| //===- MC-X86Specific.cpp - X86-Specific code for MC ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements X86-specific parsing, encoding and decoding stuff for |
| // MC. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AsmParser.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/Support/SourceMgr.h" |
| using namespace llvm; |
| |
| /// X86Operand - Instances of this class represent one X86 machine instruction. |
| struct AsmParser::X86Operand { |
| enum { |
| Register, |
| Immediate, |
| Memory |
| } Kind; |
| |
| union { |
| struct { |
| unsigned RegNo; |
| } Reg; |
| |
| struct { |
| MCValue Val; |
| } Imm; |
| |
| struct { |
| unsigned SegReg; |
| MCValue Disp; |
| unsigned BaseReg; |
| unsigned IndexReg; |
| unsigned Scale; |
| } Mem; |
| }; |
| |
| unsigned getReg() const { |
| assert(Kind == Register && "Invalid access!"); |
| return Reg.RegNo; |
| } |
| |
| static X86Operand CreateReg(unsigned RegNo) { |
| X86Operand Res; |
| Res.Kind = Register; |
| Res.Reg.RegNo = RegNo; |
| return Res; |
| } |
| static X86Operand CreateImm(MCValue Val) { |
| X86Operand Res; |
| Res.Kind = Immediate; |
| Res.Imm.Val = Val; |
| return Res; |
| } |
| static X86Operand CreateMem(unsigned SegReg, MCValue Disp, unsigned BaseReg, |
| unsigned IndexReg, unsigned Scale) { |
| // If there is no index register, we should never have a scale, and we |
| // should always have a scale (in {1,2,4,8}) if we do. |
| assert(((Scale == 0 && !IndexReg) || |
| (IndexReg && (Scale == 1 || Scale == 2 || |
| Scale == 4 || Scale == 8))) && |
| "Invalid scale!"); |
| X86Operand Res; |
| Res.Kind = Memory; |
| Res.Mem.SegReg = SegReg; |
| Res.Mem.Disp = Disp; |
| Res.Mem.BaseReg = BaseReg; |
| Res.Mem.IndexReg = IndexReg; |
| Res.Mem.Scale = Scale; |
| return Res; |
| } |
| }; |
| |
| bool AsmParser::ParseX86Register(X86Operand &Op) { |
| assert(Lexer.getKind() == asmtok::Register && "Invalid token kind!"); |
| |
| // FIXME: Decode register number. |
| Op = X86Operand::CreateReg(123); |
| Lexer.Lex(); // Eat register token. |
| |
| return false; |
| } |
| |
| bool AsmParser::ParseX86Operand(X86Operand &Op) { |
| switch (Lexer.getKind()) { |
| default: |
| return ParseX86MemOperand(Op); |
| case asmtok::Register: |
| // FIXME: if a segment register, this could either be just the seg reg, or |
| // the start of a memory operand. |
| return ParseX86Register(Op); |
| case asmtok::Dollar: { |
| // $42 -> immediate. |
| Lexer.Lex(); |
| MCValue Val; |
| if (ParseRelocatableExpression(Val)) |
| return true; |
| Op = X86Operand::CreateImm(Val); |
| return false; |
| } |
| case asmtok::Star: { |
| Lexer.Lex(); // Eat the star. |
| |
| if (Lexer.is(asmtok::Register)) { |
| if (ParseX86Register(Op)) |
| return true; |
| } else if (ParseX86MemOperand(Op)) |
| return true; |
| |
| // FIXME: Note the '*' in the operand for use by the matcher. |
| return false; |
| } |
| } |
| } |
| |
| /// ParseX86MemOperand: segment: disp(basereg, indexreg, scale) |
| bool AsmParser::ParseX86MemOperand(X86Operand &Op) { |
| // FIXME: If SegReg ':' (e.g. %gs:), eat and remember. |
| unsigned SegReg = 0; |
| |
| // We have to disambiguate a parenthesized expression "(4+5)" from the start |
| // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The |
| // only way to do this without lookahead is to eat the ( and see what is after |
| // it. |
| MCValue Disp = MCValue::get(0, 0, 0); |
| if (Lexer.isNot(asmtok::LParen)) { |
| if (ParseRelocatableExpression(Disp)) return true; |
| |
| // After parsing the base expression we could either have a parenthesized |
| // memory address or not. If not, return now. If so, eat the (. |
| if (Lexer.isNot(asmtok::LParen)) { |
| Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 0); |
| return false; |
| } |
| |
| // Eat the '('. |
| Lexer.Lex(); |
| } else { |
| // Okay, we have a '('. We don't know if this is an expression or not, but |
| // so we have to eat the ( to see beyond it. |
| Lexer.Lex(); // Eat the '('. |
| |
| if (Lexer.is(asmtok::Register) || Lexer.is(asmtok::Comma)) { |
| // Nothing to do here, fall into the code below with the '(' part of the |
| // memory operand consumed. |
| } else { |
| // It must be an parenthesized expression, parse it now. |
| if (ParseParenRelocatableExpression(Disp)) |
| return true; |
| |
| // After parsing the base expression we could either have a parenthesized |
| // memory address or not. If not, return now. If so, eat the (. |
| if (Lexer.isNot(asmtok::LParen)) { |
| Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 0); |
| return false; |
| } |
| |
| // Eat the '('. |
| Lexer.Lex(); |
| } |
| } |
| |
| // If we reached here, then we just ate the ( of the memory operand. Process |
| // the rest of the memory operand. |
| unsigned BaseReg = 0, IndexReg = 0, Scale = 0; |
| |
| if (Lexer.is(asmtok::Register)) { |
| if (ParseX86Register(Op)) |
| return true; |
| BaseReg = Op.getReg(); |
| } |
| |
| if (Lexer.is(asmtok::Comma)) { |
| Lexer.Lex(); // Eat the comma. |
| |
| // Following the comma we should have either an index register, or a scale |
| // value. We don't support the later form, but we want to parse it |
| // correctly. |
| // |
| // Not that even though it would be completely consistent to support syntax |
| // like "1(%eax,,1)", the assembler doesn't. |
| if (Lexer.is(asmtok::Register)) { |
| if (ParseX86Register(Op)) |
| return true; |
| IndexReg = Op.getReg(); |
| Scale = 1; // If not specified, the scale defaults to 1. |
| |
| if (Lexer.isNot(asmtok::RParen)) { |
| // Parse the scale amount: |
| // ::= ',' [scale-expression] |
| if (Lexer.isNot(asmtok::Comma)) |
| return true; |
| Lexer.Lex(); // Eat the comma. |
| |
| if (Lexer.isNot(asmtok::RParen)) { |
| int64_t ScaleVal; |
| if (ParseAbsoluteExpression(ScaleVal)) |
| return true; |
| |
| // Validate the scale amount. |
| if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8) |
| return TokError("scale factor in address must be 1, 2, 4 or 8"); |
| Scale = (unsigned)ScaleVal; |
| } |
| } |
| } else if (Lexer.isNot(asmtok::RParen)) { |
| // Otherwise we have the unsupported form of a scale amount without an |
| // index. |
| SMLoc Loc = Lexer.getLoc(); |
| |
| int64_t Value; |
| if (ParseAbsoluteExpression(Value)) |
| return true; |
| |
| return Error(Loc, "cannot have scale factor without index register"); |
| } |
| } |
| |
| // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. |
| if (Lexer.isNot(asmtok::RParen)) |
| return TokError("unexpected token in memory operand"); |
| Lexer.Lex(); // Eat the ')'. |
| |
| Op = X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale); |
| return false; |
| } |
| |
| /// MatchX86Inst - Convert a parsed instruction name and operand list into a |
| /// concrete instruction. |
| static bool MatchX86Inst(const char *Name, |
| llvm::SmallVector<AsmParser::X86Operand, 3> &Operands, |
| MCInst &Inst) { |
| return false; |
| } |
| |
| /// ParseX86InstOperands - Parse the operands of an X86 instruction and return |
| /// them as the operands of an MCInst. |
| bool AsmParser::ParseX86InstOperands(const char *InstName, MCInst &Inst) { |
| llvm::SmallVector<X86Operand, 3> Operands; |
| |
| if (Lexer.isNot(asmtok::EndOfStatement)) { |
| // Read the first operand. |
| Operands.push_back(X86Operand()); |
| if (ParseX86Operand(Operands.back())) |
| return true; |
| |
| while (Lexer.is(asmtok::Comma)) { |
| Lexer.Lex(); // Eat the comma. |
| |
| // Parse and remember the operand. |
| Operands.push_back(X86Operand()); |
| if (ParseX86Operand(Operands.back())) |
| return true; |
| } |
| } |
| |
| return MatchX86Inst(InstName, Operands, Inst); |
| } |