| //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that X86 uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "x86-isel" |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86ISelLowering.h" |
| #include "X86MCTargetExpr.h" |
| #include "X86TargetMachine.h" |
| #include "X86TargetObjectFile.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/GlobalAlias.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/VectorExtras.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| |
| static cl::opt<bool> |
| DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX")); |
| |
| // Disable16Bit - 16-bit operations typically have a larger encoding than |
| // corresponding 32-bit instructions, and 16-bit code is slow on some |
| // processors. This is an experimental flag to disable 16-bit operations |
| // (which forces them to be Legalized to 32-bit operations). |
| static cl::opt<bool> |
| Disable16Bit("disable-16bit", cl::Hidden, |
| cl::desc("Disable use of 16-bit instructions")); |
| |
| // Forward declarations. |
| static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, |
| SDValue V2); |
| |
| static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) { |
| switch (TM.getSubtarget<X86Subtarget>().TargetType) { |
| default: llvm_unreachable("unknown subtarget type"); |
| case X86Subtarget::isDarwin: |
| if (TM.getSubtarget<X86Subtarget>().is64Bit()) |
| return new X8664_MachoTargetObjectFile(); |
| return new X8632_MachoTargetObjectFile(); |
| case X86Subtarget::isELF: |
| return new TargetLoweringObjectFileELF(); |
| case X86Subtarget::isMingw: |
| case X86Subtarget::isCygwin: |
| case X86Subtarget::isWindows: |
| return new TargetLoweringObjectFileCOFF(); |
| } |
| |
| } |
| |
| X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) |
| : TargetLowering(TM, createTLOF(TM)) { |
| Subtarget = &TM.getSubtarget<X86Subtarget>(); |
| X86ScalarSSEf64 = Subtarget->hasSSE2(); |
| X86ScalarSSEf32 = Subtarget->hasSSE1(); |
| X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; |
| |
| RegInfo = TM.getRegisterInfo(); |
| TD = getTargetData(); |
| |
| // Set up the TargetLowering object. |
| |
| // X86 is weird, it always uses i8 for shift amounts and setcc results. |
| setShiftAmountType(MVT::i8); |
| setBooleanContents(ZeroOrOneBooleanContent); |
| setSchedulingPreference(SchedulingForRegPressure); |
| setStackPointerRegisterToSaveRestore(X86StackPtr); |
| |
| if (Subtarget->isTargetDarwin()) { |
| // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. |
| setUseUnderscoreSetJmp(false); |
| setUseUnderscoreLongJmp(false); |
| } else if (Subtarget->isTargetMingw()) { |
| // MS runtime is weird: it exports _setjmp, but longjmp! |
| setUseUnderscoreSetJmp(true); |
| setUseUnderscoreLongJmp(false); |
| } else { |
| setUseUnderscoreSetJmp(true); |
| setUseUnderscoreLongJmp(true); |
| } |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i8, X86::GR8RegisterClass); |
| if (!Disable16Bit) |
| addRegisterClass(MVT::i16, X86::GR16RegisterClass); |
| addRegisterClass(MVT::i32, X86::GR32RegisterClass); |
| if (Subtarget->is64Bit()) |
| addRegisterClass(MVT::i64, X86::GR64RegisterClass); |
| |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| |
| // We don't accept any truncstore of integer registers. |
| setTruncStoreAction(MVT::i64, MVT::i32, Expand); |
| if (!Disable16Bit) |
| setTruncStoreAction(MVT::i64, MVT::i16, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i8 , Expand); |
| if (!Disable16Bit) |
| setTruncStoreAction(MVT::i32, MVT::i16, Expand); |
| setTruncStoreAction(MVT::i32, MVT::i8 , Expand); |
| setTruncStoreAction(MVT::i16, MVT::i8, Expand); |
| |
| // SETOEQ and SETUNE require checking two conditions. |
| setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); |
| setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); |
| |
| // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this |
| // operation. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); |
| } else if (!UseSoftFloat) { |
| if (X86ScalarSSEf64) { |
| // We have an impenetrably clever algorithm for ui64->double only. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); |
| } |
| // We have an algorithm for SSE2, and we turn this into a 64-bit |
| // FILD for other targets. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); |
| } |
| |
| // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); |
| |
| if (!UseSoftFloat) { |
| // SSE has no i16 to fp conversion, only i32 |
| if (X86ScalarSSEf32) { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); |
| // f32 and f64 cases are Legal, f80 case is not |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); |
| } else { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); |
| } |
| } else { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote); |
| } |
| |
| // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 |
| // are Legal, f80 is custom lowered. |
| setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); |
| |
| // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); |
| |
| if (X86ScalarSSEf32) { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); |
| // f32 and f64 cases are Legal, f80 case is not |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| } else { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| } |
| |
| // Handle FP_TO_UINT by promoting the destination to a larger signed |
| // conversion. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); |
| } else if (!UseSoftFloat) { |
| if (X86ScalarSSEf32 && !Subtarget->hasSSE3()) |
| // Expand FP_TO_UINT into a select. |
| // FIXME: We would like to use a Custom expander here eventually to do |
| // the optimal thing for SSE vs. the default expansion in the legalizer. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); |
| else |
| // With SSE3 we can use fisttpll to convert to a signed i64; without |
| // SSE, we're stuck with a fistpll. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); |
| } |
| |
| // TODO: when we have SSE, these could be more efficient, by using movd/movq. |
| if (!X86ScalarSSEf64) { |
| setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); |
| setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); |
| } |
| |
| // Scalar integer divide and remainder are lowered to use operations that |
| // produce two results, to match the available instructions. This exposes |
| // the two-result form to trivial CSE, which is able to combine x/y and x%y |
| // into a single instruction. |
| // |
| // Scalar integer multiply-high is also lowered to use two-result |
| // operations, to match the available instructions. However, plain multiply |
| // (low) operations are left as Legal, as there are single-result |
| // instructions for this in x86. Using the two-result multiply instructions |
| // when both high and low results are needed must be arranged by dagcombine. |
| setOperationAction(ISD::MULHS , MVT::i8 , Expand); |
| setOperationAction(ISD::MULHU , MVT::i8 , Expand); |
| setOperationAction(ISD::SDIV , MVT::i8 , Expand); |
| setOperationAction(ISD::UDIV , MVT::i8 , Expand); |
| setOperationAction(ISD::SREM , MVT::i8 , Expand); |
| setOperationAction(ISD::UREM , MVT::i8 , Expand); |
| setOperationAction(ISD::MULHS , MVT::i16 , Expand); |
| setOperationAction(ISD::MULHU , MVT::i16 , Expand); |
| setOperationAction(ISD::SDIV , MVT::i16 , Expand); |
| setOperationAction(ISD::UDIV , MVT::i16 , Expand); |
| setOperationAction(ISD::SREM , MVT::i16 , Expand); |
| setOperationAction(ISD::UREM , MVT::i16 , Expand); |
| setOperationAction(ISD::MULHS , MVT::i32 , Expand); |
| setOperationAction(ISD::MULHU , MVT::i32 , Expand); |
| setOperationAction(ISD::SDIV , MVT::i32 , Expand); |
| setOperationAction(ISD::UDIV , MVT::i32 , Expand); |
| setOperationAction(ISD::SREM , MVT::i32 , Expand); |
| setOperationAction(ISD::UREM , MVT::i32 , Expand); |
| setOperationAction(ISD::MULHS , MVT::i64 , Expand); |
| setOperationAction(ISD::MULHU , MVT::i64 , Expand); |
| setOperationAction(ISD::SDIV , MVT::i64 , Expand); |
| setOperationAction(ISD::UDIV , MVT::i64 , Expand); |
| setOperationAction(ISD::SREM , MVT::i64 , Expand); |
| setOperationAction(ISD::UREM , MVT::i64 , Expand); |
| |
| setOperationAction(ISD::BR_JT , MVT::Other, Expand); |
| setOperationAction(ISD::BRCOND , MVT::Other, Custom); |
| setOperationAction(ISD::BR_CC , MVT::Other, Expand); |
| setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); |
| setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); |
| setOperationAction(ISD::FREM , MVT::f32 , Expand); |
| setOperationAction(ISD::FREM , MVT::f64 , Expand); |
| setOperationAction(ISD::FREM , MVT::f80 , Expand); |
| setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); |
| |
| setOperationAction(ISD::CTPOP , MVT::i8 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i8 , Custom); |
| setOperationAction(ISD::CTLZ , MVT::i8 , Custom); |
| setOperationAction(ISD::CTPOP , MVT::i16 , Expand); |
| if (Disable16Bit) { |
| setOperationAction(ISD::CTTZ , MVT::i16 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i16 , Expand); |
| } else { |
| setOperationAction(ISD::CTTZ , MVT::i16 , Custom); |
| setOperationAction(ISD::CTLZ , MVT::i16 , Custom); |
| } |
| setOperationAction(ISD::CTPOP , MVT::i32 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i32 , Custom); |
| setOperationAction(ISD::CTLZ , MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::CTPOP , MVT::i64 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i64 , Custom); |
| setOperationAction(ISD::CTLZ , MVT::i64 , Custom); |
| } |
| |
| setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); |
| setOperationAction(ISD::BSWAP , MVT::i16 , Expand); |
| |
| // These should be promoted to a larger select which is supported. |
| setOperationAction(ISD::SELECT , MVT::i1 , Promote); |
| // X86 wants to expand cmov itself. |
| setOperationAction(ISD::SELECT , MVT::i8 , Custom); |
| if (Disable16Bit) |
| setOperationAction(ISD::SELECT , MVT::i16 , Expand); |
| else |
| setOperationAction(ISD::SELECT , MVT::i16 , Custom); |
| setOperationAction(ISD::SELECT , MVT::i32 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f32 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f64 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f80 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i8 , Custom); |
| if (Disable16Bit) |
| setOperationAction(ISD::SETCC , MVT::i16 , Expand); |
| else |
| setOperationAction(ISD::SETCC , MVT::i16 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i32 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f32 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f64 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f80 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::SELECT , MVT::i64 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i64 , Custom); |
| } |
| setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); |
| |
| // Darwin ABI issue. |
| setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); |
| setOperationAction(ISD::JumpTable , MVT::i32 , Custom); |
| setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); |
| setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); |
| setOperationAction(ISD::BlockAddress , MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); |
| setOperationAction(ISD::JumpTable , MVT::i64 , Custom); |
| setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); |
| setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); |
| setOperationAction(ISD::BlockAddress , MVT::i64 , Custom); |
| } |
| // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) |
| setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); |
| setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); |
| setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); |
| setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); |
| setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); |
| } |
| |
| if (Subtarget->hasSSE1()) |
| setOperationAction(ISD::PREFETCH , MVT::Other, Legal); |
| |
| if (!Subtarget->hasSSE2()) |
| setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand); |
| |
| // Expand certain atomics |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom); |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom); |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); |
| |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); |
| |
| if (!Subtarget->is64Bit()) { |
| setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); |
| } |
| |
| // FIXME - use subtarget debug flags |
| if (!Subtarget->isTargetDarwin() && |
| !Subtarget->isTargetELF() && |
| !Subtarget->isTargetCygMing()) { |
| setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); |
| } |
| |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); |
| if (Subtarget->is64Bit()) { |
| setExceptionPointerRegister(X86::RAX); |
| setExceptionSelectorRegister(X86::RDX); |
| } else { |
| setExceptionPointerRegister(X86::EAX); |
| setExceptionSelectorRegister(X86::EDX); |
| } |
| setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); |
| setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); |
| |
| setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); |
| |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::VAARG , MVT::Other, Custom); |
| setOperationAction(ISD::VACOPY , MVT::Other, Custom); |
| } else { |
| setOperationAction(ISD::VAARG , MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| } |
| |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| if (Subtarget->is64Bit()) |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); |
| if (Subtarget->isTargetCygMing()) |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); |
| else |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); |
| |
| if (!UseSoftFloat && X86ScalarSSEf64) { |
| // f32 and f64 use SSE. |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f32, X86::FR32RegisterClass); |
| addRegisterClass(MVT::f64, X86::FR64RegisterClass); |
| |
| // Use ANDPD to simulate FABS. |
| setOperationAction(ISD::FABS , MVT::f64, Custom); |
| setOperationAction(ISD::FABS , MVT::f32, Custom); |
| |
| // Use XORP to simulate FNEG. |
| setOperationAction(ISD::FNEG , MVT::f64, Custom); |
| setOperationAction(ISD::FNEG , MVT::f32, Custom); |
| |
| // Use ANDPD and ORPD to simulate FCOPYSIGN. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| |
| // We don't support sin/cos/fmod |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| |
| // Expand FP immediates into loads from the stack, except for the special |
| // cases we handle. |
| addLegalFPImmediate(APFloat(+0.0)); // xorpd |
| addLegalFPImmediate(APFloat(+0.0f)); // xorps |
| } else if (!UseSoftFloat && X86ScalarSSEf32) { |
| // Use SSE for f32, x87 for f64. |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f32, X86::FR32RegisterClass); |
| addRegisterClass(MVT::f64, X86::RFP64RegisterClass); |
| |
| // Use ANDPS to simulate FABS. |
| setOperationAction(ISD::FABS , MVT::f32, Custom); |
| |
| // Use XORP to simulate FNEG. |
| setOperationAction(ISD::FNEG , MVT::f32, Custom); |
| |
| setOperationAction(ISD::UNDEF, MVT::f64, Expand); |
| |
| // Use ANDPS and ORPS to simulate FCOPYSIGN. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| |
| // We don't support sin/cos/fmod |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| |
| // Special cases we handle for FP constants. |
| addLegalFPImmediate(APFloat(+0.0f)); // xorps |
| addLegalFPImmediate(APFloat(+0.0)); // FLD0 |
| addLegalFPImmediate(APFloat(+1.0)); // FLD1 |
| addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS |
| addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS |
| |
| if (!UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f64 , Expand); |
| setOperationAction(ISD::FCOS , MVT::f64 , Expand); |
| } |
| } else if (!UseSoftFloat) { |
| // f32 and f64 in x87. |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f64, X86::RFP64RegisterClass); |
| addRegisterClass(MVT::f32, X86::RFP32RegisterClass); |
| |
| setOperationAction(ISD::UNDEF, MVT::f64, Expand); |
| setOperationAction(ISD::UNDEF, MVT::f32, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| |
| if (!UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f64 , Expand); |
| setOperationAction(ISD::FCOS , MVT::f64 , Expand); |
| } |
| addLegalFPImmediate(APFloat(+0.0)); // FLD0 |
| addLegalFPImmediate(APFloat(+1.0)); // FLD1 |
| addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS |
| addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS |
| addLegalFPImmediate(APFloat(+0.0f)); // FLD0 |
| addLegalFPImmediate(APFloat(+1.0f)); // FLD1 |
| addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS |
| addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS |
| } |
| |
| // Long double always uses X87. |
| if (!UseSoftFloat) { |
| addRegisterClass(MVT::f80, X86::RFP80RegisterClass); |
| setOperationAction(ISD::UNDEF, MVT::f80, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); |
| { |
| bool ignored; |
| APFloat TmpFlt(+0.0); |
| TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, |
| &ignored); |
| addLegalFPImmediate(TmpFlt); // FLD0 |
| TmpFlt.changeSign(); |
| addLegalFPImmediate(TmpFlt); // FLD0/FCHS |
| APFloat TmpFlt2(+1.0); |
| TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, |
| &ignored); |
| addLegalFPImmediate(TmpFlt2); // FLD1 |
| TmpFlt2.changeSign(); |
| addLegalFPImmediate(TmpFlt2); // FLD1/FCHS |
| } |
| |
| if (!UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f80 , Expand); |
| setOperationAction(ISD::FCOS , MVT::f80 , Expand); |
| } |
| } |
| |
| // Always use a library call for pow. |
| setOperationAction(ISD::FPOW , MVT::f32 , Expand); |
| setOperationAction(ISD::FPOW , MVT::f64 , Expand); |
| setOperationAction(ISD::FPOW , MVT::f80 , Expand); |
| |
| setOperationAction(ISD::FLOG, MVT::f80, Expand); |
| setOperationAction(ISD::FLOG2, MVT::f80, Expand); |
| setOperationAction(ISD::FLOG10, MVT::f80, Expand); |
| setOperationAction(ISD::FEXP, MVT::f80, Expand); |
| setOperationAction(ISD::FEXP2, MVT::f80, Expand); |
| |
| // First set operation action for all vector types to either promote |
| // (for widening) or expand (for scalarization). Then we will selectively |
| // turn on ones that can be effectively codegen'd. |
| for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { |
| setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand); |
| setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand); |
| setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand); |
| setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand); |
| for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) |
| setTruncStoreAction((MVT::SimpleValueType)VT, |
| (MVT::SimpleValueType)InnerVT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); |
| } |
| |
| // FIXME: In order to prevent SSE instructions being expanded to MMX ones |
| // with -msoft-float, disable use of MMX as well. |
| if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) { |
| addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v2f32, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v1i64, X86::VR64RegisterClass); |
| |
| setOperationAction(ISD::ADD, MVT::v8i8, Legal); |
| setOperationAction(ISD::ADD, MVT::v4i16, Legal); |
| setOperationAction(ISD::ADD, MVT::v2i32, Legal); |
| setOperationAction(ISD::ADD, MVT::v1i64, Legal); |
| |
| setOperationAction(ISD::SUB, MVT::v8i8, Legal); |
| setOperationAction(ISD::SUB, MVT::v4i16, Legal); |
| setOperationAction(ISD::SUB, MVT::v2i32, Legal); |
| setOperationAction(ISD::SUB, MVT::v1i64, Legal); |
| |
| setOperationAction(ISD::MULHS, MVT::v4i16, Legal); |
| setOperationAction(ISD::MUL, MVT::v4i16, Legal); |
| |
| setOperationAction(ISD::AND, MVT::v8i8, Promote); |
| AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64); |
| setOperationAction(ISD::AND, MVT::v4i16, Promote); |
| AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64); |
| setOperationAction(ISD::AND, MVT::v2i32, Promote); |
| AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64); |
| setOperationAction(ISD::AND, MVT::v1i64, Legal); |
| |
| setOperationAction(ISD::OR, MVT::v8i8, Promote); |
| AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64); |
| setOperationAction(ISD::OR, MVT::v4i16, Promote); |
| AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64); |
| setOperationAction(ISD::OR, MVT::v2i32, Promote); |
| AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64); |
| setOperationAction(ISD::OR, MVT::v1i64, Legal); |
| |
| setOperationAction(ISD::XOR, MVT::v8i8, Promote); |
| AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64); |
| setOperationAction(ISD::XOR, MVT::v4i16, Promote); |
| AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64); |
| setOperationAction(ISD::XOR, MVT::v2i32, Promote); |
| AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64); |
| setOperationAction(ISD::XOR, MVT::v1i64, Legal); |
| |
| setOperationAction(ISD::LOAD, MVT::v8i8, Promote); |
| AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64); |
| setOperationAction(ISD::LOAD, MVT::v4i16, Promote); |
| AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64); |
| setOperationAction(ISD::LOAD, MVT::v2i32, Promote); |
| AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64); |
| setOperationAction(ISD::LOAD, MVT::v2f32, Promote); |
| AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64); |
| setOperationAction(ISD::LOAD, MVT::v1i64, Legal); |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom); |
| |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f32, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); |
| |
| setOperationAction(ISD::SELECT, MVT::v8i8, Promote); |
| setOperationAction(ISD::SELECT, MVT::v4i16, Promote); |
| setOperationAction(ISD::SELECT, MVT::v2i32, Promote); |
| setOperationAction(ISD::SELECT, MVT::v1i64, Custom); |
| setOperationAction(ISD::VSETCC, MVT::v8i8, Custom); |
| setOperationAction(ISD::VSETCC, MVT::v4i16, Custom); |
| setOperationAction(ISD::VSETCC, MVT::v2i32, Custom); |
| } |
| |
| if (!UseSoftFloat && Subtarget->hasSSE1()) { |
| addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); |
| |
| setOperationAction(ISD::FADD, MVT::v4f32, Legal); |
| setOperationAction(ISD::FSUB, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMUL, MVT::v4f32, Legal); |
| setOperationAction(ISD::FDIV, MVT::v4f32, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); |
| setOperationAction(ISD::FNEG, MVT::v4f32, Custom); |
| setOperationAction(ISD::LOAD, MVT::v4f32, Legal); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::v4f32, Custom); |
| setOperationAction(ISD::VSETCC, MVT::v4f32, Custom); |
| } |
| |
| if (!UseSoftFloat && Subtarget->hasSSE2()) { |
| addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); |
| |
| // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM |
| // registers cannot be used even for integer operations. |
| addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); |
| |
| setOperationAction(ISD::ADD, MVT::v16i8, Legal); |
| setOperationAction(ISD::ADD, MVT::v8i16, Legal); |
| setOperationAction(ISD::ADD, MVT::v4i32, Legal); |
| setOperationAction(ISD::ADD, MVT::v2i64, Legal); |
| setOperationAction(ISD::MUL, MVT::v2i64, Custom); |
| setOperationAction(ISD::SUB, MVT::v16i8, Legal); |
| setOperationAction(ISD::SUB, MVT::v8i16, Legal); |
| setOperationAction(ISD::SUB, MVT::v4i32, Legal); |
| setOperationAction(ISD::SUB, MVT::v2i64, Legal); |
| setOperationAction(ISD::MUL, MVT::v8i16, Legal); |
| setOperationAction(ISD::FADD, MVT::v2f64, Legal); |
| setOperationAction(ISD::FSUB, MVT::v2f64, Legal); |
| setOperationAction(ISD::FMUL, MVT::v2f64, Legal); |
| setOperationAction(ISD::FDIV, MVT::v2f64, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); |
| setOperationAction(ISD::FNEG, MVT::v2f64, Custom); |
| |
| setOperationAction(ISD::VSETCC, MVT::v2f64, Custom); |
| setOperationAction(ISD::VSETCC, MVT::v16i8, Custom); |
| setOperationAction(ISD::VSETCC, MVT::v8i16, Custom); |
| setOperationAction(ISD::VSETCC, MVT::v4i32, Custom); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); |
| |
| // Custom lower build_vector, vector_shuffle, and extract_vector_elt. |
| for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) { |
| EVT VT = (MVT::SimpleValueType)i; |
| // Do not attempt to custom lower non-power-of-2 vectors |
| if (!isPowerOf2_32(VT.getVectorNumElements())) |
| continue; |
| // Do not attempt to custom lower non-128-bit vectors |
| if (!VT.is128BitVector()) |
| continue; |
| setOperationAction(ISD::BUILD_VECTOR, |
| VT.getSimpleVT().SimpleTy, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, |
| VT.getSimpleVT().SimpleTy, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, |
| VT.getSimpleVT().SimpleTy, Custom); |
| } |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); |
| } |
| |
| // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. |
| for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) { |
| MVT::SimpleValueType SVT = (MVT::SimpleValueType)i; |
| EVT VT = SVT; |
| |
| // Do not attempt to promote non-128-bit vectors |
| if (!VT.is128BitVector()) { |
| continue; |
| } |
| setOperationAction(ISD::AND, SVT, Promote); |
| AddPromotedToType (ISD::AND, SVT, MVT::v2i64); |
| setOperationAction(ISD::OR, SVT, Promote); |
| AddPromotedToType (ISD::OR, SVT, MVT::v2i64); |
| setOperationAction(ISD::XOR, SVT, Promote); |
| AddPromotedToType (ISD::XOR, SVT, MVT::v2i64); |
| setOperationAction(ISD::LOAD, SVT, Promote); |
| AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64); |
| setOperationAction(ISD::SELECT, SVT, Promote); |
| AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64); |
| } |
| |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| // Custom lower v2i64 and v2f64 selects. |
| setOperationAction(ISD::LOAD, MVT::v2f64, Legal); |
| setOperationAction(ISD::LOAD, MVT::v2i64, Legal); |
| setOperationAction(ISD::SELECT, MVT::v2f64, Custom); |
| setOperationAction(ISD::SELECT, MVT::v2i64, Custom); |
| |
| setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); |
| if (!DisableMMX && Subtarget->hasMMX()) { |
| setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); |
| } |
| } |
| |
| if (Subtarget->hasSSE41()) { |
| // FIXME: Do we need to handle scalar-to-vector here? |
| setOperationAction(ISD::MUL, MVT::v4i32, Legal); |
| |
| // i8 and i16 vectors are custom , because the source register and source |
| // source memory operand types are not the same width. f32 vectors are |
| // custom since the immediate controlling the insert encodes additional |
| // information. |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); |
| } |
| } |
| |
| if (Subtarget->hasSSE42()) { |
| setOperationAction(ISD::VSETCC, MVT::v2i64, Custom); |
| } |
| |
| if (!UseSoftFloat && Subtarget->hasAVX()) { |
| addRegisterClass(MVT::v8f32, X86::VR256RegisterClass); |
| addRegisterClass(MVT::v4f64, X86::VR256RegisterClass); |
| addRegisterClass(MVT::v8i32, X86::VR256RegisterClass); |
| addRegisterClass(MVT::v4i64, X86::VR256RegisterClass); |
| |
| setOperationAction(ISD::LOAD, MVT::v8f32, Legal); |
| setOperationAction(ISD::LOAD, MVT::v8i32, Legal); |
| setOperationAction(ISD::LOAD, MVT::v4f64, Legal); |
| setOperationAction(ISD::LOAD, MVT::v4i64, Legal); |
| setOperationAction(ISD::FADD, MVT::v8f32, Legal); |
| setOperationAction(ISD::FSUB, MVT::v8f32, Legal); |
| setOperationAction(ISD::FMUL, MVT::v8f32, Legal); |
| setOperationAction(ISD::FDIV, MVT::v8f32, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v8f32, Legal); |
| setOperationAction(ISD::FNEG, MVT::v8f32, Custom); |
| //setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom); |
| //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom); |
| //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom); |
| //setOperationAction(ISD::SELECT, MVT::v8f32, Custom); |
| //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom); |
| |
| // Operations to consider commented out -v16i16 v32i8 |
| //setOperationAction(ISD::ADD, MVT::v16i16, Legal); |
| setOperationAction(ISD::ADD, MVT::v8i32, Custom); |
| setOperationAction(ISD::ADD, MVT::v4i64, Custom); |
| //setOperationAction(ISD::SUB, MVT::v32i8, Legal); |
| //setOperationAction(ISD::SUB, MVT::v16i16, Legal); |
| setOperationAction(ISD::SUB, MVT::v8i32, Custom); |
| setOperationAction(ISD::SUB, MVT::v4i64, Custom); |
| //setOperationAction(ISD::MUL, MVT::v16i16, Legal); |
| setOperationAction(ISD::FADD, MVT::v4f64, Legal); |
| setOperationAction(ISD::FSUB, MVT::v4f64, Legal); |
| setOperationAction(ISD::FMUL, MVT::v4f64, Legal); |
| setOperationAction(ISD::FDIV, MVT::v4f64, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); |
| setOperationAction(ISD::FNEG, MVT::v4f64, Custom); |
| |
| setOperationAction(ISD::VSETCC, MVT::v4f64, Custom); |
| // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom); |
| // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom); |
| setOperationAction(ISD::VSETCC, MVT::v8i32, Custom); |
| |
| // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom); |
| // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom); |
| // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i32, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8f32, Custom); |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4i64, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f64, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i64, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom); |
| |
| #if 0 |
| // Not sure we want to do this since there are no 256-bit integer |
| // operations in AVX |
| |
| // Custom lower build_vector, vector_shuffle, and extract_vector_elt. |
| // This includes 256-bit vectors |
| for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) { |
| EVT VT = (MVT::SimpleValueType)i; |
| |
| // Do not attempt to custom lower non-power-of-2 vectors |
| if (!isPowerOf2_32(VT.getVectorNumElements())) |
| continue; |
| |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| } |
| |
| if (Subtarget->is64Bit()) { |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom); |
| } |
| #endif |
| |
| #if 0 |
| // Not sure we want to do this since there are no 256-bit integer |
| // operations in AVX |
| |
| // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64. |
| // Including 256-bit vectors |
| for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) { |
| EVT VT = (MVT::SimpleValueType)i; |
| |
| if (!VT.is256BitVector()) { |
| continue; |
| } |
| setOperationAction(ISD::AND, VT, Promote); |
| AddPromotedToType (ISD::AND, VT, MVT::v4i64); |
| setOperationAction(ISD::OR, VT, Promote); |
| AddPromotedToType (ISD::OR, VT, MVT::v4i64); |
| setOperationAction(ISD::XOR, VT, Promote); |
| AddPromotedToType (ISD::XOR, VT, MVT::v4i64); |
| setOperationAction(ISD::LOAD, VT, Promote); |
| AddPromotedToType (ISD::LOAD, VT, MVT::v4i64); |
| setOperationAction(ISD::SELECT, VT, Promote); |
| AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); |
| } |
| |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| #endif |
| } |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| // Add/Sub/Mul with overflow operations are custom lowered. |
| setOperationAction(ISD::SADDO, MVT::i32, Custom); |
| setOperationAction(ISD::SADDO, MVT::i64, Custom); |
| setOperationAction(ISD::UADDO, MVT::i32, Custom); |
| setOperationAction(ISD::UADDO, MVT::i64, Custom); |
| setOperationAction(ISD::SSUBO, MVT::i32, Custom); |
| setOperationAction(ISD::SSUBO, MVT::i64, Custom); |
| setOperationAction(ISD::USUBO, MVT::i32, Custom); |
| setOperationAction(ISD::USUBO, MVT::i64, Custom); |
| setOperationAction(ISD::SMULO, MVT::i32, Custom); |
| setOperationAction(ISD::SMULO, MVT::i64, Custom); |
| |
| if (!Subtarget->is64Bit()) { |
| // These libcalls are not available in 32-bit. |
| setLibcallName(RTLIB::SHL_I128, 0); |
| setLibcallName(RTLIB::SRL_I128, 0); |
| setLibcallName(RTLIB::SRA_I128, 0); |
| } |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| setTargetDAGCombine(ISD::VECTOR_SHUFFLE); |
| setTargetDAGCombine(ISD::BUILD_VECTOR); |
| setTargetDAGCombine(ISD::SELECT); |
| setTargetDAGCombine(ISD::SHL); |
| setTargetDAGCombine(ISD::SRA); |
| setTargetDAGCombine(ISD::SRL); |
| setTargetDAGCombine(ISD::OR); |
| setTargetDAGCombine(ISD::STORE); |
| setTargetDAGCombine(ISD::MEMBARRIER); |
| setTargetDAGCombine(ISD::ZERO_EXTEND); |
| if (Subtarget->is64Bit()) |
| setTargetDAGCombine(ISD::MUL); |
| |
| computeRegisterProperties(); |
| |
| // Divide and reminder operations have no vector equivalent and can |
| // trap. Do a custom widening for these operations in which we never |
| // generate more divides/remainder than the original vector width. |
| for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; |
| VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { |
| if (!isTypeLegal((MVT::SimpleValueType)VT)) { |
| setOperationAction(ISD::SDIV, (MVT::SimpleValueType) VT, Custom); |
| setOperationAction(ISD::UDIV, (MVT::SimpleValueType) VT, Custom); |
| setOperationAction(ISD::SREM, (MVT::SimpleValueType) VT, Custom); |
| setOperationAction(ISD::UREM, (MVT::SimpleValueType) VT, Custom); |
| } |
| } |
| |
| // FIXME: These should be based on subtarget info. Plus, the values should |
| // be smaller when we are in optimizing for size mode. |
| maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores |
| maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores |
| maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores |
| setPrefLoopAlignment(16); |
| benefitFromCodePlacementOpt = true; |
| } |
| |
| |
| MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const { |
| return MVT::i8; |
| } |
| |
| |
| /// getMaxByValAlign - Helper for getByValTypeAlignment to determine |
| /// the desired ByVal argument alignment. |
| static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) { |
| if (MaxAlign == 16) |
| return; |
| if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { |
| if (VTy->getBitWidth() == 128) |
| MaxAlign = 16; |
| } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| unsigned EltAlign = 0; |
| getMaxByValAlign(ATy->getElementType(), EltAlign); |
| if (EltAlign > MaxAlign) |
| MaxAlign = EltAlign; |
| } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| unsigned EltAlign = 0; |
| getMaxByValAlign(STy->getElementType(i), EltAlign); |
| if (EltAlign > MaxAlign) |
| MaxAlign = EltAlign; |
| if (MaxAlign == 16) |
| break; |
| } |
| } |
| return; |
| } |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. For X86, aggregates |
| /// that contain SSE vectors are placed at 16-byte boundaries while the rest |
| /// are at 4-byte boundaries. |
| unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const { |
| if (Subtarget->is64Bit()) { |
| // Max of 8 and alignment of type. |
| unsigned TyAlign = TD->getABITypeAlignment(Ty); |
| if (TyAlign > 8) |
| return TyAlign; |
| return 8; |
| } |
| |
| unsigned Align = 4; |
| if (Subtarget->hasSSE1()) |
| getMaxByValAlign(Ty, Align); |
| return Align; |
| } |
| |
| /// getOptimalMemOpType - Returns the target specific optimal type for load |
| /// and store operations as a result of memset, memcpy, and memmove |
| /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for |
| /// determining it. |
| EVT |
| X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align, |
| bool isSrcConst, bool isSrcStr, |
| SelectionDAG &DAG) const { |
| // FIXME: This turns off use of xmm stores for memset/memcpy on targets like |
| // linux. This is because the stack realignment code can't handle certain |
| // cases like PR2962. This should be removed when PR2962 is fixed. |
| const Function *F = DAG.getMachineFunction().getFunction(); |
| bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat); |
| if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) { |
| if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16) |
| return MVT::v4i32; |
| if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16) |
| return MVT::v4f32; |
| } |
| if (Subtarget->is64Bit() && Size >= 8) |
| return MVT::i64; |
| return MVT::i32; |
| } |
| |
| /// getJumpTableEncoding - Return the entry encoding for a jump table in the |
| /// current function. The returned value is a member of the |
| /// MachineJumpTableInfo::JTEntryKind enum. |
| unsigned X86TargetLowering::getJumpTableEncoding() const { |
| // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF |
| // symbol. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| Subtarget->isPICStyleGOT()) |
| return MachineJumpTableInfo::EK_Custom32; |
| |
| // Otherwise, use the normal jump table encoding heuristics. |
| return TargetLowering::getJumpTableEncoding(); |
| } |
| |
| /// getPICBaseSymbol - Return the X86-32 PIC base. |
| MCSymbol * |
| X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF, |
| MCContext &Ctx) const { |
| const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo(); |
| return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+ |
| Twine(MF->getFunctionNumber())+"$pb"); |
| } |
| |
| |
| const MCExpr * |
| X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, |
| const MachineBasicBlock *MBB, |
| unsigned uid,MCContext &Ctx) const{ |
| assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| Subtarget->isPICStyleGOT()); |
| // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF |
| // entries. |
| return X86MCTargetExpr::Create(MBB->getSymbol(Ctx), |
| X86MCTargetExpr::GOTOFF, Ctx); |
| } |
| |
| /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC |
| /// jumptable. |
| SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const { |
| if (!Subtarget->is64Bit()) |
| // This doesn't have DebugLoc associated with it, but is not really the |
| // same as a Register. |
| return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(), |
| getPointerTy()); |
| return Table; |
| } |
| |
| /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the |
| /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an |
| /// MCExpr. |
| const MCExpr *X86TargetLowering:: |
| getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, |
| MCContext &Ctx) const { |
| // X86-64 uses RIP relative addressing based on the jump table label. |
| if (Subtarget->isPICStyleRIPRel()) |
| return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); |
| |
| // Otherwise, the reference is relative to the PIC base. |
| return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx); |
| } |
| |
| /// getFunctionAlignment - Return the Log2 alignment of this function. |
| unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const { |
| return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Return Value Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86GenCallingConv.inc" |
| |
| bool |
| X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<EVT> &OutTys, |
| const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags, |
| SelectionDAG &DAG) { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, getTargetMachine(), |
| RVLocs, *DAG.getContext()); |
| return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerReturn(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| DebugLoc dl, SelectionDAG &DAG) { |
| |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, getTargetMachine(), |
| RVLocs, *DAG.getContext()); |
| CCInfo.AnalyzeReturn(Outs, RetCC_X86); |
| |
| // Add the regs to the liveout set for the function. |
| MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| for (unsigned i = 0; i != RVLocs.size(); ++i) |
| if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg())) |
| MRI.addLiveOut(RVLocs[i].getLocReg()); |
| |
| SDValue Flag; |
| |
| SmallVector<SDValue, 6> RetOps; |
| RetOps.push_back(Chain); // Operand #0 = Chain (updated below) |
| // Operand #1 = Bytes To Pop |
| RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16)); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| SDValue ValToCopy = Outs[i].Val; |
| |
| // Returns in ST0/ST1 are handled specially: these are pushed as operands to |
| // the RET instruction and handled by the FP Stackifier. |
| if (VA.getLocReg() == X86::ST0 || |
| VA.getLocReg() == X86::ST1) { |
| // If this is a copy from an xmm register to ST(0), use an FPExtend to |
| // change the value to the FP stack register class. |
| if (isScalarFPTypeInSSEReg(VA.getValVT())) |
| ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); |
| RetOps.push_back(ValToCopy); |
| // Don't emit a copytoreg. |
| continue; |
| } |
| |
| // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 |
| // which is returned in RAX / RDX. |
| if (Subtarget->is64Bit()) { |
| EVT ValVT = ValToCopy.getValueType(); |
| if (ValVT.isVector() && ValVT.getSizeInBits() == 64) { |
| ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy); |
| if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) |
| ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy); |
| } |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); |
| Flag = Chain.getValue(1); |
| } |
| |
| // The x86-64 ABI for returning structs by value requires that we copy |
| // the sret argument into %rax for the return. We saved the argument into |
| // a virtual register in the entry block, so now we copy the value out |
| // and into %rax. |
| if (Subtarget->is64Bit() && |
| DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| unsigned Reg = FuncInfo->getSRetReturnReg(); |
| if (!Reg) { |
| Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64)); |
| FuncInfo->setSRetReturnReg(Reg); |
| } |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); |
| |
| Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag); |
| Flag = Chain.getValue(1); |
| |
| // RAX now acts like a return value. |
| MRI.addLiveOut(X86::RAX); |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the flag if we have it. |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| return DAG.getNode(X86ISD::RET_FLAG, dl, |
| MVT::Other, &RetOps[0], RetOps.size()); |
| } |
| |
| /// LowerCallResult - Lower the result values of a call into the |
| /// appropriate copies out of appropriate physical registers. |
| /// |
| SDValue |
| X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) { |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| bool Is64Bit = Subtarget->is64Bit(); |
| CCState CCInfo(CallConv, isVarArg, getTargetMachine(), |
| RVLocs, *DAG.getContext()); |
| CCInfo.AnalyzeCallResult(Ins, RetCC_X86); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| EVT CopyVT = VA.getValVT(); |
| |
| // If this is x86-64, and we disabled SSE, we can't return FP values |
| if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && |
| ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { |
| llvm_report_error("SSE register return with SSE disabled"); |
| } |
| |
| // If this is a call to a function that returns an fp value on the floating |
| // point stack, but where we prefer to use the value in xmm registers, copy |
| // it out as F80 and use a truncate to move it from fp stack reg to xmm reg. |
| if ((VA.getLocReg() == X86::ST0 || |
| VA.getLocReg() == X86::ST1) && |
| isScalarFPTypeInSSEReg(VA.getValVT())) { |
| CopyVT = MVT::f80; |
| } |
| |
| SDValue Val; |
| if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) { |
| // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64. |
| if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { |
| Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), |
| MVT::v2i64, InFlag).getValue(1); |
| Val = Chain.getValue(0); |
| Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, |
| Val, DAG.getConstant(0, MVT::i64)); |
| } else { |
| Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), |
| MVT::i64, InFlag).getValue(1); |
| Val = Chain.getValue(0); |
| } |
| Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val); |
| } else { |
| Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), |
| CopyVT, InFlag).getValue(1); |
| Val = Chain.getValue(0); |
| } |
| InFlag = Chain.getValue(2); |
| |
| if (CopyVT != VA.getValVT()) { |
| // Round the F80 the right size, which also moves to the appropriate xmm |
| // register. |
| Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, |
| // This truncation won't change the value. |
| DAG.getIntPtrConstant(1)); |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // C & StdCall & Fast Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| // StdCall calling convention seems to be standard for many Windows' API |
| // routines and around. It differs from C calling convention just a little: |
| // callee should clean up the stack, not caller. Symbols should be also |
| // decorated in some fancy way :) It doesn't support any vector arguments. |
| // For info on fast calling convention see Fast Calling Convention (tail call) |
| // implementation LowerX86_32FastCCCallTo. |
| |
| /// CallIsStructReturn - Determines whether a call uses struct return |
| /// semantics. |
| static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) { |
| if (Outs.empty()) |
| return false; |
| |
| return Outs[0].Flags.isSRet(); |
| } |
| |
| /// ArgsAreStructReturn - Determines whether a function uses struct |
| /// return semantics. |
| static bool |
| ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) { |
| if (Ins.empty()) |
| return false; |
| |
| return Ins[0].Flags.isSRet(); |
| } |
| |
| /// IsCalleePop - Determines whether the callee is required to pop its |
| /// own arguments. Callee pop is necessary to support tail calls. |
| bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){ |
| if (IsVarArg) |
| return false; |
| |
| switch (CallingConv) { |
| default: |
| return false; |
| case CallingConv::X86_StdCall: |
| return !Subtarget->is64Bit(); |
| case CallingConv::X86_FastCall: |
| return !Subtarget->is64Bit(); |
| case CallingConv::Fast: |
| return GuaranteedTailCallOpt; |
| } |
| } |
| |
| /// CCAssignFnForNode - Selects the correct CCAssignFn for a the |
| /// given CallingConvention value. |
| CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const { |
| if (Subtarget->is64Bit()) { |
| if (Subtarget->isTargetWin64()) |
| return CC_X86_Win64_C; |
| else |
| return CC_X86_64_C; |
| } |
| |
| if (CC == CallingConv::X86_FastCall) |
| return CC_X86_32_FastCall; |
| else if (CC == CallingConv::Fast) |
| return CC_X86_32_FastCC; |
| else |
| return CC_X86_32_C; |
| } |
| |
| /// NameDecorationForCallConv - Selects the appropriate decoration to |
| /// apply to a MachineFunction containing a given calling convention. |
| NameDecorationStyle |
| X86TargetLowering::NameDecorationForCallConv(CallingConv::ID CallConv) { |
| if (CallConv == CallingConv::X86_FastCall) |
| return FastCall; |
| else if (CallConv == CallingConv::X86_StdCall) |
| return StdCall; |
| return None; |
| } |
| |
| |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified |
| /// by "Src" to address "Dst" with size and alignment information specified by |
| /// the specific parameter attribute. The copy will be passed as a byval |
| /// function parameter. |
| static SDValue |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, |
| ISD::ArgFlagsTy Flags, SelectionDAG &DAG, |
| DebugLoc dl) { |
| SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); |
| return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), |
| /*AlwaysInline=*/true, NULL, 0, NULL, 0); |
| } |
| |
| /// FuncIsMadeTailCallSafe - Return true if the function is being made into |
| /// a tailcall target by changing its ABI. |
| static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) { |
| return GuaranteedTailCallOpt && CC == CallingConv::Fast; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerMemArgument(SDValue Chain, |
| CallingConv::ID CallConv, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| const CCValAssign &VA, |
| MachineFrameInfo *MFI, |
| unsigned i) { |
| // Create the nodes corresponding to a load from this parameter slot. |
| ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv); |
| bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); |
| EVT ValVT; |
| |
| // If value is passed by pointer we have address passed instead of the value |
| // itself. |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| ValVT = VA.getLocVT(); |
| else |
| ValVT = VA.getValVT(); |
| |
| // FIXME: For now, all byval parameter objects are marked mutable. This can be |
| // changed with more analysis. |
| // In case of tail call optimization mark all arguments mutable. Since they |
| // could be overwritten by lowering of arguments in case of a tail call. |
| if (Flags.isByVal()) { |
| int FI = MFI->CreateFixedObject(Flags.getByValSize(), |
| VA.getLocMemOffset(), isImmutable, false); |
| return DAG.getFrameIndex(FI, getPointerTy()); |
| } else { |
| int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, |
| VA.getLocMemOffset(), isImmutable, false); |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| return DAG.getLoad(ValVT, dl, Chain, FIN, |
| PseudoSourceValue::getFixedStack(FI), 0); |
| } |
| } |
| |
| SDValue |
| X86TargetLowering::LowerFormalArguments(SDValue Chain, |
| CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, |
| SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) { |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| |
| const Function* Fn = MF.getFunction(); |
| if (Fn->hasExternalLinkage() && |
| Subtarget->isTargetCygMing() && |
| Fn->getName() == "main") |
| FuncInfo->setForceFramePointer(true); |
| |
| // Decorate the function name. |
| FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv)); |
| |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| bool Is64Bit = Subtarget->is64Bit(); |
| bool IsWin64 = Subtarget->isTargetWin64(); |
| |
| assert(!(isVarArg && CallConv == CallingConv::Fast) && |
| "Var args not supported with calling convention fastcc"); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, getTargetMachine(), |
| ArgLocs, *DAG.getContext()); |
| CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv)); |
| |
| unsigned LastVal = ~0U; |
| SDValue ArgValue; |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| // TODO: If an arg is passed in two places (e.g. reg and stack), skip later |
| // places. |
| assert(VA.getValNo() != LastVal && |
| "Don't support value assigned to multiple locs yet"); |
| LastVal = VA.getValNo(); |
| |
| if (VA.isRegLoc()) { |
| EVT RegVT = VA.getLocVT(); |
| TargetRegisterClass *RC = NULL; |
| if (RegVT == MVT::i32) |
| RC = X86::GR32RegisterClass; |
| else if (Is64Bit && RegVT == MVT::i64) |
| RC = X86::GR64RegisterClass; |
| else if (RegVT == MVT::f32) |
| RC = X86::FR32RegisterClass; |
| else if (RegVT == MVT::f64) |
| RC = X86::FR64RegisterClass; |
| else if (RegVT.isVector() && RegVT.getSizeInBits() == 128) |
| RC = X86::VR128RegisterClass; |
| else if (RegVT.isVector() && RegVT.getSizeInBits() == 64) |
| RC = X86::VR64RegisterClass; |
| else |
| llvm_unreachable("Unknown argument type!"); |
| |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); |
| |
| // If this is an 8 or 16-bit value, it is really passed promoted to 32 |
| // bits. Insert an assert[sz]ext to capture this, then truncate to the |
| // right size. |
| if (VA.getLocInfo() == CCValAssign::SExt) |
| ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| else if (VA.getLocInfo() == CCValAssign::ZExt) |
| ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| else if (VA.getLocInfo() == CCValAssign::BCvt) |
| ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue); |
| |
| if (VA.isExtInLoc()) { |
| // Handle MMX values passed in XMM regs. |
| if (RegVT.isVector()) { |
| ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, |
| ArgValue, DAG.getConstant(0, MVT::i64)); |
| ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue); |
| } else |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| } |
| } else { |
| assert(VA.isMemLoc()); |
| ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); |
| } |
| |
| // If value is passed via pointer - do a load. |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0); |
| |
| InVals.push_back(ArgValue); |
| } |
| |
| // The x86-64 ABI for returning structs by value requires that we copy |
| // the sret argument into %rax for the return. Save the argument into |
| // a virtual register so that we can access it from the return points. |
| if (Is64Bit && MF.getFunction()->hasStructRetAttr()) { |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| unsigned Reg = FuncInfo->getSRetReturnReg(); |
| if (!Reg) { |
| Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); |
| FuncInfo->setSRetReturnReg(Reg); |
| } |
| SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); |
| } |
| |
| unsigned StackSize = CCInfo.getNextStackOffset(); |
| // Align stack specially for tail calls. |
| if (FuncIsMadeTailCallSafe(CallConv)) |
| StackSize = GetAlignedArgumentStackSize(StackSize, DAG); |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (isVarArg) { |
| if (Is64Bit || CallConv != CallingConv::X86_FastCall) { |
| VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false); |
| } |
| if (Is64Bit) { |
| unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; |
| |
| // FIXME: We should really autogenerate these arrays |
| static const unsigned GPR64ArgRegsWin64[] = { |
| X86::RCX, X86::RDX, X86::R8, X86::R9 |
| }; |
| static const unsigned XMMArgRegsWin64[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 |
| }; |
| static const unsigned GPR64ArgRegs64Bit[] = { |
| X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 |
| }; |
| static const unsigned XMMArgRegs64Bit[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| }; |
| const unsigned *GPR64ArgRegs, *XMMArgRegs; |
| |
| if (IsWin64) { |
| TotalNumIntRegs = 4; TotalNumXMMRegs = 4; |
| GPR64ArgRegs = GPR64ArgRegsWin64; |
| XMMArgRegs = XMMArgRegsWin64; |
| } else { |
| TotalNumIntRegs = 6; TotalNumXMMRegs = 8; |
| GPR64ArgRegs = GPR64ArgRegs64Bit; |
| XMMArgRegs = XMMArgRegs64Bit; |
| } |
| unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, |
| TotalNumIntRegs); |
| unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, |
| TotalNumXMMRegs); |
| |
| bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat); |
| assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && |
| "SSE register cannot be used when SSE is disabled!"); |
| assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) && |
| "SSE register cannot be used when SSE is disabled!"); |
| if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1()) |
| // Kernel mode asks for SSE to be disabled, so don't push them |
| // on the stack. |
| TotalNumXMMRegs = 0; |
| |
| // For X86-64, if there are vararg parameters that are passed via |
| // registers, then we must store them to their spots on the stack so they |
| // may be loaded by deferencing the result of va_next. |
| VarArgsGPOffset = NumIntRegs * 8; |
| VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16; |
| RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 + |
| TotalNumXMMRegs * 16, 16, |
| false); |
| |
| // Store the integer parameter registers. |
| SmallVector<SDValue, 8> MemOps; |
| SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); |
| unsigned Offset = VarArgsGPOffset; |
| for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { |
| SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, |
| DAG.getIntPtrConstant(Offset)); |
| unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs], |
| X86::GR64RegisterClass); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); |
| SDValue Store = |
| DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| PseudoSourceValue::getFixedStack(RegSaveFrameIndex), |
| Offset); |
| MemOps.push_back(Store); |
| Offset += 8; |
| } |
| |
| if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) { |
| // Now store the XMM (fp + vector) parameter registers. |
| SmallVector<SDValue, 11> SaveXMMOps; |
| SaveXMMOps.push_back(Chain); |
| |
| unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass); |
| SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8); |
| SaveXMMOps.push_back(ALVal); |
| |
| SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex)); |
| SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset)); |
| |
| for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { |
| unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs], |
| X86::VR128RegisterClass); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32); |
| SaveXMMOps.push_back(Val); |
| } |
| MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, |
| MVT::Other, |
| &SaveXMMOps[0], SaveXMMOps.size())); |
| } |
| |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOps[0], MemOps.size()); |
| } |
| } |
| |
| // Some CCs need callee pop. |
| if (IsCalleePop(isVarArg, CallConv)) { |
| BytesToPopOnReturn = StackSize; // Callee pops everything. |
| } else { |
| BytesToPopOnReturn = 0; // Callee pops nothing. |
| // If this is an sret function, the return should pop the hidden pointer. |
| if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins)) |
| BytesToPopOnReturn = 4; |
| } |
| |
| if (!Is64Bit) { |
| RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only. |
| if (CallConv == CallingConv::X86_FastCall) |
| VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. |
| } |
| |
| FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn); |
| |
| return Chain; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerMemOpCallTo(SDValue Chain, |
| SDValue StackPtr, SDValue Arg, |
| DebugLoc dl, SelectionDAG &DAG, |
| const CCValAssign &VA, |
| ISD::ArgFlagsTy Flags) { |
| const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0); |
| unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset(); |
| SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); |
| PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); |
| if (Flags.isByVal()) { |
| return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); |
| } |
| return DAG.getStore(Chain, dl, Arg, PtrOff, |
| PseudoSourceValue::getStack(), LocMemOffset); |
| } |
| |
| /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call |
| /// optimization is performed and it is required. |
| SDValue |
| X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, |
| SDValue &OutRetAddr, SDValue Chain, |
| bool IsTailCall, bool Is64Bit, |
| int FPDiff, DebugLoc dl) { |
| // Adjust the Return address stack slot. |
| EVT VT = getPointerTy(); |
| OutRetAddr = getReturnAddressFrameIndex(DAG); |
| |
| // Load the "old" Return address. |
| OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0); |
| return SDValue(OutRetAddr.getNode(), 1); |
| } |
| |
| /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call |
| /// optimization is performed and it is required (FPDiff!=0). |
| static SDValue |
| EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, |
| SDValue Chain, SDValue RetAddrFrIdx, |
| bool Is64Bit, int FPDiff, DebugLoc dl) { |
| // Store the return address to the appropriate stack slot. |
| if (!FPDiff) return Chain; |
| // Calculate the new stack slot for the return address. |
| int SlotSize = Is64Bit ? 8 : 4; |
| int NewReturnAddrFI = |
| MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, true,false); |
| EVT VT = Is64Bit ? MVT::i64 : MVT::i32; |
| SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); |
| Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, |
| PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0); |
| return Chain; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, |
| bool &isTailCall, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool Is64Bit = Subtarget->is64Bit(); |
| bool IsStructRet = CallIsStructReturn(Outs); |
| bool IsSibcall = false; |
| |
| if (isTailCall) { |
| // Check if it's really possible to do a tail call. |
| isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, |
| Outs, Ins, DAG); |
| |
| // Sibcalls are automatically detected tailcalls which do not require |
| // ABI changes. |
| if (!GuaranteedTailCallOpt && isTailCall) |
| IsSibcall = true; |
| |
| if (isTailCall) |
| ++NumTailCalls; |
| } |
| |
| assert(!(isVarArg && CallConv == CallingConv::Fast) && |
| "Var args not supported with calling convention fastcc"); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, getTargetMachine(), |
| ArgLocs, *DAG.getContext()); |
| CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv)); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| if (IsSibcall) |
| // This is a sibcall. The memory operands are available in caller's |
| // own caller's stack. |
| NumBytes = 0; |
| else if (GuaranteedTailCallOpt && CallConv == CallingConv::Fast) |
| NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); |
| |
| int FPDiff = 0; |
| if (isTailCall && !IsSibcall) { |
| // Lower arguments at fp - stackoffset + fpdiff. |
| unsigned NumBytesCallerPushed = |
| MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn(); |
| FPDiff = NumBytesCallerPushed - NumBytes; |
| |
| // Set the delta of movement of the returnaddr stackslot. |
| // But only set if delta is greater than previous delta. |
| if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta())) |
| MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff); |
| } |
| |
| if (!IsSibcall) |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); |
| |
| SDValue RetAddrFrIdx; |
| // Load return adress for tail calls. |
| if (isTailCall && FPDiff) |
| Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, |
| Is64Bit, FPDiff, dl); |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| SDValue StackPtr; |
| |
| // Walk the register/memloc assignments, inserting copies/loads. In the case |
| // of tail call optimization arguments are handle later. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| EVT RegVT = VA.getLocVT(); |
| SDValue Arg = Outs[i].Val; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| bool isByVal = Flags.isByVal(); |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); |
| break; |
| case CCValAssign::AExt: |
| if (RegVT.isVector() && RegVT.getSizeInBits() == 128) { |
| // Special case: passing MMX values in XMM registers. |
| Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg); |
| Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); |
| Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); |
| } else |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg); |
| break; |
| case CCValAssign::Indirect: { |
| // Store the argument. |
| SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); |
| int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); |
| Chain = DAG.getStore(Chain, dl, Arg, SpillSlot, |
| PseudoSourceValue::getFixedStack(FI), 0); |
| Arg = SpillSlot; |
| break; |
| } |
| } |
| |
| if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } else if (!IsSibcall && (!isTailCall || isByVal)) { |
| assert(VA.isMemLoc()); |
| if (StackPtr.getNode() == 0) |
| StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy()); |
| MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, |
| dl, DAG, VA, Flags)); |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into registers. |
| SDValue InFlag; |
| // Tail call byval lowering might overwrite argument registers so in case of |
| // tail call optimization the copies to registers are lowered later. |
| if (!isTailCall) |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| if (Subtarget->isPICStyleGOT()) { |
| // ELF / PIC requires GOT in the EBX register before function calls via PLT |
| // GOT pointer. |
| if (!isTailCall) { |
| Chain = DAG.getCopyToReg(Chain, dl, X86::EBX, |
| DAG.getNode(X86ISD::GlobalBaseReg, |
| DebugLoc::getUnknownLoc(), |
| getPointerTy()), |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } else { |
| // If we are tail calling and generating PIC/GOT style code load the |
| // address of the callee into ECX. The value in ecx is used as target of |
| // the tail jump. This is done to circumvent the ebx/callee-saved problem |
| // for tail calls on PIC/GOT architectures. Normally we would just put the |
| // address of GOT into ebx and then call target@PLT. But for tail calls |
| // ebx would be restored (since ebx is callee saved) before jumping to the |
| // target@PLT. |
| |
| // Note: The actual moving to ECX is done further down. |
| GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); |
| if (G && !G->getGlobal()->hasHiddenVisibility() && |
| !G->getGlobal()->hasProtectedVisibility()) |
| Callee = LowerGlobalAddress(Callee, DAG); |
| else if (isa<ExternalSymbolSDNode>(Callee)) |
| Callee = LowerExternalSymbol(Callee, DAG); |
| } |
| } |
| |
| if (Is64Bit && isVarArg) { |
| // From AMD64 ABI document: |
| // For calls that may call functions that use varargs or stdargs |
| // (prototype-less calls or calls to functions containing ellipsis (...) in |
| // the declaration) %al is used as hidden argument to specify the number |
| // of SSE registers used. The contents of %al do not need to match exactly |
| // the number of registers, but must be an ubound on the number of SSE |
| // registers used and is in the range 0 - 8 inclusive. |
| |
| // FIXME: Verify this on Win64 |
| // Count the number of XMM registers allocated. |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| }; |
| unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); |
| assert((Subtarget->hasSSE1() || !NumXMMRegs) |
| && "SSE registers cannot be used when SSE is disabled"); |
| |
| Chain = DAG.getCopyToReg(Chain, dl, X86::AL, |
| DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| |
| // For tail calls lower the arguments to the 'real' stack slot. |
| if (isTailCall) { |
| // Force all the incoming stack arguments to be loaded from the stack |
| // before any new outgoing arguments are stored to the stack, because the |
| // outgoing stack slots may alias the incoming argument stack slots, and |
| // the alias isn't otherwise explicit. This is slightly more conservative |
| // than necessary, because it means that each store effectively depends |
| // on every argument instead of just those arguments it would clobber. |
| SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); |
| |
| SmallVector<SDValue, 8> MemOpChains2; |
| SDValue FIN; |
| int FI = 0; |
| // Do not flag preceeding copytoreg stuff together with the following stuff. |
| InFlag = SDValue(); |
| if (GuaranteedTailCallOpt) { |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| if (VA.isRegLoc()) |
| continue; |
| assert(VA.isMemLoc()); |
| SDValue Arg = Outs[i].Val; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| // Create frame index. |
| int32_t Offset = VA.getLocMemOffset()+FPDiff; |
| uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; |
| FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false); |
| FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| |
| if (Flags.isByVal()) { |
| // Copy relative to framepointer. |
| SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); |
| if (StackPtr.getNode() == 0) |
| StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, |
| getPointerTy()); |
| Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source); |
| |
| MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, |
| ArgChain, |
| Flags, DAG, dl)); |
| } else { |
| // Store relative to framepointer. |
| MemOpChains2.push_back( |
| DAG.getStore(ArgChain, dl, Arg, FIN, |
| PseudoSourceValue::getFixedStack(FI), 0)); |
| } |
| } |
| } |
| |
| if (!MemOpChains2.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains2[0], MemOpChains2.size()); |
| |
| // Copy arguments to their registers. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| InFlag =SDValue(); |
| |
| // Store the return address to the appropriate stack slot. |
| Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit, |
| FPDiff, dl); |
| } |
| |
| bool WasGlobalOrExternal = false; |
| if (getTargetMachine().getCodeModel() == CodeModel::Large) { |
| assert(Is64Bit && "Large code model is only legal in 64-bit mode."); |
| // In the 64-bit large code model, we have to make all calls |
| // through a register, since the call instruction's 32-bit |
| // pc-relative offset may not be large enough to hold the whole |
| // address. |
| } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| WasGlobalOrExternal = true; |
| // If the callee is a GlobalAddress node (quite common, every direct call |
| // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack |
| // it. |
| |
| // We should use extra load for direct calls to dllimported functions in |
| // non-JIT mode. |
| GlobalValue *GV = G->getGlobal(); |
| if (!GV->hasDLLImportLinkage()) { |
| unsigned char OpFlags = 0; |
| |
| // On ELF targets, in both X86-64 and X86-32 mode, direct calls to |
| // external symbols most go through the PLT in PIC mode. If the symbol |
| // has hidden or protected visibility, or if it is static or local, then |
| // we don't need to use the PLT - we can directly call it. |
| if (Subtarget->isTargetELF() && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { |
| OpFlags = X86II::MO_PLT; |
| } else if (Subtarget->isPICStyleStubAny() && |
| (GV->isDeclaration() || GV->isWeakForLinker()) && |
| Subtarget->getDarwinVers() < 9) { |
| // PC-relative references to external symbols should go through $stub, |
| // unless we're building with the leopard linker or later, which |
| // automatically synthesizes these stubs. |
| OpFlags = X86II::MO_DARWIN_STUB; |
| } |
| |
| Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(), |
| G->getOffset(), OpFlags); |
| } |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| WasGlobalOrExternal = true; |
| unsigned char OpFlags = 0; |
| |
| // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external |
| // symbols should go through the PLT. |
| if (Subtarget->isTargetELF() && |
| getTargetMachine().getRelocationModel() == Reloc::PIC_) { |
| OpFlags = X86II::MO_PLT; |
| } else if (Subtarget->isPICStyleStubAny() && |
| Subtarget->getDarwinVers() < 9) { |
| // PC-relative references to external symbols should go through $stub, |
| // unless we're building with the leopard linker or later, which |
| // automatically synthesizes these stubs. |
| OpFlags = X86II::MO_DARWIN_STUB; |
| } |
| |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), |
| OpFlags); |
| } |
| |
| if (isTailCall && !WasGlobalOrExternal) { |
| // Force the address into a (call preserved) caller-saved register since |
| // tailcall must happen after callee-saved registers are poped. |
| // FIXME: Give it a special register class that contains caller-saved |
| // register instead? |
| unsigned TCReg = Is64Bit ? X86::R11 : X86::EAX; |
| Chain = DAG.getCopyToReg(Chain, dl, |
| DAG.getRegister(TCReg, getPointerTy()), |
| Callee,InFlag); |
| Callee = DAG.getRegister(TCReg, getPointerTy()); |
| } |
| |
| // Returns a chain & a flag for retval copy to use. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SmallVector<SDValue, 8> Ops; |
| |
| if (!IsSibcall && isTailCall) { |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(0, true), InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| if (isTailCall) |
| Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| // Add an implicit use GOT pointer in EBX. |
| if (!isTailCall && Subtarget->isPICStyleGOT()) |
| Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); |
| |
| // Add an implicit use of AL for x86 vararg functions. |
| if (Is64Bit && isVarArg) |
| Ops.push_back(DAG.getRegister(X86::AL, MVT::i8)); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| if (isTailCall) { |
| // If this is the first return lowered for this function, add the regs |
| // to the liveout set for the function. |
| if (MF.getRegInfo().liveout_empty()) { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeCallResult(Ins, RetCC_X86); |
| for (unsigned i = 0; i != RVLocs.size(); ++i) |
| if (RVLocs[i].isRegLoc()) |
| MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg()); |
| } |
| |
| assert(((Callee.getOpcode() == ISD::Register && |
| (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX || |
| cast<RegisterSDNode>(Callee)->getReg() == X86::R11)) || |
| Callee.getOpcode() == ISD::TargetExternalSymbol || |
| Callee.getOpcode() == ISD::TargetGlobalAddress) && |
| "Expecting a global address, external symbol, or scratch register"); |
| |
| return DAG.getNode(X86ISD::TC_RETURN, dl, |
| NodeTys, &Ops[0], Ops.size()); |
| } |
| |
| Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| unsigned NumBytesForCalleeToPush; |
| if (IsCalleePop(isVarArg, CallConv)) |
| NumBytesForCalleeToPush = NumBytes; // Callee pops everything |
| else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet) |
| // If this is a call to a struct-return function, the callee |
| // pops the hidden struct pointer, so we have to push it back. |
| // This is common for Darwin/X86, Linux & Mingw32 targets. |
| NumBytesForCalleeToPush = 4; |
| else |
| NumBytesForCalleeToPush = 0; // Callee pops nothing. |
| |
| // Returns a flag for retval copy to use. |
| if (!IsSibcall) { |
| Chain = DAG.getCALLSEQ_END(Chain, |
| DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(NumBytesForCalleeToPush, |
| true), |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, isVarArg, |
| Ins, dl, DAG, InVals); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Fast Calling Convention (tail call) implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Like std call, callee cleans arguments, convention except that ECX is |
| // reserved for storing the tail called function address. Only 2 registers are |
| // free for argument passing (inreg). Tail call optimization is performed |
| // provided: |
| // * tailcallopt is enabled |
| // * caller/callee are fastcc |
| // On X86_64 architecture with GOT-style position independent code only local |
| // (within module) calls are supported at the moment. |
| // To keep the stack aligned according to platform abi the function |
| // GetAlignedArgumentStackSize ensures that argument delta is always multiples |
| // of stack alignment. (Dynamic linkers need this - darwin's dyld for example) |
| // If a tail called function callee has more arguments than the caller the |
| // caller needs to make sure that there is room to move the RETADDR to. This is |
| // achieved by reserving an area the size of the argument delta right after the |
| // original REtADDR, but before the saved framepointer or the spilled registers |
| // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) |
| // stack layout: |
| // arg1 |
| // arg2 |
| // RETADDR |
| // [ new RETADDR |
| // move area ] |
| // (possible EBP) |
| // ESI |
| // EDI |
| // local1 .. |
| |
| /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned |
| /// for a 16 byte align requirement. |
| unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, |
| SelectionDAG& DAG) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetMachine &TM = MF.getTarget(); |
| const TargetFrameInfo &TFI = *TM.getFrameInfo(); |
| unsigned StackAlignment = TFI.getStackAlignment(); |
| uint64_t AlignMask = StackAlignment - 1; |
| int64_t Offset = StackSize; |
| uint64_t SlotSize = TD->getPointerSize(); |
| if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { |
| // Number smaller than 12 so just add the difference. |
| Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); |
| } else { |
| // Mask out lower bits, add stackalignment once plus the 12 bytes. |
| Offset = ((~AlignMask) & Offset) + StackAlignment + |
| (StackAlignment-SlotSize); |
| } |
| return Offset; |
| } |
| |
| /// MatchingStackOffset - Return true if the given stack call argument is |
| /// already available in the same position (relatively) of the caller's |
| /// incoming argument stack. |
| static |
| bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, |
| MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, |
| const X86InstrInfo *TII) { |
| int FI; |
| if (Arg.getOpcode() == ISD::CopyFromReg) { |
| unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); |
| if (!VR || TargetRegisterInfo::isPhysicalRegister(VR)) |
| return false; |
| MachineInstr *Def = MRI->getVRegDef(VR); |
| if (!Def) |
| return false; |
| if (!Flags.isByVal()) { |
| if (!TII->isLoadFromStackSlot(Def, FI)) |
| return false; |
| } else { |
| unsigned Opcode = Def->getOpcode(); |
| if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) && |
| Def->getOperand(1).isFI()) { |
| FI = Def->getOperand(1).getIndex(); |
| if (MFI->getObjectSize(FI) != Flags.getByValSize()) |
| return false; |
| } else |
| return false; |
| } |
| } else { |
| LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg); |
| if (!Ld) |
| return false; |
| SDValue Ptr = Ld->getBasePtr(); |
| FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); |
| if (!FINode) |
| return false; |
| FI = FINode->getIndex(); |
| } |
| |
| if (!MFI->isFixedObjectIndex(FI)) |
| return false; |
| return Offset == MFI->getObjectOffset(FI); |
| } |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. Targets which want to do tail call |
| /// optimization should implement this function. |
| bool |
| X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const { |
| if (CalleeCC != CallingConv::Fast && |
| CalleeCC != CallingConv::C) |
| return false; |
| |
| // If -tailcallopt is specified, make fastcc functions tail-callable. |
| const Function *CallerF = DAG.getMachineFunction().getFunction(); |
| if (GuaranteedTailCallOpt) { |
| if (CalleeCC == CallingConv::Fast && |
| CallerF->getCallingConv() == CalleeCC) |
| return true; |
| return false; |
| } |
| |
| // Look for obvious safe cases to perform tail call optimization that does not |
| // requite ABI changes. This is what gcc calls sibcall. |
| |
| // Do not tail call optimize vararg calls for now. |
| if (isVarArg) |
| return false; |
| |
| // If the callee takes no arguments then go on to check the results of the |
| // call. |
| if (!Outs.empty()) { |
| // Check if stack adjustment is needed. For now, do not do this if any |
| // argument is passed on the stack. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(), |
| ArgLocs, *DAG.getContext()); |
| CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC)); |
| if (CCInfo.getNextStackOffset()) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) |
| return false; |
| if (Subtarget->isTargetWin64()) |
| // Win64 ABI has additional complications. |
| return false; |
| |
| // Check if the arguments are already laid out in the right way as |
| // the caller's fixed stack objects. |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| const MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| const X86InstrInfo *TII = |
| ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| EVT RegVT = VA.getLocVT(); |
| SDValue Arg = Outs[i].Val; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| return false; |
| if (!VA.isRegLoc()) { |
| if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, |
| MFI, MRI, TII)) |
| return false; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| FastISel * |
| X86TargetLowering::createFastISel(MachineFunction &mf, MachineModuleInfo *mmo, |
| DwarfWriter *dw, |
| DenseMap<const Value *, unsigned> &vm, |
| DenseMap<const BasicBlock*, MachineBasicBlock*> &bm, |
| DenseMap<const AllocaInst *, int> &am |
| #ifndef NDEBUG |
| , SmallSet<Instruction*, 8> &cil |
| #endif |
| ) { |
| return X86::createFastISel(mf, mmo, dw, vm, bm, am |
| #ifndef NDEBUG |
| , cil |
| #endif |
| ); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Other Lowering Hooks |
| //===----------------------------------------------------------------------===// |
| |
| |
| SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| int ReturnAddrIndex = FuncInfo->getRAIndex(); |
| |
| if (ReturnAddrIndex == 0) { |
| // Set up a frame object for the return address. |
| uint64_t SlotSize = TD->getPointerSize(); |
| ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, |
| true, false); |
| FuncInfo->setRAIndex(ReturnAddrIndex); |
| } |
| |
| return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); |
| } |
| |
| |
| bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, |
| bool hasSymbolicDisplacement) { |
| // Offset should fit into 32 bit immediate field. |
| if (!isInt32(Offset)) |
| return false; |
| |
| // If we don't have a symbolic displacement - we don't have any extra |
| // restrictions. |
| if (!hasSymbolicDisplacement) |
| return true; |
| |
| // FIXME: Some tweaks might be needed for medium code model. |
| if (M != CodeModel::Small && M != CodeModel::Kernel) |
| return false; |
| |
| // For small code model we assume that latest object is 16MB before end of 31 |
| // bits boundary. We may also accept pretty large negative constants knowing |
| // that all objects are in the positive half of address space. |
| if (M == CodeModel::Small && Offset < 16*1024*1024) |
| return true; |
| |
| // For kernel code model we know that all object resist in the negative half |
| // of 32bits address space. We may not accept negative offsets, since they may |
| // be just off and we may accept pretty large positive ones. |
| if (M == CodeModel::Kernel && Offset > 0) |
| return true; |
| |
| return false; |
| } |
| |
| /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86 |
| /// specific condition code, returning the condition code and the LHS/RHS of the |
| /// comparison to make. |
| static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP, |
| SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { |
| if (!isFP) { |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { |
| if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { |
| // X > -1 -> X == 0, jump !sign. |
| RHS = DAG.getConstant(0, RHS.getValueType()); |
| return X86::COND_NS; |
| } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { |
| // X < 0 -> X == 0, jump on sign. |
| return X86::COND_S; |
| } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { |
| // X < 1 -> X <= 0 |
| RHS = DAG.getConstant(0, RHS.getValueType()); |
| return X86::COND_LE; |
| } |
| } |
| |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Invalid integer condition!"); |
| case ISD::SETEQ: return X86::COND_E; |
| case ISD::SETGT: return X86::COND_G; |
| case ISD::SETGE: return X86::COND_GE; |
| case ISD::SETLT: return X86::COND_L; |
| case ISD::SETLE: return X86::COND_LE; |
| case ISD::SETNE: return X86::COND_NE; |
| case ISD::SETULT: return X86::COND_B; |
| case ISD::SETUGT: return X86::COND_A; |
| case ISD::SETULE: return X86::COND_BE; |
| case ISD::SETUGE: return X86::COND_AE; |
| } |
| } |
| |
| // First determine if it is required or is profitable to flip the operands. |
| |
| // If LHS is a foldable load, but RHS is not, flip the condition. |
| if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) && |
| !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) { |
| SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); |
| std::swap(LHS, RHS); |
| } |
| |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| std::swap(LHS, RHS); |
| break; |
| } |
| |
| // On a floating point condition, the flags are set as follows: |
| // ZF PF CF op |
| // 0 | 0 | 0 | X > Y |
| // 0 | 0 | 1 | X < Y |
| // 1 | 0 | 0 | X == Y |
| // 1 | 1 | 1 | unordered |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Condcode should be pre-legalized away"); |
| case ISD::SETUEQ: |
| case ISD::SETEQ: return X86::COND_E; |
| case ISD::SETOLT: // flipped |
| case ISD::SETOGT: |
| case ISD::SETGT: return X86::COND_A; |
| case ISD::SETOLE: // flipped |
| case ISD::SETOGE: |
| case ISD::SETGE: return X86::COND_AE; |
| case ISD::SETUGT: // flipped |
| case ISD::SETULT: |
| case ISD::SETLT: return X86::COND_B; |
| case ISD::SETUGE: // flipped |
| case ISD::SETULE: |
| case ISD::SETLE: return X86::COND_BE; |
| case ISD::SETONE: |
| case ISD::SETNE: return X86::COND_NE; |
| case ISD::SETUO: return X86::COND_P; |
| case ISD::SETO: return X86::COND_NP; |
| case ISD::SETOEQ: |
| case ISD::SETUNE: return X86::COND_INVALID; |
| } |
| } |
| |
| /// hasFPCMov - is there a floating point cmov for the specific X86 condition |
| /// code. Current x86 isa includes the following FP cmov instructions: |
| /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. |
| static bool hasFPCMov(unsigned X86CC) { |
| switch (X86CC) { |
| default: |
| return false; |
| case X86::COND_B: |
| case X86::COND_BE: |
| case X86::COND_E: |
| case X86::COND_P: |
| case X86::COND_A: |
| case X86::COND_AE: |
| case X86::COND_NE: |
| case X86::COND_NP: |
| return true; |
| } |
| } |
| |
| /// isFPImmLegal - Returns true if the target can instruction select the |
| /// specified FP immediate natively. If false, the legalizer will |
| /// materialize the FP immediate as a load from a constant pool. |
| bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { |
| for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { |
| if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) |
| return true; |
| } |
| return false; |
| } |
| |
| /// isUndefOrInRange - Return true if Val is undef or if its value falls within |
| /// the specified range (L, H]. |
| static bool isUndefOrInRange(int Val, int Low, int Hi) { |
| return (Val < 0) || (Val >= Low && Val < Hi); |
| } |
| |
| /// isUndefOrEqual - Val is either less than zero (undef) or equal to the |
| /// specified value. |
| static bool isUndefOrEqual(int Val, int CmpVal) { |
| if (Val < 0 || Val == CmpVal) |
| return true; |
| return false; |
| } |
| |
| /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that |
| /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference |
| /// the second operand. |
| static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) { |
| if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16) |
| return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4); |
| if (VT == MVT::v2f64 || VT == MVT::v2i64) |
| return (Mask[0] < 2 && Mask[1] < 2); |
| return false; |
| } |
| |
| bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) { |
| SmallVector<int, 8> M; |
| N->getMask(M); |
| return ::isPSHUFDMask(M, N->getValueType(0)); |
| } |
| |
| /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that |
| /// is suitable for input to PSHUFHW. |
| static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) { |
| if (VT != MVT::v8i16) |
| return false; |
| |
| // Lower quadword copied in order or undef. |
| for (int i = 0; i != 4; ++i) |
| if (Mask[i] >= 0 && Mask[i] != i) |
| return false; |
| |
| // Upper quadword shuffled. |
| for (int i = 4; i != 8; ++i) |
| if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7)) |
| return false; |
| |
| return true; |
| } |
| |
| bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) { |
| SmallVector<int, 8> M; |
| N->getMask(M); |
| return ::isPSHUFHWMask(M, N->getValueType(0)); |
| } |
| |
| /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that |
| /// is suitable for input to PSHUFLW. |
| static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) { |
| if (VT != MVT::v8i16) |
| return false; |
| |
| // Upper quadword copied in order. |
| for (int i = 4; i != 8; ++i) |
| if (Mask[i] >= 0 && Mask[i] != i) |
| return false; |
| |
| // Lower quadword shuffled. |
| for (int i = 0; i != 4; ++i) |
| if (Mask[i] >= 4) |
| return false; |
| |
| return true; |
| } |
| |
| bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) { |
| SmallVector<int, 8> M; |
| N->getMask(M); |
| return ::isPSHUFLWMask(M, N->getValueType(0)); |
| } |
| |
| /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that |
| /// is suitable for input to PALIGNR. |
| static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT, |
| bool hasSSSE3) { |
| int i, e = VT.getVectorNumElements(); |
| |
| // Do not handle v2i64 / v2f64 shuffles with palignr. |
| if (e < 4 || !hasSSSE3) |
| return false; |
| |
| for (i = 0; i != e; ++i) |
| if (Mask[i] >= 0) |
| break; |
| |
| // All undef, not a palignr. |
| if (i == e) |
| return false; |
| |
| // Determine if it's ok to perform a palignr with only the LHS, since we |
| // don't have access to the actual shuffle elements to see if RHS is undef. |
| bool Unary = Mask[i] < (int)e; |
| bool NeedsUnary = false; |
| |
| int s = Mask[i] - i; |
| |
| // Check the rest of the elements to see if they are consecutive. |
| for (++i; i != e; ++i) { |
| int m = Mask[i]; |
| if (m < 0) |
| continue; |
| |
| Unary = Unary && (m < (int)e); |
| NeedsUnary = NeedsUnary || (m < s); |
| |
| if (NeedsUnary && !Unary) |
| return false; |
| if (Unary && m != ((s+i) & (e-1))) |
| return false; |
| if (!Unary && m != (s+i)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) { |
| SmallVector<int, 8> M; |
| N->getMask(M); |
| return ::isPALIGNRMask(M, N->getValueType(0), true); |
| } |
| |
| /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to SHUFP*. |
| static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) { |
| int NumElems = VT.getVectorNumElements(); |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| |
| int Half = NumElems / 2; |
| for (int i = 0; i < Half; ++i) |
| if (!isUndefOrInRange(Mask[i], 0, NumElems)) |
| return false; |
| for (int i = Half; i < NumElems; ++i) |
| if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2)) |
| return false; |
| |
| return true; |
| } |
| |
| bool X86::isSHUFPMask(ShuffleVectorSDNode *N) { |
| SmallVector<int, 8> M; |
| N->getMask(M); |
| return ::isSHUFPMask(M, N->getValueType(0)); |
| } |
| |
| /// isCommutedSHUFP - Returns true if the shuffle mask is exactly |
| /// the reverse of what x86 shuffles want. x86 shuffles requires the lower |
| /// half elements to come from vector 1 (which would equal the dest.) and |
| /// the upper half to come from vector 2. |
| static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) { |
| int NumElems = VT.getVectorNumElements(); |
| |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| |
| int Half = NumElems / 2; |
| for (int i = 0; i < Half; ++i) |
| if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2)) |
| return false; |
| for (int i = Half; i < NumElems; ++i) |
| if (!isUndefOrInRange(Mask[i], 0, NumElems)) |
| return false; |
| return true; |
| } |
| |
| static bool isCommutedSHUFP(ShuffleVectorSDNode *N) { |
| SmallVector<int, 8> M; |
| N->getMask(M); |
| return isCommutedSHUFPMask(M, N->getValueType(0)); |
| } |
| |
| /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVHLPS. |
| bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) { |
| if (N->getValueType(0).getVectorNumElements() != 4) |
| return false; |
| |
| // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 |
| return isUndefOrEqual(N->getMaskElt(0), 6) && |
| isUndefOrEqual(N->getMaskElt(1), 7) && |
| isUndefOrEqual(N->getMaskElt(2), 2) && |
| isUndefOrEqual(N->getMaskElt(3), 3); |
| } |
| |
| /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form |
| /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, |
| /// <2, 3, 2, 3> |
| bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) { |
| unsigned NumElems = N->getValueType(0).getVectorNumElements(); |
| |
| if (NumElems != 4) |
| return false; |
| |
| return isUndefOrEqual(N->getMaskElt(0), 2) && |
| isUndefOrEqual(N->getMaskElt(1), 3) && |
| isUndefOrEqual(N->getMaskElt(2), 2) && |
| isUndefOrEqual(N->getMaskElt(3), 3); |
| } |
| |
| /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. |
| bool X86::isMOVLPMask(ShuffleVectorSDNode *N) { |
| unsigned NumElems = N->getValueType(0).getVectorNumElements(); |
| |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| |
| for (unsigned i = 0; i < NumElems/2; ++i) |
| if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems)) |
| return false; |
| |
| for (unsigned i = NumElems/2; i < NumElems; ++i) |
| if (!isUndefOrEqual(N->getMaskElt(i), i)) |
| return false; |
| |
| return true; |
| } |
| |
| /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVLHPS. |
| bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) { |
| unsigned NumElems = N->getValueType(0).getVectorNumElements(); |
| |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| |
| for (unsigned i = 0; i < NumElems/2; ++i) |
| if (!isUndefOrEqual(N->getMaskElt(i), i)) |
| return false; |
| |
| for (unsigned i = 0; i < NumElems/2; ++i) |
| if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems)) |
| return false; |
| |
| return true; |
| } |
| |
| /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKL. |
| static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT, |
| bool V2IsSplat = false) { |
| int NumElts = VT.getVectorNumElements(); |
| if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) |
| return false; |
| |
| for (int i = 0, j = 0; i != NumElts; i += 2, ++j) { |
| int BitI = Mask[i]; |
| int BitI1 = Mask[i+1]; |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (V2IsSplat) { |
| if (!isUndefOrEqual(BitI1, NumElts)) |
| return false; |
| } else { |
| if (!isUndefOrEqual(BitI1, j + NumElts)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) { |
| SmallVector<int, 8> M; |
| N->getMask(M); |
| return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat); |
| } |
| |
| /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKH. |
| static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT, |
| bool V2IsSplat = false) { |
| int NumElts = VT.getVectorNumElements(); |
| if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) |
| return false; |
| |
| for (int i = 0, j = 0; i != NumElts; i += 2, ++j) { |
| int BitI = Mask[i]; |
| int BitI1 = Mask[i+1]; |
| if (!isUndefOrEqual(BitI, j + NumElts/2)) |
| return false; |
| if (V2IsSplat) { |
| if (isUndefOrEqual(BitI1, NumElts)) |
| return false; |
| } else { |
| if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) { |
| SmallVector<int, 8> M; |
| N->getMask(M); |
| return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat); |
| } |
| |
| /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form |
| /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, |
| /// <0, 0, 1, 1> |
| static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) { |
| int NumElems = VT.getVectorNumElements(); |
| if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| for (int i = 0, j = 0; i != NumElems; i += 2, ++j) { |
| int BitI = Mask[i]; |
| int BitI1 = Mask[i+1]; |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (!isUndefOrEqual(BitI1, j)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) { |
| SmallVector<int, 8> M; |
| N->getMask(M); |
| return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0)); |
| } |
| |
| /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form |
| /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, |
| /// <2, 2, 3, 3> |
| static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) { |
| int NumElems = VT.getVectorNumElements(); |
| if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) { |
| int BitI = Mask[i]; |
| int BitI1 = Mask[i+1]; |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (!isUndefOrEqual(BitI1, j)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) { |
| SmallVector<int, 8> M; |
| N->getMask(M); |
| return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0)); |
| } |
| |
| /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSS, |
| /// MOVSD, and MOVD, i.e. setting the lowest element. |
| static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) { |
| if (VT.getVectorElementType().getSizeInBits() < 32) |
| return false; |
| |
| int NumElts = VT.getVectorNumElements(); |
| |
| if (!isUndefOrEqual(Mask[0], NumElts)) |
| return false; |
| |
| for (int i = 1; i < NumElts; ++i) |
| if (!isUndefOrEqual(Mask[i], i)) |
| return false; |
| |
| return true; |
| } |
| |
| bool X86::isMOVLMask(ShuffleVectorSDNode *N) { |
| SmallVector<int, 8> M; |
| N->getMask(M); |
| return ::isMOVLMask(M, N->getValueType(0)); |
| } |
| |
| /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse |
| /// of what x86 movss want. X86 movs requires the lowest element to be lowest |
| /// element of vector 2 and the other elements to come from vector 1 in order. |
| static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT, |
| bool V2IsSplat = false, bool V2IsUndef = false) { |
| int NumOps = VT.getVectorNumElements(); |
| if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) |
| return false; |
| |
| if (!isUndefOrEqual(Mask[0], 0)) |
| return false; |
| |
| for (int i = 1; i < NumOps; ++i) |
| if (!(isUndefOrEqual(Mask[i], i+NumOps) || |
| (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) || |
| (V2IsSplat && isUndefOrEqual(Mask[i], NumOps)))) |
| return false; |
| |
| return true; |
| } |
| |
| static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false, |
| bool V2IsUndef = false) { |
| SmallVector<int, 8> M; |
| N->getMask(M); |
| return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef); |
| } |
| |
| /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. |
| bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) { |
| if (N->getValueType(0).getVectorNumElements() != 4) |
| return false; |
| |
| // Expect 1, 1, 3, 3 |
| for (unsigned i = 0; i < 2; ++i) { |
| int Elt = N->getMaskElt(i); |
| if (Elt >= 0 && Elt != 1) |
| return false; |
| } |
| |
| bool HasHi = false; |
| for (unsigned i = 2; i < 4; ++i) { |
| int Elt = N->getMaskElt(i); |
| if (Elt >= 0 && Elt != 3) |
| return false; |
| if (Elt == 3) |
| HasHi = true; |
| } |
| // Don't use movshdup if it can be done with a shufps. |
| // FIXME: verify that matching u, u, 3, 3 is what we want. |
| return HasHi; |
| } |
| |
| /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. |
| bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) { |
| if (N->getValueType(0).getVectorNumElements() != 4) |
| return false; |
| |
| // Expect 0, 0, 2, 2 |
| for (unsigned i = 0; i < 2; ++i) |
| if (N->getMaskElt(i) > 0) |
| return false; |
| |
| bool HasHi = false; |
| for (unsigned i = 2; i < 4; ++i) { |
| int Elt = N->getMaskElt(i); |
| if (Elt >= 0 && Elt != 2) |
| return false; |
| if (Elt == 2) |
| HasHi = true; |
| } |
| // Don't use movsldup if it can be done with a shufps. |
| return HasHi; |
| } |
| |
| /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVDDUP. |
| bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) { |
| int e = N->getValueType(0).getVectorNumElements() / 2; |
| |
| for (int i = 0; i < e; ++i) |
| if (!isUndefOrEqual(N->getMaskElt(i), i)) |
| return false; |
| for (int i = 0; i < e; ++i) |
| if (!isUndefOrEqual(N->getMaskElt(e+i), i)) |
| return false; |
| return true; |
| } |
| |
| /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions. |
| unsigned X86::getShuffleSHUFImmediate(SDNode *N) { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); |
| int NumOperands = SVOp->getValueType(0).getVectorNumElements(); |
| |
| unsigned Shift = (NumOperands == 4) ? 2 : 1; |
| unsigned Mask = 0; |
| for (int i = 0; i < NumOperands; ++i) { |
| int Val = SVOp->getMaskElt(NumOperands-i-1); |
| if (Val < 0) Val = 0; |
| if (Val >= NumOperands) Val -= NumOperands; |
| Mask |= Val; |
| if (i != NumOperands - 1) |
| Mask <<= Shift; |
| } |
| return Mask; |
| } |
| |
| /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction. |
| unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); |
| unsigned Mask = 0; |
| // 8 nodes, but we only care about the last 4. |
| for (unsigned i = 7; i >= 4; --i) { |
| int Val = SVOp->getMaskElt(i); |
| if (Val >= 0) |
| Mask |= (Val - 4); |
| if (i != 4) |
| Mask <<= 2; |
| } |
| return Mask; |
| } |
| |
| /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction. |
| unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); |
| unsigned Mask = 0; |
| // 8 nodes, but we only care about the first 4. |
| for (int i = 3; i >= 0; --i) { |
| int Val = SVOp->getMaskElt(i); |
| if (Val >= 0) |
| Mask |= Val; |
| if (i != 0) |
| Mask <<= 2; |
| } |
| return Mask; |
| } |
| |
| /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction. |
| unsigned X86::getShufflePALIGNRImmediate(SDNode *N) { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); |
| EVT VVT = N->getValueType(0); |
| unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3; |
| int Val = 0; |
| |
| unsigned i, e; |
| for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) { |
| Val = SVOp->getMaskElt(i); |
| if (Val >= 0) |
| break; |
| } |
| return (Val - i) * EltSize; |
| } |
| |
| /// isZeroNode - Returns true if Elt is a constant zero or a floating point |
| /// constant +0.0. |
| bool X86::isZeroNode(SDValue Elt) { |
| return ((isa<ConstantSDNode>(Elt) && |
| cast<ConstantSDNode>(Elt)->getZExtValue() == 0) || |
| (isa<ConstantFPSDNode>(Elt) && |
| cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); |
| } |
| |
| /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in |
| /// their permute mask. |
| static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp, |
| SelectionDAG &DAG) { |
| EVT VT = SVOp->getValueType(0); |
| unsigned NumElems = VT.getVectorNumElements(); |
| SmallVector<int, 8> MaskVec; |
| |
| for (unsigned i = 0; i != NumElems; ++i) { |
| int idx = SVOp->getMaskElt(i); |
| if (idx < 0) |
| MaskVec.push_back(idx); |
| else if (idx < (int)NumElems) |
| MaskVec.push_back(idx + NumElems); |
| else |
| MaskVec.push_back(idx - NumElems); |
| } |
| return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1), |
| SVOp->getOperand(0), &MaskVec[0]); |
| } |
| |
| /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming |
| /// the two vector operands have swapped position. |
| static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| int idx = Mask[i]; |
| if (idx < 0) |
| continue; |
| else if (idx < (int)NumElems) |
| Mask[i] = idx + NumElems; |
| else |
| Mask[i] = idx - NumElems; |
| } |
| } |
| |
| /// ShouldXformToMOVHLPS - Return true if the node should be transformed to |
| /// match movhlps. The lower half elements should come from upper half of |
| /// V1 (and in order), and the upper half elements should come from the upper |
| /// half of V2 (and in order). |
| static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) { |
| if (Op->getValueType(0).getVectorNumElements() != 4) |
| return false; |
| for (unsigned i = 0, e = 2; i != e; ++i) |
| if (!isUndefOrEqual(Op->getMaskElt(i), i+2)) |
| return false; |
| for (unsigned i = 2; i != 4; ++i) |
| if (!isUndefOrEqual(Op->getMaskElt(i), i+4)) |
| return false; |
| return true; |
| } |
| |
| /// isScalarLoadToVector - Returns true if the node is a scalar load that |
| /// is promoted to a vector. It also returns the LoadSDNode by reference if |
| /// required. |
| static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { |
| if (N->getOpcode() != ISD::SCALAR_TO_VECTOR) |
| return false; |
| N = N->getOperand(0).getNode(); |
| if (!ISD::isNON_EXTLoad(N)) |
| return false; |
| if (LD) |
| *LD = cast<LoadSDNode>(N); |
| return true; |
| } |
| |
| /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to |
| /// match movlp{s|d}. The lower half elements should come from lower half of |
| /// V1 (and in order), and the upper half elements should come from the upper |
| /// half of V2 (and in order). And since V1 will become the source of the |
| /// MOVLP, it must be either a vector load or a scalar load to vector. |
| static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, |
| ShuffleVectorSDNode *Op) { |
| if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) |
| return false; |
| // Is V2 is a vector load, don't do this transformation. We will try to use |
| // load folding shufps op. |
| if (ISD::isNON_EXTLoad(V2)) |
| return false; |
| |
| unsigned NumElems = Op->getValueType(0).getVectorNumElements(); |
| |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) |
| if (!isUndefOrEqual(Op->getMaskElt(i), i)) |
| return false; |
| for (unsigned i = NumElems/2; i != NumElems; ++i) |
| if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems)) |
| return false; |
| return true; |
| } |
| |
| /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are |
| /// all the same. |
| static bool isSplatVector(SDNode *N) { |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| SDValue SplatValue = N->getOperand(0); |
| for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) |
| if (N->getOperand(i) != SplatValue) |
| return false; |
| return true; |
| } |
| |
| /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved |
| /// to an zero vector. |
| /// FIXME: move to dag combiner / method on ShuffleVectorSDNode |
| static bool isZeroShuffle(ShuffleVectorSDNode *N) { |
| SDValue V1 = N->getOperand(0); |
| SDValue V2 = N->getOperand(1); |
| unsigned NumElems = N->getValueType(0).getVectorNumElements(); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| int Idx = N->getMaskElt(i); |
| if (Idx >= (int)NumElems) { |
| unsigned Opc = V2.getOpcode(); |
| if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) |
| continue; |
| if (Opc != ISD::BUILD_VECTOR || |
| !X86::isZeroNode(V2.getOperand(Idx-NumElems))) |
| return false; |
| } else if (Idx >= 0) { |
| unsigned Opc = V1.getOpcode(); |
| if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) |
| continue; |
| if (Opc != ISD::BUILD_VECTOR || |
| !X86::isZeroNode(V1.getOperand(Idx))) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// getZeroVector - Returns a vector of specified type with all zero elements. |
| /// |
| static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG, |
| DebugLoc dl) { |
| assert(VT.isVector() && "Expected a vector type"); |
| |
| // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest |
| // type. This ensures they get CSE'd. |
| SDValue Vec; |
| if (VT.getSizeInBits() == 64) { // MMX |
| SDValue Cst = DAG.getTargetConstant(0, MVT::i32); |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst); |
| } else if (HasSSE2) { // SSE2 |
| SDValue Cst = DAG.getTargetConstant(0, MVT::i32); |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); |
| } else { // SSE1 |
| SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); |
| } |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); |
| } |
| |
| /// getOnesVector - Returns a vector of specified type with all bits set. |
| /// |
| static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) { |
| assert(VT.isVector() && "Expected a vector type"); |
| |
| // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest |
| // type. This ensures they get CSE'd. |
| SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); |
| SDValue Vec; |
| if (VT.getSizeInBits() == 64) // MMX |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst); |
| else // SSE |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); |
| } |
| |
| |
| /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements |
| /// that point to V2 points to its first element. |
| static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { |
| EVT VT = SVOp->getValueType(0); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| bool Changed = false; |
| SmallVector<int, 8> MaskVec; |
| SVOp->getMask(MaskVec); |
| |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (MaskVec[i] > (int)NumElems) { |
| MaskVec[i] = NumElems; |
| Changed = true; |
| } |
| } |
| if (Changed) |
| return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0), |
| SVOp->getOperand(1), &MaskVec[0]); |
| return SDValue(SVOp, 0); |
| } |
| |
| /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd |
| /// operation of specified width. |
| static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, |
| SDValue V2) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| SmallVector<int, 8> Mask; |
| Mask.push_back(NumElems); |
| for (unsigned i = 1; i != NumElems; ++i) |
| Mask.push_back(i); |
| return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); |
| } |
| |
| /// getUnpackl - Returns a vector_shuffle node for an unpackl operation. |
| static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, |
| SDValue V2) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| SmallVector<int, 8> Mask; |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) { |
| Mask.push_back(i); |
| Mask.push_back(i + NumElems); |
| } |
| return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); |
| } |
| |
| /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation. |
| static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, |
| SDValue V2) { |
| unsigned NumElems = VT.getVectorNumElements(); |
| unsigned Half = NumElems/2; |
| SmallVector<int, 8> Mask; |
| for (unsigned i = 0; i != Half; ++i) { |
| Mask.push_back(i + Half); |
| Mask.push_back(i + NumElems + Half); |
| } |
| return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); |
| } |
| |
| /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32. |
| static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG, |
| bool HasSSE2) { |
| if (SV->getValueType(0).getVectorNumElements() <= 4) |
| return SDValue(SV, 0); |
| |
| EVT PVT = MVT::v4f32; |
| EVT VT = SV->getValueType(0); |
| DebugLoc dl = SV->getDebugLoc(); |
| SDValue V1 = SV->getOperand(0); |
| int NumElems = VT.getVectorNumElements(); |
| int EltNo = SV->getSplatIndex(); |
| |
| // unpack elements to the correct location |
| while (NumElems > 4) { |
| if (EltNo < NumElems/2) { |
| V1 = getUnpackl(DAG, dl, VT, V1, V1); |
| } else { |
| V1 = getUnpackh(DAG, dl, VT, V1, V1); |
| EltNo -= NumElems/2; |
| } |
| NumElems >>= 1; |
| } |
| |
| // Perform the splat. |
| int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo }; |
| V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1); |
| V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1); |
| } |
| |
| /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified |
| /// vector of zero or undef vector. This produces a shuffle where the low |
| /// element of V2 is swizzled into the zero/undef vector, landing at element |
| /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). |
| static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, |
| bool isZero, bool HasSSE2, |
| SelectionDAG &DAG) { |
| EVT VT = V2.getValueType(); |
| SDValue V1 = isZero |
| ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT); |
| unsigned NumElems = VT.getVectorNumElements(); |
| SmallVector<int, 16> MaskVec; |
| for (unsigned i = 0; i != NumElems; ++i) |
| // If this is the insertion idx, put the low elt of V2 here. |
| MaskVec.push_back(i == Idx ? NumElems : i); |
| return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]); |
| } |
| |
| /// getNumOfConsecutiveZeros - Return the number of elements in a result of |
| /// a shuffle that is zero. |
| static |
| unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems, |
| bool Low, SelectionDAG &DAG) { |
| unsigned NumZeros = 0; |
| for (int i = 0; i < NumElems; ++i) { |
| unsigned Index = Low ? i : NumElems-i-1; |
| int Idx = SVOp->getMaskElt(Index); |
| if (Idx < 0) { |
| ++NumZeros; |
| continue; |
| } |
| SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index); |
| if (Elt.getNode() && X86::isZeroNode(Elt)) |
| ++NumZeros; |
| else |
| break; |
| } |
| return NumZeros; |
| } |
| |
| /// isVectorShift - Returns true if the shuffle can be implemented as a |
| /// logical left or right shift of a vector. |
| /// FIXME: split into pslldqi, psrldqi, palignr variants. |
| static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, |
| bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { |
| int NumElems = SVOp->getValueType(0).getVectorNumElements(); |
| |
| isLeft = true; |
| unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG); |
| if (!NumZeros) { |
| isLeft = false; |
| NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG); |
| if (!NumZeros) |
| return false; |
| } |
| bool SeenV1 = false; |
| bool SeenV2 = false; |
| for (int i = NumZeros; i < NumElems; ++i) { |
| int Val = isLeft ? (i - NumZeros) : i; |
| int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros)); |
| if (Idx < 0) |
| continue; |
| if (Idx < NumElems) |
| SeenV1 = true; |
| else { |
| Idx -= NumElems; |
| SeenV2 = true; |
| } |
| if (Idx != Val) |
| return false; |
| } |
| if (SeenV1 && SeenV2) |
| return false; |
| |
| ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1); |
| ShAmt = NumZeros; |
| return true; |
| } |
| |
| |
| /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. |
| /// |
| static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG, TargetLowering &TLI) { |
| if (NumNonZero > 8) |
| return SDValue(); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue V(0, 0); |
| bool First = true; |
| for (unsigned i = 0; i < 16; ++i) { |
| bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; |
| if (ThisIsNonZero && First) { |
| if (NumZero) |
| V = getZeroVector(MVT::v8i16, true, DAG, dl); |
| else |
| V = DAG.getUNDEF(MVT::v8i16); |
| First = false; |
| } |
| |
| if ((i & 1) != 0) { |
| SDValue ThisElt(0, 0), LastElt(0, 0); |
| bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; |
| if (LastIsNonZero) { |
| LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, |
| MVT::i16, Op.getOperand(i-1)); |
| } |
| if (ThisIsNonZero) { |
| ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); |
| ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, |
| ThisElt, DAG.getConstant(8, MVT::i8)); |
| if (LastIsNonZero) |
| ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); |
| } else |
| ThisElt = LastElt; |
| |
| if (ThisElt.getNode()) |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, |
| DAG.getIntPtrConstant(i/2)); |
| } |
| } |
| |
| return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V); |
| } |
| |
| /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. |
| /// |
| static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG, TargetLowering &TLI) { |
| if (NumNonZero > 4) |
| return SDValue(); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue V(0, 0); |
| bool First = true; |
| for (unsigned i = 0; i < 8; ++i) { |
| bool isNonZero = (NonZeros & (1 << i)) != 0; |
| if (isNonZero) { |
| if (First) { |
| if (NumZero) |
| V = getZeroVector(MVT::v8i16, true, DAG, dl); |
| else |
| V = DAG.getUNDEF(MVT::v8i16); |
| First = false; |
| } |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, |
| MVT::v8i16, V, Op.getOperand(i), |
| DAG.getIntPtrConstant(i)); |
| } |
| } |
| |
| return V; |
| } |
| |
| /// getVShift - Return a vector logical shift node. |
| /// |
| static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, |
| unsigned NumBits, SelectionDAG &DAG, |
| const TargetLowering &TLI, DebugLoc dl) { |
| bool isMMX = VT.getSizeInBits() == 64; |
| EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64; |
| unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL; |
| SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, |
| DAG.getNode(Opc, dl, ShVT, SrcOp, |
| DAG.getConstant(NumBits, TLI.getShiftAmountTy()))); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl, |
| SelectionDAG &DAG) { |
| |
| // Check if the scalar load can be widened into a vector load. And if |
| // the address is "base + cst" see if the cst can be "absorbed" into |
| // the shuffle mask. |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) { |
| SDValue Ptr = LD->getBasePtr(); |
| if (!ISD::isNormalLoad(LD) || LD->isVolatile()) |
| return SDValue(); |
| EVT PVT = LD->getValueType(0); |
| if (PVT != MVT::i32 && PVT != MVT::f32) |
| return SDValue(); |
| |
| int FI = -1; |
| int64_t Offset = 0; |
| if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) { |
| FI = FINode->getIndex(); |
| Offset = 0; |
| } else if (Ptr.getOpcode() == ISD::ADD && |
| isa<ConstantSDNode>(Ptr.getOperand(1)) && |
| isa<FrameIndexSDNode>(Ptr.getOperand(0))) { |
| FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); |
| Offset = Ptr.getConstantOperandVal(1); |
| Ptr = Ptr.getOperand(0); |
| } else { |
| return SDValue(); |
| } |
| |
| SDValue Chain = LD->getChain(); |
| // Make sure the stack object alignment is at least 16. |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| if (DAG.InferPtrAlignment(Ptr) < 16) { |
| if (MFI->isFixedObjectIndex(FI)) { |
| // Can't change the alignment. FIXME: It's possible to compute |
| // the exact stack offset and reference FI + adjust offset instead. |
| // If someone *really* cares about this. That's the way to implement it. |
| return SDValue(); |
| } else { |
| MFI->setObjectAlignment(FI, 16); |
| } |
| } |
| |
| // (Offset % 16) must be multiple of 4. Then address is then |
| // Ptr + (Offset & ~15). |
| if (Offset < 0) |
| return SDValue(); |
| if ((Offset % 16) & 3) |
| return SDValue(); |
| int64_t StartOffset = Offset & ~15; |
| if (StartOffset) |
| Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(), |
| Ptr,DAG.getConstant(StartOffset, Ptr.getValueType())); |
| |
| int EltNo = (Offset - StartOffset) >> 2; |
| int Mask[4] = { EltNo, EltNo, EltNo, EltNo }; |
| EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32; |
| SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0); |
| // Canonicalize it to a v4i32 shuffle. |
| V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, |
| DAG.getVectorShuffle(MVT::v4i32, dl, V1, |
| DAG.getUNDEF(MVT::v4i32), &Mask[0])); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| // All zero's are handled with pxor, all one's are handled with pcmpeqd. |
| if (ISD::isBuildVectorAllZeros(Op.getNode()) |
| || ISD::isBuildVectorAllOnes(Op.getNode())) { |
| // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to |
| // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are |
| // eliminated on x86-32 hosts. |
| if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32) |
| return Op; |
| |
| if (ISD::isBuildVectorAllOnes(Op.getNode())) |
| return getOnesVector(Op.getValueType(), DAG, dl); |
| return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl); |
| } |
| |
| EVT VT = Op.getValueType(); |
| EVT ExtVT = VT.getVectorElementType(); |
| unsigned EVTBits = ExtVT.getSizeInBits(); |
| |
| unsigned NumElems = Op.getNumOperands(); |
| unsigned NumZero = 0; |
| unsigned NumNonZero = 0; |
| unsigned NonZeros = 0; |
| bool IsAllConstants = true; |
| SmallSet<SDValue, 8> Values; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue Elt = Op.getOperand(i); |
| if (Elt.getOpcode() == ISD::UNDEF) |
| continue; |
| Values.insert(Elt); |
| if (Elt.getOpcode() != ISD::Constant && |
| Elt.getOpcode() != ISD::ConstantFP) |
| IsAllConstants = false; |
| if (X86::isZeroNode(Elt)) |
| NumZero++; |
| else { |
| NonZeros |= (1 << i); |
| NumNonZero++; |
| } |
| } |
| |
| if (NumNonZero == 0) { |
| // All undef vector. Return an UNDEF. All zero vectors were handled above. |
| return DAG.getUNDEF(VT); |
| } |
| |
| // Special case for single non-zero, non-undef, element. |
| if (NumNonZero == 1) { |
| unsigned Idx = CountTrailingZeros_32(NonZeros); |
| SDValue Item = Op.getOperand(Idx); |
| |
| // If this is an insertion of an i64 value on x86-32, and if the top bits of |
| // the value are obviously zero, truncate the value to i32 and do the |
| // insertion that way. Only do this if the value is non-constant or if the |
| // value is a constant being inserted into element 0. It is cheaper to do |
| // a constant pool load than it is to do a movd + shuffle. |
| if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && |
| (!IsAllConstants || Idx == 0)) { |
| if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { |
| // Handle MMX and SSE both. |
| EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32; |
| unsigned VecElts = VT == MVT::v2i64 ? 4 : 2; |
| |
| // Truncate the value (which may itself be a constant) to i32, and |
| // convert it to a vector with movd (S2V+shuffle to zero extend). |
| Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); |
| Item = getShuffleVectorZeroOrUndef(Item, 0, true, |
| Subtarget->hasSSE2(), DAG); |
| |
| // Now we have our 32-bit value zero extended in the low element of |
| // a vector. If Idx != 0, swizzle it into place. |
| if (Idx != 0) { |
| SmallVector<int, 4> Mask; |
| Mask.push_back(Idx); |
| for (unsigned i = 1; i != VecElts; ++i) |
| Mask.push_back(i); |
| Item = DAG.getVectorShuffle(VecVT, dl, Item, |
| DAG.getUNDEF(Item.getValueType()), |
| &Mask[0]); |
| } |
| return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item); |
| } |
| } |
| |
| // If we have a constant or non-constant insertion into the low element of |
| // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into |
| // the rest of the elements. This will be matched as movd/movq/movss/movsd |
| // depending on what the source datatype is. |
| if (Idx == 0) { |
| if (NumZero == 0) { |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); |
| } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || |
| (ExtVT == MVT::i64 && Subtarget->is64Bit())) { |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); |
| // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. |
| return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(), |
| DAG); |
| } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { |
| Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); |
| EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32; |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item); |
| Item = getShuffleVectorZeroOrUndef(Item, 0, true, |
| Subtarget->hasSSE2(), DAG); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item); |
| } |
| } |
| |
| // Is it a vector logical left shift? |
| if (NumElems == 2 && Idx == 1 && |
| X86::isZeroNode(Op.getOperand(0)) && |
| !X86::isZeroNode(Op.getOperand(1))) { |
| unsigned NumBits = VT.getSizeInBits(); |
| return getVShift(true, VT, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| VT, Op.getOperand(1)), |
| NumBits/2, DAG, *this, dl); |
| } |
| |
| if (IsAllConstants) // Otherwise, it's better to do a constpool load. |
| return SDValue(); |
| |
| // Otherwise, if this is a vector with i32 or f32 elements, and the element |
| // is a non-constant being inserted into an element other than the low one, |
| // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka |
| // movd/movss) to move this into the low element, then shuffle it into |
| // place. |
| if (EVTBits == 32) { |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); |
| |
| // Turn it into a shuffle of zero and zero-extended scalar to vector. |
| Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, |
| Subtarget->hasSSE2(), DAG); |
| SmallVector<int, 8> MaskVec; |
| for (unsigned i = 0; i < NumElems; i++) |
| MaskVec.push_back(i == Idx ? 0 : 1); |
| return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]); |
| } |
| } |
| |
| // Splat is obviously ok. Let legalizer expand it to a shuffle. |
| if (Values.size() == 1) { |
| if (EVTBits == 32) { |
| // Instead of a shuffle like this: |
| // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> |
| // Check if it's possible to issue this instead. |
| // shuffle (vload ptr)), undef, <1, 1, 1, 1> |
| unsigned Idx = CountTrailingZeros_32(NonZeros); |
| SDValue Item = Op.getOperand(Idx); |
| if (Op.getNode()->isOnlyUserOf(Item.getNode())) |
| return LowerAsSplatVectorLoad(Item, VT, dl, DAG); |
| } |
| return SDValue(); |
| } |
| |
| // A vector full of immediates; various special cases are already |
| // handled, so this is best done with a single constant-pool load. |
| if (IsAllConstants) |
| return SDValue(); |
| |
| // Let legalizer expand 2-wide build_vectors. |
| if (EVTBits == 64) { |
| if (NumNonZero == 1) { |
| // One half is zero or undef. |
| unsigned Idx = CountTrailingZeros_32(NonZeros); |
| SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, |
| Op.getOperand(Idx)); |
| return getShuffleVectorZeroOrUndef(V2, Idx, true, |
| Subtarget->hasSSE2(), DAG); |
| } |
| return SDValue(); |
| } |
| |
| // If element VT is < 32 bits, convert it to inserts into a zero vector. |
| if (EVTBits == 8 && NumElems == 16) { |
| SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, |
| *this); |
| if (V.getNode()) return V; |
| } |
| |
| if (EVTBits == 16 && NumElems == 8) { |
| SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, |
| *this); |
| if (V.getNode()) return V; |
| } |
| |
| // If element VT is == 32 bits, turn it into a number of shuffles. |
| SmallVector<SDValue, 8> V; |
| V.resize(NumElems); |
| if (NumElems == 4 && NumZero > 0) { |
| for (unsigned i = 0; i < 4; ++i) { |
| bool isZero = !(NonZeros & (1 << i)); |
| if (isZero) |
| V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl); |
| else |
| V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); |
| } |
| |
| for (unsigned i = 0; i < 2; ++i) { |
| switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { |
| default: break; |
| case 0: |
| V[i] = V[i*2]; // Must be a zero vector. |
| break; |
| case 1: |
| V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); |
| break; |
| case 2: |
| V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); |
| break; |
| case 3: |
| V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); |
| break; |
| } |
| } |
| |
| SmallVector<int, 8> MaskVec; |
| bool Reverse = (NonZeros & 0x3) == 2; |
| for (unsigned i = 0; i < 2; ++i) |
| MaskVec.push_back(Reverse ? 1-i : i); |
| Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; |
| for (unsigned i = 0; i < 2; ++i) |
| MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems); |
| return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); |
| } |
| |
| if (Values.size() > 2) { |
| // If we have SSE 4.1, Expand into a number of inserts unless the number of |
| // values to be inserted is equal to the number of elements, in which case |
| // use the unpack code below in the hopes of matching the consecutive elts |
| // load merge pattern for shuffles. |
| // FIXME: We could probably just check that here directly. |
| if (Values.size() < NumElems && VT.getSizeInBits() == 128 && |
| getSubtarget()->hasSSE41()) { |
| V[0] = DAG.getUNDEF(VT); |
| for (unsigned i = 0; i < NumElems; ++i) |
| if (Op.getOperand(i).getOpcode() != ISD::UNDEF) |
| V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0], |
| Op.getOperand(i), DAG.getIntPtrConstant(i)); |
| return V[0]; |
| } |
| // Expand into a number of unpckl*. |
| // e.g. for v4f32 |
| // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> |
| // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> |
| // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> |
| for (unsigned i = 0; i < NumElems; ++i) |
| V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); |
| NumElems >>= 1; |
| while (NumElems != 0) { |
| for (unsigned i = 0; i < NumElems; ++i) |
| V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]); |
| NumElems >>= 1; |
| } |
| return V[0]; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { |
| // We support concatenate two MMX registers and place them in a MMX |
| // register. This is better than doing a stack convert. |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT ResVT = Op.getValueType(); |
| assert(Op.getNumOperands() == 2); |
| assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 || |
| ResVT == MVT::v8i16 || ResVT == MVT::v16i8); |
| int Mask[2]; |
| SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0)); |
| SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec); |
| InVec = Op.getOperand(1); |
| if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| unsigned NumElts = ResVT.getVectorNumElements(); |
| VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp); |
| VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp, |
| InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1)); |
| } else { |
| InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec); |
| SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec); |
| Mask[0] = 0; Mask[1] = 2; |
| VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask); |
| } |
| return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp); |
| } |
| |
| // v8i16 shuffles - Prefer shuffles in the following order: |
| // 1. [all] pshuflw, pshufhw, optional move |
| // 2. [ssse3] 1 x pshufb |
| // 3. [ssse3] 2 x pshufb + 1 x por |
| // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw) |
| static |
| SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp, |
| SelectionDAG &DAG, X86TargetLowering &TLI) { |
| SDValue V1 = SVOp->getOperand(0); |
| SDValue V2 = SVOp->getOperand(1); |
| DebugLoc dl = SVOp->getDebugLoc(); |
| SmallVector<int, 8> MaskVals; |
| |
| // Determine if more than 1 of the words in each of the low and high quadwords |
| // of the result come from the same quadword of one of the two inputs. Undef |
| // mask values count as coming from any quadword, for better codegen. |
| SmallVector<unsigned, 4> LoQuad(4); |
| SmallVector<unsigned, 4> HiQuad(4); |
| BitVector InputQuads(4); |
| for (unsigned i = 0; i < 8; ++i) { |
| SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad; |
| int EltIdx = SVOp->getMaskElt(i); |
| MaskVals.push_back(EltIdx); |
| if (EltIdx < 0) { |
| ++Quad[0]; |
| ++Quad[1]; |
| ++Quad[2]; |
| ++Quad[3]; |
| continue; |
| } |
| ++Quad[EltIdx / 4]; |
| InputQuads.set(EltIdx / 4); |
| } |
| |
| int BestLoQuad = -1; |
| unsigned MaxQuad = 1; |
| for (unsigned i = 0; i < 4; ++i) { |
| if (LoQuad[i] > MaxQuad) { |
| BestLoQuad = i; |
| MaxQuad = LoQuad[i]; |
| } |
| } |
| |
| int BestHiQuad = -1; |
| MaxQuad = 1; |
| for (unsigned i = 0; i < 4; ++i) { |
| if (HiQuad[i] > MaxQuad) { |
| BestHiQuad = i; |
| MaxQuad = HiQuad[i]; |
| } |
| } |
| |
| // For SSSE3, If all 8 words of the result come from only 1 quadword of each |
| // of the two input vectors, shuffle them into one input vector so only a |
| // single pshufb instruction is necessary. If There are more than 2 input |
| // quads, disable the next transformation since it does not help SSSE3. |
| bool V1Used = InputQuads[0] || InputQuads[1]; |
| bool V2Used = InputQuads[2] || InputQuads[3]; |
| if (TLI.getSubtarget()->hasSSSE3()) { |
| if (InputQuads.count() == 2 && V1Used && V2Used) { |
| BestLoQuad = InputQuads.find_first(); |
| BestHiQuad = InputQuads.find_next(BestLoQuad); |
| } |
| if (InputQuads.count() > 2) { |
| BestLoQuad = -1; |
| BestHiQuad = -1; |
| } |
| } |
| |
| // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update |
| // the shuffle mask. If a quad is scored as -1, that means that it contains |
| // words from all 4 input quadwords. |
| SDValue NewV; |
| if (BestLoQuad >= 0 || BestHiQuad >= 0) { |
| SmallVector<int, 8> MaskV; |
| MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad); |
| MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad); |
| NewV = DAG.getVectorShuffle(MVT::v2i64, dl, |
| DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1), |
| DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]); |
| NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV); |
| |
| // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the |
| // source words for the shuffle, to aid later transformations. |
| bool AllWordsInNewV = true; |
| bool InOrder[2] = { true, true }; |
| for (unsigned i = 0; i != 8; ++i) { |
| int idx = MaskVals[i]; |
| if (idx != (int)i) |
| InOrder[i/4] = false; |
| if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad) |
| continue; |
| AllWordsInNewV = false; |
| break; |
| } |
| |
| bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV; |
| if (AllWordsInNewV) { |
| for (int i = 0; i != 8; ++i) { |
| int idx = MaskVals[i]; |
| if (idx < 0) |
| continue; |
| idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4; |
| if ((idx != i) && idx < 4) |
| pshufhw = false; |
| if ((idx != i) && idx > 3) |
| pshuflw = false; |
| } |
| V1 = NewV; |
| V2Used = false; |
| BestLoQuad = 0; |
| BestHiQuad = 1; |
| } |
| |
| // If we've eliminated the use of V2, and the new mask is a pshuflw or |
| // pshufhw, that's as cheap as it gets. Return the new shuffle. |
| if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) { |
| return DAG.getVectorShuffle(MVT::v8i16, dl, NewV, |
| DAG.getUNDEF(MVT::v8i16), &MaskVals[0]); |
| } |
| } |
| |
| // If we have SSSE3, and all words of the result are from 1 input vector, |
| // case 2 is generated, otherwise case 3 is generated. If no SSSE3 |
| // is present, fall back to case 4. |
| if (TLI.getSubtarget()->hasSSSE3()) { |
| SmallVector<SDValue,16> pshufbMask; |
| |
| // If we have elements from both input vectors, set the high bit of the |
| // shuffle mask element to zero out elements that come from V2 in the V1 |
| // mask, and elements that come from V1 in the V2 mask, so that the two |
| // results can be OR'd together. |
| bool TwoInputs = V1Used && V2Used; |
| for (unsigned i = 0; i != 8; ++i) { |
| int EltIdx = MaskVals[i] * 2; |
| if (TwoInputs && (EltIdx >= 16)) { |
| pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); |
| continue; |
| } |
| pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8)); |
| } |
| V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1); |
| V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, |
| MVT::v16i8, &pshufbMask[0], 16)); |
| if (!TwoInputs) |
| return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1); |
| |
| // Calculate the shuffle mask for the second input, shuffle it, and |
| // OR it with the first shuffled input. |
| pshufbMask.clear(); |
| for (unsigned i = 0; i != 8; ++i) { |
| int EltIdx = MaskVals[i] * 2; |
| if (EltIdx < 16) { |
| pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); |
| continue; |
| } |
| pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8)); |
| pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8)); |
| } |
| V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2); |
| V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, |
| MVT::v16i8, &pshufbMask[0], 16)); |
| V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1); |
| } |
| |
| // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order, |
| // and update MaskVals with new element order. |
| BitVector InOrder(8); |
| if (BestLoQuad >= 0) { |
| SmallVector<int, 8> MaskV; |
| for (int i = 0; i != 4; ++i) { |
| int idx = MaskVals[i]; |
| if (idx < 0) { |
| MaskV.push_back(-1); |
| InOrder.set(i); |
| } else if ((idx / 4) == BestLoQuad) { |
| MaskV.push_back(idx & 3); |
| InOrder.set(i); |
| } else { |
| MaskV.push_back(-1); |
| } |
| } |
| for (unsigned i = 4; i != 8; ++i) |
| MaskV.push_back(i); |
| NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), |
| &MaskV[0]); |
| } |
| |
| // If BestHi >= 0, generate a pshufhw to put the high elements in order, |
| // and update MaskVals with the new element order. |
| if (BestHiQuad >= 0) { |
| SmallVector<int, 8> MaskV; |
| for (unsigned i = 0; i != 4; ++i) |
| MaskV.push_back(i); |
| for (unsigned i = 4; i != 8; ++i) { |
| int idx = MaskVals[i]; |
| if (idx < 0) { |
| MaskV.push_back(-1); |
| InOrder.set(i); |
| } else if ((idx / 4) == BestHiQuad) { |
| MaskV.push_back((idx & 3) + 4); |
| InOrder.set(i); |
| } else { |
| MaskV.push_back(-1); |
| } |
| } |
| NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), |
| &MaskV[0]); |
| } |
| |
| // In case BestHi & BestLo were both -1, which means each quadword has a word |
| // from each of the four input quadwords, calculate the InOrder bitvector now |
| // before falling through to the insert/extract cleanup. |
| if (BestLoQuad == -1 && BestHiQuad == -1) { |
| NewV = V1; |
| for (int i = 0; i != 8; ++i) |
| if (MaskVals[i] < 0 || MaskVals[i] == i) |
| InOrder.set(i); |
| } |
| |
| // The other elements are put in the right place using pextrw and pinsrw. |
| for (unsigned i = 0; i != 8; ++i) { |
| if (InOrder[i]) |
| continue; |
| int EltIdx = MaskVals[i]; |
| if (EltIdx < 0) |
| continue; |
| SDValue ExtOp = (EltIdx < 8) |
| ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1, |
| DAG.getIntPtrConstant(EltIdx)) |
| : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2, |
| DAG.getIntPtrConstant(EltIdx - 8)); |
| NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp, |
| DAG.getIntPtrConstant(i)); |
| } |
| return NewV; |
| } |
| |
| // v16i8 shuffles - Prefer shuffles in the following order: |
| // 1. [ssse3] 1 x pshufb |
| // 2. [ssse3] 2 x pshufb + 1 x por |
| // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw |
| static |
| SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, |
| SelectionDAG &DAG, X86TargetLowering &TLI) { |
| SDValue V1 = SVOp->getOperand(0); |
| SDValue V2 = SVOp->getOperand(1); |
| DebugLoc dl = SVOp->getDebugLoc(); |
| SmallVector<int, 16> MaskVals; |
| SVOp->getMask(MaskVals); |
| |
| // If we have SSSE3, case 1 is generated when all result bytes come from |
| // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is |
| // present, fall back to case 3. |
| // FIXME: kill V2Only once shuffles are canonizalized by getNode. |
| bool V1Only = true; |
| bool V2Only = true; |
| for (unsigned i = 0; i < 16; ++i) { |
| int EltIdx = MaskVals[i]; |
| if (EltIdx < 0) |
| continue; |
| if (EltIdx < 16) |
| V2Only = false; |
| else |
| V1Only = false; |
| } |
| |
| // If SSSE3, use 1 pshufb instruction per vector with elements in the result. |
| if (TLI.getSubtarget()->hasSSSE3()) { |
| SmallVector<SDValue,16> pshufbMask; |
| |
| // If all result elements are from one input vector, then only translate |
| // undef mask values to 0x80 (zero out result) in the pshufb mask. |
| // |
| // Otherwise, we have elements from both input vectors, and must zero out |
| // elements that come from V2 in the first mask, and V1 in the second mask |
| // so that we can OR them together. |
| bool TwoInputs = !(V1Only || V2Only); |
| for (unsigned i = 0; i != 16; ++i) { |
| int EltIdx = MaskVals[i]; |
| if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) { |
| pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); |
| continue; |
| } |
| pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); |
| } |
| // If all the elements are from V2, assign it to V1 and return after |
| // building the first pshufb. |
| if (V2Only) |
| V1 = V2; |
| V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, |
| MVT::v16i8, &pshufbMask[0], 16)); |
| if (!TwoInputs) |
| return V1; |
| |
| // Calculate the shuffle mask for the second input, shuffle it, and |
| // OR it with the first shuffled input. |
| pshufbMask.clear(); |
| for (unsigned i = 0; i != 16; ++i) { |
| int EltIdx = MaskVals[i]; |
| if (EltIdx < 16) { |
| pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); |
| continue; |
| } |
| pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8)); |
| } |
| V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, dl, |
| MVT::v16i8, &pshufbMask[0], 16)); |
| return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); |
| } |
| |
| // No SSSE3 - Calculate in place words and then fix all out of place words |
| // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from |
| // the 16 different words that comprise the two doublequadword input vectors. |
| V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1); |
| V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2); |
| SDValue NewV = V2Only ? V2 : V1; |
| for (int i = 0; i != 8; ++i) { |
| int Elt0 = MaskVals[i*2]; |
| int Elt1 = MaskVals[i*2+1]; |
| |
| // This word of the result is all undef, skip it. |
| if (Elt0 < 0 && Elt1 < 0) |
| continue; |
| |
| // This word of the result is already in the correct place, skip it. |
| if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1)) |
| continue; |
| if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17)) |
| continue; |
| |
| SDValue Elt0Src = Elt0 < 16 ? V1 : V2; |
| SDValue Elt1Src = Elt1 < 16 ? V1 : V2; |
| SDValue InsElt; |
| |
| // If Elt0 and Elt1 are defined, are consecutive, and can be load |
| // using a single extract together, load it and store it. |
| if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) { |
| InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, |
| DAG.getIntPtrConstant(Elt1 / 2)); |
| NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, |
| DAG.getIntPtrConstant(i)); |
| continue; |
| } |
| |
| // If Elt1 is defined, extract it from the appropriate source. If the |
| // source byte is not also odd, shift the extracted word left 8 bits |
| // otherwise clear the bottom 8 bits if we need to do an or. |
| if (Elt1 >= 0) { |
| InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, |
| DAG.getIntPtrConstant(Elt1 / 2)); |
| if ((Elt1 & 1) == 0) |
| InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt, |
| DAG.getConstant(8, TLI.getShiftAmountTy())); |
| else if (Elt0 >= 0) |
| InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt, |
| DAG.getConstant(0xFF00, MVT::i16)); |
| } |
| // If Elt0 is defined, extract it from the appropriate source. If the |
| // source byte is not also even, shift the extracted word right 8 bits. If |
| // Elt1 was also defined, OR the extracted values together before |
| // inserting them in the result. |
| if (Elt0 >= 0) { |
| SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, |
| Elt0Src, DAG.getIntPtrConstant(Elt0 / 2)); |
| if ((Elt0 & 1) != 0) |
| InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0, |
| DAG.getConstant(8, TLI.getShiftAmountTy())); |
| else if (Elt1 >= 0) |
| InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0, |
| DAG.getConstant(0x00FF, MVT::i16)); |
| InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0) |
| : InsElt0; |
| } |
| NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, |
| DAG.getIntPtrConstant(i)); |
| } |
| return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV); |
| } |
| |
| /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide |
| /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be |
| /// done when every pair / quad of shuffle mask elements point to elements in |
| /// the right sequence. e.g. |
| /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15> |
| static |
| SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, |
| SelectionDAG &DAG, |
| TargetLowering &TLI, DebugLoc dl) { |
| EVT VT = SVOp->getValueType(0); |
| SDValue V1 = SVOp->getOperand(0); |
| SDValue V2 = SVOp->getOperand(1); |
| unsigned NumElems = VT.getVectorNumElements(); |
| unsigned NewWidth = (NumElems == 4) ? 2 : 4; |
| EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth); |
| EVT MaskEltVT = MaskVT.getVectorElementType(); |
| EVT NewVT = MaskVT; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: assert(false && "Unexpected!"); |
| case MVT::v4f32: NewVT = MVT::v2f64; break; |
| case MVT::v4i32: NewVT = MVT::v2i64; break; |
| case MVT::v8i16: NewVT = MVT::v4i32; break; |
| case MVT::v16i8: NewVT = MVT::v4i32; break; |
| } |
| |
| if (NewWidth == 2) { |
| if (VT.isInteger()) |
| NewVT = MVT::v2i64; |
| else |
| NewVT = MVT::v2f64; |
| } |
| int Scale = NumElems / NewWidth; |
| SmallVector<int, 8> MaskVec; |
| for (unsigned i = 0; i < NumElems; i += Scale) { |
| int StartIdx = -1; |
| for (int j = 0; j < Scale; ++j) { |
| int EltIdx = SVOp->getMaskElt(i+j); |
| if (EltIdx < 0) |
| continue; |
| if (StartIdx == -1) |
| StartIdx = EltIdx - (EltIdx % Scale); |
| if (EltIdx != StartIdx + j) |
| return SDValue(); |
| } |
| if (StartIdx == -1) |
| MaskVec.push_back(-1); |
| else |
| MaskVec.push_back(StartIdx / Scale); |
| } |
| |
| V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1); |
| V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2); |
| return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]); |
| } |
| |
| /// getVZextMovL - Return a zero-extending vector move low node. |
| /// |
| static SDValue getVZextMovL(EVT VT, EVT OpVT, |
| SDValue SrcOp, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget, DebugLoc dl) { |
| if (VT == MVT::v2f64 || VT == MVT::v4f32) { |
| LoadSDNode *LD = NULL; |
| if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) |
| LD = dyn_cast<LoadSDNode>(SrcOp); |
| if (!LD) { |
| // movssrr and movsdrr do not clear top bits. Try to use movd, movq |
| // instead. |
| MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; |
| if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) && |
| SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && |
| SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT && |
| SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) { |
| // PR2108 |
| OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, |
| DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| OpVT, |
| SrcOp.getOperand(0) |
| .getOperand(0)))); |
| } |
| } |
| } |
| |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, |
| DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, |
| DAG.getNode(ISD::BIT_CONVERT, dl, |
| OpVT, SrcOp))); |
| } |
| |
| /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of |
| /// shuffles. |
| static SDValue |
| LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { |
| SDValue V1 = SVOp->getOperand(0); |
| SDValue V2 = SVOp->getOperand(1); |
| DebugLoc dl = SVOp->getDebugLoc(); |
| EVT VT = SVOp->getValueType(0); |
| |
| SmallVector<std::pair<int, int>, 8> Locs; |
| Locs.resize(4); |
| SmallVector<int, 8> Mask1(4U, -1); |
| SmallVector<int, 8> PermMask; |
| SVOp->getMask(PermMask); |
| |
| unsigned NumHi = 0; |
| unsigned NumLo = 0; |
| for (unsigned i = 0; i != 4; ++i) { |
| int Idx = PermMask[i]; |
| if (Idx < 0) { |
| Locs[i] = std::make_pair(-1, -1); |
| } else { |
| assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!"); |
| if (Idx < 4) { |
| Locs[i] = std::make_pair(0, NumLo); |
| Mask1[NumLo] = Idx; |
| NumLo++; |
| } else { |
| Locs[i] = std::make_pair(1, NumHi); |
| if (2+NumHi < 4) |
| Mask1[2+NumHi] = Idx; |
| NumHi++; |
| } |
| } |
| } |
| |
| if (NumLo <= 2 && NumHi <= 2) { |
| // If no more than two elements come from either vector. This can be |
| // implemented with two shuffles. First shuffle gather the elements. |
| // The second shuffle, which takes the first shuffle as both of its |
| // vector operands, put the elements into the right order. |
| V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); |
| |
| SmallVector<int, 8> Mask2(4U, -1); |
| |
| for (unsigned i = 0; i != 4; ++i) { |
| if (Locs[i].first == -1) |
| continue; |
| else { |
| unsigned Idx = (i < 2) ? 0 : 4; |
| Idx += Locs[i].first * 2 + Locs[i].second; |
| Mask2[i] = Idx; |
| } |
| } |
| |
| return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]); |
| } else if (NumLo == 3 || NumHi == 3) { |
| // Otherwise, we must have three elements from one vector, call it X, and |
| // one element from the other, call it Y. First, use a shufps to build an |
| // intermediate vector with the one element from Y and the element from X |
| // that will be in the same half in the final destination (the indexes don't |
| // matter). Then, use a shufps to build the final vector, taking the half |
| // containing the element from Y from the intermediate, and the other half |
| // from X. |
| if (NumHi == 3) { |
| // Normalize it so the 3 elements come from V1. |
| CommuteVectorShuffleMask(PermMask, VT); |
| std::swap(V1, V2); |
| } |
| |
| // Find the element from V2. |
| unsigned HiIndex; |
| for (HiIndex = 0; HiIndex < 3; ++HiIndex) { |
| int Val = PermMask[HiIndex]; |
| if (Val < 0) |
| continue; |
| if (Val >= 4) |
| break; |
| } |
| |
| Mask1[0] = PermMask[HiIndex]; |
| Mask1[1] = -1; |
| Mask1[2] = PermMask[HiIndex^1]; |
| Mask1[3] = -1; |
| V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); |
| |
| if (HiIndex >= 2) { |
| Mask1[0] = PermMask[0]; |
| Mask1[1] = PermMask[1]; |
| Mask1[2] = HiIndex & 1 ? 6 : 4; |
| Mask1[3] = HiIndex & 1 ? 4 : 6; |
| return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); |
| } else { |
| Mask1[0] = HiIndex & 1 ? 2 : 0; |
| Mask1[1] = HiIndex & 1 ? 0 : 2; |
| Mask1[2] = PermMask[2]; |
| Mask1[3] = PermMask[3]; |
| if (Mask1[2] >= 0) |
| Mask1[2] += 4; |
| if (Mask1[3] >= 0) |
| Mask1[3] += 4; |
| return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]); |
| } |
| } |
| |
| // Break it into (shuffle shuffle_hi, shuffle_lo). |
| Locs.clear(); |
| SmallVector<int,8> LoMask(4U, -1); |
| SmallVector<int,8> HiMask(4U, -1); |
| |
| SmallVector<int,8> *MaskPtr = &LoMask; |
| unsigned MaskIdx = 0; |
| unsigned LoIdx = 0; |
| unsigned HiIdx = 2; |
| for (unsigned i = 0; i != 4; ++i) { |
| if (i == 2) { |
| MaskPtr = &HiMask; |
| MaskIdx = 1; |
| LoIdx = 0; |
| HiIdx = 2; |
| } |
| int Idx = PermMask[i]; |
| if (Idx < 0) { |
| Locs[i] = std::make_pair(-1, -1); |
| } else if (Idx < 4) { |
| Locs[i] = std::make_pair(MaskIdx, LoIdx); |
| (*MaskPtr)[LoIdx] = Idx; |
| LoIdx++; |
| } else { |
| Locs[i] = std::make_pair(MaskIdx, HiIdx); |
| (*MaskPtr)[HiIdx] = Idx; |
| HiIdx++; |
| } |
| } |
| |
| SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]); |
| SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]); |
| SmallVector<int, 8> MaskOps; |
| for (unsigned i = 0; i != 4; ++i) { |
| if (Locs[i].first == -1) { |
| MaskOps.push_back(-1); |
| } else { |
| unsigned Idx = Locs[i].first * 4 + Locs[i].second; |
| MaskOps.push_back(Idx); |
| } |
| } |
| return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| bool isMMX = VT.getSizeInBits() == 64; |
| bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; |
| bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; |
| bool V1IsSplat = false; |
| bool V2IsSplat = false; |
| |
| if (isZeroShuffle(SVOp)) |
| return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl); |
| |
| // Promote splats to v4f32. |
| if (SVOp->isSplat()) { |
| if (isMMX || NumElems < 4) |
| return Op; |
| return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2()); |
| } |
| |
| // If the shuffle can be profitably rewritten as a narrower shuffle, then |
| // do it! |
| if (VT == MVT::v8i16 || VT == MVT::v16i8) { |
| SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl); |
| if (NewOp.getNode()) |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, |
| LowerVECTOR_SHUFFLE(NewOp, DAG)); |
| } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { |
| // FIXME: Figure out a cleaner way to do this. |
| // Try to make use of movq to zero out the top part. |
| if (ISD::isBuildVectorAllZeros(V2.getNode())) { |
| SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl); |
| if (NewOp.getNode()) { |
| if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false)) |
| return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0), |
| DAG, Subtarget, dl); |
| } |
| } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { |
| SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl); |
| if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp))) |
| return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1), |
| DAG, Subtarget, dl); |
| } |
| } |
| |
| if (X86::isPSHUFDMask(SVOp)) |
| return Op; |
| |
| // Check if this can be converted into a logical shift. |
| bool isLeft = false; |
| unsigned ShAmt = 0; |
| SDValue ShVal; |
| bool isShift = getSubtarget()->hasSSE2() && |
| isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt); |
| if (isShift && ShVal.hasOneUse()) { |
| // If the shifted value has multiple uses, it may be cheaper to use |
| // v_set0 + movlhps or movhlps, etc. |
| EVT EltVT = VT.getVectorElementType(); |
| ShAmt *= EltVT.getSizeInBits(); |
| return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); |
| } |
| |
| if (X86::isMOVLMask(SVOp)) { |
| if (V1IsUndef) |
| return V2; |
| if (ISD::isBuildVectorAllZeros(V1.getNode())) |
| return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl); |
| if (!isMMX) |
| return Op; |
| } |
| |
| // FIXME: fold these into legal mask. |
| if (!isMMX && (X86::isMOVSHDUPMask(SVOp) || |
| X86::isMOVSLDUPMask(SVOp) || |
| X86::isMOVHLPSMask(SVOp) || |
| X86::isMOVLHPSMask(SVOp) || |
| X86::isMOVLPMask(SVOp))) |
| return Op; |
| |
| if (ShouldXformToMOVHLPS(SVOp) || |
| ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp)) |
| return CommuteVectorShuffle(SVOp, DAG); |
| |
| if (isShift) { |
| // No better options. Use a vshl / vsrl. |
| EVT EltVT = VT.getVectorElementType(); |
| ShAmt *= EltVT.getSizeInBits(); |
| return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); |
| } |
| |
| bool Commuted = false; |
| // FIXME: This should also accept a bitcast of a splat? Be careful, not |
| // 1,1,1,1 -> v8i16 though. |
| V1IsSplat = isSplatVector(V1.getNode()); |
| V2IsSplat = isSplatVector(V2.getNode()); |
| |
| // Canonicalize the splat or undef, if present, to be on the RHS. |
| if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { |
| Op = CommuteVectorShuffle(SVOp, DAG); |
| SVOp = cast<ShuffleVectorSDNode>(Op); |
| V1 = SVOp->getOperand(0); |
| V2 = SVOp->getOperand(1); |
| std::swap(V1IsSplat, V2IsSplat); |
| std::swap(V1IsUndef, V2IsUndef); |
| Commuted = true; |
| } |
| |
| if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) { |
| // Shuffling low element of v1 into undef, just return v1. |
| if (V2IsUndef) |
| return V1; |
| // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which |
| // the instruction selector will not match, so get a canonical MOVL with |
| // swapped operands to undo the commute. |
| return getMOVL(DAG, dl, VT, V2, V1); |
| } |
| |
| if (X86::isUNPCKL_v_undef_Mask(SVOp) || |
| X86::isUNPCKH_v_undef_Mask(SVOp) || |
| X86::isUNPCKLMask(SVOp) || |
| X86::isUNPCKHMask(SVOp)) |
| return Op; |
| |
| if (V2IsSplat) { |
| // Normalize mask so all entries that point to V2 points to its first |
| // element then try to match unpck{h|l} again. If match, return a |
| // new vector_shuffle with the corrected mask. |
| SDValue NewMask = NormalizeMask(SVOp, DAG); |
| ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask); |
| if (NSVOp != SVOp) { |
| if (X86::isUNPCKLMask(NSVOp, true)) { |
| return NewMask; |
| } else if (X86::isUNPCKHMask(NSVOp, true)) { |
| return NewMask; |
| } |
| } |
| } |
| |
| if (Commuted) { |
| // Commute is back and try unpck* again. |
| // FIXME: this seems wrong. |
| SDValue NewOp = CommuteVectorShuffle(SVOp, DAG); |
| ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp); |
| if (X86::isUNPCKL_v_undef_Mask(NewSVOp) || |
| X86::isUNPCKH_v_undef_Mask(NewSVOp) || |
| X86::isUNPCKLMask(NewSVOp) || |
| X86::isUNPCKHMask(NewSVOp)) |
| return NewOp; |
| } |
| |
| // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle. |
| |
| // Normalize the node to match x86 shuffle ops if needed |
| if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp)) |
| return CommuteVectorShuffle(SVOp, DAG); |
| |
| // Check for legal shuffle and return? |
| SmallVector<int, 16> PermMask; |
| SVOp->getMask(PermMask); |
| if (isShuffleMaskLegal(PermMask, VT)) |
| return Op; |
| |
| // Handle v8i16 specifically since SSE can do byte extraction and insertion. |
| if (VT == MVT::v8i16) { |
| SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this); |
| if (NewOp.getNode()) |
| return NewOp; |
| } |
| |
| if (VT == MVT::v16i8) { |
| SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this); |
| if (NewOp.getNode()) |
| return NewOp; |
| } |
| |
| // Handle all 4 wide cases with a number of shuffles except for MMX. |
| if (NumElems == 4 && !isMMX) |
| return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG); |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, |
| SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| if (VT.getSizeInBits() == 8) { |
| SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, |
| Op.getOperand(0), Op.getOperand(1)); |
| SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, |
| DAG.getValueType(VT)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); |
| } else if (VT.getSizeInBits() == 16) { |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| // If Idx is 0, it's cheaper to do a move instead of a pextrw. |
| if (Idx == 0) |
| return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, |
| DAG.getNode(ISD::BIT_CONVERT, dl, |
| MVT::v4i32, |
| Op.getOperand(0)), |
| Op.getOperand(1))); |
| SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, |
| Op.getOperand(0), Op.getOperand(1)); |
| SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, |
| DAG.getValueType(VT)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); |
| } else if (VT == MVT::f32) { |
| // EXTRACTPS outputs to a GPR32 register which will require a movd to copy |
| // the result back to FR32 register. It's only worth matching if the |
| // result has a single use which is a store or a bitcast to i32. And in |
| // the case of a store, it's not worth it if the index is a constant 0, |
| // because a MOVSSmr can be used instead, which is smaller and faster. |
| if (!Op.hasOneUse()) |
| return SDValue(); |
| SDNode *User = *Op.getNode()->use_begin(); |
| if ((User->getOpcode() != ISD::STORE || |
| (isa<ConstantSDNode>(Op.getOperand(1)) && |
| cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) && |
| (User->getOpcode() != ISD::BIT_CONVERT || |
| User->getValueType(0) != MVT::i32)) |
| return SDValue(); |
| SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, |
| DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, |
| Op.getOperand(0)), |
| Op.getOperand(1)); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract); |
| } else if (VT == MVT::i32) { |
| // ExtractPS works with constant index. |
| if (isa<ConstantSDNode>(Op.getOperand(1))) |
| return Op; |
| } |
| return SDValue(); |
| } |
| |
| |
| SDValue |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { |
| if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| return SDValue(); |
| |
| if (Subtarget->hasSSE41()) { |
| SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); |
| if (Res.getNode()) |
| return Res; |
| } |
| |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| // TODO: handle v16i8. |
| if (VT.getSizeInBits() == 16) { |
| SDValue Vec = Op.getOperand(0); |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| if (Idx == 0) |
| return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, |
| DAG.getNode(ISD::BIT_CONVERT, dl, |
| MVT::v4i32, Vec), |
| Op.getOperand(1))); |
| // Transform it so it match pextrw which produces a 32-bit result. |
| EVT EltVT = MVT::i32; |
| SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, |
| Op.getOperand(0), Op.getOperand(1)); |
| SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, |
| DAG.getValueType(VT)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); |
| } else if (VT.getSizeInBits() == 32) { |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| if (Idx == 0) |
| return Op; |
| |
| // SHUFPS the element to the lowest double word, then movss. |
| int Mask[4] = { Idx, -1, -1, -1 }; |
| EVT VVT = Op.getOperand(0).getValueType(); |
| SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), |
| DAG.getUNDEF(VVT), Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, |
| DAG.getIntPtrConstant(0)); |
| } else if (VT.getSizeInBits() == 64) { |
| // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b |
| // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught |
| // to match extract_elt for f64. |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| if (Idx == 0) |
| return Op; |
| |
| // UNPCKHPD the element to the lowest double word, then movsd. |
| // Note if the lower 64 bits of the result of the UNPCKHPD is then stored |
| // to a f64mem, the whole operation is folded into a single MOVHPDmr. |
| int Mask[2] = { 1, -1 }; |
| EVT VVT = Op.getOperand(0).getValueType(); |
| SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), |
| DAG.getUNDEF(VVT), Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, |
| DAG.getIntPtrConstant(0)); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){ |
| EVT VT = Op.getValueType(); |
| EVT EltVT = VT.getVectorElementType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| SDValue N2 = Op.getOperand(2); |
| |
| if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) && |
| isa<ConstantSDNode>(N2)) { |
| unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB |
| : X86ISD::PINSRW; |
| // Transform it so it match pinsr{b,w} which expects a GR32 as its second |
| // argument. |
| if (N1.getValueType() != MVT::i32) |
| N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); |
| if (N2.getValueType() != MVT::i32) |
| N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); |
| return DAG.getNode(Opc, dl, VT, N0, N1, N2); |
| } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) { |
| // Bits [7:6] of the constant are the source select. This will always be |
| // zero here. The DAG Combiner may combine an extract_elt index into these |
| // bits. For example (insert (extract, 3), 2) could be matched by putting |
| // the '3' into bits [7:6] of X86ISD::INSERTPS. |
| // Bits [5:4] of the constant are the destination select. This is the |
| // value of the incoming immediate. |
| // Bits [3:0] of the constant are the zero mask. The DAG Combiner may |
| // combine either bitwise AND or insert of float 0.0 to set these bits. |
| N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4); |
| // Create this as a scalar to vector.. |
| N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); |
| return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); |
| } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) { |
| // PINSR* works with constant index. |
| return Op; |
| } |
| return SDValue(); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| EVT EltVT = VT.getVectorElementType(); |
| |
| if (Subtarget->hasSSE41()) |
| return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); |
| |
| if (EltVT == MVT::i8) |
| return SDValue(); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| SDValue N2 = Op.getOperand(2); |
| |
| if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) { |
| // Transform it so it match pinsrw which expects a 16-bit value in a GR32 |
| // as its second argument. |
| if (N1.getValueType() != MVT::i32) |
| N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); |
| if (N2.getValueType() != MVT::i32) |
| N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); |
| return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); |
| } |
| return SDValue(); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| if (Op.getValueType() == MVT::v2f32) |
| return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32, |
| DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, |
| Op.getOperand(0)))); |
| |
| if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); |
| |
| SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); |
| EVT VT = MVT::v2i32; |
| switch (Op.getValueType().getSimpleVT().SimpleTy) { |
| default: break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| VT = MVT::v4i32; |
| break; |
| } |
| return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt)); |
| } |
| |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as |
| // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is |
| // one of the above mentioned nodes. It has to be wrapped because otherwise |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only |
| // be used to form addressing mode. These wrapped nodes will be selected |
| // into MOV32ri. |
| SDValue |
| X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) { |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| |
| // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the |
| // global base reg. |
| unsigned char OpFlag = 0; |
| unsigned WrapperKind = X86ISD::Wrapper; |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| |
| if (Subtarget->isPICStyleRIPRel() && |
| (M == CodeModel::Small || M == CodeModel::Kernel)) |
| WrapperKind = X86ISD::WrapperRIP; |
| else if (Subtarget->isPICStyleGOT()) |
| OpFlag = X86II::MO_GOTOFF; |
| else if (Subtarget->isPICStyleStubPIC()) |
| OpFlag = X86II::MO_PIC_BASE_OFFSET; |
| |
| SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(), |
| CP->getAlignment(), |
| CP->getOffset(), OpFlag); |
| DebugLoc DL = CP->getDebugLoc(); |
| Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); |
| // With PIC, the address is actually $g + Offset. |
| if (OpFlag) { |
| Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, |
| DebugLoc::getUnknownLoc(), getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) { |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| |
| // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the |
| // global base reg. |
| unsigned char OpFlag = 0; |
| unsigned WrapperKind = X86ISD::Wrapper; |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| |
| if (Subtarget->isPICStyleRIPRel() && |
| (M == CodeModel::Small || M == CodeModel::Kernel)) |
| WrapperKind = X86ISD::WrapperRIP; |
| else if (Subtarget->isPICStyleGOT()) |
| OpFlag = X86II::MO_GOTOFF; |
| else if (Subtarget->isPICStyleStubPIC()) |
| OpFlag = X86II::MO_PIC_BASE_OFFSET; |
| |
| SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), |
| OpFlag); |
| DebugLoc DL = JT->getDebugLoc(); |
| Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); |
| |
| // With PIC, the address is actually $g + Offset. |
| if (OpFlag) { |
| Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, |
| DebugLoc::getUnknownLoc(), getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) { |
| const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); |
| |
| // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the |
| // global base reg. |
| unsigned char OpFlag = 0; |
| unsigned WrapperKind = X86ISD::Wrapper; |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| |
| if (Subtarget->isPICStyleRIPRel() && |
| (M == CodeModel::Small || M == CodeModel::Kernel)) |
| WrapperKind = X86ISD::WrapperRIP; |
| else if (Subtarget->isPICStyleGOT()) |
| OpFlag = X86II::MO_GOTOFF; |
| else if (Subtarget->isPICStyleStubPIC()) |
| OpFlag = X86II::MO_PIC_BASE_OFFSET; |
| |
| SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag); |
| |
| DebugLoc DL = Op.getDebugLoc(); |
| Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); |
| |
| |
| // With PIC, the address is actually $g + Offset. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && |
| !Subtarget->is64Bit()) { |
| Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, |
| DebugLoc::getUnknownLoc(), |
| getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) { |
| // Create the TargetBlockAddressAddress node. |
| unsigned char OpFlags = |
| Subtarget->ClassifyBlockAddressReference(); |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue Result = DAG.getBlockAddress(BA, getPointerTy(), |
| /*isTarget=*/true, OpFlags); |
| |
| if (Subtarget->isPICStyleRIPRel() && |
| (M == CodeModel::Small || M == CodeModel::Kernel)) |
| Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); |
| else |
| Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); |
| |
| // With PIC, the address is actually $g + Offset. |
| if (isGlobalRelativeToPICBase(OpFlags)) { |
| Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, |
| int64_t Offset, |
| SelectionDAG &DAG) const { |
| // Create the TargetGlobalAddress node, folding in the constant |
| // offset if it is legal. |
| unsigned char OpFlags = |
| Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| SDValue Result; |
| if (OpFlags == X86II::MO_NO_FLAG && |
| X86::isOffsetSuitableForCodeModel(Offset, M)) { |
| // A direct static reference to a global. |
| Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset); |
| Offset = 0; |
| } else { |
| Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags); |
| } |
| |
| if (Subtarget->isPICStyleRIPRel() && |
| (M == CodeModel::Small || M == CodeModel::Kernel)) |
| Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); |
| else |
| Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); |
| |
| // With PIC, the address is actually $g + Offset. |
| if (isGlobalRelativeToPICBase(OpFlags)) { |
| Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), |
| Result); |
| } |
| |
| // For globals that require a load from a stub to get the address, emit the |
| // load. |
| if (isGlobalStubReference(OpFlags)) |
| Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result, |
| PseudoSourceValue::getGOT(), 0); |
| |
| // If there was a non-zero offset that we didn't fold, create an explicit |
| // addition for it. |
| if (Offset != 0) |
| Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result, |
| DAG.getConstant(Offset, getPointerTy())); |
| |
| return Result; |
| } |
| |
| SDValue |
| X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) { |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); |
| return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); |
| } |
| |
| static SDValue |
| GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, |
| SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, |
| unsigned char OperandFlags) { |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| DebugLoc dl = GA->getDebugLoc(); |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), |
| GA->getValueType(0), |
| GA->getOffset(), |
| OperandFlags); |
| if (InFlag) { |
| SDValue Ops[] = { Chain, TGA, *InFlag }; |
| Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3); |
| } else { |
| SDValue Ops[] = { Chain, TGA }; |
| Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2); |
| } |
| |
| // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. |
| MFI->setHasCalls(true); |
| |
| SDValue Flag = Chain.getValue(1); |
| return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit |
| static SDValue |
| LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| const EVT PtrVT) { |
| SDValue InFlag; |
| DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better |
| SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, |
| DAG.getNode(X86ISD::GlobalBaseReg, |
| DebugLoc::getUnknownLoc(), |
| PtrVT), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit |
| static SDValue |
| LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| const EVT PtrVT) { |
| return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, |
| X86::RAX, X86II::MO_TLSGD); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or |
| // "local exec" model. |
| static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, |
| const EVT PtrVT, TLSModel::Model model, |
| bool is64Bit) { |
| DebugLoc dl = GA->getDebugLoc(); |
| // Get the Thread Pointer |
| SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress, |
| DebugLoc::getUnknownLoc(), PtrVT, |
| DAG.getRegister(is64Bit? X86::FS : X86::GS, |
| MVT::i32)); |
| |
| SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base, |
| NULL, 0); |
| |
| unsigned char OperandFlags = 0; |
| // Most TLS accesses are not RIP relative, even on x86-64. One exception is |
| // initialexec. |
| unsigned WrapperKind = X86ISD::Wrapper; |
| if (model == TLSModel::LocalExec) { |
| OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; |
| } else if (is64Bit) { |
| assert(model == TLSModel::InitialExec); |
| OperandFlags = X86II::MO_GOTTPOFF; |
| WrapperKind = X86ISD::WrapperRIP; |
| } else { |
| assert(model == TLSModel::InitialExec); |
| OperandFlags = X86II::MO_INDNTPOFF; |
| } |
| |
| // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial |
| // exec) |
| SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), |
| GA->getOffset(), OperandFlags); |
| SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); |
| |
| if (model == TLSModel::InitialExec) |
| Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, |
| PseudoSourceValue::getGOT(), 0); |
| |
| // The address of the thread local variable is the add of the thread |
| // pointer with the offset of the variable. |
| return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) { |
| // TODO: implement the "local dynamic" model |
| // TODO: implement the "initial exec"model for pic executables |
| assert(Subtarget->isTargetELF() && |
| "TLS not implemented for non-ELF targets"); |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| const GlobalValue *GV = GA->getGlobal(); |
| |
| // If GV is an alias then use the aliasee for determining |
| // thread-localness. |
| if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) |
| GV = GA->resolveAliasedGlobal(false); |
| |
| TLSModel::Model model = getTLSModel(GV, |
| getTargetMachine().getRelocationModel()); |
| |
| switch (model) { |
| case TLSModel::GeneralDynamic: |
| case TLSModel::LocalDynamic: // not implemented |
| if (Subtarget->is64Bit()) |
| return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); |
| return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); |
| |
| case TLSModel::InitialExec: |
| case TLSModel::LocalExec: |
| return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, |
| Subtarget->is64Bit()); |
| } |
| |
| llvm_unreachable("Unreachable"); |
| return SDValue(); |
| } |
| |
| |
| /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and |
| /// take a 2 x i32 value to shift plus a shift amount. |
| SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| DebugLoc dl = Op.getDebugLoc(); |
| bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, |
| DAG.getConstant(VTBits - 1, MVT::i8)) |
| : DAG.getConstant(0, VT); |
| |
| SDValue Tmp2, Tmp3; |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); |
| Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| } else { |
| Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); |
| Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt); |
| } |
| |
| SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, |
| DAG.getConstant(VTBits, MVT::i8)); |
| SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT, |
| AndNode, DAG.getConstant(0, MVT::i8)); |
| |
| SDValue Hi, Lo; |
| SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; |
| SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; |
| |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); |
| Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); |
| } else { |
| Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); |
| Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); |
| } |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } |
| |
| SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) { |
| EVT SrcVT = Op.getOperand(0).getValueType(); |
| |
| if (SrcVT.isVector()) { |
| if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) { |
| return Op; |
| } |
| return SDValue(); |
| } |
| |
| assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 && |
| "Unknown SINT_TO_FP to lower!"); |
| |
| // These are really Legal; return the operand so the caller accepts it as |
| // Legal. |
| if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) |
| return Op; |
| if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && |
| Subtarget->is64Bit()) { |
| return Op; |
| } |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Size = SrcVT.getSizeInBits()/8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), |
| StackSlot, |
| PseudoSourceValue::getFixedStack(SSFI), 0); |
| return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); |
| } |
| |
| SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, |
| SDValue StackSlot, |
| SelectionDAG &DAG) { |
| // Build the FILD |
| DebugLoc dl = Op.getDebugLoc(); |
| SDVTList Tys; |
| bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); |
| if (useSSE) |
| Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag); |
| else |
| Tys = DAG.getVTList(Op.getValueType(), MVT::Other); |
| SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; |
| SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl, |
| Tys, Ops, array_lengthof(Ops)); |
| |
| if (useSSE) { |
| Chain = Result.getValue(1); |
| SDValue InFlag = Result.getValue(2); |
| |
| // FIXME: Currently the FST is flagged to the FILD_FLAG. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Tys = DAG.getVTList(MVT::Other); |
| SDValue Ops[] = { |
| Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag |
| }; |
| Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops)); |
| Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot, |
| PseudoSourceValue::getFixedStack(SSFI), 0); |
| } |
| |
| return Result; |
| } |
| |
| // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. |
| SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) { |
| // This algorithm is not obvious. Here it is in C code, more or less: |
| /* |
| double uint64_to_double( uint32_t hi, uint32_t lo ) { |
| static const __m128i exp = { 0x4330000045300000ULL, 0 }; |
| static const __m128d bias = { 0x1.0p84, 0x1.0p52 }; |
| |
| // Copy ints to xmm registers. |
| __m128i xh = _mm_cvtsi32_si128( hi ); |
| __m128i xl = _mm_cvtsi32_si128( lo ); |
| |
| // Combine into low half of a single xmm register. |
| __m128i x = _mm_unpacklo_epi32( xh, xl ); |
| __m128d d; |
| double sd; |
| |
| // Merge in appropriate exponents to give the integer bits the right |
| // magnitude. |
| x = _mm_unpacklo_epi32( x, exp ); |
| |
| // Subtract away the biases to deal with the IEEE-754 double precision |
| // implicit 1. |
| d = _mm_sub_pd( (__m128d) x, bias ); |
| |
| // All conversions up to here are exact. The correctly rounded result is |
| // calculated using the current rounding mode using the following |
| // horizontal add. |
| d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) ); |
| _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this |
| // store doesn't really need to be here (except |
| // maybe to zero the other double) |
| return sd; |
| } |
| */ |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| LLVMContext *Context = DAG.getContext(); |
| |
| // Build some magic constants. |
| std::vector<Constant*> CV0; |
| CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000))); |
| CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000))); |
| CV0.push_back(ConstantInt::get(*Context, APInt(32, 0))); |
| CV0.push_back(ConstantInt::get(*Context, APInt(32, 0))); |
| Constant *C0 = ConstantVector::get(CV0); |
| SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16); |
| |
| std::vector<Constant*> CV1; |
| CV1.push_back( |
| ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL)))); |
| CV1.push_back( |
| ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL)))); |
| Constant *C1 = ConstantVector::get(CV1); |
| SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16); |
| |
| SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, |
| DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| Op.getOperand(0), |
| DAG.getIntPtrConstant(1))); |
| SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, |
| DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| Op.getOperand(0), |
| DAG.getIntPtrConstant(0))); |
| SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2); |
| SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, 16); |
| SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0); |
| SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2); |
| SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, 16); |
| SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); |
| |
| // Add the halves; easiest way is to swap them into another reg first. |
| int ShufMask[2] = { 1, -1 }; |
| SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub, |
| DAG.getUNDEF(MVT::v2f64), ShufMask); |
| SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add, |
| DAG.getIntPtrConstant(0)); |
| } |
| |
| // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. |
| SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| // FP constant to bias correct the final result. |
| SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), |
| MVT::f64); |
| |
| // Load the 32-bit value into an XMM register. |
| SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, |
| DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| Op.getOperand(0), |
| DAG.getIntPtrConstant(0))); |
| |
| Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, |
| DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load), |
| DAG.getIntPtrConstant(0)); |
| |
| // Or the load with the bias. |
| SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, |
| DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| MVT::v2f64, Load)), |
| DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| MVT::v2f64, Bias))); |
| Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, |
| DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or), |
| DAG.getIntPtrConstant(0)); |
| |
| // Subtract the bias. |
| SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); |
| |
| // Handle final rounding. |
| EVT DestVT = Op.getValueType(); |
| |
| if (DestVT.bitsLT(MVT::f64)) { |
| return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, |
| DAG.getIntPtrConstant(0)); |
| } else if (DestVT.bitsGT(MVT::f64)) { |
| return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); |
| } |
| |
| // Handle final rounding. |
| return Sub; |
| } |
| |
| SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) { |
| SDValue N0 = Op.getOperand(0); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't |
| // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform |
| // the optimization here. |
| if (DAG.SignBitIsZero(N0)) |
| return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); |
| |
| EVT SrcVT = N0.getValueType(); |
| if (SrcVT == MVT::i64) { |
| // We only handle SSE2 f64 target here; caller can expand the rest. |
| if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64) |
| return SDValue(); |
| |
| return LowerUINT_TO_FP_i64(Op, DAG); |
| } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) { |
| return LowerUINT_TO_FP_i32(Op, DAG); |
| } |
| |
| assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!"); |
| |
| // Make a 64-bit buffer, and use it to build an FILD. |
| SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); |
| SDValue WordOff = DAG.getConstant(4, getPointerTy()); |
| SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, |
| getPointerTy(), StackSlot, WordOff); |
| SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), |
| StackSlot, NULL, 0); |
| SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32), |
| OffsetSlot, NULL, 0); |
| return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); |
| } |
| |
| std::pair<SDValue,SDValue> X86TargetLowering:: |
| FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) { |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| EVT DstTy = Op.getValueType(); |
| |
| if (!IsSigned) { |
| assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); |
| DstTy = MVT::i64; |
| } |
| |
| assert(DstTy.getSimpleVT() <= MVT::i64 && |
| DstTy.getSimpleVT() >= MVT::i16 && |
| "Unknown FP_TO_SINT to lower!"); |
| |
| // These are really Legal. |
| if (DstTy == MVT::i32 && |
| isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) |
| return std::make_pair(SDValue(), SDValue()); |
| if (Subtarget->is64Bit() && |
| DstTy == MVT::i64 && |
| isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) |
| return std::make_pair(SDValue(), SDValue()); |
| |
| // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary |
| // stack slot. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned MemSize = DstTy.getSizeInBits()/8; |
| int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| |
| unsigned Opc; |
| switch (DstTy.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); |
| case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; |
| case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; |
| case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; |
| } |
| |
| SDValue Chain = DAG.getEntryNode(); |
| SDValue Value = Op.getOperand(0); |
| if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) { |
| assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); |
| Chain = DAG.getStore(Chain, dl, Value, StackSlot, |
| PseudoSourceValue::getFixedStack(SSFI), 0); |
| SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); |
| SDValue Ops[] = { |
| Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType()) |
| }; |
| Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3); |
| Chain = Value.getValue(1); |
| SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); |
| StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| } |
| |
| // Build the FP_TO_INT*_IN_MEM |
| SDValue Ops[] = { Chain, Value, StackSlot }; |
| SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3); |
| |
| return std::make_pair(FIST, StackSlot); |
| } |
| |
| SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { |
| if (Op.getValueType().isVector()) { |
| if (Op.getValueType() == MVT::v2i32 && |
| Op.getOperand(0).getValueType() == MVT::v2f64) { |
| return Op; |
| } |
| return SDValue(); |
| } |
| |
| std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true); |
| SDValue FIST = Vals.first, StackSlot = Vals.second; |
| // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. |
| if (FIST.getNode() == 0) return Op; |
| |
| // Load the result. |
| return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), |
| FIST, StackSlot, NULL, 0); |
| } |
| |
| SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) { |
| std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false); |
| SDValue FIST = Vals.first, StackSlot = Vals.second; |
| assert(FIST.getNode() && "Unexpected failure"); |
| |
| // Load the result. |
| return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), |
| FIST, StackSlot, NULL, 0); |
| } |
| |
| SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) { |
| LLVMContext *Context = DAG.getContext(); |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT VT = Op.getValueType(); |
| EVT EltVT = VT; |
| if (VT.isVector()) |
| EltVT = VT.getVectorElementType(); |
| std::vector<Constant*> CV; |
| if (EltVT == MVT::f64) { |
| Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))); |
| CV.push_back(C); |
| CV.push_back(C); |
| } else { |
| Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))); |
| CV.push_back(C); |
| CV.push_back(C); |
| CV.push_back(C); |
| CV.push_back(C); |
| } |
| Constant *C = ConstantVector::get(CV); |
| SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); |
| SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, 16); |
| return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask); |
| } |
| |
| SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) { |
| LLVMContext *Context = DAG.getContext(); |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT VT = Op.getValueType(); |
| EVT EltVT = VT; |
| if (VT.isVector()) |
| EltVT = VT.getVectorElementType(); |
| std::vector<Constant*> CV; |
| if (EltVT == MVT::f64) { |
| Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))); |
| CV.push_back(C); |
| CV.push_back(C); |
| } else { |
| Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))); |
| CV.push_back(C); |
| CV.push_back(C); |
| CV.push_back(C); |
| CV.push_back(C); |
| } |
| Constant *C = ConstantVector::get(CV); |
| SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); |
| SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, 16); |
| if (VT.isVector()) { |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, |
| DAG.getNode(ISD::XOR, dl, MVT::v2i64, |
| DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, |
| Op.getOperand(0)), |
| DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask))); |
| } else { |
| return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask); |
| } |
| } |
| |
| SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { |
| LLVMContext *Context = DAG.getContext(); |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT VT = Op.getValueType(); |
| EVT SrcVT = Op1.getValueType(); |
| |
| // If second operand is smaller, extend it first. |
| if (SrcVT.bitsLT(VT)) { |
| Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); |
| SrcVT = VT; |
| } |
| // And if it is bigger, shrink it first. |
| if (SrcVT.bitsGT(VT)) { |
| Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1)); |
| SrcVT = VT; |
| } |
| |
| // At this point the operands and the result should have the same |
| // type, and that won't be f80 since that is not custom lowered. |
| |
| // First get the sign bit of second operand. |
| std::vector<Constant*> CV; |
| if (SrcVT == MVT::f64) { |
| CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); |
| } else { |
| CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); |
| } |
| Constant *C = ConstantVector::get(CV); |
| SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); |
| SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, 16); |
| SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1); |
| |
| // Shift sign bit right or left if the two operands have different types. |
| if (SrcVT.bitsGT(VT)) { |
| // Op0 is MVT::f32, Op1 is MVT::f64. |
| SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit); |
| SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit, |
| DAG.getConstant(32, MVT::i32)); |
| SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit); |
| SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit, |
| DAG.getIntPtrConstant(0)); |
| } |
| |
| // Clear first operand sign bit. |
| CV.clear(); |
| if (VT == MVT::f64) { |
| CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); |
| } else { |
| CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); |
| CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); |
| } |
| C = ConstantVector::get(CV); |
| CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); |
| SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, 16); |
| SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2); |
| |
| // Or the value with the sign bit. |
| return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit); |
| } |
| |
| /// Emit nodes that will be selected as "test Op0,Op0", or something |
| /// equivalent. |
| SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, |
| SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // CF and OF aren't always set the way we want. Determine which |
| // of these we need. |
| bool NeedCF = false; |
| bool NeedOF = false; |
| switch (X86CC) { |
| case X86::COND_A: case X86::COND_AE: |
| case X86::COND_B: case X86::COND_BE: |
| NeedCF = true; |
| break; |
| case X86::COND_G: case X86::COND_GE: |
| case X86::COND_L: case X86::COND_LE: |
| case X86::COND_O: case X86::COND_NO: |
| NeedOF = true; |
| break; |
| default: break; |
| } |
| |
| // See if we can use the EFLAGS value from the operand instead of |
| // doing a separate TEST. TEST always sets OF and CF to 0, so unless |
| // we prove that the arithmetic won't overflow, we can't use OF or CF. |
| if (Op.getResNo() == 0 && !NeedOF && !NeedCF) { |
| unsigned Opcode = 0; |
| unsigned NumOperands = 0; |
| switch (Op.getNode()->getOpcode()) { |
| case ISD::ADD: |
| // Due to an isel shortcoming, be conservative if this add is likely to |
| // be selected as part of a load-modify-store instruction. When the root |
| // node in a match is a store, isel doesn't know how to remap non-chain |
| // non-flag uses of other nodes in the match, such as the ADD in this |
| // case. This leads to the ADD being left around and reselected, with |
| // the result being two adds in the output. |
| for (SDNode::use_iterator UI = Op.getNode()->use_begin(), |
| UE = Op.getNode()->use_end(); UI != UE; ++UI) |
| if (UI->getOpcode() == ISD::STORE) |
| goto default_case; |
| if (ConstantSDNode *C = |
| dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) { |
| // An add of one will be selected as an INC. |
| if (C->getAPIntValue() == 1) { |
| Opcode = X86ISD::INC; |
| NumOperands = 1; |
| break; |
| } |
| // An add of negative one (subtract of one) will be selected as a DEC. |
| if (C->getAPIntValue().isAllOnesValue()) { |
| Opcode = X86ISD::DEC; |
| NumOperands = 1; |
| break; |
| } |
| } |
| // Otherwise use a regular EFLAGS-setting add. |
| Opcode = X86ISD::ADD; |
| NumOperands = 2; |
| break; |
| case ISD::AND: { |
| // If the primary and result isn't used, don't bother using X86ISD::AND, |
| // because a TEST instruction will be better. |
| bool NonFlagUse = false; |
| for (SDNode::use_iterator UI = Op.getNode()->use_begin(), |
| UE = Op.getNode()->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| unsigned UOpNo = UI.getOperandNo(); |
| if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { |
| // Look pass truncate. |
| UOpNo = User->use_begin().getOperandNo(); |
| User = *User->use_begin(); |
| } |
| if (User->getOpcode() != ISD::BRCOND && |
| User->getOpcode() != ISD::SETCC && |
| (User->getOpcode() != ISD::SELECT || UOpNo != 0)) { |
| NonFlagUse = true; |
| break; |
| } |
| } |
| if (!NonFlagUse) |
| break; |
| } |
| // FALL THROUGH |
| case ISD::SUB: |
| case ISD::OR: |
| case ISD::XOR: |
| // Due to the ISEL shortcoming noted above, be conservative if this op is |
| // likely to be selected as part of a load-modify-store instruction. |
| for (SDNode::use_iterator UI = Op.getNode()->use_begin(), |
| UE = Op.getNode()->use_end(); UI != UE; ++UI) |
| if (UI->getOpcode() == ISD::STORE) |
| goto default_case; |
| // Otherwise use a regular EFLAGS-setting instruction. |
| switch (Op.getNode()->getOpcode()) { |
| case ISD::SUB: Opcode = X86ISD::SUB; break; |
| case ISD::OR: Opcode = X86ISD::OR; break; |
| case ISD::XOR: Opcode = X86ISD::XOR; break; |
| case ISD::AND: Opcode = X86ISD::AND; break; |
| default: llvm_unreachable("unexpected operator!"); |
| } |
| NumOperands = 2; |
| break; |
| case X86ISD::ADD: |
| case X86ISD::SUB: |
| case X86ISD::INC: |
| case X86ISD::DEC: |
| case X86ISD::OR: |
| case X86ISD::XOR: |
| case X86ISD::AND: |
| return SDValue(Op.getNode(), 1); |
| default: |
| default_case: |
| break; |
| } |
| if (Opcode != 0) { |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); |
| SmallVector<SDValue, 4> Ops; |
| for (unsigned i = 0; i != NumOperands; ++i) |
| Ops.push_back(Op.getOperand(i)); |
| SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands); |
| DAG.ReplaceAllUsesWith(Op, New); |
| return SDValue(New.getNode(), 1); |
| } |
| } |
| |
| // Otherwise just emit a CMP with 0, which is the TEST pattern. |
| return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, |
| DAG.getConstant(0, Op.getValueType())); |
| } |
| |
| /// Emit nodes that will be selected as "cmp Op0,Op1", or something |
| /// equivalent. |
| SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, |
| SelectionDAG &DAG) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) |
| if (C->getAPIntValue() == 0) |
| return EmitTest(Op0, X86CC, DAG); |
| |
| DebugLoc dl = Op0.getDebugLoc(); |
| return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); |
| } |
| |
| /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node |
| /// if it's possible. |
| static SDValue LowerToBT(SDValue Op0, ISD::CondCode CC, |
| DebugLoc dl, SelectionDAG &DAG) { |
| SDValue LHS, RHS; |
| if (Op0.getOperand(1).getOpcode() == ISD::SHL) { |
| if (ConstantSDNode *Op010C = |
| dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0))) |
| if (Op010C->getZExtValue() == 1) { |
| LHS = Op0.getOperand(0); |
| RHS = Op0.getOperand(1).getOperand(1); |
| } |
| } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) { |
| if (ConstantSDNode *Op000C = |
| dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0))) |
| if (Op000C->getZExtValue() == 1) { |
| LHS = Op0.getOperand(1); |
| RHS = Op0.getOperand(0).getOperand(1); |
| } |
| } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) { |
| ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1)); |
| SDValue AndLHS = Op0.getOperand(0); |
| if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) { |
| LHS = AndLHS.getOperand(0); |
| RHS = AndLHS.getOperand(1); |
| } |
| } |
| |
| if (LHS.getNode()) { |
| // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT |
| // instruction. Since the shift amount is in-range-or-undefined, we know |
| // that doing a bittest on the i16 value is ok. We extend to i32 because |
| // the encoding for the i16 version is larger than the i32 version. |
| if (LHS.getValueType() == MVT::i8) |
| LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); |
| |
| // If the operand types disagree, extend the shift amount to match. Since |
| // BT ignores high bits (like shifts) we can use anyextend. |
| if (LHS.getValueType() != RHS.getValueType()) |
| RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); |
| |
| SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); |
| unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; |
| return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, |
| DAG.getConstant(Cond, MVT::i8), BT); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) { |
| assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| |
| // Optimize to BT if possible. |
| // Lower (X & (1 << N)) == 0 to BT(X, N). |
| // Lower ((X >>u N) & 1) != 0 to BT(X, N). |
| // Lower ((X >>s N) & 1) != 0 to BT(X, N). |
| if (Op0.getOpcode() == ISD::AND && |
| Op0.hasOneUse() && |
| Op1.getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(Op1)->getZExtValue() == 0 && |
| (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); |
| if (NewSetCC.getNode()) |
| return NewSetCC; |
| } |
| |
| bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); |
| unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); |
| if (X86CC == X86::COND_INVALID) |
| return SDValue(); |
| |
| SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG); |
| |
| // Use sbb x, x to materialize carry bit into a GPR. |
| if (X86CC == X86::COND_B) |
| return DAG.getNode(ISD::AND, dl, MVT::i8, |
| DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8, |
| DAG.getConstant(X86CC, MVT::i8), Cond), |
| DAG.getConstant(1, MVT::i8)); |
| |
| return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, |
| DAG.getConstant(X86CC, MVT::i8), Cond); |
| } |
| |
| SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) { |
| SDValue Cond; |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue CC = Op.getOperand(2); |
| EVT VT = Op.getValueType(); |
| ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (isFP) { |
| unsigned SSECC = 8; |
| EVT VT0 = Op0.getValueType(); |
| assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64); |
| unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD; |
| bool Swap = false; |
| |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETOEQ: |
| case ISD::SETEQ: SSECC = 0; break; |
| case ISD::SETOGT: |
| case ISD::SETGT: Swap = true; // Fallthrough |
| case ISD::SETLT: |
| case ISD::SETOLT: SSECC = 1; break; |
| case ISD::SETOGE: |
| case ISD::SETGE: Swap = true; // Fallthrough |
| case ISD::SETLE: |
| case ISD::SETOLE: SSECC = 2; break; |
| case ISD::SETUO: SSECC = 3; break; |
| case ISD::SETUNE: |
| case ISD::SETNE: SSECC = 4; break; |
| case ISD::SETULE: Swap = true; |
| case ISD::SETUGE: SSECC = 5; break; |
| case ISD::SETULT: Swap = true; |
| case ISD::SETUGT: SSECC = 6; break; |
| case ISD::SETO: SSECC = 7; break; |
| } |
| if (Swap) |
| std::swap(Op0, Op1); |
| |
| // In the two special cases we can't handle, emit two comparisons. |
| if (SSECC == 8) { |
| if (SetCCOpcode == ISD::SETUEQ) { |
| SDValue UNORD, EQ; |
| UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8)); |
| EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8)); |
| return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ); |
| } |
| else if (SetCCOpcode == ISD::SETONE) { |
| SDValue ORD, NEQ; |
| ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8)); |
| NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8)); |
| return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ); |
| } |
| llvm_unreachable("Illegal FP comparison"); |
| } |
| // Handle all other FP comparisons here. |
| return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8)); |
| } |
| |
| // We are handling one of the integer comparisons here. Since SSE only has |
| // GT and EQ comparisons for integer, swapping operands and multiple |
| // operations may be required for some comparisons. |
| unsigned Opc = 0, EQOpc = 0, GTOpc = 0; |
| bool Swap = false, Invert = false, FlipSigns = false; |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: break; |
| case MVT::v8i8: |
| case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break; |
| case MVT::v4i16: |
| case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break; |
| case MVT::v2i32: |
| case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break; |
| case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break; |
| } |
| |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETNE: Invert = true; |
| case ISD::SETEQ: Opc = EQOpc; break; |
| case ISD::SETLT: Swap = true; |
| case ISD::SETGT: Opc = GTOpc; break; |
| case ISD::SETGE: Swap = true; |
| case ISD::SETLE: Opc = GTOpc; Invert = true; break; |
| case ISD::SETULT: Swap = true; |
| case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break; |
| case ISD::SETUGE: Swap = true; |
| case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break; |
| } |
| if (Swap) |
| std::swap(Op0, Op1); |
| |
| // Since SSE has no unsigned integer comparisons, we need to flip the sign |
| // bits of the inputs before performing those operations. |
| if (FlipSigns) { |
| EVT EltVT = VT.getVectorElementType(); |
| SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), |
| EltVT); |
| std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit); |
| SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0], |
| SignBits.size()); |
| Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec); |
| Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec); |
| } |
| |
| SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); |
| |
| // If the logical-not of the result is required, perform that now. |
| if (Invert) |
| Result = DAG.getNOT(dl, Result, VT); |
| |
| return Result; |
| } |
| |
| // isX86LogicalCmp - Return true if opcode is a X86 logical comparison. |
| static bool isX86LogicalCmp(SDValue Op) { |
| unsigned Opc = Op.getNode()->getOpcode(); |
| if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) |
| return true; |
| if (Op.getResNo() == 1 && |
| (Opc == X86ISD::ADD || |
| Opc == X86ISD::SUB || |
| Opc == X86ISD::SMUL || |
| Opc == X86ISD::UMUL || |
| Opc == X86ISD::INC || |
| Opc == X86ISD::DEC || |
| Opc == X86ISD::OR || |
| Opc == X86ISD::XOR || |
| Opc == X86ISD::AND)) |
| return true; |
| |
| return false; |
| } |
| |
| SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) { |
| bool addTest = true; |
| SDValue Cond = Op.getOperand(0); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue CC; |
| |
| if (Cond.getOpcode() == ISD::SETCC) { |
| SDValue NewCond = LowerSETCC(Cond, DAG); |
| if (NewCond.getNode()) |
| Cond = NewCond; |
| } |
| |
| // (select (x == 0), -1, 0) -> (sign_bit (x - 1)) |
| SDValue Op1 = Op.getOperand(1); |
| SDValue Op2 = Op.getOperand(2); |
| if (Cond.getOpcode() == X86ISD::SETCC && |
| cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) { |
| SDValue Cmp = Cond.getOperand(1); |
| if (Cmp.getOpcode() == X86ISD::CMP) { |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2); |
| ConstantSDNode *RHSC = |
| dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode()); |
| if (N1C && N1C->isAllOnesValue() && |
| N2C && N2C->isNullValue() && |
| RHSC && RHSC->isNullValue()) { |
| SDValue CmpOp0 = Cmp.getOperand(0); |
| Cmp = DAG.getNode(X86ISD::CMP, dl, CmpOp0.getValueType(), |
| CmpOp0, DAG.getConstant(1, CmpOp0.getValueType())); |
| return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(), |
| DAG.getConstant(X86::COND_B, MVT::i8), Cmp); |
| } |
| } |
| } |
| |
| // Look pass (and (setcc_carry (cmp ...)), 1). |
| if (Cond.getOpcode() == ISD::AND && |
| Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); |
| if (C && C->getAPIntValue() == 1) |
| Cond = Cond.getOperand(0); |
| } |
| |
| // If condition flag is set by a X86ISD::CMP, then use it as the condition |
| // setting operand in place of the X86ISD::SETCC. |
| if (Cond.getOpcode() == X86ISD::SETCC || |
| Cond.getOpcode() == X86ISD::SETCC_CARRY) { |
| CC = Cond.getOperand(0); |
| |
| SDValue Cmp = Cond.getOperand(1); |
| unsigned Opc = Cmp.getOpcode(); |
| EVT VT = Op.getValueType(); |
| |
| bool IllegalFPCMov = false; |
| if (VT.isFloatingPoint() && !VT.isVector() && |
| !isScalarFPTypeInSSEReg(VT)) // FPStack? |
| IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); |
| |
| if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || |
| Opc == X86ISD::BT) { // FIXME |
| Cond = Cmp; |
| addTest = false; |
| } |
| } |
| |
| if (addTest) { |
| // Look pass the truncate. |
| if (Cond.getOpcode() == ISD::TRUNCATE) |
| Cond = Cond.getOperand(0); |
| |
| // We know the result of AND is compared against zero. Try to match |
| // it to BT. |
| if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { |
| SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); |
| if (NewSetCC.getNode()) { |
| CC = NewSetCC.getOperand(0); |
| Cond = NewSetCC.getOperand(1); |
| addTest = false; |
| } |
| } |
| } |
| |
| if (addTest) { |
| CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| Cond = EmitTest(Cond, X86::COND_NE, DAG); |
| } |
| |
| // X86ISD::CMOV means set the result (which is operand 1) to the RHS if |
| // condition is true. |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag); |
| SDValue Ops[] = { Op2, Op1, CC, Cond }; |
| return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops)); |
| } |
| |
| // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or |
| // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart |
| // from the AND / OR. |
| static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { |
| Opc = Op.getOpcode(); |
| if (Opc != ISD::OR && Opc != ISD::AND) |
| return false; |
| return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && |
| Op.getOperand(0).hasOneUse() && |
| Op.getOperand(1).getOpcode() == X86ISD::SETCC && |
| Op.getOperand(1).hasOneUse()); |
| } |
| |
| // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and |
| // 1 and that the SETCC node has a single use. |
| static bool isXor1OfSetCC(SDValue Op) { |
| if (Op.getOpcode() != ISD::XOR) |
| return false; |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| if (N1C && N1C->getAPIntValue() == 1) { |
| return Op.getOperand(0).getOpcode() == X86ISD::SETCC && |
| Op.getOperand(0).hasOneUse(); |
| } |
| return false; |
| } |
| |
| SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) { |
| bool addTest = true; |
| SDValue Chain = Op.getOperand(0); |
| SDValue Cond = Op.getOperand(1); |
| SDValue Dest = Op.getOperand(2); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue CC; |
| |
| if (Cond.getOpcode() == ISD::SETCC) { |
| SDValue NewCond = LowerSETCC(Cond, DAG); |
| if (NewCond.getNode()) |
| Cond = NewCond; |
| } |
| #if 0 |
| // FIXME: LowerXALUO doesn't handle these!! |
| else if (Cond.getOpcode() == X86ISD::ADD || |
| Cond.getOpcode() == X86ISD::SUB || |
| Cond.getOpcode() == X86ISD::SMUL || |
| Cond.getOpcode() == X86ISD::UMUL) |
| Cond = LowerXALUO(Cond, DAG); |
| #endif |
| |
| // Look pass (and (setcc_carry (cmp ...)), 1). |
| if (Cond.getOpcode() == ISD::AND && |
| Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); |
| if (C && C->getAPIntValue() == 1) |
| Cond = Cond.getOperand(0); |
| } |
| |
| // If condition flag is set by a X86ISD::CMP, then use it as the condition |
| // setting operand in place of the X86ISD::SETCC. |
| if (Cond.getOpcode() == X86ISD::SETCC || |
| Cond.getOpcode() == X86ISD::SETCC_CARRY) { |
| CC = Cond.getOperand(0); |
| |
| SDValue Cmp = Cond.getOperand(1); |
| unsigned Opc = Cmp.getOpcode(); |
| // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? |
| if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { |
| Cond = Cmp; |
| addTest = false; |
| } else { |
| switch (cast<ConstantSDNode>(CC)->getZExtValue()) { |
| default: break; |
| case X86::COND_O: |
| case X86::COND_B: |
| // These can only come from an arithmetic instruction with overflow, |
| // e.g. SADDO, UADDO. |
| Cond = Cond.getNode()->getOperand(1); |
| addTest = false; |
| break; |
| } |
| } |
| } else { |
| unsigned CondOpc; |
| if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { |
| SDValue Cmp = Cond.getOperand(0).getOperand(1); |
| if (CondOpc == ISD::OR) { |
| // Also, recognize the pattern generated by an FCMP_UNE. We can emit |
| // two branches instead of an explicit OR instruction with a |
| // separate test. |
| if (Cmp == Cond.getOperand(1).getOperand(1) && |
| isX86LogicalCmp(Cmp)) { |
| CC = Cond.getOperand(0).getOperand(0); |
| Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cmp); |
| CC = Cond.getOperand(1).getOperand(0); |
| Cond = Cmp; |
| addTest = false; |
| } |
| } else { // ISD::AND |
| // Also, recognize the pattern generated by an FCMP_OEQ. We can emit |
| // two branches instead of an explicit AND instruction with a |
| // separate test. However, we only do this if this block doesn't |
| // have a fall-through edge, because this requires an explicit |
| // jmp when the condition is false. |
| if (Cmp == Cond.getOperand(1).getOperand(1) && |
| isX86LogicalCmp(Cmp) && |
| Op.getNode()->hasOneUse()) { |
| X86::CondCode CCode = |
| (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); |
| CCode = X86::GetOppositeBranchCondition(CCode); |
| CC = DAG.getConstant(CCode, MVT::i8); |
| SDValue User = SDValue(*Op.getNode()->use_begin(), 0); |
| // Look for an unconditional branch following this conditional branch. |
| // We need this because we need to reverse the successors in order |
| // to implement FCMP_OEQ. |
| if (User.getOpcode() == ISD::BR) { |
| SDValue FalseBB = User.getOperand(1); |
| SDValue NewBR = |
| DAG.UpdateNodeOperands(User, User.getOperand(0), Dest); |
| assert(NewBR == User); |
| Dest = FalseBB; |
| |
| Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cmp); |
| X86::CondCode CCode = |
| (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); |
| CCode = X86::GetOppositeBranchCondition(CCode); |
| CC = DAG.getConstant(CCode, MVT::i8); |
| Cond = Cmp; |
| addTest = false; |
| } |
| } |
| } |
| } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { |
| // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. |
| // It should be transformed during dag combiner except when the condition |
| // is set by a arithmetics with overflow node. |
| X86::CondCode CCode = |
| (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); |
| CCode = X86::GetOppositeBranchCondition(CCode); |
| CC = DAG.getConstant(CCode, MVT::i8); |
| Cond = Cond.getOperand(0).getOperand(1); |
| addTest = false; |
| } |
| } |
| |
| if (addTest) { |
| // Look pass the truncate. |
| if (Cond.getOpcode() == ISD::TRUNCATE) |
| Cond = Cond.getOperand(0); |
| |
| // We know the result of AND is compared against zero. Try to match |
| // it to BT. |
| if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { |
| SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); |
| if (NewSetCC.getNode()) { |
| CC = NewSetCC.getOperand(0); |
| Cond = NewSetCC.getOperand(1); |
| addTest = false; |
| } |
| } |
| } |
| |
| if (addTest) { |
| CC = DAG.getConstant(X86::COND_NE, MVT::i8); |
| Cond = EmitTest(Cond, X86::COND_NE, DAG); |
| } |
| return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), |
| Chain, Dest, CC, Cond); |
| } |
| |
| |
| // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. |
| // Calls to _alloca is needed to probe the stack when allocating more than 4k |
| // bytes in one go. Touching the stack at 4K increments is necessary to ensure |
| // that the guard pages used by the OS virtual memory manager are allocated in |
| // correct sequence. |
| SDValue |
| X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) { |
| assert(Subtarget->isTargetCygMing() && |
| "This should be used only on Cygwin/Mingw targets"); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // Get the inputs. |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| // FIXME: Ensure alignment here |
| |
| SDValue Flag; |
| |
| EVT IntPtr = getPointerTy(); |
| EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; |
| |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); |
| |
| Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag); |
| Flag = Chain.getValue(1); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDValue Ops[] = { Chain, |
| DAG.getTargetExternalSymbol("_alloca", IntPtr), |
| DAG.getRegister(X86::EAX, IntPtr), |
| DAG.getRegister(X86StackPtr, SPTy), |
| Flag }; |
| Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5); |
| Flag = Chain.getValue(1); |
| |
| Chain = DAG.getCALLSEQ_END(Chain, |
| DAG.getIntPtrConstant(0, true), |
| DAG.getIntPtrConstant(0, true), |
| Flag); |
| |
| Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1); |
| |
| SDValue Ops1[2] = { Chain.getValue(0), Chain }; |
| return DAG.getMergeValues(Ops1, 2, dl); |
| } |
| |
| SDValue |
| X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl, |
| SDValue Chain, |
| SDValue Dst, SDValue Src, |
| SDValue Size, unsigned Align, |
| const Value *DstSV, |
| uint64_t DstSVOff) { |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| |
| // If not DWORD aligned or size is more than the threshold, call the library. |
| // The libc version is likely to be faster for these cases. It can use the |
| // address value and run time information about the CPU. |
| if ((Align & 3) != 0 || |
| !ConstantSize || |
| ConstantSize->getZExtValue() > |
| getSubtarget()->getMaxInlineSizeThreshold()) { |
| SDValue InFlag(0, 0); |
| |
| // Check to see if there is a specialized entry-point for memory zeroing. |
| ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src); |
| |
| if (const char *bzeroEntry = V && |
| V->isNullValue() ? Subtarget->getBZeroEntry() : 0) { |
| EVT IntPtr = getPointerTy(); |
| const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext()); |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Node = Dst; |
| Entry.Ty = IntPtrTy; |
| Args.push_back(Entry); |
| Entry.Node = Size; |
| Args.push_back(Entry); |
| std::pair<SDValue,SDValue> CallResult = |
| LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()), |
| false, false, false, false, |
| 0, CallingConv::C, false, /*isReturnValueUsed=*/false, |
| DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl, |
| DAG.GetOrdering(Chain.getNode())); |
| return CallResult.second; |
| } |
| |
| // Otherwise have the target-independent code call memset. |
| return SDValue(); |
| } |
| |
| uint64_t SizeVal = ConstantSize->getZExtValue(); |
| SDValue InFlag(0, 0); |
| EVT AVT; |
| SDValue Count; |
| ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src); |
| unsigned BytesLeft = 0; |
| bool TwoRepStos = false; |
| if (ValC) { |
| unsigned ValReg; |
| uint64_t Val = ValC->getZExtValue() & 255; |
| |
| // If the value is a constant, then we can potentially use larger sets. |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| AVT = MVT::i16; |
| ValReg = X86::AX; |
| Val = (Val << 8) | Val; |
| break; |
| case 0: // DWORD aligned |
| AVT = MVT::i32; |
| ValReg = X86::EAX; |
| Val = (Val << 8) | Val; |
| Val = (Val << 16) | Val; |
| if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned |
| AVT = MVT::i64; |
| ValReg = X86::RAX; |
| Val = (Val << 32) | Val; |
| } |
| break; |
| default: // Byte aligned |
| AVT = MVT::i8; |
| ValReg = X86::AL; |
| Count = DAG.getIntPtrConstant(SizeVal); |
| break; |
| } |
| |
| if (AVT.bitsGT(MVT::i8)) { |
| unsigned UBytes = AVT.getSizeInBits() / 8; |
| Count = DAG.getIntPtrConstant(SizeVal / UBytes); |
| BytesLeft = SizeVal % UBytes; |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT), |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } else { |
| AVT = MVT::i8; |
| Count = DAG.getIntPtrConstant(SizeVal); |
| Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX : |
| X86::ECX, |
| Count, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI : |
| X86::EDI, |
| Dst, InFlag); |
| InFlag = Chain.getValue(1); |
| |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; |
| Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops)); |
| |
| if (TwoRepStos) { |
| InFlag = Chain.getValue(1); |
| Count = Size; |
| EVT CVT = Count.getValueType(); |
| SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count, |
| DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); |
| Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX : |
| X86::ECX, |
| Left, InFlag); |
| InFlag = Chain.getValue(1); |
| Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag }; |
| Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops)); |
| } else if (BytesLeft) { |
| // Handle the last 1 - 7 bytes. |
| unsigned Offset = SizeVal - BytesLeft; |
| EVT AddrVT = Dst.getValueType(); |
| EVT SizeVT = Size.getValueType(); |
| |
| Chain = DAG.getMemset(Chain, dl, |
| DAG.getNode(ISD::ADD, dl, AddrVT, Dst, |
| DAG.getConstant(Offset, AddrVT)), |
| Src, |
| DAG.getConstant(BytesLeft, SizeVT), |
| Align, DstSV, DstSVOff + Offset); |
| } |
| |
| // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. |
| return Chain; |
| } |
| |
| SDValue |
| X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl, |
| SDValue Chain, SDValue Dst, SDValue Src, |
| SDValue Size, unsigned Align, |
| bool AlwaysInline, |
| const Value *DstSV, uint64_t DstSVOff, |
| const Value *SrcSV, uint64_t SrcSVOff) { |
| // This requires the copy size to be a constant, preferrably |
| // within a subtarget-specific limit. |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (!ConstantSize) |
| return SDValue(); |
| uint64_t SizeVal = ConstantSize->getZExtValue(); |
| if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold()) |
| return SDValue(); |
| |
| /// If not DWORD aligned, call the library. |
| if ((Align & 3) != 0) |
| return SDValue(); |
| |
| // DWORD aligned |
| EVT AVT = MVT::i32; |
| if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) // QWORD aligned |
| AVT = MVT::i64; |
| |
| unsigned UBytes = AVT.getSizeInBits() / 8; |
| unsigned CountVal = SizeVal / UBytes; |
| SDValue Count = DAG.getIntPtrConstant(CountVal); |
| unsigned BytesLeft = SizeVal % UBytes; |
| |
| SDValue InFlag(0, 0); |
| Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX : |
| X86::ECX, |
| Count, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI : |
| X86::EDI, |
| Dst, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI : |
| X86::ESI, |
| Src, InFlag); |
| InFlag = Chain.getValue(1); |
| |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; |
| SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops, |
| array_lengthof(Ops)); |
| |
| SmallVector<SDValue, 4> Results; |
| Results.push_back(RepMovs); |
| if (BytesLeft) { |
| // Handle the last 1 - 7 bytes. |
| unsigned Offset = SizeVal - BytesLeft; |
| EVT DstVT = Dst.getValueType(); |
| EVT SrcVT = Src.getValueType(); |
| EVT SizeVT = Size.getValueType(); |
| Results.push_back(DAG.getMemcpy(Chain, dl, |
| DAG.getNode(ISD::ADD, dl, DstVT, Dst, |
| DAG.getConstant(Offset, DstVT)), |
| DAG.getNode(ISD::ADD, dl, SrcVT, Src, |
| DAG.getConstant(Offset, SrcVT)), |
| DAG.getConstant(BytesLeft, SizeVT), |
| Align, AlwaysInline, |
| DstSV, DstSVOff + Offset, |
| SrcSV, SrcSVOff + Offset)); |
| } |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &Results[0], Results.size()); |
| } |
| |
| SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) { |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (!Subtarget->is64Bit()) { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); |
| return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0); |
| } |
| |
| // __va_list_tag: |
| // gp_offset (0 - 6 * 8) |
| // fp_offset (48 - 48 + 8 * 16) |
| // overflow_arg_area (point to parameters coming in memory). |
| // reg_save_area |
| SmallVector<SDValue, 8> MemOps; |
| SDValue FIN = Op.getOperand(1); |
| // Store gp_offset |
| SDValue Store = DAG.getStore(Op.getOperand(0), dl, |
| DAG.getConstant(VarArgsGPOffset, MVT::i32), |
| FIN, SV, 0); |
| MemOps.push_back(Store); |
| |
| // Store fp_offset |
| FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), |
| FIN, DAG.getIntPtrConstant(4)); |
| Store = DAG.getStore(Op.getOperand(0), dl, |
| DAG.getConstant(VarArgsFPOffset, MVT::i32), |
| FIN, SV, 0); |
| MemOps.push_back(Store); |
| |
| // Store ptr to overflow_arg_area |
| FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), |
| FIN, DAG.getIntPtrConstant(4)); |
| SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); |
| Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0); |
| MemOps.push_back(Store); |
| |
| // Store ptr to reg_save_area. |
| FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), |
| FIN, DAG.getIntPtrConstant(8)); |
| SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); |
| Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0); |
| MemOps.push_back(Store); |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOps[0], MemOps.size()); |
| } |
| |
| SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) { |
| // X86-64 va_list is a struct { i32, i32, i8*, i8* }. |
| assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!"); |
| SDValue Chain = Op.getOperand(0); |
| SDValue SrcPtr = Op.getOperand(1); |
| SDValue SrcSV = Op.getOperand(2); |
| |
| llvm_report_error("VAArgInst is not yet implemented for x86-64!"); |
| return SDValue(); |
| } |
| |
| SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) { |
| // X86-64 va_list is a struct { i32, i32, i8*, i8* }. |
| assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); |
| SDValue Chain = Op.getOperand(0); |
| SDValue DstPtr = Op.getOperand(1); |
| SDValue SrcPtr = Op.getOperand(2); |
| const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); |
| const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr, |
| DAG.getIntPtrConstant(24), 8, false, |
| DstSV, 0, SrcSV, 0); |
| } |
| |
| SDValue |
| X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| switch (IntNo) { |
| default: return SDValue(); // Don't custom lower most intrinsics. |
| // Comparison intrinsics. |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| case Intrinsic::x86_sse2_comilt_sd: |
| case Intrinsic::x86_sse2_comile_sd: |
| case Intrinsic::x86_sse2_comigt_sd: |
| case Intrinsic::x86_sse2_comige_sd: |
| case Intrinsic::x86_sse2_comineq_sd: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| case Intrinsic::x86_sse2_ucomineq_sd: { |
| unsigned Opc = 0; |
| ISD::CondCode CC = ISD::SETCC_INVALID; |
| switch (IntNo) { |
| default: break; |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETEQ; |
| break; |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse2_comilt_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETLT; |
| break; |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse2_comile_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETLE; |
| break; |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse2_comigt_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETGT; |
| break; |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse2_comige_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETGE; |
| break; |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse2_comineq_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETNE; |
| break; |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETEQ; |
| break; |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETLT; |
| break; |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETLE; |
| break; |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETGT; |
| break; |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETGE; |
| break; |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_ucomineq_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETNE; |
| break; |
| } |
| |
| SDValue LHS = Op.getOperand(1); |
| SDValue RHS = Op.getOperand(2); |
| unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG); |
| assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); |
| SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS); |
| SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, |
| DAG.getConstant(X86CC, MVT::i8), Cond); |
| return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); |
| } |
| // ptest intrinsics. The intrinsic these come from are designed to return |
| // an integer value, not just an instruction so lower it to the ptest |
| // pattern and a setcc for the result. |
| case Intrinsic::x86_sse41_ptestz: |
| case Intrinsic::x86_sse41_ptestc: |
| case Intrinsic::x86_sse41_ptestnzc:{ |
| unsigned X86CC = 0; |
| switch (IntNo) { |
| default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); |
| case Intrinsic::x86_sse41_ptestz: |
| // ZF = 1 |
| X86CC = X86::COND_E; |
| break; |
| case Intrinsic::x86_sse41_ptestc: |
| // CF = 1 |
| X86CC = X86::COND_B; |
| break; |
| case Intrinsic::x86_sse41_ptestnzc: |
| // ZF and CF = 0 |
| X86CC = X86::COND_A; |
| break; |
| } |
| |
| SDValue LHS = Op.getOperand(1); |
| SDValue RHS = Op.getOperand(2); |
| SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS); |
| SDValue CC = DAG.getConstant(X86CC, MVT::i8); |
| SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); |
| return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); |
| } |
| |
| // Fix vector shift instructions where the last operand is a non-immediate |
| // i32 value. |
| case Intrinsic::x86_sse2_pslli_w: |
| case Intrinsic::x86_sse2_pslli_d: |
| case Intrinsic::x86_sse2_pslli_q: |
| case Intrinsic::x86_sse2_psrli_w: |
| case Intrinsic::x86_sse2_psrli_d: |
| case Intrinsic::x86_sse2_psrli_q: |
| case Intrinsic::x86_sse2_psrai_w: |
| case Intrinsic::x86_sse2_psrai_d: |
| case Intrinsic::x86_mmx_pslli_w: |
| case Intrinsic::x86_mmx_pslli_d: |
| case Intrinsic::x86_mmx_pslli_q: |
| case Intrinsic::x86_mmx_psrli_w: |
| case Intrinsic::x86_mmx_psrli_d: |
| case Intrinsic::x86_mmx_psrli_q: |
| case Intrinsic::x86_mmx_psrai_w: |
| case Intrinsic::x86_mmx_psrai_d: { |
| SDValue ShAmt = Op.getOperand(2); |
| if (isa<ConstantSDNode>(ShAmt)) |
| return SDValue(); |
| |
| unsigned NewIntNo = 0; |
| EVT ShAmtVT = MVT::v4i32; |
| switch (IntNo) { |
| case Intrinsic::x86_sse2_pslli_w: |
| NewIntNo = Intrinsic::x86_sse2_psll_w; |
| break; |
| case Intrinsic::x86_sse2_pslli_d: |
| NewIntNo = Intrinsic::x86_sse2_psll_d; |
| break; |
| case Intrinsic::x86_sse2_pslli_q: |
| NewIntNo = Intrinsic::x86_sse2_psll_q; |
| break; |
| case Intrinsic::x86_sse2_psrli_w: |
| NewIntNo = Intrinsic::x86_sse2_psrl_w; |
| break; |
| case Intrinsic::x86_sse2_psrli_d: |
| NewIntNo = Intrinsic::x86_sse2_psrl_d; |
| break; |
| case Intrinsic::x86_sse2_psrli_q: |
| NewIntNo = Intrinsic::x86_sse2_psrl_q; |
| break; |
| case Intrinsic::x86_sse2_psrai_w: |
| NewIntNo = Intrinsic::x86_sse2_psra_w; |
| break; |
| case Intrinsic::x86_sse2_psrai_d: |
| NewIntNo = Intrinsic::x86_sse2_psra_d; |
| break; |
| default: { |
| ShAmtVT = MVT::v2i32; |
| switch (IntNo) { |
| case Intrinsic::x86_mmx_pslli_w: |
| NewIntNo = Intrinsic::x86_mmx_psll_w; |
| break; |
| case Intrinsic::x86_mmx_pslli_d: |
| NewIntNo = Intrinsic::x86_mmx_psll_d; |
| break; |
| case Intrinsic::x86_mmx_pslli_q: |
| NewIntNo = Intrinsic::x86_mmx_psll_q; |
| break; |
| case Intrinsic::x86_mmx_psrli_w: |
| NewIntNo = Intrinsic::x86_mmx_psrl_w; |
| break; |
| case Intrinsic::x86_mmx_psrli_d: |
| NewIntNo = Intrinsic::x86_mmx_psrl_d; |
| break; |
| case Intrinsic::x86_mmx_psrli_q: |
| NewIntNo = Intrinsic::x86_mmx_psrl_q; |
| break; |
| case Intrinsic::x86_mmx_psrai_w: |
| NewIntNo = Intrinsic::x86_mmx_psra_w; |
| break; |
| case Intrinsic::x86_mmx_psrai_d: |
| NewIntNo = Intrinsic::x86_mmx_psra_d; |
| break; |
| default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. |
| } |
| break; |
| } |
| } |
| |
| // The vector shift intrinsics with scalars uses 32b shift amounts but |
| // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits |
| // to be zero. |
| SDValue ShOps[4]; |
| ShOps[0] = ShAmt; |
| ShOps[1] = DAG.getConstant(0, MVT::i32); |
| if (ShAmtVT == MVT::v4i32) { |
| ShOps[2] = DAG.getUNDEF(MVT::i32); |
| ShOps[3] = DAG.getUNDEF(MVT::i32); |
| ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4); |
| } else { |
| ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); |
| } |
| |
| EVT VT = Op.getValueType(); |
| ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(NewIntNo, MVT::i32), |
| Op.getOperand(1), ShAmt); |
| } |
| } |
| } |
| |
| SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) { |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (Depth > 0) { |
| SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); |
| SDValue Offset = |
| DAG.getConstant(TD->getPointerSize(), |
| Subtarget->is64Bit() ? MVT::i64 : MVT::i32); |
| return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, dl, getPointerTy(), |
| FrameAddr, Offset), |
| NULL, 0); |
| } |
| |
| // Just load the return address. |
| SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); |
| return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), |
| RetAddrFI, NULL, 0); |
| } |
| |
| SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) { |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI->setFrameAddressIsTaken(true); |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP; |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); |
| while (Depth--) |
| FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0); |
| return FrameAddr; |
| } |
| |
| SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, |
| SelectionDAG &DAG) { |
| return DAG.getIntPtrConstant(2*TD->getPointerSize()); |
| } |
| |
| SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) |
| { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Offset = Op.getOperand(1); |
| SDValue Handler = Op.getOperand(2); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP, |
| getPointerTy()); |
| unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX); |
| |
| SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame, |
| DAG.getIntPtrConstant(-TD->getPointerSize())); |
| StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset); |
| Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0); |
| Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); |
| MF.getRegInfo().addLiveOut(StoreAddrReg); |
| |
| return DAG.getNode(X86ISD::EH_RETURN, dl, |
| MVT::Other, |
| Chain, DAG.getRegister(StoreAddrReg, getPointerTy())); |
| } |
| |
| SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op, |
| SelectionDAG &DAG) { |
| SDValue Root = Op.getOperand(0); |
| SDValue Trmp = Op.getOperand(1); // trampoline |
| SDValue FPtr = Op.getOperand(2); // nested function |
| SDValue Nest = Op.getOperand(3); // 'nest' parameter value |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); |
| |
| if (Subtarget->is64Bit()) { |
| SDValue OutChains[6]; |
| |
| // Large code-model. |
| const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode. |
| const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. |
| |
| const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10); |
| const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11); |
| |
| const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix |
| |
| // Load the pointer to the nested function into R11. |
| unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 |
| SDValue Addr = Trmp; |
| OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), |
| Addr, TrmpAddr, 0); |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(2, MVT::i64)); |
| OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2); |
| |
| // Load the 'nest' parameter value into R10. |
| // R10 is specified in X86CallingConv.td |
| OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(10, MVT::i64)); |
| OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), |
| Addr, TrmpAddr, 10); |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(12, MVT::i64)); |
| OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2); |
| |
| // Jump to the nested function. |
| OpCode = (JMP64r << 8) | REX_WB; // jmpq *... |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(20, MVT::i64)); |
| OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), |
| Addr, TrmpAddr, 20); |
| |
| unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, |
| DAG.getConstant(22, MVT::i64)); |
| OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr, |
| TrmpAddr, 22); |
| |
| SDValue Ops[] = |
| { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } else { |
| const Function *Func = |
| cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); |
| CallingConv::ID CC = Func->getCallingConv(); |
| unsigned NestReg; |
| |
| switch (CC) { |
| default: |
| llvm_unreachable("Unsupported calling convention"); |
| case CallingConv::C: |
| case CallingConv::X86_StdCall: { |
| // Pass 'nest' parameter in ECX. |
| // Must be kept in sync with X86CallingConv.td |
| NestReg = X86::ECX; |
| |
| // Check that ECX wasn't needed by an 'inreg' parameter. |
| const FunctionType *FTy = Func->getFunctionType(); |
| const AttrListPtr &Attrs = Func->getAttributes(); |
| |
| if (!Attrs.isEmpty() && !Func->isVarArg()) { |
| unsigned InRegCount = 0; |
| unsigned Idx = 1; |
| |
| for (FunctionType::param_iterator I = FTy->param_begin(), |
| E = FTy->param_end(); I != E; ++I, ++Idx) |
| if (Attrs.paramHasAttr(Idx, Attribute::InReg)) |
| // FIXME: should only count parameters that are lowered to integers. |
| InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; |
| |
| if (InRegCount > 2) { |
| llvm_report_error("Nest register in use - reduce number of inreg parameters!"); |
| } |
| } |
| break; |
| } |
| case CallingConv::X86_FastCall: |
| case CallingConv::Fast: |
| // Pass 'nest' parameter in EAX. |
| // Must be kept in sync with X86CallingConv.td |
| NestReg = X86::EAX; |
| break; |
| } |
| |
| SDValue OutChains[4]; |
| SDValue Addr, Disp; |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, |
| DAG.getConstant(10, MVT::i32)); |
| Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); |
| |
| // This is storing the opcode for MOV32ri. |
| const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. |
| const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg); |
| OutChains[0] = DAG.getStore(Root, dl, |
| DAG.getConstant(MOV32ri|N86Reg, MVT::i8), |
| Trmp, TrmpAddr, 0); |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, |
| DAG.getConstant(1, MVT::i32)); |
| OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1); |
| |
| const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, |
| DAG.getConstant(5, MVT::i32)); |
| OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr, |
| TrmpAddr, 5, false, 1); |
| |
| Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, |
| DAG.getConstant(6, MVT::i32)); |
| OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1); |
| |
| SDValue Ops[] = |
| { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } |
| } |
| |
| SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) { |
| /* |
| The rounding mode is in bits 11:10 of FPSR, and has the following |
| settings: |
| 00 Round to nearest |
| 01 Round to -inf |
| 10 Round to +inf |
| 11 Round to 0 |
| |
| FLT_ROUNDS, on the other hand, expects the following: |
| -1 Undefined |
| 0 Round to 0 |
| 1 Round to nearest |
| 2 Round to +inf |
| 3 Round to -inf |
| |
| To perform the conversion, we do: |
| (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) |
| */ |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetMachine &TM = MF.getTarget(); |
| const TargetFrameInfo &TFI = *TM.getFrameInfo(); |
| unsigned StackAlignment = TFI.getStackAlignment(); |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // Save FP Control Word to stack slot |
| int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| |
| SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other, |
| DAG.getEntryNode(), StackSlot); |
| |
| // Load FP Control Word from stack slot |
| SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0); |
| |
| // Transform as necessary |
| SDValue CWD1 = |
| DAG.getNode(ISD::SRL, dl, MVT::i16, |
| DAG.getNode(ISD::AND, dl, MVT::i16, |
| CWD, DAG.getConstant(0x800, MVT::i16)), |
| DAG.getConstant(11, MVT::i8)); |
| SDValue CWD2 = |
| DAG.getNode(ISD::SRL, dl, MVT::i16, |
| DAG.getNode(ISD::AND, dl, MVT::i16, |
| CWD, DAG.getConstant(0x400, MVT::i16)), |
| DAG.getConstant(9, MVT::i8)); |
| |
| SDValue RetVal = |
| DAG.getNode(ISD::AND, dl, MVT::i16, |
| DAG.getNode(ISD::ADD, dl, MVT::i16, |
| DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2), |
| DAG.getConstant(1, MVT::i16)), |
| DAG.getConstant(3, MVT::i16)); |
| |
| |
| return DAG.getNode((VT.getSizeInBits() < 16 ? |
| ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); |
| } |
| |
| SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| EVT OpVT = VT; |
| unsigned NumBits = VT.getSizeInBits(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| Op = Op.getOperand(0); |
| if (VT == MVT::i8) { |
| // Zero extend to i32 since there is not an i8 bsr. |
| OpVT = MVT::i32; |
| Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); |
| } |
| |
| // Issue a bsr (scan bits in reverse) which also sets EFLAGS. |
| SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); |
| Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); |
| |
| // If src is zero (i.e. bsr sets ZF), returns NumBits. |
| SDValue Ops[] = { |
| Op, |
| DAG.getConstant(NumBits+NumBits-1, OpVT), |
| DAG.getConstant(X86::COND_E, MVT::i8), |
| Op.getValue(1) |
| }; |
| Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); |
| |
| // Finally xor with NumBits-1. |
| Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); |
| |
| if (VT == MVT::i8) |
| Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); |
| return Op; |
| } |
| |
| SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| EVT OpVT = VT; |
| unsigned NumBits = VT.getSizeInBits(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| Op = Op.getOperand(0); |
| if (VT == MVT::i8) { |
| OpVT = MVT::i32; |
| Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); |
| } |
| |
| // Issue a bsf (scan bits forward) which also sets EFLAGS. |
| SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); |
| Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op); |
| |
| // If src is zero (i.e. bsf sets ZF), returns NumBits. |
| SDValue Ops[] = { |
| Op, |
| DAG.getConstant(NumBits, OpVT), |
| DAG.getConstant(X86::COND_E, MVT::i8), |
| Op.getValue(1) |
| }; |
| Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); |
| |
| if (VT == MVT::i8) |
| Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); |
| return Op; |
| } |
| |
| SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply"); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32); |
| // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32); |
| // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b ); |
| // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi ); |
| // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b ); |
| // |
| // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 ); |
| // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 ); |
| // return AloBlo + AloBhi + AhiBlo; |
| |
| SDValue A = Op.getOperand(0); |
| SDValue B = Op.getOperand(1); |
| |
| SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), |
| A, DAG.getConstant(32, MVT::i32)); |
| SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), |
| B, DAG.getConstant(32, MVT::i32)); |
| SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), |
| A, B); |
| SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), |
| A, Bhi); |
| SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), |
| Ahi, B); |
| AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), |
| AloBhi, DAG.getConstant(32, MVT::i32)); |
| AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), |
| AhiBlo, DAG.getConstant(32, MVT::i32)); |
| SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); |
| Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); |
| return Res; |
| } |
| |
| |
| SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) { |
| // Lower the "add/sub/mul with overflow" instruction into a regular ins plus |
| // a "setcc" instruction that checks the overflow flag. The "brcond" lowering |
| // looks for this combo and may remove the "setcc" instruction if the "setcc" |
| // has only one use. |
| SDNode *N = Op.getNode(); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| unsigned BaseOp = 0; |
| unsigned Cond = 0; |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Unknown ovf instruction!"); |
| case ISD::SADDO: |
| // A subtract of one will be selected as a INC. Note that INC doesn't |
| // set CF, so we can't do this for UADDO. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) |
| if (C->getAPIntValue() == 1) { |
| BaseOp = X86ISD::INC; |
| Cond = X86::COND_O; |
| break; |
| } |
| BaseOp = X86ISD::ADD; |
| Cond = X86::COND_O; |
| break; |
| case ISD::UADDO: |
| BaseOp = X86ISD::ADD; |
| Cond = X86::COND_B; |
| break; |
| case ISD::SSUBO: |
| // A subtract of one will be selected as a DEC. Note that DEC doesn't |
| // set CF, so we can't do this for USUBO. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) |
| if (C->getAPIntValue() == 1) { |
| BaseOp = X86ISD::DEC; |
| Cond = X86::COND_O; |
| break; |
| } |
| BaseOp = X86ISD::SUB; |
| Cond = X86::COND_O; |
| break; |
| case ISD::USUBO: |
| BaseOp = X86ISD::SUB; |
| Cond = X86::COND_B; |
| break; |
| case ISD::SMULO: |
| BaseOp = X86ISD::SMUL; |
| Cond = X86::COND_O; |
| break; |
| case ISD::UMULO: |
| BaseOp = X86ISD::UMUL; |
| Cond = X86::COND_B; |
| break; |
| } |
| |
| // Also sets EFLAGS. |
| SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); |
| SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS); |
| |
| SDValue SetCC = |
| DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1), |
| DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1)); |
| |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC); |
| return Sum; |
| } |
| |
| SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) { |
| EVT T = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Reg = 0; |
| unsigned size = 0; |
| switch(T.getSimpleVT().SimpleTy) { |
| default: |
| assert(false && "Invalid value type!"); |
| case MVT::i8: Reg = X86::AL; size = 1; break; |
| case MVT::i16: Reg = X86::AX; size = 2; break; |
| case MVT::i32: Reg = X86::EAX; size = 4; break; |
| case MVT::i64: |
| assert(Subtarget->is64Bit() && "Node not type legal!"); |
| Reg = X86::RAX; size = 8; |
| break; |
| } |
| SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg, |
| Op.getOperand(2), SDValue()); |
| SDValue Ops[] = { cpIn.getValue(0), |
| Op.getOperand(1), |
| Op.getOperand(3), |
| DAG.getTargetConstant(size, MVT::i8), |
| cpIn.getValue(1) }; |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5); |
| SDValue cpOut = |
| DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1)); |
| return cpOut; |
| } |
| |
| SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op, |
| SelectionDAG &DAG) { |
| assert(Subtarget->is64Bit() && "Result not type legalized?"); |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDValue TheChain = Op.getOperand(0); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); |
| SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1)); |
| SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64, |
| rax.getValue(2)); |
| SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx, |
| DAG.getConstant(32, MVT::i8)); |
| SDValue Ops[] = { |
| DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp), |
| rdx.getValue(1) |
| }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } |
| |
| SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) { |
| SDNode *Node = Op.getNode(); |
| DebugLoc dl = Node->getDebugLoc(); |
| EVT T = Node->getValueType(0); |
| SDValue negOp = DAG.getNode(ISD::SUB, dl, T, |
| DAG.getConstant(0, T), Node->getOperand(2)); |
| return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, |
| cast<AtomicSDNode>(Node)->getMemoryVT(), |
| Node->getOperand(0), |
| Node->getOperand(1), negOp, |
| cast<AtomicSDNode>(Node)->getSrcValue(), |
| cast<AtomicSDNode>(Node)->getAlignment()); |
| } |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Should not custom lower this!"); |
| case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG); |
| case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG); |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); |
| case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| case ISD::SHL_PARTS: |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: return LowerShift(Op, DAG); |
| case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); |
| case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); |
| case ISD::FABS: return LowerFABS(Op, DAG); |
| case ISD::FNEG: return LowerFNEG(Op, DAG); |
| case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); |
| case ISD::SETCC: return LowerSETCC(Op, DAG); |
| case ISD::VSETCC: return LowerVSETCC(Op, DAG); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::VAARG: return LowerVAARG(Op, DAG); |
| case ISD::VACOPY: return LowerVACOPY(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| case ISD::FRAME_TO_ARGS_OFFSET: |
| return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); |
| case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); |
| case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); |
| case ISD::CTLZ: return LowerCTLZ(Op, DAG); |
| case ISD::CTTZ: return LowerCTTZ(Op, DAG); |
| case ISD::MUL: return LowerMUL_V2I64(Op, DAG); |
| case ISD::SADDO: |
| case ISD::UADDO: |
| case ISD::SSUBO: |
| case ISD::USUBO: |
| case ISD::SMULO: |
| case ISD::UMULO: return LowerXALUO(Op, DAG); |
| case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG); |
| } |
| } |
| |
| void X86TargetLowering:: |
| ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG, unsigned NewOp) { |
| EVT T = Node->getValueType(0); |
| DebugLoc dl = Node->getDebugLoc(); |
| assert (T == MVT::i64 && "Only know how to expand i64 atomics"); |
| |
| SDValue Chain = Node->getOperand(0); |
| SDValue In1 = Node->getOperand(1); |
| SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| Node->getOperand(2), DAG.getIntPtrConstant(0)); |
| SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, |
| Node->getOperand(2), DAG.getIntPtrConstant(1)); |
| SDValue Ops[] = { Chain, In1, In2L, In2H }; |
| SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); |
| SDValue Result = |
| DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64, |
| cast<MemSDNode>(Node)->getMemOperand()); |
| SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)}; |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); |
| Results.push_back(Result.getValue(2)); |
| } |
| |
| /// ReplaceNodeResults - Replace a node with an illegal result type |
| /// with a new node built out of custom code. |
| void X86TargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG) { |
| DebugLoc dl = N->getDebugLoc(); |
| switch (N->getOpcode()) { |
| default: |
| assert(false && "Do not know how to custom type legalize this operation!"); |
| return; |
| case ISD::FP_TO_SINT: { |
| std::pair<SDValue,SDValue> Vals = |
| FP_TO_INTHelper(SDValue(N, 0), DAG, true); |
| SDValue FIST = Vals.first, StackSlot = Vals.second; |
| if (FIST.getNode() != 0) { |
| EVT VT = N->getValueType(0); |
| // Return a load from the stack slot. |
| Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0)); |
| } |
| return; |
| } |
| case ISD::READCYCLECOUNTER: { |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDValue TheChain = N->getOperand(0); |
| SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); |
| SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32, |
| rd.getValue(1)); |
| SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32, |
| eax.getValue(2)); |
| // Use a buildpair to merge the two 32-bit values into a 64-bit one. |
| SDValue Ops[] = { eax, edx }; |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2)); |
| Results.push_back(edx.getValue(1)); |
| return; |
| } |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: { |
| EVT WidenVT = getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); |
| Results.push_back(DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements())); |
| return; |
| } |
| case ISD::ATOMIC_CMP_SWAP: { |
| EVT T = N->getValueType(0); |
| assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap"); |
| SDValue cpInL, cpInH; |
| cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2), |
| DAG.getConstant(0, MVT::i32)); |
| cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2), |
| DAG.getConstant(1, MVT::i32)); |
| cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue()); |
| cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH, |
| cpInL.getValue(1)); |
| SDValue swapInL, swapInH; |
| swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), |
| DAG.getConstant(0, MVT::i32)); |
| swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), |
| DAG.getConstant(1, MVT::i32)); |
| swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL, |
| cpInH.getValue(1)); |
| swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH, |
| swapInL.getValue(1)); |
| SDValue Ops[] = { swapInH.getValue(0), |
| N->getOperand(1), |
| swapInH.getValue(1) }; |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3); |
| SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX, |
| MVT::i32, Result.getValue(1)); |
| SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX, |
| MVT::i32, cpOutL.getValue(2)); |
| SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); |
| Results.push_back(cpOutH.getValue(1)); |
| return; |
| } |
| case ISD::ATOMIC_LOAD_ADD: |
| ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_AND: |
| ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_NAND: |
| ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_OR: |
| ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_SUB: |
| ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG); |
| return; |
| case ISD::ATOMIC_LOAD_XOR: |
| ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG); |
| return; |
| case ISD::ATOMIC_SWAP: |
| ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG); |
| return; |
| } |
| } |
| |
| const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return NULL; |
| case X86ISD::BSF: return "X86ISD::BSF"; |
| case X86ISD::BSR: return "X86ISD::BSR"; |
| case X86ISD::SHLD: return "X86ISD::SHLD"; |
| case X86ISD::SHRD: return "X86ISD::SHRD"; |
| case X86ISD::FAND: return "X86ISD::FAND"; |
| case X86ISD::FOR: return "X86ISD::FOR"; |
| case X86ISD::FXOR: return "X86ISD::FXOR"; |
| case X86ISD::FSRL: return "X86ISD::FSRL"; |
| case X86ISD::FILD: return "X86ISD::FILD"; |
| case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; |
| case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; |
| case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; |
| case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; |
| case X86ISD::FLD: return "X86ISD::FLD"; |
| case X86ISD::FST: return "X86ISD::FST"; |
| case X86ISD::CALL: return "X86ISD::CALL"; |
| case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; |
| case X86ISD::BT: return "X86ISD::BT"; |
| case X86ISD::CMP: return "X86ISD::CMP"; |
| case X86ISD::COMI: return "X86ISD::COMI"; |
| case X86ISD::UCOMI: return "X86ISD::UCOMI"; |
| case X86ISD::SETCC: return "X86ISD::SETCC"; |
| case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY"; |
| case X86ISD::CMOV: return "X86ISD::CMOV"; |
| case X86ISD::BRCOND: return "X86ISD::BRCOND"; |
| case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; |
| case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; |
| case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; |
| case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; |
| case X86ISD::Wrapper: return "X86ISD::Wrapper"; |
| case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP"; |
| case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; |
| case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; |
| case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; |
| case X86ISD::PINSRB: return "X86ISD::PINSRB"; |
| case X86ISD::PINSRW: return "X86ISD::PINSRW"; |
| case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; |
| case X86ISD::FMAX: return "X86ISD::FMAX"; |
| case X86ISD::FMIN: return "X86ISD::FMIN"; |
| case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; |
| case X86ISD::FRCP: return "X86ISD::FRCP"; |
| case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; |
| case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress"; |
| case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; |
| case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; |
| case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; |
| case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; |
| case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; |
| case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG"; |
| case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG"; |
| case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG"; |
| case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG"; |
| case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG"; |
| case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG"; |
| case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; |
| case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; |
| case X86ISD::VSHL: return "X86ISD::VSHL"; |
| case X86ISD::VSRL: return "X86ISD::VSRL"; |
| case X86ISD::CMPPD: return "X86ISD::CMPPD"; |
| case X86ISD::CMPPS: return "X86ISD::CMPPS"; |
| case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB"; |
| case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW"; |
| case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD"; |
| case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ"; |
| case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB"; |
| case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW"; |
| case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD"; |
| case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ"; |
| case X86ISD::ADD: return "X86ISD::ADD"; |
| case X86ISD::SUB: return "X86ISD::SUB"; |
| case X86ISD::SMUL: return "X86ISD::SMUL"; |
| case X86ISD::UMUL: return "X86ISD::UMUL"; |
| case X86ISD::INC: return "X86ISD::INC"; |
| case X86ISD::DEC: return "X86ISD::DEC"; |
| case X86ISD::OR: return "X86ISD::OR"; |
| case X86ISD::XOR: return "X86ISD::XOR"; |
| case X86ISD::AND: return "X86ISD::AND"; |
| case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; |
| case X86ISD::PTEST: return "X86ISD::PTEST"; |
| case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; |
| } |
| } |
| |
| // isLegalAddressingMode - Return true if the addressing mode represented |
| // by AM is legal for this target, for a load/store of the specified type. |
| bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, |
| const Type *Ty) const { |
| // X86 supports extremely general addressing modes. |
| CodeModel::Model M = getTargetMachine().getCodeModel(); |
| |
| // X86 allows a sign-extended 32-bit immediate field as a displacement. |
| if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL)) |
| return false; |
| |
| if (AM.BaseGV) { |
| unsigned GVFlags = |
| Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); |
| |
| // If a reference to this global requires an extra load, we can't fold it. |
| if (isGlobalStubReference(GVFlags)) |
| return false; |
| |
| // If BaseGV requires a register for the PIC base, we cannot also have a |
| // BaseReg specified. |
| if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) |
| return false; |
| |
| // If lower 4G is not available, then we must use rip-relative addressing. |
| if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) |
| return false; |
| } |
| |
| switch (AM.Scale) { |
| case 0: |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| // These scales always work. |
| break; |
| case 3: |
| case 5: |
| case 9: |
| // These scales are formed with basereg+scalereg. Only accept if there is |
| // no basereg yet. |
| if (AM.HasBaseReg) |
| return false; |
| break; |
| default: // Other stuff never works. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const { |
| if (!Ty1->isInteger() || !Ty2->isInteger()) |
| return false; |
| unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); |
| unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); |
| if (NumBits1 <= NumBits2) |
| return false; |
| return Subtarget->is64Bit() || NumBits1 < 64; |
| } |
| |
| bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { |
| if (!VT1.isInteger() || !VT2.isInteger()) |
| return false; |
| unsigned NumBits1 = VT1.getSizeInBits(); |
| unsigned NumBits2 = VT2.getSizeInBits(); |
| if (NumBits1 <= NumBits2) |
| return false; |
| return Subtarget->is64Bit() || NumBits1 < 64; |
| } |
| |
| bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const { |
| // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. |
| return Ty1->isInteger(32) && Ty2->isInteger(64) && Subtarget->is64Bit(); |
| } |
| |
| bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { |
| // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. |
| return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); |
| } |
| |
| bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { |
| // i16 instructions are longer (0x66 prefix) and potentially slower. |
| return !(VT1 == MVT::i32 && VT2 == MVT::i16); |
| } |
| |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values |
| /// are assumed to be legal. |
| bool |
| X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, |
| EVT VT) const { |
| // Only do shuffles on 128-bit vector types for now. |
| if (VT.getSizeInBits() == 64) |
| return false; |
| |
| // FIXME: pshufb, blends, shifts. |
| return (VT.getVectorNumElements() == 2 || |
| ShuffleVectorSDNode::isSplatMask(&M[0], VT) || |
| isMOVLMask(M, VT) || |
| isSHUFPMask(M, VT) || |
| isPSHUFDMask(M, VT) || |
| isPSHUFHWMask(M, VT) || |
| isPSHUFLWMask(M, VT) || |
| isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) || |
| isUNPCKLMask(M, VT) || |
| isUNPCKHMask(M, VT) || |
| isUNPCKL_v_undef_Mask(M, VT) || |
| isUNPCKH_v_undef_Mask(M, VT)); |
| } |
| |
| bool |
| X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, |
| EVT VT) const { |
| unsigned NumElts = VT.getVectorNumElements(); |
| // FIXME: This collection of masks seems suspect. |
| if (NumElts == 2) |
| return true; |
| if (NumElts == 4 && VT.getSizeInBits() == 128) { |
| return (isMOVLMask(Mask, VT) || |
| isCommutedMOVLMask(Mask, VT, true) || |
| isSHUFPMask(Mask, VT) || |
| isCommutedSHUFPMask(Mask, VT)); |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Scheduler Hooks |
| //===----------------------------------------------------------------------===// |
| |
| // private utility function |
| MachineBasicBlock * |
| X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, |
| MachineBasicBlock *MBB, |
| unsigned regOpc, |
| unsigned immOpc, |
| unsigned LoadOpc, |
| unsigned CXchgOpc, |
| unsigned copyOpc, |
| unsigned notOpc, |
| unsigned EAXreg, |
| TargetRegisterClass *RC, |
| bool invSrc) const { |
| // For the atomic bitwise operator, we generate |
| // thisMBB: |
| // newMBB: |
| // ld t1 = [bitinstr.addr] |
| // op t2 = t1, [bitinstr.val] |
| // mov EAX = t1 |
| // lcs dest = [bitinstr.addr], t2 [EAX is implicit] |
| // bz newMBB |
| // fallthrough -->nextMBB |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| MachineFunction::iterator MBBIter = MBB; |
| ++MBBIter; |
| |
| /// First build the CFG |
| MachineFunction *F = MBB->getParent(); |
| MachineBasicBlock *thisMBB = MBB; |
| MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(MBBIter, newMBB); |
| F->insert(MBBIter, nextMBB); |
| |
| // Move all successors to thisMBB to nextMBB |
| nextMBB->transferSuccessors(thisMBB); |
| |
| // Update thisMBB to fall through to newMBB |
| thisMBB->addSuccessor(newMBB); |
| |
| // newMBB jumps to itself and fall through to nextMBB |
| newMBB->addSuccessor(nextMBB); |
| newMBB->addSuccessor(newMBB); |
| |
| // Insert instructions into newMBB based on incoming instruction |
| assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 && |
| "unexpected number of operands"); |
| DebugLoc dl = bInstr->getDebugLoc(); |
| MachineOperand& destOper = bInstr->getOperand(0); |
| MachineOperand* argOpers[2 + X86AddrNumOperands]; |
| int numArgs = bInstr->getNumOperands() - 1; |
| for (int i=0; i < numArgs; ++i) |
| argOpers[i] = &bInstr->getOperand(i+1); |
| |
| // x86 address has 4 operands: base, index, scale, and displacement |
| int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] |
| int valArgIndx = lastAddrIndx + 1; |
| |
| unsigned t1 = F->getRegInfo().createVirtualRegister(RC); |
| MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1); |
| for (int i=0; i <= lastAddrIndx; ++i) |
| (*MIB).addOperand(*argOpers[i]); |
| |
| unsigned tt = F->getRegInfo().createVirtualRegister(RC); |
| if (invSrc) { |
| MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1); |
| } |
| else |
| tt = t1; |
| |
| unsigned t2 = F->getRegInfo().createVirtualRegister(RC); |
| assert((argOpers[valArgIndx]->isReg() || |
| argOpers[valArgIndx]->isImm()) && |
| "invalid operand"); |
| if (argOpers[valArgIndx]->isReg()) |
| MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2); |
| else |
| MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2); |
| MIB.addReg(tt); |
| (*MIB).addOperand(*argOpers[valArgIndx]); |
| |
| MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg); |
| MIB.addReg(t1); |
| |
| MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc)); |
| for (int i=0; i <= lastAddrIndx; ++i) |
| (*MIB).addOperand(*argOpers[i]); |
| MIB.addReg(t2); |
| assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); |
| (*MIB).setMemRefs(bInstr->memoperands_begin(), |
| bInstr->memoperands_end()); |
| |
| MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg()); |
| MIB.addReg(EAXreg); |
| |
| // insert branch |
| BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB); |
| |
| F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now. |
| return nextMBB; |
| } |
| |
| // private utility function: 64 bit atomics on 32 bit host. |
| MachineBasicBlock * |
| X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr, |
| MachineBasicBlock *MBB, |
| unsigned regOpcL, |
| unsigned regOpcH, |
| unsigned immOpcL, |
| unsigned immOpcH, |
| bool invSrc) const { |
| // For the atomic bitwise operator, we generate |
| // thisMBB (instructions are in pairs, except cmpxchg8b) |
| // ld t1,t2 = [bitinstr.addr] |
| // newMBB: |
| // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4) |
| // op t5, t6 <- out1, out2, [bitinstr.val] |
| // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val]) |
| // mov ECX, EBX <- t5, t6 |
| // mov EAX, EDX <- t1, t2 |
| // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit] |
| // mov t3, t4 <- EAX, EDX |
| // bz newMBB |
| // result in out1, out2 |
| // fallthrough -->nextMBB |
| |
| const TargetRegisterClass *RC = X86::GR32RegisterClass; |
| const unsigned LoadOpc = X86::MOV32rm; |
| const unsigned copyOpc = X86::MOV32rr; |
| const unsigned NotOpc = X86::NOT32r; |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| MachineFunction::iterator MBBIter = MBB; |
| ++MBBIter; |
| |
| /// First build the CFG |
| MachineFunction *F = MBB->getParent(); |
| MachineBasicBlock *thisMBB = MBB; |
| MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(MBBIter, newMBB); |
| F->insert(MBBIter, nextMBB); |
| |
| // Move all successors to thisMBB to nextMBB |
| nextMBB->transferSuccessors(thisMBB); |
| |
| // Update thisMBB to fall through to newMBB |
| thisMBB->addSuccessor(newMBB); |
| |
| // newMBB jumps to itself and fall through to nextMBB |
| newMBB->addSuccessor(nextMBB); |
| newMBB->addSuccessor(newMBB); |
| |
| DebugLoc dl = bInstr->getDebugLoc(); |
| // Insert instructions into newMBB based on incoming instruction |
| // There are 8 "real" operands plus 9 implicit def/uses, ignored here. |
| assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 && |
| "unexpected number of operands"); |
| MachineOperand& dest1Oper = bInstr->getOperand(0); |
| MachineOperand& dest2Oper = bInstr->getOperand(1); |
| MachineOperand* argOpers[2 + X86AddrNumOperands]; |
| for (int i=0; i < 2 + X86AddrNumOperands; ++i) |
| argOpers[i] = &bInstr->getOperand(i+2); |
| |
| // x86 address has 5 operands: base, index, scale, displacement, and segment. |
| int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] |
| |
| unsigned t1 = F->getRegInfo().createVirtualRegister(RC); |
| MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1); |
| for (int i=0; i <= lastAddrIndx; ++i) |
| (*MIB).addOperand(*argOpers[i]); |
| unsigned t2 = F->getRegInfo().createVirtualRegister(RC); |
| MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2); |
| // add 4 to displacement. |
| for (int i=0; i <= lastAddrIndx-2; ++i) |
| (*MIB).addOperand(*argOpers[i]); |
| MachineOperand newOp3 = *(argOpers[3]); |
| if (newOp3.isImm()) |
| newOp3.setImm(newOp3.getImm()+4); |
| else |
| newOp3.setOffset(newOp3.getOffset()+4); |
| (*MIB).addOperand(newOp3); |
| (*MIB).addOperand(*argOpers[lastAddrIndx]); |
| |
| // t3/4 are defined later, at the bottom of the loop |
| unsigned t3 = F->getRegInfo().createVirtualRegister(RC); |
| unsigned t4 = F->getRegInfo().createVirtualRegister(RC); |
| BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg()) |
| .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB); |
| BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg()) |
| .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB); |
| |
| // The subsequent operations should be using the destination registers of |
| //the PHI instructions. |
| if (invSrc) { |
| t1 = F->getRegInfo().createVirtualRegister(RC); |
| t2 = F->getRegInfo().createVirtualRegister(RC); |
| MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg()); |
| MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg()); |
| } else { |
| t1 = dest1Oper.getReg(); |
| t2 = dest2Oper.getReg(); |
| } |
| |
| int valArgIndx = lastAddrIndx + 1; |
| assert((argOpers[valArgIndx]->isReg() || |
| argOpers[valArgIndx]->isImm()) && |
| "invalid operand"); |
| unsigned t5 = F->getRegInfo().createVirtualRegister(RC); |
| unsigned t6 = F->getRegInfo().createVirtualRegister(RC); |
| if (argOpers[valArgIndx]->isReg()) |
| MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5); |
| else |
| MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5); |
| if (regOpcL != X86::MOV32rr) |
| MIB.addReg(t1); |
| (*MIB).addOperand(*argOpers[valArgIndx]); |
| assert(argOpers[valArgIndx + 1]->isReg() == |
| argOpers[valArgIndx]->isReg()); |
| assert(argOpers[valArgIndx + 1]->isImm() == |
| argOpers[valArgIndx]->isImm()); |
| if (argOpers[valArgIndx + 1]->isReg()) |
| MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6); |
| else |
| MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6); |
| if (regOpcH != X86::MOV32rr) |
| MIB.addReg(t2); |
| (*MIB).addOperand(*argOpers[valArgIndx + 1]); |
| |
| MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX); |
| MIB.addReg(t1); |
| MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX); |
| MIB.addReg(t2); |
| |
| MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX); |
| MIB.addReg(t5); |
| MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX); |
| MIB.addReg(t6); |
| |
| MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B)); |
| for (int i=0; i <= lastAddrIndx; ++i) |
| (*MIB).addOperand(*argOpers[i]); |
| |
| assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); |
| (*MIB).setMemRefs(bInstr->memoperands_begin(), |
| bInstr->memoperands_end()); |
| |
| MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3); |
| MIB.addReg(X86::EAX); |
| MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4); |
| MIB.addReg(X86::EDX); |
| |
| // insert branch |
| BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB); |
| |
| F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now. |
| return nextMBB; |
| } |
| |
| // private utility function |
| MachineBasicBlock * |
| X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, |
| MachineBasicBlock *MBB, |
| unsigned cmovOpc) const { |
| // For the atomic min/max operator, we generate |
| // thisMBB: |
| // newMBB: |
| // ld t1 = [min/max.addr] |
| // mov t2 = [min/max.val] |
| // cmp t1, t2 |
| // cmov[cond] t2 = t1 |
| // mov EAX = t1 |
| // lcs dest = [bitinstr.addr], t2 [EAX is implicit] |
| // bz newMBB |
| // fallthrough -->nextMBB |
| // |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| MachineFunction::iterator MBBIter = MBB; |
| ++MBBIter; |
| |
| /// First build the CFG |
| MachineFunction *F = MBB->getParent(); |
| MachineBasicBlock *thisMBB = MBB; |
| MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(MBBIter, newMBB); |
| F->insert(MBBIter, nextMBB); |
| |
| // Move all successors of thisMBB to nextMBB |
| nextMBB->transferSuccessors(thisMBB); |
| |
| // Update thisMBB to fall through to newMBB |
| thisMBB->addSuccessor(newMBB); |
| |
| // newMBB jumps to newMBB and fall through to nextMBB |
| newMBB->addSuccessor(nextMBB); |
| newMBB->addSuccessor(newMBB); |
| |
| DebugLoc dl = mInstr->getDebugLoc(); |
| // Insert instructions into newMBB based on incoming instruction |
| assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 && |
| "unexpected number of operands"); |
| MachineOperand& destOper = mInstr->getOperand(0); |
| MachineOperand* argOpers[2 + X86AddrNumOperands]; |
| int numArgs = mInstr->getNumOperands() - 1; |
| for (int i=0; i < numArgs; ++i) |
| argOpers[i] = &mInstr->getOperand(i+1); |
| |
| // x86 address has 4 operands: base, index, scale, and displacement |
| int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] |
| int valArgIndx = lastAddrIndx + 1; |
| |
| unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); |
| MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1); |
| for (int i=0; i <= lastAddrIndx; ++i) |
| (*MIB).addOperand(*argOpers[i]); |
| |
| // We only support register and immediate values |
| assert((argOpers[valArgIndx]->isReg() || |
| argOpers[valArgIndx]->isImm()) && |
| "invalid operand"); |
| |
| unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); |
| if (argOpers[valArgIndx]->isReg()) |
| MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2); |
| else |
| MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2); |
| (*MIB).addOperand(*argOpers[valArgIndx]); |
| |
| MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX); |
| MIB.addReg(t1); |
| |
| MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr)); |
| MIB.addReg(t1); |
| MIB.addReg(t2); |
| |
| // Generate movc |
| unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); |
| MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3); |
| MIB.addReg(t2); |
| MIB.addReg(t1); |
| |
| // Cmp and exchange if none has modified the memory location |
| MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32)); |
| for (int i=0; i <= lastAddrIndx; ++i) |
| (*MIB).addOperand(*argOpers[i]); |
| MIB.addReg(t3); |
| assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand"); |
| (*MIB).setMemRefs(mInstr->memoperands_begin(), |
| mInstr->memoperands_end()); |
| |
| MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg()); |
| MIB.addReg(X86::EAX); |
| |
| // insert branch |
| BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB); |
| |
| F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now. |
| return nextMBB; |
| } |
| |
| // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 |
| // all of this code can be replaced with that in the .td file. |
| MachineBasicBlock * |
| X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB, |
| unsigned numArgs, bool memArg) const { |
| |
| MachineFunction *F = BB->getParent(); |
| DebugLoc dl = MI->getDebugLoc(); |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| |
| unsigned Opc; |
| if (memArg) |
| Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm; |
| else |
| Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr; |
| |
| MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc)); |
| |
| for (unsigned i = 0; i < numArgs; ++i) { |
| MachineOperand &Op = MI->getOperand(i+1); |
| |
| if (!(Op.isReg() && Op.isImplicit())) |
| MIB.addOperand(Op); |
| } |
| |
| BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg()) |
| .addReg(X86::XMM0); |
| |
| F->DeleteMachineInstr(MI); |
| |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( |
| MachineInstr *MI, |
| MachineBasicBlock *MBB) const { |
| // Emit code to save XMM registers to the stack. The ABI says that the |
| // number of registers to save is given in %al, so it's theoretically |
| // possible to do an indirect jump trick to avoid saving all of them, |
| // however this code takes a simpler approach and just executes all |
| // of the stores if %al is non-zero. It's less code, and it's probably |
| // easier on the hardware branch predictor, and stores aren't all that |
| // expensive anyway. |
| |
| // Create the new basic blocks. One block contains all the XMM stores, |
| // and one block is the final destination regardless of whether any |
| // stores were performed. |
| const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| MachineFunction *F = MBB->getParent(); |
| MachineFunction::iterator MBBIter = MBB; |
| ++MBBIter; |
| MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(MBBIter, XMMSaveMBB); |
| F->insert(MBBIter, EndMBB); |
| |
| // Set up the CFG. |
| // Move any original successors of MBB to the end block. |
| EndMBB->transferSuccessors(MBB); |
| // The original block will now fall through to the XMM save block. |
| MBB->addSuccessor(XMMSaveMBB); |
| // The XMMSaveMBB will fall through to the end block. |
| XMMSaveMBB->addSuccessor(EndMBB); |
| |
| // Now add the instructions. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| unsigned CountReg = MI->getOperand(0).getReg(); |
| int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); |
| int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); |
| |
| if (!Subtarget->isTargetWin64()) { |
| // If %al is 0, branch around the XMM save block. |
| BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); |
| BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB); |
| MBB->addSuccessor(EndMBB); |
| } |
| |
| // In the XMM save block, save all the XMM argument registers. |
| for (int i = 3, e = MI->getNumOperands(); i != e; ++i) { |
| int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; |
| MachineMemOperand *MMO = |
| F->getMachineMemOperand( |
| PseudoSourceValue::getFixedStack(RegSaveFrameIndex), |
| MachineMemOperand::MOStore, Offset, |
| /*Size=*/16, /*Align=*/16); |
| BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr)) |
| .addFrameIndex(RegSaveFrameIndex) |
| .addImm(/*Scale=*/1) |
| .addReg(/*IndexReg=*/0) |
| .addImm(/*Disp=*/Offset) |
| .addReg(/*Segment=*/0) |
| .addReg(MI->getOperand(i).getReg()) |
| .addMemOperand(MMO); |
| } |
| |
| F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. |
| |
| return EndMBB; |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, |
| MachineBasicBlock *BB, |
| DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| unsigned Opc = |
| X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); |
| BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); |
| F->insert(It, copy0MBB); |
| F->insert(It, sinkMBB); |
| // Update machine-CFG edges by first adding all successors of the current |
| // block to the new block which will contain the Phi node for the select. |
| // Also inform sdisel of the edge changes. |
| for (MachineBasicBlock::succ_iterator I = BB->succ_begin(), |
| E = BB->succ_end(); I != E; ++I) { |
| EM->insert(std::make_pair(*I, sinkMBB)); |
| sinkMBB->addSuccessor(*I); |
| } |
| // Next, remove all successors of the current block, and add the true |
| // and fallthrough blocks as its successors. |
| while (!BB->succ_empty()) |
| BB->removeSuccessor(BB->succ_begin()); |
| // Add the true and fallthrough blocks as its successors. |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| |
| F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| |
| MachineBasicBlock * |
| X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *BB, |
| DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const { |
| switch (MI->getOpcode()) { |
| default: assert(false && "Unexpected instr type to insert"); |
| case X86::CMOV_GR8: |
| case X86::CMOV_V1I64: |
| case X86::CMOV_FR32: |
| case X86::CMOV_FR64: |
| case X86::CMOV_V4F32: |
| case X86::CMOV_V2F64: |
| case X86::CMOV_V2I64: |
| return EmitLoweredSelect(MI, BB, EM); |
| |
| case X86::FP32_TO_INT16_IN_MEM: |
| case X86::FP32_TO_INT32_IN_MEM: |
| case X86::FP32_TO_INT64_IN_MEM: |
| case X86::FP64_TO_INT16_IN_MEM: |
| case X86::FP64_TO_INT32_IN_MEM: |
| case X86::FP64_TO_INT64_IN_MEM: |
| case X86::FP80_TO_INT16_IN_MEM: |
| case X86::FP80_TO_INT32_IN_MEM: |
| case X86::FP80_TO_INT64_IN_MEM: { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| // Change the floating point control register to use "round towards zero" |
| // mode when truncating to an integer value. |
| MachineFunction *F = BB->getParent(); |
| int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); |
| addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx); |
| |
| // Load the old value of the high byte of the control word... |
| unsigned OldCW = |
| F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass); |
| addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW), |
| CWFrameIdx); |
| |
| // Set the high part to be round to zero... |
| addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx) |
| .addImm(0xC7F); |
| |
| // Reload the modified control word now... |
| addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); |
| |
| // Restore the memory image of control word to original value |
| addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx) |
| .addReg(OldCW); |
| |
| // Get the X86 opcode to use. |
| unsigned Opc; |
| switch (MI->getOpcode()) { |
| default: llvm_unreachable("illegal opcode!"); |
| case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; |
| case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; |
| case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; |
| case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; |
| case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; |
| case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; |
| case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; |
| case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; |
| case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; |
| } |
| |
| X86AddressMode AM; |
| MachineOperand &Op = MI->getOperand(0); |
| if (Op.isReg()) { |
| AM.BaseType = X86AddressMode::RegBase; |
| AM.Base.Reg = Op.getReg(); |
| } else { |
| AM.BaseType = X86AddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = Op.getIndex(); |
| } |
| Op = MI->getOperand(1); |
| if (Op.isImm()) |
| AM.Scale = Op.getImm(); |
| Op = MI->getOperand(2); |
| if (Op.isImm()) |
| AM.IndexReg = Op.getImm(); |
| Op = MI->getOperand(3); |
| if (Op.isGlobal()) { |
| AM.GV = Op.getGlobal(); |
| } else { |
| AM.Disp = Op.getImm(); |
| } |
| addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM) |
| .addReg(MI->getOperand(X86AddrNumOperands).getReg()); |
| |
| // Reload the original control word now. |
| addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); |
| |
| F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. |
| return BB; |
| } |
| // String/text processing lowering. |
| case X86::PCMPISTRM128REG: |
| return EmitPCMP(MI, BB, 3, false /* in-mem */); |
| case X86::PCMPISTRM128MEM: |
| return EmitPCMP(MI, BB, 3, true /* in-mem */); |
| case X86::PCMPESTRM128REG: |
| return EmitPCMP(MI, BB, 5, false /* in mem */); |
| case X86::PCMPESTRM128MEM: |
| return EmitPCMP(MI, BB, 5, true /* in mem */); |
| |
| // Atomic Lowering. |
| case X86::ATOMAND32: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, |
| X86::AND32ri, X86::MOV32rm, |
| X86::LCMPXCHG32, X86::MOV32rr, |
| X86::NOT32r, X86::EAX, |
| X86::GR32RegisterClass); |
| case X86::ATOMOR32: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr, |
| X86::OR32ri, X86::MOV32rm, |
| X86::LCMPXCHG32, X86::MOV32rr, |
| X86::NOT32r, X86::EAX, |
| X86::GR32RegisterClass); |
| case X86::ATOMXOR32: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr, |
| X86::XOR32ri, X86::MOV32rm, |
| X86::LCMPXCHG32, X86::MOV32rr, |
| X86::NOT32r, X86::EAX, |
| X86::GR32RegisterClass); |
| case X86::ATOMNAND32: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, |
| X86::AND32ri, X86::MOV32rm, |
| X86::LCMPXCHG32, X86::MOV32rr, |
| X86::NOT32r, X86::EAX, |
| X86::GR32RegisterClass, true); |
| case X86::ATOMMIN32: |
| return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr); |
| case X86::ATOMMAX32: |
| return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr); |
| case X86::ATOMUMIN32: |
| return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr); |
| case X86::ATOMUMAX32: |
| return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr); |
| |
| case X86::ATOMAND16: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, |
| X86::AND16ri, X86::MOV16rm, |
| X86::LCMPXCHG16, X86::MOV16rr, |
| X86::NOT16r, X86::AX, |
| X86::GR16RegisterClass); |
| case X86::ATOMOR16: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr, |
| X86::OR16ri, X86::MOV16rm, |
| X86::LCMPXCHG16, X86::MOV16rr, |
| X86::NOT16r, X86::AX, |
| X86::GR16RegisterClass); |
| case X86::ATOMXOR16: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr, |
| X86::XOR16ri, X86::MOV16rm, |
| X86::LCMPXCHG16, X86::MOV16rr, |
| X86::NOT16r, X86::AX, |
| X86::GR16RegisterClass); |
| case X86::ATOMNAND16: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, |
| X86::AND16ri, X86::MOV16rm, |
| X86::LCMPXCHG16, X86::MOV16rr, |
| X86::NOT16r, X86::AX, |
| X86::GR16RegisterClass, true); |
| case X86::ATOMMIN16: |
| return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr); |
| case X86::ATOMMAX16: |
| return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr); |
| case X86::ATOMUMIN16: |
| return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr); |
| case X86::ATOMUMAX16: |
| return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr); |
| |
| case X86::ATOMAND8: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, |
| X86::AND8ri, X86::MOV8rm, |
| X86::LCMPXCHG8, X86::MOV8rr, |
| X86::NOT8r, X86::AL, |
| X86::GR8RegisterClass); |
| case X86::ATOMOR8: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr, |
| X86::OR8ri, X86::MOV8rm, |
| X86::LCMPXCHG8, X86::MOV8rr, |
| X86::NOT8r, X86::AL, |
| X86::GR8RegisterClass); |
| case X86::ATOMXOR8: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr, |
| X86::XOR8ri, X86::MOV8rm, |
| X86::LCMPXCHG8, X86::MOV8rr, |
| X86::NOT8r, X86::AL, |
| X86::GR8RegisterClass); |
| case X86::ATOMNAND8: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, |
| X86::AND8ri, X86::MOV8rm, |
| X86::LCMPXCHG8, X86::MOV8rr, |
| X86::NOT8r, X86::AL, |
| X86::GR8RegisterClass, true); |
| // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way. |
| // This group is for 64-bit host. |
| case X86::ATOMAND64: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, |
| X86::AND64ri32, X86::MOV64rm, |
| X86::LCMPXCHG64, X86::MOV64rr, |
| X86::NOT64r, X86::RAX, |
| X86::GR64RegisterClass); |
| case X86::ATOMOR64: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr, |
| X86::OR64ri32, X86::MOV64rm, |
| X86::LCMPXCHG64, X86::MOV64rr, |
| X86::NOT64r, X86::RAX, |
| X86::GR64RegisterClass); |
| case X86::ATOMXOR64: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr, |
| X86::XOR64ri32, X86::MOV64rm, |
| X86::LCMPXCHG64, X86::MOV64rr, |
| X86::NOT64r, X86::RAX, |
| X86::GR64RegisterClass); |
| case X86::ATOMNAND64: |
| return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, |
| X86::AND64ri32, X86::MOV64rm, |
| X86::LCMPXCHG64, X86::MOV64rr, |
| X86::NOT64r, X86::RAX, |
| X86::GR64RegisterClass, true); |
| case X86::ATOMMIN64: |
| return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr); |
| case X86::ATOMMAX64: |
| return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr); |
| case X86::ATOMUMIN64: |
| return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr); |
| case X86::ATOMUMAX64: |
| return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr); |
| |
| // This group does 64-bit operations on a 32-bit host. |
| case X86::ATOMAND6432: |
| return EmitAtomicBit6432WithCustomInserter(MI, BB, |
| X86::AND32rr, X86::AND32rr, |
| X86::AND32ri, X86::AND32ri, |
| false); |
| case X86::ATOMOR6432: |
| return EmitAtomicBit6432WithCustomInserter(MI, BB, |
| X86::OR32rr, X86::OR32rr, |
| X86::OR32ri, X86::OR32ri, |
| false); |
| case X86::ATOMXOR6432: |
| return EmitAtomicBit6432WithCustomInserter(MI, BB, |
| X86::XOR32rr, X86::XOR32rr, |
| X86::XOR32ri, X86::XOR32ri, |
| false); |
| case X86::ATOMNAND6432: |
| return EmitAtomicBit6432WithCustomInserter(MI, BB, |
| X86::AND32rr, X86::AND32rr, |
| X86::AND32ri, X86::AND32ri, |
| true); |
| case X86::ATOMADD6432: |
| return EmitAtomicBit6432WithCustomInserter(MI, BB, |
| X86::ADD32rr, X86::ADC32rr, |
| X86::ADD32ri, X86::ADC32ri, |
| false); |
| case X86::ATOMSUB6432: |
| return EmitAtomicBit6432WithCustomInserter(MI, BB, |
| X86::SUB32rr, X86::SBB32rr, |
| X86::SUB32ri, X86::SBB32ri, |
| false); |
| case X86::ATOMSWAP6432: |
| return EmitAtomicBit6432WithCustomInserter(MI, BB, |
| X86::MOV32rr, X86::MOV32rr, |
| X86::MOV32ri, X86::MOV32ri, |
| false); |
| case X86::VASTART_SAVE_XMM_REGS: |
| return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, |
| const APInt &Mask, |
| APInt &KnownZero, |
| APInt &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| unsigned Opc = Op.getOpcode(); |
| assert((Opc >= ISD::BUILTIN_OP_END || |
| Opc == ISD::INTRINSIC_WO_CHAIN || |
| Opc == ISD::INTRINSIC_W_CHAIN || |
| Opc == ISD::INTRINSIC_VOID) && |
| "Should use MaskedValueIsZero if you don't know whether Op" |
| " is a target node!"); |
| |
| KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything. |
| switch (Opc) { |
| default: break; |
| case X86ISD::ADD: |
| case X86ISD::SUB: |
| case X86ISD::SMUL: |
| case X86ISD::UMUL: |
| case X86ISD::INC: |
| case X86ISD::DEC: |
| case X86ISD::OR: |
| case X86ISD::XOR: |
| case X86ISD::AND: |
| // These nodes' second result is a boolean. |
| if (Op.getResNo() == 0) |
| break; |
| // Fallthrough |
| case X86ISD::SETCC: |
| KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(), |
| Mask.getBitWidth() - 1); |
| break; |
| } |
| } |
| |
| /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the |
| /// node is a GlobalAddress + offset. |
| bool X86TargetLowering::isGAPlusOffset(SDNode *N, |
| GlobalValue* &GA, int64_t &Offset) const{ |
| if (N->getOpcode() == X86ISD::Wrapper) { |
| if (isa<GlobalAddressSDNode>(N->getOperand(0))) { |
| GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); |
| Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); |
| return true; |
| } |
| } |
| return TargetLowering::isGAPlusOffset(N, GA, Offset); |
| } |
| |
| static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems, |
| EVT EltVT, LoadSDNode *&LDBase, |
| unsigned &LastLoadedElt, |
| SelectionDAG &DAG, MachineFrameInfo *MFI, |
| const TargetLowering &TLI) { |
| LDBase = NULL; |
| LastLoadedElt = -1U; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| if (N->getMaskElt(i) < 0) { |
| if (!LDBase) |
| return false; |
| continue; |
| } |
| |
| SDValue Elt = DAG.getShuffleScalarElt(N, i); |
| if (!Elt.getNode() || |
| (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) |
| return false; |
| if (!LDBase) { |
| if (Elt.getNode()->getOpcode() == ISD::UNDEF) |
| return false; |
| LDBase = cast<LoadSDNode>(Elt.getNode()); |
| LastLoadedElt = i; |
| continue; |
| } |
| if (Elt.getOpcode() == ISD::UNDEF) |
| continue; |
| |
| LoadSDNode *LD = cast<LoadSDNode>(Elt); |
| if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i)) |
| return false; |
| LastLoadedElt = i; |
| } |
| return true; |
| } |
| |
| /// PerformShuffleCombine - Combine a vector_shuffle that is equal to |
| /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load |
| /// if the load addresses are consecutive, non-overlapping, and in the right |
| /// order. In the case of v2i64, it will see if it can rewrite the |
| /// shuffle to be an appropriate build vector so it can take advantage of |
| // performBuildVectorCombine. |
| static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, |
| const TargetLowering &TLI) { |
| DebugLoc dl = N->getDebugLoc(); |
| EVT VT = N->getValueType(0); |
| EVT EltVT = VT.getVectorElementType(); |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| unsigned NumElems = VT.getVectorNumElements(); |
| |
| if (VT.getSizeInBits() != 128) |
| return SDValue(); |
| |
| // Try to combine a vector_shuffle into a 128-bit load. |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| LoadSDNode *LD = NULL; |
| unsigned LastLoadedElt; |
| if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG, |
| MFI, TLI)) |
| return SDValue(); |
| |
| if (LastLoadedElt == NumElems - 1) { |
| if (DAG.InferPtrAlignment(LD->getBasePtr()) >= 16) |
| return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(), |
| LD->getSrcValue(), LD->getSrcValueOffset(), |
| LD->isVolatile()); |
| return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(), |
| LD->getSrcValue(), LD->getSrcValueOffset(), |
| LD->isVolatile(), LD->getAlignment()); |
| } else if (NumElems == 4 && LastLoadedElt == 1) { |
| SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); |
| SDValue Ops[] = { LD->getChain(), LD->getBasePtr() }; |
| SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode); |
| } |
| return SDValue(); |
| } |
| |
| /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. |
| static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| DebugLoc DL = N->getDebugLoc(); |
| SDValue Cond = N->getOperand(0); |
| // Get the LHS/RHS of the select. |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| |
| // If we have SSE[12] support, try to form min/max nodes. SSE min/max |
| // instructions have the peculiarity that if either operand is a NaN, |
| // they chose what we call the RHS operand (and as such are not symmetric). |
| // It happens that this matches the semantics of the common C idiom |
| // x<y?x:y and related forms, so we can recognize these cases. |
| if (Subtarget->hasSSE2() && |
| (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) && |
| Cond.getOpcode() == ISD::SETCC) { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| |
| unsigned Opcode = 0; |
| // Check for x CC y ? x : y. |
| if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) { |
| switch (CC) { |
| default: break; |
| case ISD::SETULT: |
| // This can be a min if we can prove that at least one of the operands |
| // is not a nan. |
| if (!FiniteOnlyFPMath()) { |
| if (DAG.isKnownNeverNaN(RHS)) { |
| // Put the potential NaN in the RHS so that SSE will preserve it. |
| std::swap(LHS, RHS); |
| } else if (!DAG.isKnownNeverNaN(LHS)) |
| break; |
| } |
| Opcode = X86ISD::FMIN; |
| break; |
| case ISD::SETOLE: |
| // This can be a min if we can prove that at least one of the operands |
| // is not a nan. |
| if (!FiniteOnlyFPMath()) { |
| if (DAG.isKnownNeverNaN(LHS)) { |
| // Put the potential NaN in the RHS so that SSE will preserve it. |
| std::swap(LHS, RHS); |
| } else if (!DAG.isKnownNeverNaN(RHS)) |
| break; |
| } |
| Opcode = X86ISD::FMIN; |
| break; |
| case ISD::SETULE: |
| // This can be a min, but if either operand is a NaN we need it to |
| // preserve the original LHS. |
| std::swap(LHS, RHS); |
| case ISD::SETOLT: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| Opcode = X86ISD::FMIN; |
| break; |
| |
| case ISD::SETOGE: |
| // This can be a max if we can prove that at least one of the operands |
| // is not a nan. |
| if (!FiniteOnlyFPMath()) { |
| if (DAG.isKnownNeverNaN(LHS)) { |
| // Put the potential NaN in the RHS so that SSE will preserve it. |
| std::swap(LHS, RHS); |
| } else if (!DAG.isKnownNeverNaN(RHS)) |
| break; |
| } |
| Opcode = X86ISD::FMAX; |
| break; |
| case ISD::SETUGT: |
| // This can be a max if we can prove that at least one of the operands |
| // is not a nan. |
| if (!FiniteOnlyFPMath()) { |
| if (DAG.isKnownNeverNaN(RHS)) { |
| // Put the potential NaN in the RHS so that SSE will preserve it. |
| std::swap(LHS, RHS); |
| } else if (!DAG.isKnownNeverNaN(LHS)) |
| break; |
| } |
| Opcode = X86ISD::FMAX; |
| break; |
| case ISD::SETUGE: |
| // This can be a max, but if either operand is a NaN we need it to |
| // preserve the original LHS. |
| std::swap(LHS, RHS); |
| case ISD::SETOGT: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| Opcode = X86ISD::FMAX; |
| break; |
| } |
| // Check for x CC y ? y : x -- a min/max with reversed arms. |
| } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) { |
| switch (CC) { |
| default: break; |
| case ISD::SETOGE: |
| // This can be a min if we can prove that at least one of the operands |
| // is not a nan. |
| if (!FiniteOnlyFPMath()) { |
| if (DAG.isKnownNeverNaN(RHS)) { |
| // Put the potential NaN in the RHS so that SSE will preserve it. |
| std::swap(LHS, RHS); |
| } else if (!DAG.isKnownNeverNaN(LHS)) |
| break; |
| } |
| Opcode = X86ISD::FMIN; |
| break; |
| case ISD::SETUGT: |
| // This can be a min if we can prove that at least one of the operands |
| // is not a nan. |
| if (!FiniteOnlyFPMath()) { |
| if (DAG.isKnownNeverNaN(LHS)) { |
| // Put the potential NaN in the RHS so that SSE will preserve it. |
| std::swap(LHS, RHS); |
| } else if (!DAG.isKnownNeverNaN(RHS)) |
| break; |
| } |
| Opcode = X86ISD::FMIN; |
| break; |
| case ISD::SETUGE: |
| // This can be a min, but if either operand is a NaN we need it to |
| // preserve the original LHS. |
| std::swap(LHS, RHS); |
| case ISD::SETOGT: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| Opcode = X86ISD::FMIN; |
| break; |
| |
| case ISD::SETULT: |
| // This can be a max if we can prove that at least one of the operands |
| // is not a nan. |
| if (!FiniteOnlyFPMath()) { |
| if (DAG.isKnownNeverNaN(LHS)) { |
| // Put the potential NaN in the RHS so that SSE will preserve it. |
| std::swap(LHS, RHS); |
| } else if (!DAG.isKnownNeverNaN(RHS)) |
| break; |
| } |
| Opcode = X86ISD::FMAX; |
| break; |
| case ISD::SETOLE: |
| // This can be a max if we can prove that at least one of the operands |
| // is not a nan. |
| if (!FiniteOnlyFPMath()) { |
| if (DAG.isKnownNeverNaN(RHS)) { |
| // Put the potential NaN in the RHS so that SSE will preserve it. |
| std::swap(LHS, RHS); |
| } else if (!DAG.isKnownNeverNaN(LHS)) |
| break; |
| } |
| Opcode = X86ISD::FMAX; |
| break; |
| case ISD::SETULE: |
| // This can be a max, but if either operand is a NaN we need it to |
| // preserve the original LHS. |
| std::swap(LHS, RHS); |
| case ISD::SETOLT: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| Opcode = X86ISD::FMAX; |
| break; |
| } |
| } |
| |
| if (Opcode) |
| return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); |
| } |
| |
| // If this is a select between two integer constants, try to do some |
| // optimizations. |
| if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) { |
| if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS)) |
| // Don't do this for crazy integer types. |
| if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { |
| // If this is efficiently invertible, canonicalize the LHSC/RHSC values |
| // so that TrueC (the true value) is larger than FalseC. |
| bool NeedsCondInvert = false; |
| |
| if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && |
| // Efficiently invertible. |
| (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible. |
| (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible. |
| isa<ConstantSDNode>(Cond.getOperand(1))))) { |
| NeedsCondInvert = true; |
| std::swap(TrueC, FalseC); |
| } |
| |
| // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0. |
| if (FalseC->getAPIntValue() == 0 && |
| TrueC->getAPIntValue().isPowerOf2()) { |
| if (NeedsCondInvert) // Invert the condition if needed. |
| Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(1, Cond.getValueType())); |
| |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); |
| |
| unsigned ShAmt = TrueC->getAPIntValue().logBase2(); |
| return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, |
| DAG.getConstant(ShAmt, MVT::i8)); |
| } |
| |
| // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. |
| if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { |
| if (NeedsCondInvert) // Invert the condition if needed. |
| Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(1, Cond.getValueType())); |
| |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, |
| FalseC->getValueType(0), Cond); |
| return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, |
| SDValue(FalseC, 0)); |
| } |
| |
| // Optimize cases that will turn into an LEA instruction. This requires |
| // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). |
| if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { |
| uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); |
| if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; |
| |
| bool isFastMultiplier = false; |
| if (Diff < 10) { |
| switch ((unsigned char)Diff) { |
| default: break; |
| case 1: // result = add base, cond |
| case 2: // result = lea base( , cond*2) |
| case 3: // result = lea base(cond, cond*2) |
| case 4: // result = lea base( , cond*4) |
| case 5: // result = lea base(cond, cond*4) |
| case 8: // result = lea base( , cond*8) |
| case 9: // result = lea base(cond, cond*8) |
| isFastMultiplier = true; |
| break; |
| } |
| } |
| |
| if (isFastMultiplier) { |
| APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); |
| if (NeedsCondInvert) // Invert the condition if needed. |
| Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(1, Cond.getValueType())); |
| |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), |
| Cond); |
| // Scale the condition by the difference. |
| if (Diff != 1) |
| Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(Diff, Cond.getValueType())); |
| |
| // Add the base if non-zero. |
| if (FalseC->getAPIntValue() != 0) |
| Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, |
| SDValue(FalseC, 0)); |
| return Cond; |
| } |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] |
| static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| DebugLoc DL = N->getDebugLoc(); |
| |
| // If the flag operand isn't dead, don't touch this CMOV. |
| if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) |
| return SDValue(); |
| |
| // If this is a select between two integer constants, try to do some |
| // optimizations. Note that the operands are ordered the opposite of SELECT |
| // operands. |
| if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) { |
| if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) { |
| // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is |
| // larger than FalseC (the false value). |
| X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); |
| |
| if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { |
| CC = X86::GetOppositeBranchCondition(CC); |
| std::swap(TrueC, FalseC); |
| } |
| |
| // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0. |
| // This is efficient for any integer data type (including i8/i16) and |
| // shift amount. |
| if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { |
| SDValue Cond = N->getOperand(3); |
| Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, |
| DAG.getConstant(CC, MVT::i8), Cond); |
| |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); |
| |
| unsigned ShAmt = TrueC->getAPIntValue().logBase2(); |
| Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(ShAmt, MVT::i8)); |
| if (N->getNumValues() == 2) // Dead flag value? |
| return DCI.CombineTo(N, Cond, SDValue()); |
| return Cond; |
| } |
| |
| // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient |
| // for any integer data type, including i8/i16. |
| if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { |
| SDValue Cond = N->getOperand(3); |
| Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, |
| DAG.getConstant(CC, MVT::i8), Cond); |
| |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, |
| FalseC->getValueType(0), Cond); |
| Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, |
| SDValue(FalseC, 0)); |
| |
| if (N->getNumValues() == 2) // Dead flag value? |
| return DCI.CombineTo(N, Cond, SDValue()); |
| return Cond; |
| } |
| |
| // Optimize cases that will turn into an LEA instruction. This requires |
| // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). |
| if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { |
| uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); |
| if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; |
| |
| bool isFastMultiplier = false; |
| if (Diff < 10) { |
| switch ((unsigned char)Diff) { |
| default: break; |
| case 1: // result = add base, cond |
| case 2: // result = lea base( , cond*2) |
| case 3: // result = lea base(cond, cond*2) |
| case 4: // result = lea base( , cond*4) |
| case 5: // result = lea base(cond, cond*4) |
| case 8: // result = lea base( , cond*8) |
| case 9: // result = lea base(cond, cond*8) |
| isFastMultiplier = true; |
| break; |
| } |
| } |
| |
| if (isFastMultiplier) { |
| APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); |
| SDValue Cond = N->getOperand(3); |
| Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, |
| DAG.getConstant(CC, MVT::i8), Cond); |
| // Zero extend the condition if needed. |
| Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), |
| Cond); |
| // Scale the condition by the difference. |
| if (Diff != 1) |
| Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, |
| DAG.getConstant(Diff, Cond.getValueType())); |
| |
| // Add the base if non-zero. |
| if (FalseC->getAPIntValue() != 0) |
| Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, |
| SDValue(FalseC, 0)); |
| if (N->getNumValues() == 2) // Dead flag value? |
| return DCI.CombineTo(N, Cond, SDValue()); |
| return Cond; |
| } |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| |
| /// PerformMulCombine - Optimize a single multiply with constant into two |
| /// in order to implement it with two cheaper instructions, e.g. |
| /// LEA + SHL, LEA + LEA. |
| static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| if (DAG.getMachineFunction(). |
| getFunction()->hasFnAttr(Attribute::OptimizeForSize)) |
| return SDValue(); |
| |
| if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i64) |
| return SDValue(); |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| uint64_t MulAmt = C->getZExtValue(); |
| if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) |
| return SDValue(); |
| |
| uint64_t MulAmt1 = 0; |
| uint64_t MulAmt2 = 0; |
| if ((MulAmt % 9) == 0) { |
| MulAmt1 = 9; |
| MulAmt2 = MulAmt / 9; |
| } else if ((MulAmt % 5) == 0) { |
| MulAmt1 = 5; |
| MulAmt2 = MulAmt / 5; |
| } else if ((MulAmt % 3) == 0) { |
| MulAmt1 = 3; |
| MulAmt2 = MulAmt / 3; |
| } |
| if (MulAmt2 && |
| (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ |
| DebugLoc DL = N->getDebugLoc(); |
| |
| if (isPowerOf2_64(MulAmt2) && |
| !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) |
| // If second multiplifer is pow2, issue it first. We want the multiply by |
| // 3, 5, or 9 to be folded into the addressing mode unless the lone use |
| // is an add. |
| std::swap(MulAmt1, MulAmt2); |
| |
| SDValue NewMul; |
| if (isPowerOf2_64(MulAmt1)) |
| NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), |
| DAG.getConstant(Log2_64(MulAmt1), MVT::i8)); |
| else |
| NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), |
| DAG.getConstant(MulAmt1, VT)); |
| |
| if (isPowerOf2_64(MulAmt2)) |
| NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, |
| DAG.getConstant(Log2_64(MulAmt2), MVT::i8)); |
| else |
| NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, |
| DAG.getConstant(MulAmt2, VT)); |
| |
| // Do not add new nodes to DAG combiner worklist. |
| DCI.CombineTo(N, NewMul, false); |
| } |
| return SDValue(); |
| } |
| |
| static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| EVT VT = N0.getValueType(); |
| |
| // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) |
| // since the result of setcc_c is all zero's or all ones. |
| if (N1C && N0.getOpcode() == ISD::AND && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() == X86ISD::SETCC_CARRY || |
| ((N00.getOpcode() == ISD::ANY_EXTEND || |
| N00.getOpcode() == ISD::ZERO_EXTEND) && |
| N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) { |
| APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| APInt ShAmt = N1C->getAPIntValue(); |
| Mask = Mask.shl(ShAmt); |
| if (Mask != 0) |
| return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, |
| N00, DAG.getConstant(Mask, VT)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts |
| /// when possible. |
| static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| if (!VT.isVector() && VT.isInteger() && |
| N->getOpcode() == ISD::SHL) |
| return PerformSHLCombine(N, DAG); |
| |
| // On X86 with SSE2 support, we can transform this to a vector shift if |
| // all elements are shifted by the same amount. We can't do this in legalize |
| // because the a constant vector is typically transformed to a constant pool |
| // so we have no knowledge of the shift amount. |
| if (!Subtarget->hasSSE2()) |
| return SDValue(); |
| |
| if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16) |
| return SDValue(); |
| |
| SDValue ShAmtOp = N->getOperand(1); |
| EVT EltVT = VT.getVectorElementType(); |
| DebugLoc DL = N->getDebugLoc(); |
| SDValue BaseShAmt = SDValue(); |
| if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned i = 0; |
| for (; i != NumElts; ++i) { |
| SDValue Arg = ShAmtOp.getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| BaseShAmt = Arg; |
| break; |
| } |
| for (; i != NumElts; ++i) { |
| SDValue Arg = ShAmtOp.getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| if (Arg != BaseShAmt) { |
| return SDValue(); |
| } |
| } |
| } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE && |
| cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) { |
| SDValue InVec = ShAmtOp.getOperand(0); |
| if (InVec.getOpcode() == ISD::BUILD_VECTOR) { |
| unsigned NumElts = InVec.getValueType().getVectorNumElements(); |
| unsigned i = 0; |
| for (; i != NumElts; ++i) { |
| SDValue Arg = InVec.getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| BaseShAmt = Arg; |
| break; |
| } |
| } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { |
| unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex(); |
| if (C->getZExtValue() == SplatIdx) |
| BaseShAmt = InVec.getOperand(1); |
| } |
| } |
| if (BaseShAmt.getNode() == 0) |
| BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp, |
| DAG.getIntPtrConstant(0)); |
| } else |
| return SDValue(); |
| |
| // The shift amount is an i32. |
| if (EltVT.bitsGT(MVT::i32)) |
| BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt); |
| else if (EltVT.bitsLT(MVT::i32)) |
| BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt); |
| |
| // The shift amount is identical so we can do a vector shift. |
| SDValue ValOp = N->getOperand(0); |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Unknown shift opcode!"); |
| break; |
| case ISD::SHL: |
| if (VT == MVT::v2i64) |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), |
| ValOp, BaseShAmt); |
| if (VT == MVT::v4i32) |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32), |
| ValOp, BaseShAmt); |
| if (VT == MVT::v8i16) |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), |
| ValOp, BaseShAmt); |
| break; |
| case ISD::SRA: |
| if (VT == MVT::v4i32) |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32), |
| ValOp, BaseShAmt); |
| if (VT == MVT::v8i16) |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32), |
| ValOp, BaseShAmt); |
| break; |
| case ISD::SRL: |
| if (VT == MVT::v2i64) |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), |
| ValOp, BaseShAmt); |
| if (VT == MVT::v4i32) |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32), |
| ValOp, BaseShAmt); |
| if (VT == MVT::v8i16) |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32), |
| ValOp, BaseShAmt); |
| break; |
| } |
| return SDValue(); |
| } |
| |
| static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i64 || !Subtarget->is64Bit()) |
| return SDValue(); |
| |
| // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) |
| std::swap(N0, N1); |
| if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) |
| return SDValue(); |
| |
| SDValue ShAmt0 = N0.getOperand(1); |
| if (ShAmt0.getValueType() != MVT::i8) |
| return SDValue(); |
| SDValue ShAmt1 = N1.getOperand(1); |
| if (ShAmt1.getValueType() != MVT::i8) |
| return SDValue(); |
| if (ShAmt0.getOpcode() == ISD::TRUNCATE) |
| ShAmt0 = ShAmt0.getOperand(0); |
| if (ShAmt1.getOpcode() == ISD::TRUNCATE) |
| ShAmt1 = ShAmt1.getOperand(0); |
| |
| DebugLoc DL = N->getDebugLoc(); |
| unsigned Opc = X86ISD::SHLD; |
| SDValue Op0 = N0.getOperand(0); |
| SDValue Op1 = N1.getOperand(0); |
| if (ShAmt0.getOpcode() == ISD::SUB) { |
| Opc = X86ISD::SHRD; |
| std::swap(Op0, Op1); |
| std::swap(ShAmt0, ShAmt1); |
| } |
| |
| if (ShAmt1.getOpcode() == ISD::SUB) { |
| SDValue Sum = ShAmt1.getOperand(0); |
| if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { |
| if (SumC->getSExtValue() == 64 && |
| ShAmt1.getOperand(1) == ShAmt0) |
| return DAG.getNode(Opc, DL, VT, |
| Op0, Op1, |
| DAG.getNode(ISD::TRUNCATE, DL, |
| MVT::i8, ShAmt0)); |
| } |
| } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) { |
| ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0); |
| if (ShAmt0C && |
| ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64) |
| return DAG.getNode(Opc, DL, VT, |
| N0.getOperand(0), N1.getOperand(0), |
| DAG.getNode(ISD::TRUNCATE, DL, |
| MVT::i8, ShAmt0)); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformSTORECombine - Do target-specific dag combines on STORE nodes. |
| static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, |
| const X86Subtarget *Subtarget) { |
| // Turn load->store of MMX types into GPR load/stores. This avoids clobbering |
| // the FP state in cases where an emms may be missing. |
| // A preferable solution to the general problem is to figure out the right |
| // places to insert EMMS. This qualifies as a quick hack. |
| |
| // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. |
| StoreSDNode *St = cast<StoreSDNode>(N); |
| EVT VT = St->getValue().getValueType(); |
| if (VT.getSizeInBits() != 64) |
| return SDValue(); |
| |
| const Function *F = DAG.getMachineFunction().getFunction(); |
| bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat); |
| bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps |
| && Subtarget->hasSSE2(); |
| if ((VT.isVector() || |
| (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && |
| isa<LoadSDNode>(St->getValue()) && |
| !cast<LoadSDNode>(St->getValue())->isVolatile() && |
| St->getChain().hasOneUse() && !St->isVolatile()) { |
| SDNode* LdVal = St->getValue().getNode(); |
| LoadSDNode *Ld = 0; |
| int TokenFactorIndex = -1; |
| SmallVector<SDValue, 8> Ops; |
| SDNode* ChainVal = St->getChain().getNode(); |
| // Must be a store of a load. We currently handle two cases: the load |
| // is a direct child, and it's under an intervening TokenFactor. It is |
| // possible to dig deeper under nested TokenFactors. |
| if (ChainVal == LdVal) |
| Ld = cast<LoadSDNode>(St->getChain()); |
| else if (St->getValue().hasOneUse() && |
| ChainVal->getOpcode() == ISD::TokenFactor) { |
| for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) { |
| if (ChainVal->getOperand(i).getNode() == LdVal) { |
| TokenFactorIndex = i; |
| Ld = cast<LoadSDNode>(St->getValue()); |
| } else |
| Ops.push_back(ChainVal->getOperand(i)); |
| } |
| } |
| |
| if (!Ld || !ISD::isNormalLoad(Ld)) |
| return SDValue(); |
| |
| // If this is not the MMX case, i.e. we are just turning i64 load/store |
| // into f64 load/store, avoid the transformation if there are multiple |
| // uses of the loaded value. |
| if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) |
| return SDValue(); |
| |
| DebugLoc LdDL = Ld->getDebugLoc(); |
| DebugLoc StDL = N->getDebugLoc(); |
| // If we are a 64-bit capable x86, lower to a single movq load/store pair. |
| // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store |
| // pair instead. |
| if (Subtarget->is64Bit() || F64IsLegal) { |
| EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; |
| SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), |
| Ld->getBasePtr(), Ld->getSrcValue(), |
| Ld->getSrcValueOffset(), Ld->isVolatile(), |
| Ld->getAlignment()); |
| SDValue NewChain = NewLd.getValue(1); |
| if (TokenFactorIndex != -1) { |
| Ops.push_back(NewChain); |
| NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], |
| Ops.size()); |
| } |
| return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), |
| St->getSrcValue(), St->getSrcValueOffset(), |
| St->isVolatile(), St->getAlignment()); |
| } |
| |
| // Otherwise, lower to two pairs of 32-bit loads / stores. |
| SDValue LoAddr = Ld->getBasePtr(); |
| SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, |
| DAG.getConstant(4, MVT::i32)); |
| |
| SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, |
| Ld->getSrcValue(), Ld->getSrcValueOffset(), |
| Ld->isVolatile(), Ld->getAlignment()); |
| SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, |
| Ld->getSrcValue(), Ld->getSrcValueOffset()+4, |
| Ld->isVolatile(), |
| MinAlign(Ld->getAlignment(), 4)); |
| |
| SDValue NewChain = LoLd.getValue(1); |
| if (TokenFactorIndex != -1) { |
| Ops.push_back(LoLd); |
| Ops.push_back(HiLd); |
| NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], |
| Ops.size()); |
| } |
| |
| LoAddr = St->getBasePtr(); |
| HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, |
| DAG.getConstant(4, MVT::i32)); |
| |
| SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, |
| St->getSrcValue(), St->getSrcValueOffset(), |
| St->isVolatile(), St->getAlignment()); |
| SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, |
| St->getSrcValue(), |
| St->getSrcValueOffset() + 4, |
| St->isVolatile(), |
| MinAlign(St->getAlignment(), 4)); |
| return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); |
| } |
| return SDValue(); |
| } |
| |
| /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and |
| /// X86ISD::FXOR nodes. |
| static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { |
| assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); |
| // F[X]OR(0.0, x) -> x |
| // F[X]OR(x, 0.0) -> x |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) |
| if (C->getValueAPF().isPosZero()) |
| return N->getOperand(1); |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) |
| if (C->getValueAPF().isPosZero()) |
| return N->getOperand(0); |
| return SDValue(); |
| } |
| |
| /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. |
| static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { |
| // FAND(0.0, x) -> 0.0 |
| // FAND(x, 0.0) -> 0.0 |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) |
| if (C->getValueAPF().isPosZero()) |
| return N->getOperand(0); |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) |
| if (C->getValueAPF().isPosZero()) |
| return N->getOperand(1); |
| return SDValue(); |
| } |
| |
| static SDValue PerformBTCombine(SDNode *N, |
| SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // BT ignores high bits in the bit index operand. |
| SDValue Op1 = N->getOperand(1); |
| if (Op1.hasOneUse()) { |
| unsigned BitWidth = Op1.getValueSizeInBits(); |
| APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); |
| APInt KnownZero, KnownOne; |
| TargetLowering::TargetLoweringOpt TLO(DAG); |
| TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || |
| TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) |
| DCI.CommitTargetLoweringOpt(TLO); |
| } |
| return SDValue(); |
| } |
| |
| static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { |
| SDValue Op = N->getOperand(0); |
| if (Op.getOpcode() == ISD::BIT_CONVERT) |
| Op = Op.getOperand(0); |
| EVT VT = N->getValueType(0), OpVT = Op.getValueType(); |
| if (Op.getOpcode() == X86ISD::VZEXT_LOAD && |
| VT.getVectorElementType().getSizeInBits() == |
| OpVT.getVectorElementType().getSizeInBits()) { |
| return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op); |
| } |
| return SDValue(); |
| } |
| |
| // On X86 and X86-64, atomic operations are lowered to locked instructions. |
| // Locked instructions, in turn, have implicit fence semantics (all memory |
| // operations are flushed before issuing the locked instruction, and the |
| // are not buffered), so we can fold away the common pattern of |
| // fence-atomic-fence. |
| static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) { |
| SDValue atomic = N->getOperand(0); |
| switch (atomic.getOpcode()) { |
| case ISD::ATOMIC_CMP_SWAP: |
| case ISD::ATOMIC_SWAP: |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_NAND: |
| case ISD::ATOMIC_LOAD_MIN: |
| case ISD::ATOMIC_LOAD_MAX: |
| case ISD::ATOMIC_LOAD_UMIN: |
| case ISD::ATOMIC_LOAD_UMAX: |
| break; |
| default: |
| return SDValue(); |
| } |
| |
| SDValue fence = atomic.getOperand(0); |
| if (fence.getOpcode() != ISD::MEMBARRIER) |
| return SDValue(); |
| |
| switch (atomic.getOpcode()) { |
| case ISD::ATOMIC_CMP_SWAP: |
| return DAG.UpdateNodeOperands(atomic, fence.getOperand(0), |
| atomic.getOperand(1), atomic.getOperand(2), |
| atomic.getOperand(3)); |
| case ISD::ATOMIC_SWAP: |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_NAND: |
| case ISD::ATOMIC_LOAD_MIN: |
| case ISD::ATOMIC_LOAD_MAX: |
| case ISD::ATOMIC_LOAD_UMIN: |
| case ISD::ATOMIC_LOAD_UMAX: |
| return DAG.UpdateNodeOperands(atomic, fence.getOperand(0), |
| atomic.getOperand(1), atomic.getOperand(2)); |
| default: |
| return SDValue(); |
| } |
| } |
| |
| static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) { |
| // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> |
| // (and (i32 x86isd::setcc_carry), 1) |
| // This eliminates the zext. This transformation is necessary because |
| // ISD::SETCC is always legalized to i8. |
| DebugLoc dl = N->getDebugLoc(); |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| if (N0.getOpcode() == ISD::AND && |
| N0.hasOneUse() && |
| N0.getOperand(0).hasOneUse()) { |
| SDValue N00 = N0.getOperand(0); |
| if (N00.getOpcode() != X86ISD::SETCC_CARRY) |
| return SDValue(); |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!C || C->getZExtValue() != 1) |
| return SDValue(); |
| return DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, |
| N00.getOperand(0), N00.getOperand(1)), |
| DAG.getConstant(1, VT)); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this); |
| case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget); |
| case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI); |
| case ISD::MUL: return PerformMulCombine(N, DAG, DCI); |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget); |
| case ISD::OR: return PerformOrCombine(N, DAG, Subtarget); |
| case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); |
| case X86ISD::FXOR: |
| case X86ISD::FOR: return PerformFORCombine(N, DAG); |
| case X86ISD::FAND: return PerformFANDCombine(N, DAG); |
| case X86ISD::BT: return PerformBTCombine(N, DAG, DCI); |
| case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG); |
| case ISD::MEMBARRIER: return PerformMEMBARRIERCombine(N, DAG); |
| case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG); |
| } |
| |
| return SDValue(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| static bool LowerToBSwap(CallInst *CI) { |
| // FIXME: this should verify that we are targetting a 486 or better. If not, |
| // we will turn this bswap into something that will be lowered to logical ops |
| // instead of emitting the bswap asm. For now, we don't support 486 or lower |
| // so don't worry about this. |
| |
| // Verify this is a simple bswap. |
| if (CI->getNumOperands() != 2 || |
| CI->getType() != CI->getOperand(1)->getType() || |
| !CI->getType()->isInteger()) |
| return false; |
| |
| const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); |
| if (!Ty || Ty->getBitWidth() % 16 != 0) |
| return false; |
| |
| // Okay, we can do this xform, do so now. |
| const Type *Tys[] = { Ty }; |
| Module *M = CI->getParent()->getParent()->getParent(); |
| Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1); |
| |
| Value *Op = CI->getOperand(1); |
| Op = CallInst::Create(Int, Op, CI->getName(), CI); |
| |
| CI->replaceAllUsesWith(Op); |
| CI->eraseFromParent(); |
| return true; |
| } |
| |
| bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { |
| InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); |
| std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints(); |
| |
| std::string AsmStr = IA->getAsmString(); |
| |
| // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" |
| SmallVector<StringRef, 4> AsmPieces; |
| SplitString(AsmStr, AsmPieces, "\n"); // ; as separator? |
| |
| switch (AsmPieces.size()) { |
| default: return false; |
| case 1: |
| AsmStr = AsmPieces[0]; |
| AsmPieces.clear(); |
| SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace. |
| |
| // bswap $0 |
| if (AsmPieces.size() == 2 && |
| (AsmPieces[0] == "bswap" || |
| AsmPieces[0] == "bswapq" || |
| AsmPieces[0] == "bswapl") && |
| (AsmPieces[1] == "$0" || |
| AsmPieces[1] == "${0:q}")) { |
| // No need to check constraints, nothing other than the equivalent of |
| // "=r,0" would be valid here. |
| return LowerToBSwap(CI); |
| } |
| // rorw $$8, ${0:w} --> llvm.bswap.i16 |
| if (CI->getType()->isInteger(16) && |
| AsmPieces.size() == 3 && |
| AsmPieces[0] == "rorw" && |
| AsmPieces[1] == "$$8," && |
| AsmPieces[2] == "${0:w}" && |
| IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") { |
| return LowerToBSwap(CI); |
| } |
| break; |
| case 3: |
| if (CI->getType()->isInteger(64) && |
| Constraints.size() >= 2 && |
| Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && |
| Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { |
| // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64 |
| SmallVector<StringRef, 4> Words; |
| SplitString(AsmPieces[0], Words, " \t"); |
| if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") { |
| Words.clear(); |
| SplitString(AsmPieces[1], Words, " \t"); |
| if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") { |
| Words.clear(); |
| SplitString(AsmPieces[2], Words, " \t,"); |
| if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" && |
| Words[2] == "%edx") { |
| return LowerToBSwap(CI); |
| } |
| } |
| } |
| } |
| break; |
| } |
| return false; |
| } |
| |
| |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| X86TargetLowering::ConstraintType |
| X86TargetLowering::getConstraintType(const std::string &Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'A': |
| return C_Register; |
| case 'f': |
| case 'r': |
| case 'R': |
| case 'l': |
| case 'q': |
| case 'Q': |
| case 'x': |
| case 'y': |
| case 'Y': |
| return C_RegisterClass; |
| case 'e': |
| case 'Z': |
| return C_Other; |
| default: |
| break; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| /// LowerXConstraint - try to replace an X constraint, which matches anything, |
| /// with another that has more specific requirements based on the type of the |
| /// corresponding operand. |
| const char *X86TargetLowering:: |
| LowerXConstraint(EVT ConstraintVT) const { |
| // FP X constraints get lowered to SSE1/2 registers if available, otherwise |
| // 'f' like normal targets. |
| if (ConstraintVT.isFloatingPoint()) { |
| if (Subtarget->hasSSE2()) |
| return "Y"; |
| if (Subtarget->hasSSE1()) |
| return "x"; |
| } |
| |
| return TargetLowering::LowerXConstraint(ConstraintVT); |
| } |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| char Constraint, |
| bool hasMemory, |
| std::vector<SDValue>&Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result(0, 0); |
| |
| switch (Constraint) { |
| default: break; |
| case 'I': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() <= 31) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'J': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() <= 63) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'K': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if ((int8_t)C->getSExtValue() == C->getSExtValue()) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'N': |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| if (C->getZExtValue() <= 255) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); |
| break; |
| } |
| } |
| return; |
| case 'e': { |
| // 32-bit signed value |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| const ConstantInt *CI = C->getConstantIntValue(); |
| if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()), |
| C->getSExtValue())) { |
| // Widen to 64 bits here to get it sign extended. |
| Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64); |
| break; |
| } |
| // FIXME gcc accepts some relocatable values here too, but only in certain |
| // memory models; it's complicated. |
| } |
| return; |
| } |
| case 'Z': { |
| // 32-bit unsigned value |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| const ConstantInt *CI = C->getConstantIntValue(); |
| if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()), |
| C->getZExtValue())) { |
| Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); |
| break; |
| } |
| } |
| // FIXME gcc accepts some relocatable values here too, but only in certain |
| // memory models; it's complicated. |
| return; |
| } |
| case 'i': { |
| // Literal immediates are always ok. |
| if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { |
| // Widen to 64 bits here to get it sign extended. |
| Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64); |
| break; |
| } |
| |
| // If we are in non-pic codegen mode, we allow the address of a global (with |
| // an optional displacement) to be used with 'i'. |
| GlobalAddressSDNode *GA = 0; |
| int64_t Offset = 0; |
| |
| // Match either (GA), (GA+C), (GA+C1+C2), etc. |
| while (1) { |
| if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { |
| Offset += GA->getOffset(); |
| break; |
| } else if (Op.getOpcode() == ISD::ADD) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| Offset += C->getZExtValue(); |
| Op = Op.getOperand(0); |
| continue; |
| } |
| } else if (Op.getOpcode() == ISD::SUB) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| Offset += -C->getZExtValue(); |
| Op = Op.getOperand(0); |
| continue; |
| } |
| } |
| |
| // Otherwise, this isn't something we can handle, reject it. |
| return; |
| } |
| |
| GlobalValue *GV = GA->getGlobal(); |
| // If we require an extra load to get this address, as in PIC mode, we |
| // can't accept it. |
| if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV, |
| getTargetMachine()))) |
| return; |
| |
| if (hasMemory) |
| Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); |
| else |
| Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset); |
| Result = Op; |
| break; |
| } |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory, |
| Ops, DAG); |
| } |
| |
| std::vector<unsigned> X86TargetLowering:: |
| getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| EVT VT) const { |
| if (Constraint.size() == 1) { |
| // FIXME: not handling fp-stack yet! |
| switch (Constraint[0]) { // GCC X86 Constraint Letters |
| default: break; // Unknown constraint letter |
| case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. |
| if (Subtarget->is64Bit()) { |
| if (VT == MVT::i32) |
| return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, |
| X86::ESI, X86::EDI, X86::R8D, X86::R9D, |
| X86::R10D,X86::R11D,X86::R12D, |
| X86::R13D,X86::R14D,X86::R15D, |
| X86::EBP, X86::ESP, 0); |
| else if (VT == MVT::i16) |
| return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, |
| X86::SI, X86::DI, X86::R8W,X86::R9W, |
| X86::R10W,X86::R11W,X86::R12W, |
| X86::R13W,X86::R14W,X86::R15W, |
| X86::BP, X86::SP, 0); |
| else if (VT == MVT::i8) |
| return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, |
| X86::SIL, X86::DIL, X86::R8B,X86::R9B, |
| X86::R10B,X86::R11B,X86::R12B, |
| X86::R13B,X86::R14B,X86::R15B, |
| X86::BPL, X86::SPL, 0); |
| |
| else if (VT == MVT::i64) |
| return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, |
| X86::RSI, X86::RDI, X86::R8, X86::R9, |
| X86::R10, X86::R11, X86::R12, |
| X86::R13, X86::R14, X86::R15, |
| X86::RBP, X86::RSP, 0); |
| |
| break; |
| } |
| // 32-bit fallthrough |
| case 'Q': // Q_REGS |
| if (VT == MVT::i32) |
| return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); |
| else if (VT == MVT::i16) |
| return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); |
| else if (VT == MVT::i8) |
| return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0); |
| else if (VT == MVT::i64) |
| return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0); |
| break; |
| } |
| } |
| |
| return std::vector<unsigned>(); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, |
| EVT VT) const { |
| // First, see if this is a constraint that directly corresponds to an LLVM |
| // register class. |
| if (Constraint.size() == 1) { |
| // GCC Constraint Letters |
| switch (Constraint[0]) { |
| default: break; |
| case 'r': // GENERAL_REGS |
| case 'l': // INDEX_REGS |
| if (VT == MVT::i8) |
| return std::make_pair(0U, X86::GR8RegisterClass); |
| if (VT == MVT::i16) |
| return std::make_pair(0U, X86::GR16RegisterClass); |
| if (VT == MVT::i32 || !Subtarget->is64Bit()) |
| return std::make_pair(0U, X86::GR32RegisterClass); |
| return std::make_pair(0U, X86::GR64RegisterClass); |
| case 'R': // LEGACY_REGS |
| if (VT == MVT::i8) |
| return std::make_pair(0U, X86::GR8_NOREXRegisterClass); |
| if (VT == MVT::i16) |
| return std::make_pair(0U, X86::GR16_NOREXRegisterClass); |
| if (VT == MVT::i32 || !Subtarget->is64Bit()) |
| return std::make_pair(0U, X86::GR32_NOREXRegisterClass); |
| return std::make_pair(0U, X86::GR64_NOREXRegisterClass); |
| case 'f': // FP Stack registers. |
| // If SSE is enabled for this VT, use f80 to ensure the isel moves the |
| // value to the correct fpstack register class. |
| if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) |
| return std::make_pair(0U, X86::RFP32RegisterClass); |
| if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) |
| return std::make_pair(0U, X86::RFP64RegisterClass); |
| return std::make_pair(0U, X86::RFP80RegisterClass); |
| case 'y': // MMX_REGS if MMX allowed. |
| if (!Subtarget->hasMMX()) break; |
| return std::make_pair(0U, X86::VR64RegisterClass); |
| case 'Y': // SSE_REGS if SSE2 allowed |
| if (!Subtarget->hasSSE2()) break; |
| // FALL THROUGH. |
| case 'x': // SSE_REGS if SSE1 allowed |
| if (!Subtarget->hasSSE1()) break; |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: break; |
| // Scalar SSE types. |
| case MVT::f32: |
| case MVT::i32: |
| return std::make_pair(0U, X86::FR32RegisterClass); |
| case MVT::f64: |
| case MVT::i64: |
| return std::make_pair(0U, X86::FR64RegisterClass); |
| // Vector types. |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| return std::make_pair(0U, X86::VR128RegisterClass); |
| } |
| break; |
| } |
| } |
| |
| // Use the default implementation in TargetLowering to convert the register |
| // constraint into a member of a register class. |
| std::pair<unsigned, const TargetRegisterClass*> Res; |
| Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| |
| // Not found as a standard register? |
| if (Res.second == 0) { |
| // Map st(0) -> st(7) -> ST0 |
| if (Constraint.size() == 7 && Constraint[0] == '{' && |
| tolower(Constraint[1]) == 's' && |
| tolower(Constraint[2]) == 't' && |
| Constraint[3] == '(' && |
| (Constraint[4] >= '0' && Constraint[4] <= '7') && |
| Constraint[5] == ')' && |
| Constraint[6] == '}') { |
| |
| Res.first = X86::ST0+Constraint[4]-'0'; |
| Res.second = X86::RFP80RegisterClass; |
| return Res; |
| } |
| |
| // GCC allows "st(0)" to be called just plain "st". |
| if (StringRef("{st}").equals_lower(Constraint)) { |
| Res.first = X86::ST0; |
| Res.second = X86::RFP80RegisterClass; |
| return Res; |
| } |
| |
| // flags -> EFLAGS |
| if (StringRef("{flags}").equals_lower(Constraint)) { |
| Res.first = X86::EFLAGS; |
| Res.second = X86::CCRRegisterClass; |
| return Res; |
| } |
| |
| // 'A' means EAX + EDX. |
| if (Constraint == "A") { |
| Res.first = X86::EAX; |
| Res.second = X86::GR32_ADRegisterClass; |
| return Res; |
| } |
| return Res; |
| } |
| |
| // Otherwise, check to see if this is a register class of the wrong value |
| // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to |
| // turn into {ax},{dx}. |
| if (Res.second->hasType(VT)) |
| return Res; // Correct type already, nothing to do. |
| |
| // All of the single-register GCC register classes map their values onto |
| // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we |
| // really want an 8-bit or 32-bit register, map to the appropriate register |
| // class and return the appropriate register. |
| if (Res.second == X86::GR16RegisterClass) { |
| if (VT == MVT::i8) { |
| unsigned DestReg = 0; |
| switch (Res.first) { |
| default: break; |
| case X86::AX: DestReg = X86::AL; break; |
| case X86::DX: DestReg = X86::DL; break; |
| case X86::CX: DestReg = X86::CL; break; |
| case X86::BX: DestReg = X86::BL; break; |
| } |
| if (DestReg) { |
| Res.first = DestReg; |
| Res.second = X86::GR8RegisterClass; |
| } |
| } else if (VT == MVT::i32) { |
| unsigned DestReg = 0; |
| switch (Res.first) { |
| default: break; |
| case X86::AX: DestReg = X86::EAX; break; |
| case X86::DX: DestReg = X86::EDX; break; |
| case X86::CX: DestReg = X86::ECX; break; |
| case X86::BX: DestReg = X86::EBX; break; |
| case X86::SI: DestReg = X86::ESI; break; |
| case X86::DI: DestReg = X86::EDI; break; |
| case X86::BP: DestReg = X86::EBP; break; |
| case X86::SP: DestReg = X86::ESP; break; |
| } |
| if (DestReg) { |
| Res.first = DestReg; |
| Res.second = X86::GR32RegisterClass; |
| } |
| } else if (VT == MVT::i64) { |
| unsigned DestReg = 0; |
| switch (Res.first) { |
| default: break; |
| case X86::AX: DestReg = X86::RAX; break; |
| case X86::DX: DestReg = X86::RDX; break; |
| case X86::CX: DestReg = X86::RCX; break; |
| case X86::BX: DestReg = X86::RBX; break; |
| case X86::SI: DestReg = X86::RSI; break; |
| case X86::DI: DestReg = X86::RDI; break; |
| case X86::BP: DestReg = X86::RBP; break; |
| case X86::SP: DestReg = X86::RSP; break; |
| } |
| if (DestReg) { |
| Res.first = DestReg; |
| Res.second = X86::GR64RegisterClass; |
| } |
| } |
| } else if (Res.second == X86::FR32RegisterClass || |
| Res.second == X86::FR64RegisterClass || |
| Res.second == X86::VR128RegisterClass) { |
| // Handle references to XMM physical registers that got mapped into the |
| // wrong class. This can happen with constraints like {xmm0} where the |
| // target independent register mapper will just pick the first match it can |
| // find, ignoring the required type. |
| if (VT == MVT::f32) |
| Res.second = X86::FR32RegisterClass; |
| else if (VT == MVT::f64) |
| Res.second = X86::FR64RegisterClass; |
| else if (X86::VR128RegisterClass->hasType(VT)) |
| Res.second = X86::VR128RegisterClass; |
| } |
| |
| return Res; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Widen vector type |
| //===----------------------------------------------------------------------===// |
| |
| /// getWidenVectorType: given a vector type, returns the type to widen |
| /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself. |
| /// If there is no vector type that we want to widen to, returns MVT::Other |
| /// When and where to widen is target dependent based on the cost of |
| /// scalarizing vs using the wider vector type. |
| |
| EVT X86TargetLowering::getWidenVectorType(EVT VT) const { |
| assert(VT.isVector()); |
| if (isTypeLegal(VT)) |
| return VT; |
| |
| // TODO: In computeRegisterProperty, we can compute the list of legal vector |
| // type based on element type. This would speed up our search (though |
| // it may not be worth it since the size of the list is relatively |
| // small). |
| EVT EltVT = VT.getVectorElementType(); |
| unsigned NElts = VT.getVectorNumElements(); |
| |
| // On X86, it make sense to widen any vector wider than 1 |
| if (NElts <= 1) |
| return MVT::Other; |
| |
| for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE; |
| nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { |
| EVT SVT = (MVT::SimpleValueType)nVT; |
| |
| if (isTypeLegal(SVT) && |
| SVT.getVectorElementType() == EltVT && |
| SVT.getVectorNumElements() > NElts) |
| return SVT; |
| } |
| return MVT::Other; |
| } |