| //===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a printer that converts from our internal |
| // representation of machine-dependent LLVM code to Intel-format |
| // assembly language. This printer is the output mechanism used |
| // by `llc' and `lli -print-machineinstrs' on X86. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/Mangler.h" |
| #include "Support/Statistic.h" |
| #include "Support/StringExtras.h" |
| #include "Support/CommandLine.h" |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); |
| |
| // FIXME: This should be automatically picked up by autoconf from the C |
| // frontend |
| cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden, |
| cl::desc("Emit X86 assembly code suitable for consumption by cygwin")); |
| |
| struct Printer : public MachineFunctionPass { |
| /// Output stream on which we're printing assembly code. |
| /// |
| std::ostream &O; |
| |
| /// Target machine description which we query for reg. names, data |
| /// layout, etc. |
| /// |
| TargetMachine &TM; |
| |
| /// Name-mangler for global names. |
| /// |
| Mangler *Mang; |
| |
| Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { } |
| |
| /// We name each basic block in a Function with a unique number, so |
| /// that we can consistently refer to them later. This is cleared |
| /// at the beginning of each call to runOnMachineFunction(). |
| /// |
| typedef std::map<const Value *, unsigned> ValueMapTy; |
| ValueMapTy NumberForBB; |
| |
| /// Cache of mangled name for current function. This is |
| /// recalculated at the beginning of each call to |
| /// runOnMachineFunction(). |
| /// |
| std::string CurrentFnName; |
| |
| virtual const char *getPassName() const { |
| return "X86 Assembly Printer"; |
| } |
| |
| void checkImplUses (const TargetInstrDescriptor &Desc); |
| void printMachineInstruction(const MachineInstr *MI); |
| void printOp(const MachineOperand &MO, |
| bool elideOffsetKeyword = false); |
| void printMemReference(const MachineInstr *MI, unsigned Op); |
| void printConstantPool(MachineConstantPool *MCP); |
| bool runOnMachineFunction(MachineFunction &F); |
| bool doInitialization(Module &M); |
| bool doFinalization(Module &M); |
| void emitGlobalConstant(const Constant* CV); |
| void emitConstantValueOnly(const Constant *CV); |
| }; |
| } // end of anonymous namespace |
| |
| /// createX86CodePrinterPass - Returns a pass that prints the X86 |
| /// assembly code for a MachineFunction to the given output stream, |
| /// using the given target machine description. This should work |
| /// regardless of whether the function is in SSA form. |
| /// |
| FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){ |
| return new Printer(o, tm); |
| } |
| |
| /// toOctal - Convert the low order bits of X into an octal digit. |
| /// |
| static inline char toOctal(int X) { |
| return (X&7)+'0'; |
| } |
| |
| /// getAsCString - Return the specified array as a C compatible |
| /// string, only if the predicate isStringCompatible is true. |
| /// |
| static void printAsCString(std::ostream &O, const ConstantArray *CVA) { |
| assert(CVA->isString() && "Array is not string compatible!"); |
| |
| O << "\""; |
| for (unsigned i = 0; i != CVA->getNumOperands(); ++i) { |
| unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue(); |
| |
| if (C == '"') { |
| O << "\\\""; |
| } else if (C == '\\') { |
| O << "\\\\"; |
| } else if (isprint(C)) { |
| O << C; |
| } else { |
| switch(C) { |
| case '\b': O << "\\b"; break; |
| case '\f': O << "\\f"; break; |
| case '\n': O << "\\n"; break; |
| case '\r': O << "\\r"; break; |
| case '\t': O << "\\t"; break; |
| default: |
| O << '\\'; |
| O << toOctal(C >> 6); |
| O << toOctal(C >> 3); |
| O << toOctal(C >> 0); |
| break; |
| } |
| } |
| } |
| O << "\""; |
| } |
| |
| // Print out the specified constant, without a storage class. Only the |
| // constants valid in constant expressions can occur here. |
| void Printer::emitConstantValueOnly(const Constant *CV) { |
| if (CV->isNullValue()) |
| O << "0"; |
| else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) { |
| assert(CB == ConstantBool::True); |
| O << "1"; |
| } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) |
| if (((CI->getValue() << 32) >> 32) == CI->getValue()) |
| O << CI->getValue(); |
| else |
| O << (unsigned long long)CI->getValue(); |
| else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) |
| O << CI->getValue(); |
| else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV)) |
| // This is a constant address for a global variable or function. Use the |
| // name of the variable or function as the address value. |
| O << Mang->getValueName(CPR->getValue()); |
| else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| const TargetData &TD = TM.getTargetData(); |
| switch(CE->getOpcode()) { |
| case Instruction::GetElementPtr: { |
| // generate a symbolic expression for the byte address |
| const Constant *ptrVal = CE->getOperand(0); |
| std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end()); |
| if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) { |
| O << "("; |
| emitConstantValueOnly(ptrVal); |
| O << ") + " << Offset; |
| } else { |
| emitConstantValueOnly(ptrVal); |
| } |
| break; |
| } |
| case Instruction::Cast: { |
| // Support only non-converting or widening casts for now, that is, ones |
| // that do not involve a change in value. This assertion is really gross, |
| // and may not even be a complete check. |
| Constant *Op = CE->getOperand(0); |
| const Type *OpTy = Op->getType(), *Ty = CE->getType(); |
| |
| // Remember, kids, pointers on x86 can be losslessly converted back and |
| // forth into 32-bit or wider integers, regardless of signedness. :-P |
| assert(((isa<PointerType>(OpTy) |
| && (Ty == Type::LongTy || Ty == Type::ULongTy |
| || Ty == Type::IntTy || Ty == Type::UIntTy)) |
| || (isa<PointerType>(Ty) |
| && (OpTy == Type::LongTy || OpTy == Type::ULongTy |
| || OpTy == Type::IntTy || OpTy == Type::UIntTy)) |
| || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy)) |
| && OpTy->isLosslesslyConvertibleTo(Ty)))) |
| && "FIXME: Don't yet support this kind of constant cast expr"); |
| O << "("; |
| emitConstantValueOnly(Op); |
| O << ")"; |
| break; |
| } |
| case Instruction::Add: |
| O << "("; |
| emitConstantValueOnly(CE->getOperand(0)); |
| O << ") + ("; |
| emitConstantValueOnly(CE->getOperand(1)); |
| O << ")"; |
| break; |
| default: |
| assert(0 && "Unsupported operator!"); |
| } |
| } else { |
| assert(0 && "Unknown constant value!"); |
| } |
| } |
| |
| // Print a constant value or values, with the appropriate storage class as a |
| // prefix. |
| void Printer::emitGlobalConstant(const Constant *CV) { |
| const TargetData &TD = TM.getTargetData(); |
| |
| if (CV->isNullValue()) { |
| O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n"; |
| return; |
| } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { |
| if (CVA->isString()) { |
| O << "\t.ascii\t"; |
| printAsCString(O, CVA); |
| O << "\n"; |
| } else { // Not a string. Print the values in successive locations |
| const std::vector<Use> &constValues = CVA->getValues(); |
| for (unsigned i=0; i < constValues.size(); i++) |
| emitGlobalConstant(cast<Constant>(constValues[i].get())); |
| } |
| return; |
| } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { |
| // Print the fields in successive locations. Pad to align if needed! |
| const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType()); |
| const std::vector<Use>& constValues = CVS->getValues(); |
| unsigned sizeSoFar = 0; |
| for (unsigned i=0, N = constValues.size(); i < N; i++) { |
| const Constant* field = cast<Constant>(constValues[i].get()); |
| |
| // Check if padding is needed and insert one or more 0s. |
| unsigned fieldSize = TD.getTypeSize(field->getType()); |
| unsigned padSize = ((i == N-1? cvsLayout->StructSize |
| : cvsLayout->MemberOffsets[i+1]) |
| - cvsLayout->MemberOffsets[i]) - fieldSize; |
| sizeSoFar += fieldSize + padSize; |
| |
| // Now print the actual field value |
| emitGlobalConstant(field); |
| |
| // Insert the field padding unless it's zero bytes... |
| if (padSize) |
| O << "\t.zero\t " << padSize << "\n"; |
| } |
| assert(sizeSoFar == cvsLayout->StructSize && |
| "Layout of constant struct may be incorrect!"); |
| return; |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| // FP Constants are printed as integer constants to avoid losing |
| // precision... |
| double Val = CFP->getValue(); |
| switch (CFP->getType()->getPrimitiveID()) { |
| default: assert(0 && "Unknown floating point type!"); |
| case Type::FloatTyID: { |
| union FU { // Abide by C TBAA rules |
| float FVal; |
| unsigned UVal; |
| } U; |
| U.FVal = Val; |
| O << ".long\t" << U.UVal << "\t# float " << Val << "\n"; |
| return; |
| } |
| case Type::DoubleTyID: { |
| union DU { // Abide by C TBAA rules |
| double FVal; |
| uint64_t UVal; |
| } U; |
| U.FVal = Val; |
| O << ".quad\t" << U.UVal << "\t# double " << Val << "\n"; |
| return; |
| } |
| } |
| } |
| |
| const Type *type = CV->getType(); |
| O << "\t"; |
| switch (type->getPrimitiveID()) { |
| case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: |
| O << ".byte"; |
| break; |
| case Type::UShortTyID: case Type::ShortTyID: |
| O << ".word"; |
| break; |
| case Type::FloatTyID: case Type::PointerTyID: |
| case Type::UIntTyID: case Type::IntTyID: |
| O << ".long"; |
| break; |
| case Type::DoubleTyID: |
| case Type::ULongTyID: case Type::LongTyID: |
| O << ".quad"; |
| break; |
| default: |
| assert (0 && "Can't handle printing this type of thing"); |
| break; |
| } |
| O << "\t"; |
| emitConstantValueOnly(CV); |
| O << "\n"; |
| } |
| |
| /// printConstantPool - Print to the current output stream assembly |
| /// representations of the constants in the constant pool MCP. This is |
| /// used to print out constants which have been "spilled to memory" by |
| /// the code generator. |
| /// |
| void Printer::printConstantPool(MachineConstantPool *MCP) { |
| const std::vector<Constant*> &CP = MCP->getConstants(); |
| const TargetData &TD = TM.getTargetData(); |
| |
| if (CP.empty()) return; |
| |
| for (unsigned i = 0, e = CP.size(); i != e; ++i) { |
| O << "\t.section .rodata\n"; |
| O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) |
| << "\n"; |
| O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#" |
| << *CP[i] << "\n"; |
| emitGlobalConstant(CP[i]); |
| } |
| } |
| |
| /// runOnMachineFunction - This uses the printMachineInstruction() |
| /// method to print assembly for each instruction. |
| /// |
| bool Printer::runOnMachineFunction(MachineFunction &MF) { |
| // BBNumber is used here so that a given Printer will never give two |
| // BBs the same name. (If you have a better way, please let me know!) |
| static unsigned BBNumber = 0; |
| |
| O << "\n\n"; |
| // What's my mangled name? |
| CurrentFnName = Mang->getValueName(MF.getFunction()); |
| |
| // Print out constants referenced by the function |
| printConstantPool(MF.getConstantPool()); |
| |
| // Print out labels for the function. |
| O << "\t.text\n"; |
| O << "\t.align 16\n"; |
| O << "\t.globl\t" << CurrentFnName << "\n"; |
| if (!EmitCygwin) |
| O << "\t.type\t" << CurrentFnName << ", @function\n"; |
| O << CurrentFnName << ":\n"; |
| |
| // Number each basic block so that we can consistently refer to them |
| // in PC-relative references. |
| NumberForBB.clear(); |
| for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); |
| I != E; ++I) { |
| NumberForBB[I->getBasicBlock()] = BBNumber++; |
| } |
| |
| // Print out code for the function. |
| for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); |
| I != E; ++I) { |
| // Print a label for the basic block. |
| O << ".LBB" << NumberForBB[I->getBasicBlock()] << ":\t# " |
| << I->getBasicBlock()->getName() << "\n"; |
| for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); |
| II != E; ++II) { |
| // Print the assembly for the instruction. |
| O << "\t"; |
| printMachineInstruction(II); |
| } |
| } |
| |
| // We didn't modify anything. |
| return false; |
| } |
| |
| static bool isScale(const MachineOperand &MO) { |
| return MO.isImmediate() && |
| (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 || |
| MO.getImmedValue() == 4 || MO.getImmedValue() == 8); |
| } |
| |
| static bool isMem(const MachineInstr *MI, unsigned Op) { |
| if (MI->getOperand(Op).isFrameIndex()) return true; |
| if (MI->getOperand(Op).isConstantPoolIndex()) return true; |
| return Op+4 <= MI->getNumOperands() && |
| MI->getOperand(Op ).isRegister() &&isScale(MI->getOperand(Op+1)) && |
| MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate(); |
| } |
| |
| |
| |
| void Printer::printOp(const MachineOperand &MO, |
| bool elideOffsetKeyword /* = false */) { |
| const MRegisterInfo &RI = *TM.getRegisterInfo(); |
| switch (MO.getType()) { |
| case MachineOperand::MO_VirtualRegister: |
| if (Value *V = MO.getVRegValueOrNull()) { |
| O << "<" << V->getName() << ">"; |
| return; |
| } |
| // FALLTHROUGH |
| case MachineOperand::MO_MachineRegister: |
| if (MRegisterInfo::isPhysicalRegister(MO.getReg())) |
| // Bug Workaround: See note in Printer::doInitialization about %. |
| O << "%" << RI.get(MO.getReg()).Name; |
| else |
| O << "%reg" << MO.getReg(); |
| return; |
| |
| case MachineOperand::MO_SignExtendedImmed: |
| case MachineOperand::MO_UnextendedImmed: |
| O << (int)MO.getImmedValue(); |
| return; |
| case MachineOperand::MO_PCRelativeDisp: { |
| ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue()); |
| assert (i != NumberForBB.end() |
| && "Could not find a BB in the NumberForBB map!"); |
| O << ".LBB" << i->second << " # PC rel: " << MO.getVRegValue()->getName(); |
| return; |
| } |
| case MachineOperand::MO_GlobalAddress: |
| if (!elideOffsetKeyword) |
| O << "OFFSET "; |
| O << Mang->getValueName(MO.getGlobal()); |
| return; |
| case MachineOperand::MO_ExternalSymbol: |
| O << MO.getSymbolName(); |
| return; |
| default: |
| O << "<unknown operand type>"; return; |
| } |
| } |
| |
| static const std::string sizePtr(const TargetInstrDescriptor &Desc) { |
| switch (Desc.TSFlags & X86II::ArgMask) { |
| default: assert(0 && "Unknown arg size!"); |
| case X86II::Arg8: return "BYTE PTR"; |
| case X86II::Arg16: return "WORD PTR"; |
| case X86II::Arg32: return "DWORD PTR"; |
| case X86II::Arg64: return "QWORD PTR"; |
| case X86II::ArgF32: return "DWORD PTR"; |
| case X86II::ArgF64: return "QWORD PTR"; |
| case X86II::ArgF80: return "XWORD PTR"; |
| } |
| } |
| |
| void Printer::printMemReference(const MachineInstr *MI, unsigned Op) { |
| assert(isMem(MI, Op) && "Invalid memory reference!"); |
| |
| if (MI->getOperand(Op).isFrameIndex()) { |
| O << "[frame slot #" << MI->getOperand(Op).getFrameIndex(); |
| if (MI->getOperand(Op+3).getImmedValue()) |
| O << " + " << MI->getOperand(Op+3).getImmedValue(); |
| O << "]"; |
| return; |
| } else if (MI->getOperand(Op).isConstantPoolIndex()) { |
| O << "[.CPI" << CurrentFnName << "_" |
| << MI->getOperand(Op).getConstantPoolIndex(); |
| if (MI->getOperand(Op+3).getImmedValue()) |
| O << " + " << MI->getOperand(Op+3).getImmedValue(); |
| O << "]"; |
| return; |
| } |
| |
| const MachineOperand &BaseReg = MI->getOperand(Op); |
| int ScaleVal = MI->getOperand(Op+1).getImmedValue(); |
| const MachineOperand &IndexReg = MI->getOperand(Op+2); |
| int DispVal = MI->getOperand(Op+3).getImmedValue(); |
| |
| O << "["; |
| bool NeedPlus = false; |
| if (BaseReg.getReg()) { |
| printOp(BaseReg); |
| NeedPlus = true; |
| } |
| |
| if (IndexReg.getReg()) { |
| if (NeedPlus) O << " + "; |
| if (ScaleVal != 1) |
| O << ScaleVal << "*"; |
| printOp(IndexReg); |
| NeedPlus = true; |
| } |
| |
| if (DispVal) { |
| if (NeedPlus) |
| if (DispVal > 0) |
| O << " + "; |
| else { |
| O << " - "; |
| DispVal = -DispVal; |
| } |
| O << DispVal; |
| } |
| O << "]"; |
| } |
| |
| /// checkImplUses - Emit the implicit-use registers for the |
| /// instruction described by DESC, if its PrintImplUses flag is set. |
| /// |
| void Printer::checkImplUses (const TargetInstrDescriptor &Desc) { |
| const MRegisterInfo &RI = *TM.getRegisterInfo(); |
| if (Desc.TSFlags & X86II::PrintImplUses) { |
| for (const unsigned *p = Desc.ImplicitUses; *p; ++p) { |
| // Bug Workaround: See note in Printer::doInitialization about %. |
| O << ", %" << RI.get(*p).Name; |
| } |
| } |
| } |
| |
| /// printMachineInstruction -- Print out a single X86 LLVM instruction |
| /// MI in Intel syntax to the current output stream. |
| /// |
| void Printer::printMachineInstruction(const MachineInstr *MI) { |
| unsigned Opcode = MI->getOpcode(); |
| const TargetInstrInfo &TII = TM.getInstrInfo(); |
| const TargetInstrDescriptor &Desc = TII.get(Opcode); |
| |
| ++EmittedInsts; |
| switch (Desc.TSFlags & X86II::FormMask) { |
| case X86II::Pseudo: |
| // Print pseudo-instructions as comments; either they should have been |
| // turned into real instructions by now, or they don't need to be |
| // seen by the assembler (e.g., IMPLICIT_USEs.) |
| O << "# "; |
| if (Opcode == X86::PHI) { |
| printOp(MI->getOperand(0)); |
| O << " = phi "; |
| for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) { |
| if (i != 1) O << ", "; |
| O << "["; |
| printOp(MI->getOperand(i)); |
| O << ", "; |
| printOp(MI->getOperand(i+1)); |
| O << "]"; |
| } |
| } else { |
| unsigned i = 0; |
| if (MI->getNumOperands() && MI->getOperand(0).isDef()) { |
| printOp(MI->getOperand(0)); |
| O << " = "; |
| ++i; |
| } |
| O << TII.getName(MI->getOpcode()); |
| |
| for (unsigned e = MI->getNumOperands(); i != e; ++i) { |
| O << " "; |
| if (MI->getOperand(i).isDef()) O << "*"; |
| printOp(MI->getOperand(i)); |
| if (MI->getOperand(i).isDef()) O << "*"; |
| } |
| } |
| O << "\n"; |
| return; |
| |
| case X86II::RawFrm: |
| // The accepted forms of Raw instructions are: |
| // 1. nop - No operand required |
| // 2. jmp foo - PC relative displacement operand |
| // 3. call bar - GlobalAddress Operand or External Symbol Operand |
| // |
| assert(MI->getNumOperands() == 0 || |
| (MI->getNumOperands() == 1 && |
| (MI->getOperand(0).isPCRelativeDisp() || |
| MI->getOperand(0).isGlobalAddress() || |
| MI->getOperand(0).isExternalSymbol())) && |
| "Illegal raw instruction!"); |
| O << TII.getName(MI->getOpcode()) << " "; |
| |
| if (MI->getNumOperands() == 1) { |
| printOp(MI->getOperand(0), true); // Don't print "OFFSET"... |
| } |
| O << "\n"; |
| return; |
| |
| case X86II::AddRegFrm: { |
| // There are currently two forms of acceptable AddRegFrm instructions. |
| // Either the instruction JUST takes a single register (like inc, dec, etc), |
| // or it takes a register and an immediate of the same size as the register |
| // (move immediate f.e.). Note that this immediate value might be stored as |
| // an LLVM value, to represent, for example, loading the address of a global |
| // into a register. The initial register might be duplicated if this is a |
| // M_2_ADDR_REG instruction |
| // |
| assert(MI->getOperand(0).isRegister() && |
| (MI->getNumOperands() == 1 || |
| (MI->getNumOperands() == 2 && |
| (MI->getOperand(1).getVRegValueOrNull() || |
| MI->getOperand(1).isImmediate() || |
| MI->getOperand(1).isRegister() || |
| MI->getOperand(1).isGlobalAddress() || |
| MI->getOperand(1).isExternalSymbol()))) && |
| "Illegal form for AddRegFrm instruction!"); |
| |
| unsigned Reg = MI->getOperand(0).getReg(); |
| |
| O << TII.getName(MI->getOpcode()) << " "; |
| printOp(MI->getOperand(0)); |
| if (MI->getNumOperands() == 2 && |
| (!MI->getOperand(1).isRegister() || |
| MI->getOperand(1).getVRegValueOrNull() || |
| MI->getOperand(1).isGlobalAddress() || |
| MI->getOperand(1).isExternalSymbol())) { |
| O << ", "; |
| printOp(MI->getOperand(1)); |
| } |
| checkImplUses(Desc); |
| O << "\n"; |
| return; |
| } |
| case X86II::MRMDestReg: { |
| // There are three forms of MRMDestReg instructions, those with 2 |
| // or 3 operands: |
| // |
| // 2 Operands: this is for things like mov that do not read a |
| // second input. |
| // |
| // 2 Operands: two address instructions which def&use the first |
| // argument and use the second as input. |
| // |
| // 3 Operands: in this form, two address instructions are the same |
| // as in 2 but have a constant argument as well. |
| // |
| bool isTwoAddr = TII.isTwoAddrInstr(Opcode); |
| assert(MI->getOperand(0).isRegister() && |
| (MI->getNumOperands() == 2 || |
| (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate())) |
| && "Bad format for MRMDestReg!"); |
| |
| O << TII.getName(MI->getOpcode()) << " "; |
| printOp(MI->getOperand(0)); |
| O << ", "; |
| printOp(MI->getOperand(1)); |
| if (MI->getNumOperands() == 3) { |
| O << ", "; |
| printOp(MI->getOperand(2)); |
| } |
| O << "\n"; |
| return; |
| } |
| |
| case X86II::MRMDestMem: { |
| // These instructions are the same as MRMDestReg, but instead of having a |
| // register reference for the mod/rm field, it's a memory reference. |
| // |
| assert(isMem(MI, 0) && |
| (MI->getNumOperands() == 4+1 || |
| (MI->getNumOperands() == 4+2 && MI->getOperand(5).isImmediate())) |
| && "Bad format for MRMDestMem!"); |
| |
| O << TII.getName(MI->getOpcode()) << " " << sizePtr(Desc) << " "; |
| printMemReference(MI, 0); |
| O << ", "; |
| printOp(MI->getOperand(4)); |
| if (MI->getNumOperands() == 4+2) { |
| O << ", "; |
| printOp(MI->getOperand(5)); |
| } |
| O << "\n"; |
| return; |
| } |
| |
| case X86II::MRMSrcReg: { |
| // There are three forms that are acceptable for MRMSrcReg |
| // instructions, those with 2 or 3 operands: |
| // |
| // 2 Operands: this is for things like mov that do not read a |
| // second input. |
| // |
| // 2 Operands: in this form, the last register is the ModR/M |
| // input. The first operand is a def&use. This is for things |
| // like: add r32, r/m32 |
| // |
| // 3 Operands: in this form, we can have 'INST R1, R2, imm', which is used |
| // for instructions like the IMULrri instructions. |
| // |
| // |
| assert(MI->getOperand(0).isRegister() && |
| MI->getOperand(1).isRegister() && |
| (MI->getNumOperands() == 2 || |
| (MI->getNumOperands() == 3 && |
| (MI->getOperand(2).isImmediate()))) |
| && "Bad format for MRMSrcReg!"); |
| |
| O << TII.getName(MI->getOpcode()) << " "; |
| printOp(MI->getOperand(0)); |
| O << ", "; |
| printOp(MI->getOperand(1)); |
| if (MI->getNumOperands() == 3) { |
| O << ", "; |
| printOp(MI->getOperand(2)); |
| } |
| O << "\n"; |
| return; |
| } |
| |
| case X86II::MRMSrcMem: { |
| // These instructions are the same as MRMSrcReg, but instead of having a |
| // register reference for the mod/rm field, it's a memory reference. |
| // |
| assert(MI->getOperand(0).isRegister() && |
| (MI->getNumOperands() == 1+4 && isMem(MI, 1)) || |
| (MI->getNumOperands() == 2+4 && MI->getOperand(5).isImmediate() && isMem(MI, 1)) |
| && "Bad format for MRMSrcMem!"); |
| O << TII.getName(MI->getOpcode()) << " "; |
| printOp(MI->getOperand(0)); |
| O << ", " << sizePtr(Desc) << " "; |
| printMemReference(MI, 1); |
| if (MI->getNumOperands() == 2+4) { |
| O << ", "; |
| printOp(MI->getOperand(5)); |
| } |
| O << "\n"; |
| return; |
| } |
| |
| case X86II::MRMS0r: case X86II::MRMS1r: |
| case X86II::MRMS2r: case X86II::MRMS3r: |
| case X86II::MRMS4r: case X86II::MRMS5r: |
| case X86II::MRMS6r: case X86II::MRMS7r: { |
| // In this form, the following are valid formats: |
| // 1. sete r |
| // 2. cmp reg, immediate |
| // 2. shl rdest, rinput <implicit CL or 1> |
| // 3. sbb rdest, rinput, immediate [rdest = rinput] |
| // |
| assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 && |
| MI->getOperand(0).isRegister() && "Bad MRMSxR format!"); |
| assert((MI->getNumOperands() != 2 || |
| MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&& |
| "Bad MRMSxR format!"); |
| assert((MI->getNumOperands() < 3 || |
| (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) && |
| "Bad MRMSxR format!"); |
| |
| if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() && |
| MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) |
| O << "**"; |
| |
| O << TII.getName(MI->getOpcode()) << " "; |
| printOp(MI->getOperand(0)); |
| if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) { |
| O << ", "; |
| printOp(MI->getOperand(MI->getNumOperands()-1)); |
| } |
| checkImplUses(Desc); |
| O << "\n"; |
| |
| return; |
| } |
| |
| case X86II::MRMS0m: case X86II::MRMS1m: |
| case X86II::MRMS2m: case X86II::MRMS3m: |
| case X86II::MRMS4m: case X86II::MRMS5m: |
| case X86II::MRMS6m: case X86II::MRMS7m: { |
| // In this form, the following are valid formats: |
| // 1. sete [m] |
| // 2. cmp [m], immediate |
| // 2. shl [m], rinput <implicit CL or 1> |
| // 3. sbb [m], immediate |
| // |
| assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 && |
| isMem(MI, 0) && "Bad MRMSxM format!"); |
| assert((MI->getNumOperands() != 5 || |
| (MI->getOperand(4).isImmediate() || |
| MI->getOperand(4).isGlobalAddress())) && |
| "Bad MRMSxM format!"); |
| |
| const MachineOperand &Op3 = MI->getOperand(3); |
| |
| // Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]" |
| // is misassembled by gas in intel_syntax mode as its 32-bit |
| // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw |
| // opcode bytes instead of the instruction. |
| if (MI->getOpcode() == X86::FSTPr80) { |
| if ((MI->getOperand(0).getReg() == X86::ESP) |
| && (MI->getOperand(1).getImmedValue() == 1)) { |
| if (Op3.isImmediate() && |
| Op3.getImmedValue() >= -128 && Op3.getImmedValue() <= 127) { |
| // 1 byte disp. |
| O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex |
| << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# "; |
| } else { |
| O << ".byte 0xdb, 0xbc, 0x24\n\t"; |
| O << ".long "; |
| printOp(Op3); |
| O << "\t# "; |
| } |
| } |
| } |
| |
| // Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is |
| // misassembled by gas in intel_syntax mode as its 32-bit |
| // equivalent "fld DWORD PTR [...]". Workaround: Output the raw |
| // opcode bytes instead of the instruction. |
| if (MI->getOpcode() == X86::FLDr80 && |
| MI->getOperand(0).getReg() == X86::ESP && |
| MI->getOperand(1).getImmedValue() == 1) { |
| if (Op3.isImmediate() && Op3.getImmedValue() >= -128 && |
| Op3.getImmedValue() <= 127) { // 1 byte displacement |
| O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex |
| << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# "; |
| } else { |
| O << ".byte 0xdb, 0xac, 0x24\n\t"; |
| O << ".long "; |
| printOp(Op3); |
| O << "\t# "; |
| } |
| } |
| |
| // Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an |
| // invalid opcode, saying "64 bit operations are only supported in |
| // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR |
| // [...]", which is wrong. Workaround: Output the raw opcode bytes |
| // instead of the instruction. |
| if (MI->getOpcode() == X86::FILDr64 && |
| MI->getOperand(0).getReg() == X86::ESP && |
| MI->getOperand(1).getImmedValue() == 1) { |
| if (Op3.isImmediate() && Op3.getImmedValue() >= -128 && |
| Op3.getImmedValue() <= 127) { // 1 byte displacement |
| O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex |
| << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# "; |
| } else { |
| O << ".byte 0xdf, 0xac, 0x24\n\t"; |
| O << ".long "; |
| printOp(Op3); |
| O << std::dec << "\t# "; |
| } |
| } |
| |
| // Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as |
| // an invalid opcode, saying "64 bit operations are only |
| // supported in 64 bit modes." libopcodes disassembles it as |
| // "fistpll DWORD PTR [...]", which is wrong. Workaround: Output |
| // "fistpll DWORD PTR " instead, which is what libopcodes is |
| // expecting to see. |
| if (MI->getOpcode() == X86::FISTPr64) { |
| O << "fistpll DWORD PTR "; |
| printMemReference(MI, 0); |
| if (MI->getNumOperands() == 5) { |
| O << ", "; |
| printOp(MI->getOperand(4)); |
| } |
| O << "\t# "; |
| } |
| |
| O << TII.getName(MI->getOpcode()) << " "; |
| O << sizePtr(Desc) << " "; |
| printMemReference(MI, 0); |
| if (MI->getNumOperands() == 5) { |
| O << ", "; |
| printOp(MI->getOperand(4)); |
| } |
| O << "\n"; |
| return; |
| } |
| |
| default: |
| O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break; |
| } |
| } |
| |
| bool Printer::doInitialization(Module &M) { |
| // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly. |
| // |
| // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an |
| // instruction as a reference to the register named sp, and if you try to |
| // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased |
| // before being looked up in the symbol table. This creates spurious |
| // `undefined symbol' errors when linking. Workaround: Do not use `noprefix' |
| // mode, and decorate all register names with percent signs. |
| O << "\t.intel_syntax\n"; |
| Mang = new Mangler(M, EmitCygwin); |
| return false; // success |
| } |
| |
| // SwitchSection - Switch to the specified section of the executable if we are |
| // not already in it! |
| // |
| static void SwitchSection(std::ostream &OS, std::string &CurSection, |
| const char *NewSection) { |
| if (CurSection != NewSection) { |
| CurSection = NewSection; |
| if (!CurSection.empty()) |
| OS << "\t" << NewSection << "\n"; |
| } |
| } |
| |
| bool Printer::doFinalization(Module &M) { |
| const TargetData &TD = TM.getTargetData(); |
| std::string CurSection; |
| |
| // Print out module-level global variables here. |
| for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) |
| if (I->hasInitializer()) { // External global require no code |
| O << "\n\n"; |
| std::string name = Mang->getValueName(I); |
| Constant *C = I->getInitializer(); |
| unsigned Size = TD.getTypeSize(C->getType()); |
| unsigned Align = TD.getTypeAlignment(C->getType()); |
| |
| if (C->isNullValue() && |
| (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || |
| I->hasWeakLinkage() /* FIXME: Verify correct */)) { |
| SwitchSection(O, CurSection, ".data"); |
| if (I->hasInternalLinkage()) |
| O << "\t.local " << name << "\n"; |
| |
| O << "\t.comm " << name << "," << TD.getTypeSize(C->getType()) |
| << "," << (unsigned)TD.getTypeAlignment(C->getType()); |
| O << "\t\t# "; |
| WriteAsOperand(O, I, true, true, &M); |
| O << "\n"; |
| } else { |
| switch (I->getLinkage()) { |
| case GlobalValue::LinkOnceLinkage: |
| case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. |
| // Nonnull linkonce -> weak |
| O << "\t.weak " << name << "\n"; |
| SwitchSection(O, CurSection, ""); |
| O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n"; |
| break; |
| |
| case GlobalValue::AppendingLinkage: |
| // FIXME: appending linkage variables should go into a section of |
| // their name or something. For now, just emit them as external. |
| case GlobalValue::ExternalLinkage: |
| // If external or appending, declare as a global symbol |
| O << "\t.globl " << name << "\n"; |
| // FALL THROUGH |
| case GlobalValue::InternalLinkage: |
| if (C->isNullValue()) |
| SwitchSection(O, CurSection, ".bss"); |
| else |
| SwitchSection(O, CurSection, ".data"); |
| break; |
| } |
| |
| O << "\t.align " << Align << "\n"; |
| O << "\t.type " << name << ",@object\n"; |
| O << "\t.size " << name << "," << Size << "\n"; |
| O << name << ":\t\t\t\t# "; |
| WriteAsOperand(O, I, true, true, &M); |
| O << " = "; |
| WriteAsOperand(O, C, false, false, &M); |
| O << "\n"; |
| emitGlobalConstant(C); |
| } |
| } |
| |
| delete Mang; |
| return false; // success |
| } |