValueType> OperandTypes; |
| for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { |
| const std::string &OpName = CGI.OperandList[i].Name; |
| if (OpName.empty()) |
| I->error("Operand #" + utostr(i) + " in operands list has no name!"); |
| |
| if (!InstInputsCheck.count(OpName)) |
| I->error("Operand $" + OpName + |
| " does not appear in the instruction pattern"); |
| TreePatternNode *InVal = InstInputsCheck[OpName]; |
| InstInputsCheck.erase(OpName); // It occurred, remove from map. |
| if (CGI.OperandList[i].Ty != InVal->getExtType()) |
| I->error("Operand $" + OpName + |
| "'s type disagrees between the operand and pattern"); |
| OperandTypes.push_back(InVal->getType()); |
| |
| // Construct the result for the dest-pattern operand list. |
| TreePatternNode *OpNode = InVal->clone(); |
| |
| // No predicate is useful on the result. |
| OpNode->setPredicateFn(""); |
| |
| // Promote the xform function to be an explicit node if set. |
| if (Record *Xform = OpNode->getTransformFn()) { |
| OpNode->setTransformFn(0); |
| std::vector<TreePatternNode*> Children; |
| Children.push_back(OpNode); |
| OpNode = new TreePatternNode(Xform, Children); |
| } |
| |
| ResultNodeOperands.push_back(OpNode); |
| } |
| |
| if (!InstInputsCheck.empty()) |
| I->error("Input operand $" + InstInputsCheck.begin()->first + |
| " occurs in pattern but not in operands list!"); |
| |
| TreePatternNode *ResultPattern = |
| new TreePatternNode(I->getRecord(), ResultNodeOperands); |
| |
| // Create and insert the instruction. |
| DAGInstruction TheInst(I, ResultTypes, OperandTypes); |
| Instructions.insert(std::make_pair(I->getRecord(), TheInst)); |
| |
| // Use a temporary tree pattern to infer all types and make sure that the |
| // constructed result is correct. This depends on the instruction already |
| // being inserted into the Instructions map. |
| TreePattern Temp(I->getRecord(), ResultPattern, false, *this); |
| Temp.InferAllTypes(); |
| |
| DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; |
| TheInsertedInst.setResultPattern(Temp.getOnlyTree()); |
| |
| DEBUG(I->dump()); |
| } |
| |
| // If we can, convert the instructions to be patterns that are matched! |
| for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(), |
| E = Instructions.end(); II != E; ++II) { |
| TreePattern *I = II->second.getPattern(); |
| if (I == 0) continue; // No pattern. |
| |
| if (I->getNumTrees() != 1) { |
| std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!"; |
| continue; |
| } |
| TreePatternNode *Pattern = I->getTree(0); |
| if (Pattern->getOperator()->getName() != "set") |
| continue; // Not a set (store or something?) |
| |
| if (Pattern->getNumChildren() != 2) |
| continue; // Not a set of a single value (not handled so far) |
| |
| TreePatternNode *SrcPattern = Pattern->getChild(1)->clone(); |
| |
| std::string Reason; |
| if (!SrcPattern->canPatternMatch(Reason, *this)) |
| I->error("Instruction can never match: " + Reason); |
| |
| TreePatternNode *DstPattern = II->second.getResultPattern(); |
| PatternsToMatch.push_back(std::make_pair(SrcPattern, DstPattern)); |
| } |
| } |
| |
| void DAGISelEmitter::ParsePatterns() { |
| std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); |
| |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); |
| TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this); |
| |
| // Inline pattern fragments into it. |
| Pattern->InlinePatternFragments(); |
| |
| // Infer as many types as possible. If we cannot infer all of them, we can |
| // never do anything with this pattern: report it to the user. |
| if (!Pattern->InferAllTypes()) |
| Pattern->error("Could not infer all types in pattern!"); |
| |
| ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); |
| if (LI->getSize() == 0) continue; // no pattern. |
| |
| // Parse the instruction. |
| TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); |
| |
| // Inline pattern fragments into it. |
| Result->InlinePatternFragments(); |
| |
| // Infer as many types as possible. If we cannot infer all of them, we can |
| // never do anything with this pattern: report it to the user. |
| if (!Result->InferAllTypes()) |
| Result->error("Could not infer all types in pattern result!"); |
| |
| if (Result->getNumTrees() != 1) |
| Result->error("Cannot handle instructions producing instructions " |
| "with temporaries yet!"); |
| |
| std::string Reason; |
| if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this)) |
| Pattern->error("Pattern can never match: " + Reason); |
| |
| PatternsToMatch.push_back(std::make_pair(Pattern->getOnlyTree(), |
| Result->getOnlyTree())); |
| } |
| } |
| |
| /// CombineChildVariants - Given a bunch of permutations of each child of the |
| /// 'operator' node, put them together in all possible ways. |
| static void CombineChildVariants(TreePatternNode *Orig, |
| const std::vector<std::vector<TreePatternNode*> > &ChildVariants, |
| std::vector<TreePatternNode*> &OutVariants, |
| DAGISelEmitter &ISE) { |
| // Make sure that each operand has at least one variant to choose from. |
| for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) |
| if (ChildVariants[i].empty()) |
| return; |
| |
| // The end result is an all-pairs construction of the resultant pattern. |
| std::vector<unsigned> Idxs; |
| Idxs.resize(ChildVariants.size()); |
| bool NotDone = true; |
| while (NotDone) { |
| // Create the variant and add it to the output list. |
| std::vector<TreePatternNode*> NewChildren; |
| for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) |
| NewChildren.push_back(ChildVariants[i][Idxs[i]]); |
| TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); |
| |
| // Copy over properties. |
| R->setName(Orig->getName()); |
| R->setPredicateFn(Orig->getPredicateFn()); |
| R->setTransformFn(Orig->getTransformFn()); |
| R->setType(Orig->getExtType()); |
| |
| // If this pattern cannot every match, do not include it as a variant. |
| std::string ErrString; |
| if (!R->canPatternMatch(ErrString, ISE)) { |
| delete R; |
| } else { |
| bool AlreadyExists = false; |
| |
| // Scan to see if this pattern has already been emitted. We can get |
| // duplication due to things like commuting: |
| // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) |
| // which are the same pattern. Ignore the dups. |
| for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) |
| if (R->isIsomorphicTo(OutVariants[i])) { |
| AlreadyExists = true; |
| break; |
| } |
| |
| if (AlreadyExists) |
| delete R; |
| else |
| OutVariants.push_back(R); |
| } |
| |
| // Increment indices to the next permutation. |
| NotDone = false; |
| // Look for something we can increment without causing a wrap-around. |
| for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) { |
| if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) { |
| NotDone = true; // Found something to increment. |
| break; |
| } |
| Idxs[IdxsIdx] = 0; |
| } |
| } |
| } |
| |
| /// CombineChildVariants - A helper function for binary operators. |
| /// |
| static void CombineChildVariants(TreePatternNode *Orig, |
| const std::vector<TreePatternNode*> &LHS, |
| const std::vector<TreePatternNode*> &RHS, |
| std::vector<TreePatternNode*> &OutVariants, |
| DAGISelEmitter &ISE) { |
| std::vector<std::vector<TreePatternNode*> > ChildVariants; |
| ChildVariants.push_back(LHS); |
| ChildVariants.push_back(RHS); |
| CombineChildVariants(Orig, ChildVariants, OutVariants, ISE); |
| } |
| |
| |
| static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, |
| std::vector<TreePatternNode *> &Children) { |
| assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); |
| Record *Operator = N->getOperator(); |
| |
| // Only permit raw nodes. |
| if (!N->getName().empty() || !N->getPredicateFn().empty() || |
| N->getTransformFn()) { |
| Children.push_back(N); |
| return; |
| } |
| |
| if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) |
| Children.push_back(N->getChild(0)); |
| else |
| GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); |
| |
| if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) |
| Children.push_back(N->getChild(1)); |
| else |
| GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); |
| } |
| |
| /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of |
| /// the (potentially recursive) pattern by using algebraic laws. |
| /// |
| static void GenerateVariantsOf(TreePatternNode *N, |
| std::vector<TreePatternNode*> &OutVariants, |
| DAGISelEmitter &ISE) { |
| // We cannot permute leaves. |
| if (N->isLeaf()) { |
| OutVariants.push_back(N); |
| return; |
| } |
| |
| // Look up interesting info about the node. |
| const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator()); |
| |
| // If this node is associative, reassociate. |
| if (NodeInfo.hasProperty(SDNodeInfo::SDNPAssociative)) { |
| // Reassociate by pulling together all of the linked operators |
| std::vector<TreePatternNode*> MaximalChildren; |
| GatherChildrenOfAssociativeOpcode(N, MaximalChildren); |
| |
| // Only handle child sizes of 3. Otherwise we'll end up trying too many |
| // permutations. |
| if (MaximalChildren.size() == 3) { |
| // Find the variants of all of our maximal children. |
| std::vector<TreePatternNode*> AVariants, BVariants, CVariants; |
| GenerateVariantsOf(MaximalChildren[0], AVariants, ISE); |
| GenerateVariantsOf(MaximalChildren[1], BVariants, ISE); |
| GenerateVariantsOf(MaximalChildren[2], CVariants, ISE); |
| |
| // There are only two ways we can permute the tree: |
| // (A op B) op C and A op (B op C) |
| // Within these forms, we can also permute A/B/C. |
| |
| // Generate legal pair permutations of A/B/C. |
| std::vector<TreePatternNode*> ABVariants; |
| std::vector<TreePatternNode*> BAVariants; |
| std::vector<TreePatternNode*> ACVariants; |
| std::vector<TreePatternNode*> CAVariants; |
| std::vector<TreePatternNode*> BCVariants; |
| std::vector<TreePatternNode*> CBVariants; |
| CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE); |
| CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE); |
| CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE); |
| CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE); |
| CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE); |
| CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE); |
| |
| // Combine those into the result: (x op x) op x |
| CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE); |
| CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE); |
| CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE); |
| CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE); |
| CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE); |
| CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE); |
| |
| // Combine those into the result: x op (x op x) |
| CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE); |
| CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE); |
| CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE); |
| CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE); |
| CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE); |
| CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE); |
| return; |
| } |
| } |
| |
| // Compute permutations of all children. |
| std::vector<std::vector<TreePatternNode*> > ChildVariants; |
| ChildVariants.resize(N->getNumChildren()); |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE); |
| |
| // Build all permutations based on how the children were formed. |
| CombineChildVariants(N, ChildVariants, OutVariants, ISE); |
| |
| // If this node is commutative, consider the commuted order. |
| if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) { |
| assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!"); |
| // Consider the commuted order. |
| CombineChildVariants(N, ChildVariants[1], ChildVariants[0], |
| OutVariants, ISE); |
| } |
| } |
| |
| |
| // GenerateVariants - Generate variants. For example, commutative patterns can |
| // match multiple ways. Add them to PatternsToMatch as well. |
| void DAGISelEmitter::GenerateVariants() { |
| |
| DEBUG(std::cerr << "Generating instruction variants.\n"); |
| |
| // Loop over all of the patterns we've collected, checking to see if we can |
| // generate variants of the instruction, through the exploitation of |
| // identities. This permits the target to provide agressive matching without |
| // the .td file having to contain tons of variants of instructions. |
| // |
| // Note that this loop adds new patterns to the PatternsToMatch list, but we |
| // intentionally do not reconsider these. Any variants of added patterns have |
| // already been added. |
| // |
| for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { |
| std::vector<TreePatternNode*> Variants; |
| GenerateVariantsOf(PatternsToMatch[i].first, Variants, *this); |
| |
| assert(!Variants.empty() && "Must create at least original variant!"); |
| Variants.erase(Variants.begin()); // Remove the original pattern. |
| |
| if (Variants.empty()) // No variants for this pattern. |
| continue; |
| |
| DEBUG(std::cerr << "FOUND VARIANTS OF: "; |
| PatternsToMatch[i].first->dump(); |
| std::cerr << "\n"); |
| |
| for (unsigned v = 0, e = Variants.size(); v != e; ++v) { |
| TreePatternNode *Variant = Variants[v]; |
| |
| DEBUG(std::cerr << " VAR#" << v << ": "; |
| Variant->dump(); |
| std::cerr << "\n"); |
| |
| // Scan to see if an instruction or explicit pattern already matches this. |
| bool AlreadyExists = false; |
| for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { |
| // Check to see if this variant already exists. |
| if (Variant->isIsomorphicTo(PatternsToMatch[p].first)) { |
| DEBUG(std::cerr << " *** ALREADY EXISTS, ignoring variant.\n"); |
| AlreadyExists = true; |
| break; |
| } |
| } |
| // If we already have it, ignore the variant. |
| if (AlreadyExists) continue; |
| |
| // Otherwise, add it to the list of patterns we have. |
| PatternsToMatch.push_back(std::make_pair(Variant, |
| PatternsToMatch[i].second)); |
| } |
| |
| DEBUG(std::cerr << "\n"); |
| } |
| } |
| |
| |
| /// getPatternSize - Return the 'size' of this pattern. We want to match large |
| /// patterns before small ones. This is used to determine the size of a |
| /// pattern. |
| static unsigned getPatternSize(TreePatternNode *P) { |
| assert(isExtIntegerVT(P->getExtType()) || |
| isExtFloatingPointVT(P->getExtType()) && |
| "Not a valid pattern node to size!"); |
| unsigned Size = 1; // The node itself. |
| |
| // Count children in the count if they are also nodes. |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = P->getChild(i); |
| if (!Child->isLeaf() && Child->getExtType() != MVT::Other) |
| Size += getPatternSize(Child); |
| else if (Child->isLeaf() && dynamic_cast<IntInit*>(Child->getLeafValue())) { |
| ++Size; // Matches a ConstantSDNode. |
| } |
| } |
| |
| return Size; |
| } |
| |
| /// getResultPatternCost - Compute the number of instructions for this pattern. |
| /// This is a temporary hack. We should really include the instruction |
| /// latencies in this calculation. |
| static unsigned getResultPatternCost(TreePatternNode *P) { |
| if (P->isLeaf()) return 0; |
| |
| unsigned Cost = P->getOperator()->isSubClassOf("Instruction"); |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) |
| Cost += getResultPatternCost(P->getChild(i)); |
| return Cost; |
| } |
| |
| // PatternSortingPredicate - return true if we prefer to match LHS before RHS. |
| // In particular, we want to match maximal patterns first and lowest cost within |
| // a particular complexity first. |
| struct PatternSortingPredicate { |
| bool operator()(DAGISelEmitter::PatternToMatch *LHS, |
| DAGISelEmitter::PatternToMatch *RHS) { |
| unsigned LHSSize = getPatternSize(LHS->first); |
| unsigned RHSSize = getPatternSize(RHS->first); |
| if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost |
| if (LHSSize < RHSSize) return false; |
| |
| // If the patterns have equal complexity, compare generated instruction cost |
| return getResultPatternCost(LHS->second) <getResultPatternCost(RHS->second); |
| } |
| }; |
| |
| /// EmitMatchForPattern - Emit a matcher for N, going to the label for PatternNo |
| /// if the match fails. At this point, we already know that the opcode for N |
| /// matches, and the SDNode for the result has the RootName specified name. |
| void DAGISelEmitter::EmitMatchForPattern(TreePatternNode *N, |
| const std::string &RootName, |
| std::map<std::string,std::string> &VarMap, |
| unsigned PatternNo, std::ostream &OS) { |
| assert(!N->isLeaf() && "Cannot match against a leaf!"); |
| |
| // If this node has a name associated with it, capture it in VarMap. If |
| // we already saw this in the pattern, emit code to verify dagness. |
| if (!N->getName().empty()) { |
| std::string &VarMapEntry = VarMap[N->getName()]; |
| if (VarMapEntry.empty()) { |
| VarMapEntry = RootName; |
| } else { |
| // If we get here, this is a second reference to a specific name. Since |
| // we already have checked that the first reference is valid, we don't |
| // have to recursively match it, just check that it's the same as the |
| // previously named thing. |
| OS << " if (" << VarMapEntry << " != " << RootName |
| << ") goto P" << PatternNo << "Fail;\n"; |
| return; |
| } |
| } |
| |
| // Emit code to load the child nodes and match their contents recursively. |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| OS << " SDOperand " << RootName << i <<" = " << RootName |
| << ".getOperand(" << i << ");\n"; |
| TreePatternNode *Child = N->getChild(i); |
| |
| if (!Child->isLeaf()) { |
| // If it's not a leaf, recursively match. |
| const SDNodeInfo &CInfo = getSDNodeInfo(Child->getOperator()); |
| OS << " if (" << RootName << i << ".getOpcode() != " |
| << CInfo.getEnumName() << ") goto P" << PatternNo << "Fail;\n"; |
| EmitMatchForPattern(Child, RootName + utostr(i), VarMap, PatternNo, OS); |
| } else { |
| // If this child has a name associated with it, capture it in VarMap. If |
| // we already saw this in the pattern, emit code to verify dagness. |
| if (!Child->getName().empty()) { |
| std::string &VarMapEntry = VarMap[Child->getName()]; |
| if (VarMapEntry.empty()) { |
| VarMapEntry = RootName + utostr(i); |
| } else { |
| // If we get here, this is a second reference to a specific name. Since |
| // we already have checked that the first reference is valid, we don't |
| // have to recursively match it, just check that it's the same as the |
| // previously named thing. |
| OS << " if (" << VarMapEntry << " != " << RootName << i |
| << ") goto P" << PatternNo << "Fail;\n"; |
| continue; |
| } |
| } |
| |
| // Handle leaves of various types. |
| if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { |
| Record *LeafRec = DI->getDef(); |
| if (LeafRec->isSubClassOf("RegisterClass")) { |
| // Handle register references. Nothing to do here. |
| } else if (LeafRec->isSubClassOf("ValueType")) { |
| // Make sure this is the specified value type. |
| OS << " if (cast<VTSDNode>(" << RootName << i << ")->getVT() != " |
| << "MVT::" << LeafRec->getName() << ") goto P" << PatternNo |
| << "Fail;\n"; |
| } else { |
| Child->dump(); |
| assert(0 && "Unknown leaf type!"); |
| } |
| } else if (IntInit *II = dynamic_cast<IntInit*>(Child->getLeafValue())) { |
| OS << " if (!isa<ConstantSDNode>(" << RootName << i << ") ||\n" |
| << " cast<ConstantSDNode>(" << RootName << i |
| << ")->getValue() != " << II->getValue() << ")\n" |
| << " goto P" << PatternNo << "Fail;\n"; |
| } else { |
| Child->dump(); |
| assert(0 && "Unknown leaf type!"); |
| } |
| } |
| } |
| |
| // If there is a node predicate for this, emit the call. |
| if (!N->getPredicateFn().empty()) |
| OS << " if (!" << N->getPredicateFn() << "(" << RootName |
| << ".Val)) goto P" << PatternNo << "Fail;\n"; |
| } |
| |
| /// CodeGenPatternResult - Emit the action for a pattern. Now that it has |
| /// matched, we actually have to build a DAG! |
| unsigned DAGISelEmitter:: |
| CodeGenPatternResult(TreePatternNode *N, unsigned &Ctr, |
| std::map<std::string,std::string> &VariableMap, |
| std::ostream &OS, bool isRoot) { |
| // This is something selected from the pattern we matched. |
| if (!N->getName().empty()) { |
| assert(!isRoot && "Root of pattern cannot be a leaf!"); |
| std::string &Val = VariableMap[N->getName()]; |
| assert(!Val.empty() && |
| "Variable referenced but not defined and not caught earlier!"); |
| if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') { |
| // Already selected this operand, just return the tmpval. |
| return atoi(Val.c_str()+3); |
| } |
| |
| unsigned ResNo = Ctr++; |
| if (!N->isLeaf() && N->getOperator()->getName() == "imm") { |
| switch (N->getType()) { |
| default: assert(0 && "Unknown type for constant node!"); |
| case MVT::i1: OS << " bool Tmp"; break; |
| case MVT::i8: OS << " unsigned char Tmp"; break; |
| case MVT::i16: OS << " unsigned short Tmp"; break; |
| case MVT::i32: OS << " unsigned Tmp"; break; |
| case MVT::i64: OS << " uint64_t Tmp"; break; |
| } |
| OS << ResNo << "C = cast<ConstantSDNode>(" << Val << ")->getValue();\n"; |
| OS << " SDOperand Tmp" << ResNo << " = CurDAG->getTargetConstant(Tmp" |
| << ResNo << "C, MVT::" << getEnumName(N->getType()) << ");\n"; |
| } else { |
| OS << " SDOperand Tmp" << ResNo << " = Select(" << Val << ");\n"; |
| } |
| // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this |
| // value if used multiple times by this pattern result. |
| Val = "Tmp"+utostr(ResNo); |
| return ResNo; |
| } |
| |
| if (N->isLeaf()) { |
| // If this is an explicit register reference, handle it. |
| if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { |
| unsigned ResNo = Ctr++; |
| if (DI->getDef()->isSubClassOf("Register")) { |
| OS << " SDOperand Tmp" << ResNo << " = CurDAG->getRegister(" |
| << getQualifiedName(DI->getDef()) << ", MVT::" |
| << getEnumName(N->getType()) |
| << ");\n"; |
| return ResNo; |
| } |
| } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { |
| unsigned ResNo = Ctr++; |
| OS << " SDOperand Tmp" << ResNo << " = CurDAG->getTargetConstant(" |
| << II->getValue() << ", MVT::" |
| << getEnumName(N->getType()) |
| << ");\n"; |
| return ResNo; |
| } |
| |
| N->dump(); |
| assert(0 && "Unknown leaf type!"); |
| return ~0U; |
| } |
| |
| Record *Op = N->getOperator(); |
| if (Op->isSubClassOf("Instruction")) { |
| // Emit all of the operands. |
| std::vector<unsigned> Ops; |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| Ops.push_back(CodeGenPatternResult(N->getChild(i), Ctr, VariableMap, OS)); |
| |
| CodeGenInstruction &II = Target.getInstruction(Op->getName()); |
| unsigned ResNo = Ctr++; |
| |
| if (!isRoot) { |
| OS << " SDOperand Tmp" << ResNo << " = CurDAG->getTargetNode(" |
| << II.Namespace << "::" << II.TheDef->getName() << ", MVT::" |
| << getEnumName(N->getType()); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| OS << ", Tmp" << Ops[i]; |
| OS << ");\n"; |
| } else { |
| // If this instruction is the root, and if there is only one use of it, |
| // use SelectNodeTo instead of getTargetNode to avoid an allocation. |
| OS << " if (N.Val->hasOneUse()) {\n"; |
| OS << " CurDAG->SelectNodeTo(N.Val, " |
| << II.Namespace << "::" << II.TheDef->getName() << ", MVT::" |
| << getEnumName(N->getType()); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| OS << ", Tmp" << Ops[i]; |
| OS << ");\n"; |
| OS << " return N;\n"; |
| OS << " } else {\n"; |
| OS << " return CodeGenMap[N] = CurDAG->getTargetNode(" |
| << II.Namespace << "::" << II.TheDef->getName() << ", MVT::" |
| << getEnumName(N->getType()); |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| OS << ", Tmp" << Ops[i]; |
| OS << ");\n"; |
| OS << " }\n"; |
| } |
| return ResNo; |
| } else if (Op->isSubClassOf("SDNodeXForm")) { |
| assert(N->getNumChildren() == 1 && "node xform should have one child!"); |
| unsigned OpVal = CodeGenPatternResult(N->getChild(0), Ctr, VariableMap, OS); |
| |
| unsigned ResNo = Ctr++; |
| OS << " SDOperand Tmp" << ResNo << " = Transform_" << Op->getName() |
| << "(Tmp" << OpVal << ".Val);\n"; |
| if (isRoot) { |
| OS << " CodeGenMap[N] = Tmp" << ResNo << ";\n"; |
| OS << " return Tmp" << ResNo << ";\n"; |
| } |
| return ResNo; |
| } else { |
| N->dump(); |
| assert(0 && "Unknown node in result pattern!"); |
| return ~0U; |
| } |
| } |
| |
| /// RemoveAllTypes - A quick recursive walk over a pattern which removes all |
| /// type information from it. |
| static void RemoveAllTypes(TreePatternNode *N) { |
| N->setType(MVT::isUnknown); |
| if (!N->isLeaf()) |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| RemoveAllTypes(N->getChild(i)); |
| } |
| |
| /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' and |
| /// add it to the tree. 'Pat' and 'Other' are isomorphic trees except that |
| /// 'Pat' may be missing types. If we find an unresolved type to add a check |
| /// for, this returns true otherwise false if Pat has all types. |
| static bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other, |
| const std::string &Prefix, unsigned PatternNo, |
| std::ostream &OS) { |
| // Did we find one? |
| if (!Pat->hasTypeSet()) { |
| // Move a type over from 'other' to 'pat'. |
| Pat->setType(Other->getType()); |
| OS << " if (" << Prefix << ".getValueType() != MVT::" |
| << getName(Pat->getType()) << ") goto P" << PatternNo << "Fail;\n"; |
| return true; |
| } else if (Pat->isLeaf()) { |
| return false; |
| } |
| |
| for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) |
| if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), |
| Prefix + utostr(i), PatternNo, OS)) |
| return true; |
| return false; |
| } |
| |
| /// EmitCodeForPattern - Given a pattern to match, emit code to the specified |
| /// stream to match the pattern, and generate the code for the match if it |
| /// succeeds. |
| void DAGISelEmitter::EmitCodeForPattern(PatternToMatch &Pattern, |
| std::ostream &OS) { |
| static unsigned PatternCount = 0; |
| unsigned PatternNo = PatternCount++; |
| OS << " { // Pattern #" << PatternNo << ": "; |
| Pattern.first->print(OS); |
| OS << "\n // Emits: "; |
| Pattern.second->print(OS); |
| OS << "\n"; |
| OS << " // Pattern complexity = " << getPatternSize(Pattern.first) |
| << " cost = " << getResultPatternCost(Pattern.second) << "\n"; |
| |
| // Emit the matcher, capturing named arguments in VariableMap. |
| std::map<std::string,std::string> VariableMap; |
| EmitMatchForPattern(Pattern.first, "N", VariableMap, PatternNo, OS); |
| |
| // TP - Get *SOME* tree pattern, we don't care which. |
| TreePattern &TP = *PatternFragments.begin()->second; |
| |
| // At this point, we know that we structurally match the pattern, but the |
| // types of the nodes may not match. Figure out the fewest number of type |
| // comparisons we need to emit. For example, if there is only one integer |
| // type supported by a target, there should be no type comparisons at all for |
| // integer patterns! |
| // |
| // To figure out the fewest number of type checks needed, clone the pattern, |
| // remove the types, then perform type inference on the pattern as a whole. |
| // If there are unresolved types, emit an explicit check for those types, |
| // apply the type to the tree, then rerun type inference. Iterate until all |
| // types are resolved. |
| // |
| TreePatternNode *Pat = Pattern.first->clone(); |
| RemoveAllTypes(Pat); |
| |
| do { |
| // Resolve/propagate as many types as possible. |
| try { |
| bool MadeChange = true; |
| while (MadeChange) |
| MadeChange = Pat->ApplyTypeConstraints(TP,true/*Ignore reg constraints*/); |
| } catch (...) { |
| assert(0 && "Error: could not find consistent types for something we" |
| " already decided was ok!"); |
| abort(); |
| } |
| |
| // Insert a check for an unresolved type and add it to the tree. If we find |
| // an unresolved type to add a check for, this returns true and we iterate, |
| // otherwise we are done. |
| } while (InsertOneTypeCheck(Pat, Pattern.first, "N", PatternNo, OS)); |
| |
| unsigned TmpNo = 0; |
| CodeGenPatternResult(Pattern.second, TmpNo, |
| VariableMap, OS, true /*the root*/); |
| delete Pat; |
| |
| OS << " }\n P" << PatternNo << "Fail:\n"; |
| } |
| |
| |
| namespace { |
| /// CompareByRecordName - An ordering predicate that implements less-than by |
| /// comparing the names records. |
| struct CompareByRecordName { |
| bool operator()(const Record *LHS, const Record *RHS) const { |
| // Sort by name first. |
| if (LHS->getName() < RHS->getName()) return true; |
| // If both names are equal, sort by pointer. |
| return LHS->getName() == RHS->getName() && LHS < RHS; |
| } |
| }; |
| } |
| |
| void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { |
| std::string InstNS = Target.inst_begin()->second.Namespace; |
| if (!InstNS.empty()) InstNS += "::"; |
| |
| // Emit boilerplate. |
| OS << "// The main instruction selector code.\n" |
| << "SDOperand SelectCode(SDOperand N) {\n" |
| << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n" |
| << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS |
| << "INSTRUCTION_LIST_END))\n" |
| << " return N; // Already selected.\n\n" |
| << " if (!N.Val->hasOneUse()) {\n" |
| << " std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(N);\n" |
| << " if (CGMI != CodeGenMap.end()) return CGMI->second;\n" |
| << " }\n" |
| << " switch (N.getOpcode()) {\n" |
| << " default: break;\n" |
| << " case ISD::EntryToken: // These leaves remain the same.\n" |
| << " return N;\n" |
| << " case ISD::AssertSext:\n" |
| << " case ISD::AssertZext: {\n" |
| << " SDOperand Tmp0 = Select(N.getOperand(0));\n" |
| << " if (!N.Val->hasOneUse()) CodeGenMap[N] = Tmp0;\n" |
| << " return Tmp0;\n" |
| << " }\n" |
| << " case ISD::TokenFactor:\n" |
| << " if (N.getNumOperands() == 2) {\n" |
| << " SDOperand Op0 = Select(N.getOperand(0));\n" |
| << " SDOperand Op1 = Select(N.getOperand(1));\n" |
| << " return CodeGenMap[N] =\n" |
| << " CurDAG->getNode(ISD::TokenFactor, MVT::Other, Op0, Op1);\n" |
| << " } else {\n" |
| << " std::vector<SDOperand> Ops;\n" |
| << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n" |
| << " Ops.push_back(Select(N.getOperand(i)));\n" |
| << " return CodeGenMap[N] = \n" |
| << " CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops);\n" |
| << " }\n" |
| << " case ISD::CopyFromReg: {\n" |
| << " SDOperand Chain = Select(N.getOperand(0));\n" |
| << " if (Chain == N.getOperand(0)) return N; // No change\n" |
| << " SDOperand New = CurDAG->getCopyFromReg(Chain,\n" |
| << " cast<RegisterSDNode>(N.getOperand(1))->getReg(),\n" |
| << " N.Val->getValueType(0));\n" |
| << " return New.getValue(N.ResNo);\n" |
| << " }\n" |
| << " case ISD::CopyToReg: {\n" |
| << " SDOperand Chain = Select(N.getOperand(0));\n" |
| << " SDOperand Reg = N.getOperand(1);\n" |
| << " SDOperand Val = Select(N.getOperand(2));\n" |
| << " return CodeGenMap[N] = \n" |
| << " CurDAG->getNode(ISD::CopyToReg, MVT::Other,\n" |
| << " Chain, Reg, Val);\n" |
| << " }\n"; |
| |
| // Group the patterns by their top-level opcodes. |
| std::map<Record*, std::vector<PatternToMatch*>, |
| CompareByRecordName> PatternsByOpcode; |
| for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) |
| PatternsByOpcode[PatternsToMatch[i].first->getOperator()] |
| .push_back(&PatternsToMatch[i]); |
| |
| // Loop over all of the case statements. |
| for (std::map<Record*, std::vector<PatternToMatch*>, |
| CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(), |
| E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { |
| const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first); |
| std::vector<PatternToMatch*> &Patterns = PBOI->second; |
| |
| OS << " case " << OpcodeInfo.getEnumName() << ":\n"; |
| |
| // We want to emit all of the matching code now. However, we want to emit |
| // the matches in order of minimal cost. Sort the patterns so the least |
| // cost one is at the start. |
| std::stable_sort(Patterns.begin(), Patterns.end(), |
| PatternSortingPredicate()); |
| |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) |
| EmitCodeForPattern(*Patterns[i], OS); |
| OS << " break;\n\n"; |
| } |
| |
| |
| OS << " } // end of big switch.\n\n" |
| << " std::cerr << \"Cannot yet select: \";\n" |
| << " N.Val->dump();\n" |
| << " std::cerr << '\\n';\n" |
| << " abort();\n" |
| << "}\n"; |
| } |
| |
| void DAGISelEmitter::run(std::ostream &OS) { |
| EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() + |
| " target", OS); |
| |
| OS << "// *** NOTE: This file is #included into the middle of the target\n" |
| << "// *** instruction selector class. These functions are really " |
| << "methods.\n\n"; |
| |
| OS << "// Instance var to keep track of multiply used nodes that have \n" |
| << "// already been selected.\n" |
| << "std::map<SDOperand, SDOperand> CodeGenMap;\n"; |
| |
| ParseNodeInfo(); |
| ParseNodeTransforms(OS); |
| ParsePatternFragments(OS); |
| ParseInstructions(); |
| ParsePatterns(); |
| |
| // Generate variants. For example, commutative patterns can match |
| // multiple ways. Add them to PatternsToMatch as well. |
| GenerateVariants(); |
| |
| |
| DEBUG(std::cerr << "\n\nALL PATTERNS TO MATCH:\n\n"; |
| for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { |
| std::cerr << "PATTERN: "; PatternsToMatch[i].first->dump(); |
| std::cerr << "\nRESULT: ";PatternsToMatch[i].second->dump(); |
| std::cerr << "\n"; |
| }); |
| |
| // At this point, we have full information about the 'Patterns' we need to |
| // parse, both implicitly from instructions as well as from explicit pattern |
| // definitions. Emit the resultant instruction selector. |
| EmitInstructionSelector(OS); |
| |
| for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), |
| E = PatternFragments.end(); I != E; ++I) |
| delete I->second; |
| PatternFragments.clear(); |
| |
| Instructions.clear(); |
| } |