| //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/ARMBaseInfo.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "MCTargetDesc/ARMMCExpr.h" |
| #include "llvm/MC/MCParser/MCAsmLexer.h" |
| #include "llvm/MC/MCParser/MCAsmParser.h" |
| #include "llvm/MC/MCParser/MCParsedAsmOperand.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/MCTargetAsmParser.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Twine.h" |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| class ARMOperand; |
| |
| enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; |
| |
| class ARMAsmParser : public MCTargetAsmParser { |
| MCSubtargetInfo &STI; |
| MCAsmParser &Parser; |
| const MCRegisterInfo *MRI; |
| |
| // Map of register aliases registers via the .req directive. |
| StringMap<unsigned> RegisterReqs; |
| |
| struct { |
| ARMCC::CondCodes Cond; // Condition for IT block. |
| unsigned Mask:4; // Condition mask for instructions. |
| // Starting at first 1 (from lsb). |
| // '1' condition as indicated in IT. |
| // '0' inverse of condition (else). |
| // Count of instructions in IT block is |
| // 4 - trailingzeroes(mask) |
| |
| bool FirstCond; // Explicit flag for when we're parsing the |
| // First instruction in the IT block. It's |
| // implied in the mask, so needs special |
| // handling. |
| |
| unsigned CurPosition; // Current position in parsing of IT |
| // block. In range [0,3]. Initialized |
| // according to count of instructions in block. |
| // ~0U if no active IT block. |
| } ITState; |
| bool inITBlock() { return ITState.CurPosition != ~0U;} |
| void forwardITPosition() { |
| if (!inITBlock()) return; |
| // Move to the next instruction in the IT block, if there is one. If not, |
| // mark the block as done. |
| unsigned TZ = CountTrailingZeros_32(ITState.Mask); |
| if (++ITState.CurPosition == 5 - TZ) |
| ITState.CurPosition = ~0U; // Done with the IT block after this. |
| } |
| |
| |
| MCAsmParser &getParser() const { return Parser; } |
| MCAsmLexer &getLexer() const { return Parser.getLexer(); } |
| |
| bool Warning(SMLoc L, const Twine &Msg, |
| ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) { |
| return Parser.Warning(L, Msg, Ranges); |
| } |
| bool Error(SMLoc L, const Twine &Msg, |
| ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) { |
| return Parser.Error(L, Msg, Ranges); |
| } |
| |
| int tryParseRegister(); |
| bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &); |
| int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &); |
| bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &); |
| bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &); |
| bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic); |
| bool parsePrefix(ARMMCExpr::VariantKind &RefKind); |
| bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, |
| unsigned &ShiftAmount); |
| bool parseDirectiveWord(unsigned Size, SMLoc L); |
| bool parseDirectiveThumb(SMLoc L); |
| bool parseDirectiveARM(SMLoc L); |
| bool parseDirectiveThumbFunc(SMLoc L); |
| bool parseDirectiveCode(SMLoc L); |
| bool parseDirectiveSyntax(SMLoc L); |
| bool parseDirectiveReq(StringRef Name, SMLoc L); |
| bool parseDirectiveUnreq(SMLoc L); |
| bool parseDirectiveArch(SMLoc L); |
| bool parseDirectiveEabiAttr(SMLoc L); |
| |
| StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, |
| bool &CarrySetting, unsigned &ProcessorIMod, |
| StringRef &ITMask); |
| void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet, |
| bool &CanAcceptPredicationCode); |
| |
| bool isThumb() const { |
| // FIXME: Can tablegen auto-generate this? |
| return (STI.getFeatureBits() & ARM::ModeThumb) != 0; |
| } |
| bool isThumbOne() const { |
| return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0; |
| } |
| bool isThumbTwo() const { |
| return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2); |
| } |
| bool hasV6Ops() const { |
| return STI.getFeatureBits() & ARM::HasV6Ops; |
| } |
| bool hasV7Ops() const { |
| return STI.getFeatureBits() & ARM::HasV7Ops; |
| } |
| void SwitchMode() { |
| unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); |
| setAvailableFeatures(FB); |
| } |
| bool isMClass() const { |
| return STI.getFeatureBits() & ARM::FeatureMClass; |
| } |
| |
| /// @name Auto-generated Match Functions |
| /// { |
| |
| #define GET_ASSEMBLER_HEADER |
| #include "ARMGenAsmMatcher.inc" |
| |
| /// } |
| |
| OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseCoprocNumOperand( |
| SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseCoprocRegOperand( |
| SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseCoprocOptionOperand( |
| SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseMemBarrierOptOperand( |
| SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseProcIFlagsOperand( |
| SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseMSRMaskOperand( |
| SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O, |
| StringRef Op, int Low, int High); |
| OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) { |
| return parsePKHImm(O, "lsl", 0, 31); |
| } |
| OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) { |
| return parsePKHImm(O, "asr", 1, 32); |
| } |
| OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&); |
| OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index); |
| |
| // Asm Match Converter Methods |
| void cvtT2LdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtT2StrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtLdWriteBackRegAddrMode2(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtLdWriteBackRegAddrModeImm12(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtStWriteBackRegAddrModeImm12(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtStWriteBackRegAddrMode2(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtStWriteBackRegAddrMode3(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtLdExtTWriteBackImm(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtLdExtTWriteBackReg(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtStExtTWriteBackImm(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtStExtTWriteBackReg(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtLdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtStrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtLdWriteBackRegAddrMode3(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtThumbMultiply(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtVLDwbFixed(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtVLDwbRegister(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtVSTwbFixed(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| void cvtVSTwbRegister(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &); |
| bool validateInstruction(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Ops); |
| bool processInstruction(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Ops); |
| bool shouldOmitCCOutOperand(StringRef Mnemonic, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands); |
| |
| public: |
| enum ARMMatchResultTy { |
| Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, |
| Match_RequiresNotITBlock, |
| Match_RequiresV6, |
| Match_RequiresThumb2, |
| #define GET_OPERAND_DIAGNOSTIC_TYPES |
| #include "ARMGenAsmMatcher.inc" |
| |
| }; |
| |
| ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser) |
| : MCTargetAsmParser(), STI(_STI), Parser(_Parser) { |
| MCAsmParserExtension::Initialize(_Parser); |
| |
| // Cache the MCRegisterInfo. |
| MRI = &getContext().getRegisterInfo(); |
| |
| // Initialize the set of available features. |
| setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); |
| |
| // Not in an ITBlock to start with. |
| ITState.CurPosition = ~0U; |
| } |
| |
| // Implementation of the MCTargetAsmParser interface: |
| bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc); |
| bool ParseInstruction(StringRef Name, SMLoc NameLoc, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands); |
| bool ParseDirective(AsmToken DirectiveID); |
| |
| unsigned checkTargetMatchPredicate(MCInst &Inst); |
| |
| bool MatchAndEmitInstruction(SMLoc IDLoc, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands, |
| MCStreamer &Out); |
| }; |
| } // end anonymous namespace |
| |
| namespace { |
| |
| /// ARMOperand - Instances of this class represent a parsed ARM machine |
| /// instruction. |
| class ARMOperand : public MCParsedAsmOperand { |
| enum KindTy { |
| k_CondCode, |
| k_CCOut, |
| k_ITCondMask, |
| k_CoprocNum, |
| k_CoprocReg, |
| k_CoprocOption, |
| k_Immediate, |
| k_MemBarrierOpt, |
| k_Memory, |
| k_PostIndexRegister, |
| k_MSRMask, |
| k_ProcIFlags, |
| k_VectorIndex, |
| k_Register, |
| k_RegisterList, |
| k_DPRRegisterList, |
| k_SPRRegisterList, |
| k_VectorList, |
| k_VectorListAllLanes, |
| k_VectorListIndexed, |
| k_ShiftedRegister, |
| k_ShiftedImmediate, |
| k_ShifterImmediate, |
| k_RotateImmediate, |
| k_BitfieldDescriptor, |
| k_Token |
| } Kind; |
| |
| SMLoc StartLoc, EndLoc; |
| SmallVector<unsigned, 8> Registers; |
| |
| union { |
| struct { |
| ARMCC::CondCodes Val; |
| } CC; |
| |
| struct { |
| unsigned Val; |
| } Cop; |
| |
| struct { |
| unsigned Val; |
| } CoprocOption; |
| |
| struct { |
| unsigned Mask:4; |
| } ITMask; |
| |
| struct { |
| ARM_MB::MemBOpt Val; |
| } MBOpt; |
| |
| struct { |
| ARM_PROC::IFlags Val; |
| } IFlags; |
| |
| struct { |
| unsigned Val; |
| } MMask; |
| |
| struct { |
| const char *Data; |
| unsigned Length; |
| } Tok; |
| |
| struct { |
| unsigned RegNum; |
| } Reg; |
| |
| // A vector register list is a sequential list of 1 to 4 registers. |
| struct { |
| unsigned RegNum; |
| unsigned Count; |
| unsigned LaneIndex; |
| bool isDoubleSpaced; |
| } VectorList; |
| |
| struct { |
| unsigned Val; |
| } VectorIndex; |
| |
| struct { |
| const MCExpr *Val; |
| } Imm; |
| |
| /// Combined record for all forms of ARM address expressions. |
| struct { |
| unsigned BaseRegNum; |
| // Offset is in OffsetReg or OffsetImm. If both are zero, no offset |
| // was specified. |
| const MCConstantExpr *OffsetImm; // Offset immediate value |
| unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL |
| ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg |
| unsigned ShiftImm; // shift for OffsetReg. |
| unsigned Alignment; // 0 = no alignment specified |
| // n = alignment in bytes (2, 4, 8, 16, or 32) |
| unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) |
| } Memory; |
| |
| struct { |
| unsigned RegNum; |
| bool isAdd; |
| ARM_AM::ShiftOpc ShiftTy; |
| unsigned ShiftImm; |
| } PostIdxReg; |
| |
| struct { |
| bool isASR; |
| unsigned Imm; |
| } ShifterImm; |
| struct { |
| ARM_AM::ShiftOpc ShiftTy; |
| unsigned SrcReg; |
| unsigned ShiftReg; |
| unsigned ShiftImm; |
| } RegShiftedReg; |
| struct { |
| ARM_AM::ShiftOpc ShiftTy; |
| unsigned SrcReg; |
| unsigned ShiftImm; |
| } RegShiftedImm; |
| struct { |
| unsigned Imm; |
| } RotImm; |
| struct { |
| unsigned LSB; |
| unsigned Width; |
| } Bitfield; |
| }; |
| |
| ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} |
| public: |
| ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() { |
| Kind = o.Kind; |
| StartLoc = o.StartLoc; |
| EndLoc = o.EndLoc; |
| switch (Kind) { |
| case k_CondCode: |
| CC = o.CC; |
| break; |
| case k_ITCondMask: |
| ITMask = o.ITMask; |
| break; |
| case k_Token: |
| Tok = o.Tok; |
| break; |
| case k_CCOut: |
| case k_Register: |
| Reg = o.Reg; |
| break; |
| case k_RegisterList: |
| case k_DPRRegisterList: |
| case k_SPRRegisterList: |
| Registers = o.Registers; |
| break; |
| case k_VectorList: |
| case k_VectorListAllLanes: |
| case k_VectorListIndexed: |
| VectorList = o.VectorList; |
| break; |
| case k_CoprocNum: |
| case k_CoprocReg: |
| Cop = o.Cop; |
| break; |
| case k_CoprocOption: |
| CoprocOption = o.CoprocOption; |
| break; |
| case k_Immediate: |
| Imm = o.Imm; |
| break; |
| case k_MemBarrierOpt: |
| MBOpt = o.MBOpt; |
| break; |
| case k_Memory: |
| Memory = o.Memory; |
| break; |
| case k_PostIndexRegister: |
| PostIdxReg = o.PostIdxReg; |
| break; |
| case k_MSRMask: |
| MMask = o.MMask; |
| break; |
| case k_ProcIFlags: |
| IFlags = o.IFlags; |
| break; |
| case k_ShifterImmediate: |
| ShifterImm = o.ShifterImm; |
| break; |
| case k_ShiftedRegister: |
| RegShiftedReg = o.RegShiftedReg; |
| break; |
| case k_ShiftedImmediate: |
| RegShiftedImm = o.RegShiftedImm; |
| break; |
| case k_RotateImmediate: |
| RotImm = o.RotImm; |
| break; |
| case k_BitfieldDescriptor: |
| Bitfield = o.Bitfield; |
| break; |
| case k_VectorIndex: |
| VectorIndex = o.VectorIndex; |
| break; |
| } |
| } |
| |
| /// getStartLoc - Get the location of the first token of this operand. |
| SMLoc getStartLoc() const { return StartLoc; } |
| /// getEndLoc - Get the location of the last token of this operand. |
| SMLoc getEndLoc() const { return EndLoc; } |
| /// getLocRange - Get the range between the first and last token of this |
| /// operand. |
| SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } |
| |
| ARMCC::CondCodes getCondCode() const { |
| assert(Kind == k_CondCode && "Invalid access!"); |
| return CC.Val; |
| } |
| |
| unsigned getCoproc() const { |
| assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); |
| return Cop.Val; |
| } |
| |
| StringRef getToken() const { |
| assert(Kind == k_Token && "Invalid access!"); |
| return StringRef(Tok.Data, Tok.Length); |
| } |
| |
| unsigned getReg() const { |
| assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); |
| return Reg.RegNum; |
| } |
| |
| const SmallVectorImpl<unsigned> &getRegList() const { |
| assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || |
| Kind == k_SPRRegisterList) && "Invalid access!"); |
| return Registers; |
| } |
| |
| const MCExpr *getImm() const { |
| assert(isImm() && "Invalid access!"); |
| return Imm.Val; |
| } |
| |
| unsigned getVectorIndex() const { |
| assert(Kind == k_VectorIndex && "Invalid access!"); |
| return VectorIndex.Val; |
| } |
| |
| ARM_MB::MemBOpt getMemBarrierOpt() const { |
| assert(Kind == k_MemBarrierOpt && "Invalid access!"); |
| return MBOpt.Val; |
| } |
| |
| ARM_PROC::IFlags getProcIFlags() const { |
| assert(Kind == k_ProcIFlags && "Invalid access!"); |
| return IFlags.Val; |
| } |
| |
| unsigned getMSRMask() const { |
| assert(Kind == k_MSRMask && "Invalid access!"); |
| return MMask.Val; |
| } |
| |
| bool isCoprocNum() const { return Kind == k_CoprocNum; } |
| bool isCoprocReg() const { return Kind == k_CoprocReg; } |
| bool isCoprocOption() const { return Kind == k_CoprocOption; } |
| bool isCondCode() const { return Kind == k_CondCode; } |
| bool isCCOut() const { return Kind == k_CCOut; } |
| bool isITMask() const { return Kind == k_ITCondMask; } |
| bool isITCondCode() const { return Kind == k_CondCode; } |
| bool isImm() const { return Kind == k_Immediate; } |
| bool isFPImm() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); |
| return Val != -1; |
| } |
| bool isFBits16() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value <= 16; |
| } |
| bool isFBits32() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 1 && Value <= 32; |
| } |
| bool isImm8s4() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; |
| } |
| bool isImm0_1020s4() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; |
| } |
| bool isImm0_508s4() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ((Value & 3) == 0) && Value >= 0 && Value <= 508; |
| } |
| bool isImm0_508s4Neg() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = -CE->getValue(); |
| // explicitly exclude zero. we want that to use the normal 0_508 version. |
| return ((Value & 3) == 0) && Value > 0 && Value <= 508; |
| } |
| bool isImm0_255() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 256; |
| } |
| bool isImm0_4095() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 4096; |
| } |
| bool isImm0_4095Neg() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = -CE->getValue(); |
| return Value > 0 && Value < 4096; |
| } |
| bool isImm0_1() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 2; |
| } |
| bool isImm0_3() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 4; |
| } |
| bool isImm0_7() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 8; |
| } |
| bool isImm0_15() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 16; |
| } |
| bool isImm0_31() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 32; |
| } |
| bool isImm0_63() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 64; |
| } |
| bool isImm8() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value == 8; |
| } |
| bool isImm16() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value == 16; |
| } |
| bool isImm32() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value == 32; |
| } |
| bool isShrImm8() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value > 0 && Value <= 8; |
| } |
| bool isShrImm16() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value > 0 && Value <= 16; |
| } |
| bool isShrImm32() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value > 0 && Value <= 32; |
| } |
| bool isShrImm64() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value > 0 && Value <= 64; |
| } |
| bool isImm1_7() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value > 0 && Value < 8; |
| } |
| bool isImm1_15() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value > 0 && Value < 16; |
| } |
| bool isImm1_31() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value > 0 && Value < 32; |
| } |
| bool isImm1_16() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value > 0 && Value < 17; |
| } |
| bool isImm1_32() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value > 0 && Value < 33; |
| } |
| bool isImm0_32() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 33; |
| } |
| bool isImm0_65535() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 65536; |
| } |
| bool isImm0_65535Expr() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // If it's not a constant expression, it'll generate a fixup and be |
| // handled later. |
| if (!CE) return true; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 65536; |
| } |
| bool isImm24bit() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value <= 0xffffff; |
| } |
| bool isImmThumbSR() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value > 0 && Value < 33; |
| } |
| bool isPKHLSLImm() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 32; |
| } |
| bool isPKHASRImm() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value > 0 && Value <= 32; |
| } |
| bool isAdrLabel() const { |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, but it can't fit |
| // into shift immediate encoding, we reject it. |
| if (isImm() && !isa<MCConstantExpr>(getImm())) return true; |
| else return (isARMSOImm() || isARMSOImmNeg()); |
| } |
| bool isARMSOImm() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ARM_AM::getSOImmVal(Value) != -1; |
| } |
| bool isARMSOImmNot() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ARM_AM::getSOImmVal(~Value) != -1; |
| } |
| bool isARMSOImmNeg() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| // Only use this when not representable as a plain so_imm. |
| return ARM_AM::getSOImmVal(Value) == -1 && |
| ARM_AM::getSOImmVal(-Value) != -1; |
| } |
| bool isT2SOImm() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ARM_AM::getT2SOImmVal(Value) != -1; |
| } |
| bool isT2SOImmNot() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ARM_AM::getT2SOImmVal(~Value) != -1; |
| } |
| bool isT2SOImmNeg() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| // Only use this when not representable as a plain so_imm. |
| return ARM_AM::getT2SOImmVal(Value) == -1 && |
| ARM_AM::getT2SOImmVal(-Value) != -1; |
| } |
| bool isSetEndImm() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value == 1 || Value == 0; |
| } |
| bool isReg() const { return Kind == k_Register; } |
| bool isRegList() const { return Kind == k_RegisterList; } |
| bool isDPRRegList() const { return Kind == k_DPRRegisterList; } |
| bool isSPRRegList() const { return Kind == k_SPRRegisterList; } |
| bool isToken() const { return Kind == k_Token; } |
| bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } |
| bool isMem() const { return Kind == k_Memory; } |
| bool isShifterImm() const { return Kind == k_ShifterImmediate; } |
| bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } |
| bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } |
| bool isRotImm() const { return Kind == k_RotateImmediate; } |
| bool isBitfield() const { return Kind == k_BitfieldDescriptor; } |
| bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } |
| bool isPostIdxReg() const { |
| return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; |
| } |
| bool isMemNoOffset(bool alignOK = false) const { |
| if (!isMem()) |
| return false; |
| // No offset of any kind. |
| return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 && |
| (alignOK || Memory.Alignment == 0); |
| } |
| bool isMemPCRelImm12() const { |
| if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Base register must be PC. |
| if (Memory.BaseRegNum != ARM::PC) |
| return false; |
| // Immediate offset in range [-4095, 4095]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); |
| } |
| bool isAlignedMemory() const { |
| return isMemNoOffset(true); |
| } |
| bool isAddrMode2() const { |
| if (!isMem() || Memory.Alignment != 0) return false; |
| // Check for register offset. |
| if (Memory.OffsetRegNum) return true; |
| // Immediate offset in range [-4095, 4095]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val > -4096 && Val < 4096; |
| } |
| bool isAM2OffsetImm() const { |
| if (!isImm()) return false; |
| // Immediate offset in range [-4095, 4095]. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Val = CE->getValue(); |
| return Val > -4096 && Val < 4096; |
| } |
| bool isAddrMode3() const { |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm() && !isa<MCConstantExpr>(getImm())) |
| return true; |
| if (!isMem() || Memory.Alignment != 0) return false; |
| // No shifts are legal for AM3. |
| if (Memory.ShiftType != ARM_AM::no_shift) return false; |
| // Check for register offset. |
| if (Memory.OffsetRegNum) return true; |
| // Immediate offset in range [-255, 255]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| // The #-0 offset is encoded as INT32_MIN, and we have to check |
| // for this too. |
| return (Val > -256 && Val < 256) || Val == INT32_MIN; |
| } |
| bool isAM3Offset() const { |
| if (Kind != k_Immediate && Kind != k_PostIndexRegister) |
| return false; |
| if (Kind == k_PostIndexRegister) |
| return PostIdxReg.ShiftTy == ARM_AM::no_shift; |
| // Immediate offset in range [-255, 255]. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Val = CE->getValue(); |
| // Special case, #-0 is INT32_MIN. |
| return (Val > -256 && Val < 256) || Val == INT32_MIN; |
| } |
| bool isAddrMode5() const { |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm() && !isa<MCConstantExpr>(getImm())) |
| return true; |
| if (!isMem() || Memory.Alignment != 0) return false; |
| // Check for register offset. |
| if (Memory.OffsetRegNum) return false; |
| // Immediate offset in range [-1020, 1020] and a multiple of 4. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || |
| Val == INT32_MIN; |
| } |
| bool isMemTBB() const { |
| if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || |
| Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) |
| return false; |
| return true; |
| } |
| bool isMemTBH() const { |
| if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || |
| Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || |
| Memory.Alignment != 0 ) |
| return false; |
| return true; |
| } |
| bool isMemRegOffset() const { |
| if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) |
| return false; |
| return true; |
| } |
| bool isT2MemRegOffset() const { |
| if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || |
| Memory.Alignment != 0) |
| return false; |
| // Only lsl #{0, 1, 2, 3} allowed. |
| if (Memory.ShiftType == ARM_AM::no_shift) |
| return true; |
| if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) |
| return false; |
| return true; |
| } |
| bool isMemThumbRR() const { |
| // Thumb reg+reg addressing is simple. Just two registers, a base and |
| // an offset. No shifts, negations or any other complicating factors. |
| if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || |
| Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) |
| return false; |
| return isARMLowRegister(Memory.BaseRegNum) && |
| (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); |
| } |
| bool isMemThumbRIs4() const { |
| if (!isMem() || Memory.OffsetRegNum != 0 || |
| !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) |
| return false; |
| // Immediate offset, multiple of 4 in range [0, 124]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val >= 0 && Val <= 124 && (Val % 4) == 0; |
| } |
| bool isMemThumbRIs2() const { |
| if (!isMem() || Memory.OffsetRegNum != 0 || |
| !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) |
| return false; |
| // Immediate offset, multiple of 4 in range [0, 62]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val >= 0 && Val <= 62 && (Val % 2) == 0; |
| } |
| bool isMemThumbRIs1() const { |
| if (!isMem() || Memory.OffsetRegNum != 0 || |
| !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) |
| return false; |
| // Immediate offset in range [0, 31]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val >= 0 && Val <= 31; |
| } |
| bool isMemThumbSPI() const { |
| if (!isMem() || Memory.OffsetRegNum != 0 || |
| Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) |
| return false; |
| // Immediate offset, multiple of 4 in range [0, 1020]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val >= 0 && Val <= 1020 && (Val % 4) == 0; |
| } |
| bool isMemImm8s4Offset() const { |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm() && !isa<MCConstantExpr>(getImm())) |
| return true; |
| if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Immediate offset a multiple of 4 in range [-1020, 1020]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| // Special case, #-0 is INT32_MIN. |
| return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; |
| } |
| bool isMemImm0_1020s4Offset() const { |
| if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Immediate offset a multiple of 4 in range [0, 1020]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val >= 0 && Val <= 1020 && (Val & 3) == 0; |
| } |
| bool isMemImm8Offset() const { |
| if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Base reg of PC isn't allowed for these encodings. |
| if (Memory.BaseRegNum == ARM::PC) return false; |
| // Immediate offset in range [-255, 255]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val == INT32_MIN) || (Val > -256 && Val < 256); |
| } |
| bool isMemPosImm8Offset() const { |
| if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Immediate offset in range [0, 255]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val >= 0 && Val < 256; |
| } |
| bool isMemNegImm8Offset() const { |
| if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Base reg of PC isn't allowed for these encodings. |
| if (Memory.BaseRegNum == ARM::PC) return false; |
| // Immediate offset in range [-255, -1]. |
| if (!Memory.OffsetImm) return false; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val == INT32_MIN) || (Val > -256 && Val < 0); |
| } |
| bool isMemUImm12Offset() const { |
| if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Immediate offset in range [0, 4095]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val >= 0 && Val < 4096); |
| } |
| bool isMemImm12Offset() const { |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm() && !isa<MCConstantExpr>(getImm())) |
| return true; |
| |
| if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Immediate offset in range [-4095, 4095]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); |
| } |
| bool isPostIdxImm8() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Val = CE->getValue(); |
| return (Val > -256 && Val < 256) || (Val == INT32_MIN); |
| } |
| bool isPostIdxImm8s4() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Val = CE->getValue(); |
| return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || |
| (Val == INT32_MIN); |
| } |
| |
| bool isMSRMask() const { return Kind == k_MSRMask; } |
| bool isProcIFlags() const { return Kind == k_ProcIFlags; } |
| |
| // NEON operands. |
| bool isSingleSpacedVectorList() const { |
| return Kind == k_VectorList && !VectorList.isDoubleSpaced; |
| } |
| bool isDoubleSpacedVectorList() const { |
| return Kind == k_VectorList && VectorList.isDoubleSpaced; |
| } |
| bool isVecListOneD() const { |
| if (!isSingleSpacedVectorList()) return false; |
| return VectorList.Count == 1; |
| } |
| |
| bool isVecListDPair() const { |
| if (!isSingleSpacedVectorList()) return false; |
| return (ARMMCRegisterClasses[ARM::DPairRegClassID] |
| .contains(VectorList.RegNum)); |
| } |
| |
| bool isVecListThreeD() const { |
| if (!isSingleSpacedVectorList()) return false; |
| return VectorList.Count == 3; |
| } |
| |
| bool isVecListFourD() const { |
| if (!isSingleSpacedVectorList()) return false; |
| return VectorList.Count == 4; |
| } |
| |
| bool isVecListDPairSpaced() const { |
| if (isSingleSpacedVectorList()) return false; |
| return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] |
| .contains(VectorList.RegNum)); |
| } |
| |
| bool isVecListThreeQ() const { |
| if (!isDoubleSpacedVectorList()) return false; |
| return VectorList.Count == 3; |
| } |
| |
| bool isVecListFourQ() const { |
| if (!isDoubleSpacedVectorList()) return false; |
| return VectorList.Count == 4; |
| } |
| |
| bool isSingleSpacedVectorAllLanes() const { |
| return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; |
| } |
| bool isDoubleSpacedVectorAllLanes() const { |
| return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; |
| } |
| bool isVecListOneDAllLanes() const { |
| if (!isSingleSpacedVectorAllLanes()) return false; |
| return VectorList.Count == 1; |
| } |
| |
| bool isVecListDPairAllLanes() const { |
| if (!isSingleSpacedVectorAllLanes()) return false; |
| return (ARMMCRegisterClasses[ARM::DPairRegClassID] |
| .contains(VectorList.RegNum)); |
| } |
| |
| bool isVecListDPairSpacedAllLanes() const { |
| if (!isDoubleSpacedVectorAllLanes()) return false; |
| return VectorList.Count == 2; |
| } |
| |
| bool isVecListThreeDAllLanes() const { |
| if (!isSingleSpacedVectorAllLanes()) return false; |
| return VectorList.Count == 3; |
| } |
| |
| bool isVecListThreeQAllLanes() const { |
| if (!isDoubleSpacedVectorAllLanes()) return false; |
| return VectorList.Count == 3; |
| } |
| |
| bool isVecListFourDAllLanes() const { |
| if (!isSingleSpacedVectorAllLanes()) return false; |
| return VectorList.Count == 4; |
| } |
| |
| bool isVecListFourQAllLanes() const { |
| if (!isDoubleSpacedVectorAllLanes()) return false; |
| return VectorList.Count == 4; |
| } |
| |
| bool isSingleSpacedVectorIndexed() const { |
| return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; |
| } |
| bool isDoubleSpacedVectorIndexed() const { |
| return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; |
| } |
| bool isVecListOneDByteIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 1 && VectorList.LaneIndex <= 7; |
| } |
| |
| bool isVecListOneDHWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 1 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListOneDWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 1 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVecListTwoDByteIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 2 && VectorList.LaneIndex <= 7; |
| } |
| |
| bool isVecListTwoDHWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 2 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListTwoQWordIndexed() const { |
| if (!isDoubleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 2 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVecListTwoQHWordIndexed() const { |
| if (!isDoubleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 2 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListTwoDWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 2 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVecListThreeDByteIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 3 && VectorList.LaneIndex <= 7; |
| } |
| |
| bool isVecListThreeDHWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 3 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListThreeQWordIndexed() const { |
| if (!isDoubleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 3 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVecListThreeQHWordIndexed() const { |
| if (!isDoubleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 3 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListThreeDWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 3 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVecListFourDByteIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 4 && VectorList.LaneIndex <= 7; |
| } |
| |
| bool isVecListFourDHWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 4 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListFourQWordIndexed() const { |
| if (!isDoubleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 4 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVecListFourQHWordIndexed() const { |
| if (!isDoubleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 4 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListFourDWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 4 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVectorIndex8() const { |
| if (Kind != k_VectorIndex) return false; |
| return VectorIndex.Val < 8; |
| } |
| bool isVectorIndex16() const { |
| if (Kind != k_VectorIndex) return false; |
| return VectorIndex.Val < 4; |
| } |
| bool isVectorIndex32() const { |
| if (Kind != k_VectorIndex) return false; |
| return VectorIndex.Val < 2; |
| } |
| |
| bool isNEONi8splat() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| // i8 value splatted across 8 bytes. The immediate is just the 8 byte |
| // value. |
| return Value >= 0 && Value < 256; |
| } |
| |
| bool isNEONi16splat() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| // i16 value in the range [0,255] or [0x0100, 0xff00] |
| return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00); |
| } |
| |
| bool isNEONi32splat() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X. |
| return (Value >= 0 && Value < 256) || |
| (Value >= 0x0100 && Value <= 0xff00) || |
| (Value >= 0x010000 && Value <= 0xff0000) || |
| (Value >= 0x01000000 && Value <= 0xff000000); |
| } |
| |
| bool isNEONi32vmov() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, |
| // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. |
| return (Value >= 0 && Value < 256) || |
| (Value >= 0x0100 && Value <= 0xff00) || |
| (Value >= 0x010000 && Value <= 0xff0000) || |
| (Value >= 0x01000000 && Value <= 0xff000000) || |
| (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || |
| (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); |
| } |
| bool isNEONi32vmovNeg() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| int64_t Value = ~CE->getValue(); |
| // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, |
| // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. |
| return (Value >= 0 && Value < 256) || |
| (Value >= 0x0100 && Value <= 0xff00) || |
| (Value >= 0x010000 && Value <= 0xff0000) || |
| (Value >= 0x01000000 && Value <= 0xff000000) || |
| (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || |
| (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); |
| } |
| |
| bool isNEONi64splat() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| uint64_t Value = CE->getValue(); |
| // i64 value with each byte being either 0 or 0xff. |
| for (unsigned i = 0; i < 8; ++i) |
| if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; |
| return true; |
| } |
| |
| void addExpr(MCInst &Inst, const MCExpr *Expr) const { |
| // Add as immediates when possible. Null MCExpr = 0. |
| if (Expr == 0) |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) |
| Inst.addOperand(MCOperand::CreateImm(CE->getValue())); |
| else |
| Inst.addOperand(MCOperand::CreateExpr(Expr)); |
| } |
| |
| void addCondCodeOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode()))); |
| unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; |
| Inst.addOperand(MCOperand::CreateReg(RegNum)); |
| } |
| |
| void addCoprocNumOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm(getCoproc())); |
| } |
| |
| void addCoprocRegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm(getCoproc())); |
| } |
| |
| void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val)); |
| } |
| |
| void addITMaskOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm(ITMask.Mask)); |
| } |
| |
| void addITCondCodeOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode()))); |
| } |
| |
| void addCCOutOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(getReg())); |
| } |
| |
| void addRegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(getReg())); |
| } |
| |
| void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 3 && "Invalid number of operands!"); |
| assert(isRegShiftedReg() && |
| "addRegShiftedRegOperands() on non RegShiftedReg!"); |
| Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg)); |
| Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg)); |
| Inst.addOperand(MCOperand::CreateImm( |
| ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); |
| } |
| |
| void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| assert(isRegShiftedImm() && |
| "addRegShiftedImmOperands() on non RegShiftedImm!"); |
| Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg)); |
| // Shift of #32 is encoded as 0 where permitted |
| unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); |
| Inst.addOperand(MCOperand::CreateImm( |
| ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); |
| } |
| |
| void addShifterImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) | |
| ShifterImm.Imm)); |
| } |
| |
| void addRegListOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const SmallVectorImpl<unsigned> &RegList = getRegList(); |
| for (SmallVectorImpl<unsigned>::const_iterator |
| I = RegList.begin(), E = RegList.end(); I != E; ++I) |
| Inst.addOperand(MCOperand::CreateReg(*I)); |
| } |
| |
| void addDPRRegListOperands(MCInst &Inst, unsigned N) const { |
| addRegListOperands(Inst, N); |
| } |
| |
| void addSPRRegListOperands(MCInst &Inst, unsigned N) const { |
| addRegListOperands(Inst, N); |
| } |
| |
| void addRotImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // Encoded as val>>3. The printer handles display as 8, 16, 24. |
| Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3)); |
| } |
| |
| void addBitfieldOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // Munge the lsb/width into a bitfield mask. |
| unsigned lsb = Bitfield.LSB; |
| unsigned width = Bitfield.Width; |
| // Make a 32-bit mask w/ the referenced bits clear and all other bits set. |
| uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> |
| (32 - (lsb + width))); |
| Inst.addOperand(MCOperand::CreateImm(Mask)); |
| } |
| |
| void addImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| addExpr(Inst, getImm()); |
| } |
| |
| void addFBits16Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue())); |
| } |
| |
| void addFBits32Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue())); |
| } |
| |
| void addFPImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addImm8s4Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // FIXME: We really want to scale the value here, but the LDRD/STRD |
| // instruction don't encode operands that way yet. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(CE->getValue())); |
| } |
| |
| void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate is scaled by four in the encoding and is stored |
| // in the MCInst as such. Lop off the low two bits here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4)); |
| } |
| |
| void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate is scaled by four in the encoding and is stored |
| // in the MCInst as such. Lop off the low two bits here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4))); |
| } |
| |
| void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate is scaled by four in the encoding and is stored |
| // in the MCInst as such. Lop off the low two bits here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4)); |
| } |
| |
| void addImm1_16Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The constant encodes as the immediate-1, and we store in the instruction |
| // the bits as encoded, so subtract off one here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1)); |
| } |
| |
| void addImm1_32Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The constant encodes as the immediate-1, and we store in the instruction |
| // the bits as encoded, so subtract off one here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1)); |
| } |
| |
| void addImmThumbSROperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The constant encodes as the immediate, except for 32, which encodes as |
| // zero. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| unsigned Imm = CE->getValue(); |
| Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm))); |
| } |
| |
| void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // An ASR value of 32 encodes as 0, so that's how we want to add it to |
| // the instruction as well. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| int Val = CE->getValue(); |
| Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val)); |
| } |
| |
| void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The operand is actually a t2_so_imm, but we have its bitwise |
| // negation in the assembly source, so twiddle it here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(~CE->getValue())); |
| } |
| |
| void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The operand is actually a t2_so_imm, but we have its |
| // negation in the assembly source, so twiddle it here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(-CE->getValue())); |
| } |
| |
| void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The operand is actually an imm0_4095, but we have its |
| // negation in the assembly source, so twiddle it here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(-CE->getValue())); |
| } |
| |
| void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The operand is actually a so_imm, but we have its bitwise |
| // negation in the assembly source, so twiddle it here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(~CE->getValue())); |
| } |
| |
| void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The operand is actually a so_imm, but we have its |
| // negation in the assembly source, so twiddle it here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(-CE->getValue())); |
| } |
| |
| void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt()))); |
| } |
| |
| void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| } |
| |
| void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| int32_t Imm = Memory.OffsetImm->getValue(); |
| // FIXME: Handle #-0 |
| if (Imm == INT32_MIN) Imm = 0; |
| Inst.addOperand(MCOperand::CreateImm(Imm)); |
| } |
| |
| void addAdrLabelOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| assert(isImm() && "Not an immediate!"); |
| |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. |
| if (!isa<MCConstantExpr>(getImm())) { |
| Inst.addOperand(MCOperand::CreateExpr(getImm())); |
| return; |
| } |
| |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| int Val = CE->getValue(); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Memory.Alignment)); |
| } |
| |
| void addAddrMode2Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 3 && "Invalid number of operands!"); |
| int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| if (!Memory.OffsetRegNum) { |
| ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
| // Special case for #-0 |
| if (Val == INT32_MIN) Val = 0; |
| if (Val < 0) Val = -Val; |
| Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); |
| } else { |
| // For register offset, we encode the shift type and negation flag |
| // here. |
| Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, |
| Memory.ShiftImm, Memory.ShiftType); |
| } |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert(CE && "non-constant AM2OffsetImm operand!"); |
| int32_t Val = CE->getValue(); |
| ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
| // Special case for #-0 |
| if (Val == INT32_MIN) Val = 0; |
| if (Val < 0) Val = -Val; |
| Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); |
| Inst.addOperand(MCOperand::CreateReg(0)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addAddrMode3Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 3 && "Invalid number of operands!"); |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm()) { |
| Inst.addOperand(MCOperand::CreateExpr(getImm())); |
| Inst.addOperand(MCOperand::CreateReg(0)); |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| return; |
| } |
| |
| int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| if (!Memory.OffsetRegNum) { |
| ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
| // Special case for #-0 |
| if (Val == INT32_MIN) Val = 0; |
| if (Val < 0) Val = -Val; |
| Val = ARM_AM::getAM3Opc(AddSub, Val); |
| } else { |
| // For register offset, we encode the shift type and negation flag |
| // here. |
| Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); |
| } |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| if (Kind == k_PostIndexRegister) { |
| int32_t Val = |
| ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); |
| Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| return; |
| } |
| |
| // Constant offset. |
| const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); |
| int32_t Val = CE->getValue(); |
| ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
| // Special case for #-0 |
| if (Val == INT32_MIN) Val = 0; |
| if (Val < 0) Val = -Val; |
| Val = ARM_AM::getAM3Opc(AddSub, Val); |
| Inst.addOperand(MCOperand::CreateReg(0)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addAddrMode5Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm()) { |
| Inst.addOperand(MCOperand::CreateExpr(getImm())); |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| return; |
| } |
| |
| // The lower two bits are always zero and as such are not encoded. |
| int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; |
| ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
| // Special case for #-0 |
| if (Val == INT32_MIN) Val = 0; |
| if (Val < 0) Val = -Val; |
| Val = ARM_AM::getAM5Opc(AddSub, Val); |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm()) { |
| Inst.addOperand(MCOperand::CreateExpr(getImm())); |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| return; |
| } |
| |
| int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| // The lower two bits are always zero and as such are not encoded. |
| int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { |
| addMemImm8OffsetOperands(Inst, N); |
| } |
| |
| void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { |
| addMemImm8OffsetOperands(Inst, N); |
| } |
| |
| void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| // If this is an immediate, it's a label reference. |
| if (isImm()) { |
| addExpr(Inst, getImm()); |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| return; |
| } |
| |
| // Otherwise, it's a normal memory reg+offset. |
| int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| // If this is an immediate, it's a label reference. |
| if (isImm()) { |
| addExpr(Inst, getImm()); |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| return; |
| } |
| |
| // Otherwise, it's a normal memory reg+offset. |
| int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addMemTBBOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); |
| } |
| |
| void addMemTBHOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); |
| } |
| |
| void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 3 && "Invalid number of operands!"); |
| unsigned Val = |
| ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, |
| Memory.ShiftImm, Memory.ShiftType); |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 3 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm)); |
| } |
| |
| void addMemThumbRROperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); |
| } |
| |
| void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; |
| Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::CreateImm(Val)); |
| } |
| |
| void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert(CE && "non-constant post-idx-imm8 operand!"); |
| int Imm = CE->getValue(); |
| bool isAdd = Imm >= 0; |
| if (Imm == INT32_MIN) Imm = 0; |
| Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; |
| Inst.addOperand(MCOperand::CreateImm(Imm)); |
| } |
| |
| void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert(CE && "non-constant post-idx-imm8s4 operand!"); |
| int Imm = CE->getValue(); |
| bool isAdd = Imm >= 0; |
| if (Imm == INT32_MIN) Imm = 0; |
| // Immediate is scaled by 4. |
| Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; |
| Inst.addOperand(MCOperand::CreateImm(Imm)); |
| } |
| |
| void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum)); |
| Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd)); |
| } |
| |
| void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum)); |
| // The sign, shift type, and shift amount are encoded in a single operand |
| // using the AM2 encoding helpers. |
| ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; |
| unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, |
| PostIdxReg.ShiftTy); |
| Inst.addOperand(MCOperand::CreateImm(Imm)); |
| } |
| |
| void addMSRMaskOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask()))); |
| } |
| |
| void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags()))); |
| } |
| |
| void addVecListOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum)); |
| } |
| |
| void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum)); |
| Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex)); |
| } |
| |
| void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); |
| } |
| |
| void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); |
| } |
| |
| void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); |
| } |
| |
| void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| // Mask in that this is an i8 splat. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00)); |
| } |
| |
| void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| unsigned Value = CE->getValue(); |
| if (Value >= 256) |
| Value = (Value >> 8) | 0xa00; |
| else |
| Value |= 0x800; |
| Inst.addOperand(MCOperand::CreateImm(Value)); |
| } |
| |
| void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| unsigned Value = CE->getValue(); |
| if (Value >= 256 && Value <= 0xff00) |
| Value = (Value >> 8) | 0x200; |
| else if (Value > 0xffff && Value <= 0xff0000) |
| Value = (Value >> 16) | 0x400; |
| else if (Value > 0xffffff) |
| Value = (Value >> 24) | 0x600; |
| Inst.addOperand(MCOperand::CreateImm(Value)); |
| } |
| |
| void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| unsigned Value = CE->getValue(); |
| if (Value >= 256 && Value <= 0xffff) |
| Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); |
| else if (Value > 0xffff && Value <= 0xffffff) |
| Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); |
| else if (Value > 0xffffff) |
| Value = (Value >> 24) | 0x600; |
| Inst.addOperand(MCOperand::CreateImm(Value)); |
| } |
| |
| void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| unsigned Value = ~CE->getValue(); |
| if (Value >= 256 && Value <= 0xffff) |
| Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); |
| else if (Value > 0xffff && Value <= 0xffffff) |
| Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); |
| else if (Value > 0xffffff) |
| Value = (Value >> 24) | 0x600; |
| Inst.addOperand(MCOperand::CreateImm(Value)); |
| } |
| |
| void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| uint64_t Value = CE->getValue(); |
| unsigned Imm = 0; |
| for (unsigned i = 0; i < 8; ++i, Value >>= 8) { |
| Imm |= (Value & 1) << i; |
| } |
| Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00)); |
| } |
| |
| virtual void print(raw_ostream &OS) const; |
| |
| static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) { |
| ARMOperand *Op = new ARMOperand(k_ITCondMask); |
| Op->ITMask.Mask = Mask; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) { |
| ARMOperand *Op = new ARMOperand(k_CondCode); |
| Op->CC.Val = CC; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) { |
| ARMOperand *Op = new ARMOperand(k_CoprocNum); |
| Op->Cop.Val = CopVal; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) { |
| ARMOperand *Op = new ARMOperand(k_CoprocReg); |
| Op->Cop.Val = CopVal; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_CoprocOption); |
| Op->Cop.Val = Val; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) { |
| ARMOperand *Op = new ARMOperand(k_CCOut); |
| Op->Reg.RegNum = RegNum; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static ARMOperand *CreateToken(StringRef Str, SMLoc S) { |
| ARMOperand *Op = new ARMOperand(k_Token); |
| Op->Tok.Data = Str.data(); |
| Op->Tok.Length = Str.size(); |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_Register); |
| Op->Reg.RegNum = RegNum; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, |
| unsigned SrcReg, |
| unsigned ShiftReg, |
| unsigned ShiftImm, |
| SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_ShiftedRegister); |
| Op->RegShiftedReg.ShiftTy = ShTy; |
| Op->RegShiftedReg.SrcReg = SrcReg; |
| Op->RegShiftedReg.ShiftReg = ShiftReg; |
| Op->RegShiftedReg.ShiftImm = ShiftImm; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, |
| unsigned SrcReg, |
| unsigned ShiftImm, |
| SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_ShiftedImmediate); |
| Op->RegShiftedImm.ShiftTy = ShTy; |
| Op->RegShiftedImm.SrcReg = SrcReg; |
| Op->RegShiftedImm.ShiftImm = ShiftImm; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm, |
| SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_ShifterImmediate); |
| Op->ShifterImm.isASR = isASR; |
| Op->ShifterImm.Imm = Imm; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_RotateImmediate); |
| Op->RotImm.Imm = Imm; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width, |
| SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor); |
| Op->Bitfield.LSB = LSB; |
| Op->Bitfield.Width = Width; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand * |
| CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs, |
| SMLoc StartLoc, SMLoc EndLoc) { |
| KindTy Kind = k_RegisterList; |
| |
| if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().first)) |
| Kind = k_DPRRegisterList; |
| else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. |
| contains(Regs.front().first)) |
| Kind = k_SPRRegisterList; |
| |
| ARMOperand *Op = new ARMOperand(Kind); |
| for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator |
| I = Regs.begin(), E = Regs.end(); I != E; ++I) |
| Op->Registers.push_back(I->first); |
| array_pod_sort(Op->Registers.begin(), Op->Registers.end()); |
| Op->StartLoc = StartLoc; |
| Op->EndLoc = EndLoc; |
| return Op; |
| } |
| |
| static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count, |
| bool isDoubleSpaced, SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_VectorList); |
| Op->VectorList.RegNum = RegNum; |
| Op->VectorList.Count = Count; |
| Op->VectorList.isDoubleSpaced = isDoubleSpaced; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count, |
| bool isDoubleSpaced, |
| SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_VectorListAllLanes); |
| Op->VectorList.RegNum = RegNum; |
| Op->VectorList.Count = Count; |
| Op->VectorList.isDoubleSpaced = isDoubleSpaced; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count, |
| unsigned Index, |
| bool isDoubleSpaced, |
| SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_VectorListIndexed); |
| Op->VectorList.RegNum = RegNum; |
| Op->VectorList.Count = Count; |
| Op->VectorList.LaneIndex = Index; |
| Op->VectorList.isDoubleSpaced = isDoubleSpaced; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, |
| MCContext &Ctx) { |
| ARMOperand *Op = new ARMOperand(k_VectorIndex); |
| Op->VectorIndex.Val = Idx; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_Immediate); |
| Op->Imm.Val = Val; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreateMem(unsigned BaseRegNum, |
| const MCConstantExpr *OffsetImm, |
| unsigned OffsetRegNum, |
| ARM_AM::ShiftOpc ShiftType, |
| unsigned ShiftImm, |
| unsigned Alignment, |
| bool isNegative, |
| SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_Memory); |
| Op->Memory.BaseRegNum = BaseRegNum; |
| Op->Memory.OffsetImm = OffsetImm; |
| Op->Memory.OffsetRegNum = OffsetRegNum; |
| Op->Memory.ShiftType = ShiftType; |
| Op->Memory.ShiftImm = ShiftImm; |
| Op->Memory.Alignment = Alignment; |
| Op->Memory.isNegative = isNegative; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd, |
| ARM_AM::ShiftOpc ShiftTy, |
| unsigned ShiftImm, |
| SMLoc S, SMLoc E) { |
| ARMOperand *Op = new ARMOperand(k_PostIndexRegister); |
| Op->PostIdxReg.RegNum = RegNum; |
| Op->PostIdxReg.isAdd = isAdd; |
| Op->PostIdxReg.ShiftTy = ShiftTy; |
| Op->PostIdxReg.ShiftImm = ShiftImm; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) { |
| ARMOperand *Op = new ARMOperand(k_MemBarrierOpt); |
| Op->MBOpt.Val = Opt; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) { |
| ARMOperand *Op = new ARMOperand(k_ProcIFlags); |
| Op->IFlags.Val = IFlags; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) { |
| ARMOperand *Op = new ARMOperand(k_MSRMask); |
| Op->MMask.Val = MMask; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| }; |
| |
| } // end anonymous namespace. |
| |
| void ARMOperand::print(raw_ostream &OS) const { |
| switch (Kind) { |
| case k_CondCode: |
| OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; |
| break; |
| case k_CCOut: |
| OS << "<ccout " << getReg() << ">"; |
| break; |
| case k_ITCondMask: { |
| static const char *const MaskStr[] = { |
| "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", |
| "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" |
| }; |
| assert((ITMask.Mask & 0xf) == ITMask.Mask); |
| OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; |
| break; |
| } |
| case k_CoprocNum: |
| OS << "<coprocessor number: " << getCoproc() << ">"; |
| break; |
| case k_CoprocReg: |
| OS << "<coprocessor register: " << getCoproc() << ">"; |
| break; |
| case k_CoprocOption: |
| OS << "<coprocessor option: " << CoprocOption.Val << ">"; |
| break; |
| case k_MSRMask: |
| OS << "<mask: " << getMSRMask() << ">"; |
| break; |
| case k_Immediate: |
| getImm()->print(OS); |
| break; |
| case k_MemBarrierOpt: |
| OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">"; |
| break; |
| case k_Memory: |
| OS << "<memory " |
| << " base:" << Memory.BaseRegNum; |
| OS << ">"; |
| break; |
| case k_PostIndexRegister: |
| OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") |
| << PostIdxReg.RegNum; |
| if (PostIdxReg.ShiftTy != ARM_AM::no_shift) |
| OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " |
| << PostIdxReg.ShiftImm; |
| OS << ">"; |
| break; |
| case k_ProcIFlags: { |
| OS << "<ARM_PROC::"; |
| unsigned IFlags = getProcIFlags(); |
| for (int i=2; i >= 0; --i) |
| if (IFlags & (1 << i)) |
| OS << ARM_PROC::IFlagsToString(1 << i); |
| OS << ">"; |
| break; |
| } |
| case k_Register: |
| OS << "<register " << getReg() << ">"; |
| break; |
| case k_ShifterImmediate: |
| OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") |
| << " #" << ShifterImm.Imm << ">"; |
| break; |
| case k_ShiftedRegister: |
| OS << "<so_reg_reg " |
| << RegShiftedReg.SrcReg << " " |
| << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) |
| << " " << RegShiftedReg.ShiftReg << ">"; |
| break; |
| case k_ShiftedImmediate: |
| OS << "<so_reg_imm " |
| << RegShiftedImm.SrcReg << " " |
| << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) |
| << " #" << RegShiftedImm.ShiftImm << ">"; |
| break; |
| case k_RotateImmediate: |
| OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; |
| break; |
| case k_BitfieldDescriptor: |
| OS << "<bitfield " << "lsb: " << Bitfield.LSB |
| << ", width: " << Bitfield.Width << ">"; |
| break; |
| case k_RegisterList: |
| case k_DPRRegisterList: |
| case k_SPRRegisterList: { |
| OS << "<register_list "; |
| |
| const SmallVectorImpl<unsigned> &RegList = getRegList(); |
| for (SmallVectorImpl<unsigned>::const_iterator |
| I = RegList.begin(), E = RegList.end(); I != E; ) { |
| OS << *I; |
| if (++I < E) OS << ", "; |
| } |
| |
| OS << ">"; |
| break; |
| } |
| case k_VectorList: |
| OS << "<vector_list " << VectorList.Count << " * " |
| << VectorList.RegNum << ">"; |
| break; |
| case k_VectorListAllLanes: |
| OS << "<vector_list(all lanes) " << VectorList.Count << " * " |
| << VectorList.RegNum << ">"; |
| break; |
| case k_VectorListIndexed: |
| OS << "<vector_list(lane " << VectorList.LaneIndex << ") " |
| << VectorList.Count << " * " << VectorList.RegNum << ">"; |
| break; |
| case k_Token: |
| OS << "'" << getToken() << "'"; |
| break; |
| case k_VectorIndex: |
| OS << "<vectorindex " << getVectorIndex() << ">"; |
| break; |
| } |
| } |
| |
| /// @name Auto-generated Match Functions |
| /// { |
| |
| static unsigned MatchRegisterName(StringRef Name); |
| |
| /// } |
| |
| bool ARMAsmParser::ParseRegister(unsigned &RegNo, |
| SMLoc &StartLoc, SMLoc &EndLoc) { |
| StartLoc = Parser.getTok().getLoc(); |
| RegNo = tryParseRegister(); |
| EndLoc = Parser.getTok().getLoc(); |
| |
| return (RegNo == (unsigned)-1); |
| } |
| |
| /// Try to parse a register name. The token must be an Identifier when called, |
| /// and if it is a register name the token is eaten and the register number is |
| /// returned. Otherwise return -1. |
| /// |
| int ARMAsmParser::tryParseRegister() { |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) return -1; |
| |
| std::string lowerCase = Tok.getString().lower(); |
| unsigned RegNum = MatchRegisterName(lowerCase); |
| if (!RegNum) { |
| RegNum = StringSwitch<unsigned>(lowerCase) |
| .Case("r13", ARM::SP) |
| .Case("r14", ARM::LR) |
| .Case("r15", ARM::PC) |
| .Case("ip", ARM::R12) |
| // Additional register name aliases for 'gas' compatibility. |
| .Case("a1", ARM::R0) |
| .Case("a2", ARM::R1) |
| .Case("a3", ARM::R2) |
| .Case("a4", ARM::R3) |
| .Case("v1", ARM::R4) |
| .Case("v2", ARM::R5) |
| .Case("v3", ARM::R6) |
| .Case("v4", ARM::R7) |
| .Case("v5", ARM::R8) |
| .Case("v6", ARM::R9) |
| .Case("v7", ARM::R10) |
| .Case("v8", ARM::R11) |
| .Case("sb", ARM::R9) |
| .Case("sl", ARM::R10) |
| .Case("fp", ARM::R11) |
| .Default(0); |
| } |
| if (!RegNum) { |
| // Check for aliases registered via .req. Canonicalize to lower case. |
| // That's more consistent since register names are case insensitive, and |
| // it's how the original entry was passed in from MC/MCParser/AsmParser. |
| StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); |
| // If no match, return failure. |
| if (Entry == RegisterReqs.end()) |
| return -1; |
| Parser.Lex(); // Eat identifier token. |
| return Entry->getValue(); |
| } |
| |
| Parser.Lex(); // Eat identifier token. |
| |
| return RegNum; |
| } |
| |
| // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. |
| // If a recoverable error occurs, return 1. If an irrecoverable error |
| // occurs, return -1. An irrecoverable error is one where tokens have been |
| // consumed in the process of trying to parse the shifter (i.e., when it is |
| // indeed a shifter operand, but malformed). |
| int ARMAsmParser::tryParseShiftRegister( |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); |
| |
| std::string lowerCase = Tok.getString().lower(); |
| ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) |
| .Case("asl", ARM_AM::lsl) |
| .Case("lsl", ARM_AM::lsl) |
| .Case("lsr", ARM_AM::lsr) |
| .Case("asr", ARM_AM::asr) |
| .Case("ror", ARM_AM::ror) |
| .Case("rrx", ARM_AM::rrx) |
| .Default(ARM_AM::no_shift); |
| |
| if (ShiftTy == ARM_AM::no_shift) |
| return 1; |
| |
| Parser.Lex(); // Eat the operator. |
| |
| // The source register for the shift has already been added to the |
| // operand list, so we need to pop it off and combine it into the shifted |
| // register operand instead. |
| OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val()); |
| if (!PrevOp->isReg()) |
| return Error(PrevOp->getStartLoc(), "shift must be of a register"); |
| int SrcReg = PrevOp->getReg(); |
| int64_t Imm = 0; |
| int ShiftReg = 0; |
| if (ShiftTy == ARM_AM::rrx) { |
| // RRX Doesn't have an explicit shift amount. The encoder expects |
| // the shift register to be the same as the source register. Seems odd, |
| // but OK. |
| ShiftReg = SrcReg; |
| } else { |
| // Figure out if this is shifted by a constant or a register (for non-RRX). |
| if (Parser.getTok().is(AsmToken::Hash) || |
| Parser.getTok().is(AsmToken::Dollar)) { |
| Parser.Lex(); // Eat hash. |
| SMLoc ImmLoc = Parser.getTok().getLoc(); |
| const MCExpr *ShiftExpr = 0; |
| if (getParser().ParseExpression(ShiftExpr)) { |
| Error(ImmLoc, "invalid immediate shift value"); |
| return -1; |
| } |
| // The expression must be evaluatable as an immediate. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); |
| if (!CE) { |
| Error(ImmLoc, "invalid immediate shift value"); |
| return -1; |
| } |
| // Range check the immediate. |
| // lsl, ror: 0 <= imm <= 31 |
| // lsr, asr: 0 <= imm <= 32 |
| Imm = CE->getValue(); |
| if (Imm < 0 || |
| ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || |
| ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { |
| Error(ImmLoc, "immediate shift value out of range"); |
| return -1; |
| } |
| // shift by zero is a nop. Always send it through as lsl. |
| // ('as' compatibility) |
| if (Imm == 0) |
| ShiftTy = ARM_AM::lsl; |
| } else if (Parser.getTok().is(AsmToken::Identifier)) { |
| ShiftReg = tryParseRegister(); |
| SMLoc L = Parser.getTok().getLoc(); |
| if (ShiftReg == -1) { |
| Error (L, "expected immediate or register in shift operand"); |
| return -1; |
| } |
| } else { |
| Error (Parser.getTok().getLoc(), |
| "expected immediate or register in shift operand"); |
| return -1; |
| } |
| } |
| |
| if (ShiftReg && ShiftTy != ARM_AM::rrx) |
| Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, |
| ShiftReg, Imm, |
| S, Parser.getTok().getLoc())); |
| else |
| Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, |
| S, Parser.getTok().getLoc())); |
| |
| return 0; |
| } |
| |
| |
| /// Try to parse a register name. The token must be an Identifier when called. |
| /// If it's a register, an AsmOperand is created. Another AsmOperand is created |
| /// if there is a "writeback". 'true' if it's not a register. |
| /// |
| /// TODO this is likely to change to allow different register types and or to |
| /// parse for a specific register type. |
| bool ARMAsmParser:: |
| tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| SMLoc S = Parser.getTok().getLoc(); |
| int RegNo = tryParseRegister(); |
| if (RegNo == -1) |
| return true; |
| |
| Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc())); |
| |
| const AsmToken &ExclaimTok = Parser.getTok(); |
| if (ExclaimTok.is(AsmToken::Exclaim)) { |
| Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), |
| ExclaimTok.getLoc())); |
| Parser.Lex(); // Eat exclaim token |
| return false; |
| } |
| |
| // Also check for an index operand. This is only legal for vector registers, |
| // but that'll get caught OK in operand matching, so we don't need to |
| // explicitly filter everything else out here. |
| if (Parser.getTok().is(AsmToken::LBrac)) { |
| SMLoc SIdx = Parser.getTok().getLoc(); |
| Parser.Lex(); // Eat left bracket token. |
| |
| const MCExpr *ImmVal; |
| if (getParser().ParseExpression(ImmVal)) |
| return true; |
| const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); |
| if (!MCE) |
| return TokError("immediate value expected for vector index"); |
| |
| SMLoc E = Parser.getTok().getLoc(); |
| if (Parser.getTok().isNot(AsmToken::RBrac)) |
| return Error(E, "']' expected"); |
| |
| Parser.Lex(); // Eat right bracket token. |
| |
| Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), |
| SIdx, E, |
| getContext())); |
| } |
| |
| return false; |
| } |
| |
| /// MatchCoprocessorOperandName - Try to parse an coprocessor related |
| /// instruction with a symbolic operand name. Example: "p1", "p7", "c3", |
| /// "c5", ... |
| static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { |
| // Use the same layout as the tablegen'erated register name matcher. Ugly, |
| // but efficient. |
| switch (Name.size()) { |
| default: return -1; |
| case 2: |
| if (Name[0] != CoprocOp) |
| return -1; |
| switch (Name[1]) { |
| default: return -1; |
| case '0': return 0; |
| case '1': return 1; |
| case '2': return 2; |
| case '3': return 3; |
| case '4': return 4; |
| case '5': return 5; |
| case '6': return 6; |
| case '7': return 7; |
| case '8': return 8; |
| case '9': return 9; |
| } |
| case 3: |
| if (Name[0] != CoprocOp || Name[1] != '1') |
| return -1; |
| switch (Name[2]) { |
| default: return -1; |
| case '0': return 10; |
| case '1': return 11; |
| case '2': return 12; |
| case '3': return 13; |
| case '4': return 14; |
| case '5': return 15; |
| } |
| } |
| } |
| |
| /// parseITCondCode - Try to parse a condition code for an IT instruction. |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (!Tok.is(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) |
| .Case("eq", ARMCC::EQ) |
| .Case("ne", ARMCC::NE) |
| .Case("hs", ARMCC::HS) |
| .Case("cs", ARMCC::HS) |
| .Case("lo", ARMCC::LO) |
| .Case("cc", ARMCC::LO) |
| .Case("mi", ARMCC::MI) |
| .Case("pl", ARMCC::PL) |
| .Case("vs", ARMCC::VS) |
| .Case("vc", ARMCC::VC) |
| .Case("hi", ARMCC::HI) |
| .Case("ls", ARMCC::LS) |
| .Case("ge", ARMCC::GE) |
| .Case("lt", ARMCC::LT) |
| .Case("gt", ARMCC::GT) |
| .Case("le", ARMCC::LE) |
| .Case("al", ARMCC::AL) |
| .Default(~0U); |
| if (CC == ~0U) |
| return MatchOperand_NoMatch; |
| Parser.Lex(); // Eat the token. |
| |
| Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); |
| |
| return MatchOperand_Success; |
| } |
| |
| /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The |
| /// token must be an Identifier when called, and if it is a coprocessor |
| /// number, the token is eaten and the operand is added to the operand list. |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| |
| int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); |
| if (Num == -1) |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat identifier token. |
| Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); |
| return MatchOperand_Success; |
| } |
| |
| /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The |
| /// token must be an Identifier when called, and if it is a coprocessor |
| /// number, the token is eaten and the operand is added to the operand list. |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| |
| int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); |
| if (Reg == -1) |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat identifier token. |
| Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); |
| return MatchOperand_Success; |
| } |
| |
| /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. |
| /// coproc_option : '{' imm0_255 '}' |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| SMLoc S = Parser.getTok().getLoc(); |
| |
| // If this isn't a '{', this isn't a coprocessor immediate operand. |
| if (Parser.getTok().isNot(AsmToken::LCurly)) |
| return MatchOperand_NoMatch; |
| Parser.Lex(); // Eat the '{' |
| |
| const MCExpr *Expr; |
| SMLoc Loc = Parser.getTok().getLoc(); |
| if (getParser().ParseExpression(Expr)) { |
| Error(Loc, "illegal expression"); |
| return MatchOperand_ParseFail; |
| } |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); |
| if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { |
| Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); |
| return MatchOperand_ParseFail; |
| } |
| int Val = CE->getValue(); |
| |
| // Check for and consume the closing '}' |
| if (Parser.getTok().isNot(AsmToken::RCurly)) |
| return MatchOperand_ParseFail; |
| SMLoc E = Parser.getTok().getLoc(); |
| Parser.Lex(); // Eat the '}' |
| |
| Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); |
| return MatchOperand_Success; |
| } |
| |
| // For register list parsing, we need to map from raw GPR register numbering |
| // to the enumeration values. The enumeration values aren't sorted by |
| // register number due to our using "sp", "lr" and "pc" as canonical names. |
| static unsigned getNextRegister(unsigned Reg) { |
| // If this is a GPR, we need to do it manually, otherwise we can rely |
| // on the sort ordering of the enumeration since the other reg-classes |
| // are sane. |
| if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
| return Reg + 1; |
| switch(Reg) { |
| default: llvm_unreachable("Invalid GPR number!"); |
| case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; |
| case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; |
| case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; |
| case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; |
| case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; |
| case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; |
| case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; |
| case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; |
| } |
| } |
| |
| // Return the low-subreg of a given Q register. |
| static unsigned getDRegFromQReg(unsigned QReg) { |
| switch (QReg) { |
| default: llvm_unreachable("expected a Q register!"); |
| case ARM::Q0: return ARM::D0; |
| case ARM::Q1: return ARM::D2; |
| case ARM::Q2: return ARM::D4; |
| case ARM::Q3: return ARM::D6; |
| case ARM::Q4: return ARM::D8; |
| case ARM::Q5: return ARM::D10; |
| case ARM::Q6: return ARM::D12; |
| case ARM::Q7: return ARM::D14; |
| case ARM::Q8: return ARM::D16; |
| case ARM::Q9: return ARM::D18; |
| case ARM::Q10: return ARM::D20; |
| case ARM::Q11: return ARM::D22; |
| case ARM::Q12: return ARM::D24; |
| case ARM::Q13: return ARM::D26; |
| case ARM::Q14: return ARM::D28; |
| case ARM::Q15: return ARM::D30; |
| } |
| } |
| |
| /// Parse a register list. |
| bool ARMAsmParser:: |
| parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| assert(Parser.getTok().is(AsmToken::LCurly) && |
| "Token is not a Left Curly Brace"); |
| SMLoc S = Parser.getTok().getLoc(); |
| Parser.Lex(); // Eat '{' token. |
| SMLoc RegLoc = Parser.getTok().getLoc(); |
| |
| // Check the first register in the list to see what register class |
| // this is a list of. |
| int Reg = tryParseRegister(); |
| if (Reg == -1) |
| return Error(RegLoc, "register expected"); |
| |
| // The reglist instructions have at most 16 registers, so reserve |
| // space for that many. |
| SmallVector<std::pair<unsigned, SMLoc>, 16> Registers; |
| |
| // Allow Q regs and just interpret them as the two D sub-registers. |
| if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
| Reg = getDRegFromQReg(Reg); |
| Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc)); |
| ++Reg; |
| } |
| const MCRegisterClass *RC; |
| if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
| RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; |
| else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) |
| RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; |
| else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) |
| RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; |
| else |
| return Error(RegLoc, "invalid register in register list"); |
| |
| // Store the register. |
| Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc)); |
| |
| // This starts immediately after the first register token in the list, |
| // so we can see either a comma or a minus (range separator) as a legal |
| // next token. |
| while (Parser.getTok().is(AsmToken::Comma) || |
| Parser.getTok().is(AsmToken::Minus)) { |
| if (Parser.getTok().is(AsmToken::Minus)) { |
| Parser.Lex(); // Eat the minus. |
| SMLoc EndLoc = Parser.getTok().getLoc(); |
| int EndReg = tryParseRegister(); |
| if (EndReg == -1) |
| return Error(EndLoc, "register expected"); |
| // Allow Q regs and just interpret them as the two D sub-registers. |
| if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) |
| EndReg = getDRegFromQReg(EndReg) + 1; |
| // If the register is the same as the start reg, there's nothing |
| // more to do. |
| if (Reg == EndReg) |
| continue; |
| // The register must be in the same register class as the first. |
| if (!RC->contains(EndReg)) |
| return Error(EndLoc, "invalid register in register list"); |
| // Ranges must go from low to high. |
| if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) |
| return Error(EndLoc, "bad range in register list"); |
| |
| // Add all the registers in the range to the register list. |
| while (Reg != EndReg) { |
| Reg = getNextRegister(Reg); |
| Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc)); |
| } |
| continue; |
| } |
| Parser.Lex(); // Eat the comma. |
| RegLoc = Parser.getTok().getLoc(); |
| int OldReg = Reg; |
| const AsmToken RegTok = Parser.getTok(); |
| Reg = tryParseRegister(); |
| if (Reg == -1) |
| return Error(RegLoc, "register expected"); |
| // Allow Q regs and just interpret them as the two D sub-registers. |
| bool isQReg = false; |
| if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
| Reg = getDRegFromQReg(Reg); |
| isQReg = true; |
| } |
| // The register must be in the same register class as the first. |
| if (!RC->contains(Reg)) |
| return Error(RegLoc, "invalid register in register list"); |
| // List must be monotonically increasing. |
| if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { |
| if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
| Warning(RegLoc, "register list not in ascending order"); |
| else |
| return Error(RegLoc, "register list not in ascending order"); |
| } |
| if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { |
| Warning(RegLoc, "duplicated register (" + RegTok.getString() + |
| ") in register list"); |
| continue; |
| } |
| // VFP register lists must also be contiguous. |
| // It's OK to use the enumeration values directly here rather, as the |
| // VFP register classes have the enum sorted properly. |
| if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && |
| Reg != OldReg + 1) |
| return Error(RegLoc, "non-contiguous register range"); |
| Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc)); |
| if (isQReg) |
| Registers.push_back(std::pair<unsigned, SMLoc>(++Reg, RegLoc)); |
| } |
| |
| SMLoc E = Parser.getTok().getLoc(); |
| if (Parser.getTok().isNot(AsmToken::RCurly)) |
| return Error(E, "'}' expected"); |
| Parser.Lex(); // Eat '}' token. |
| |
| // Push the register list operand. |
| Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); |
| |
| // The ARM system instruction variants for LDM/STM have a '^' token here. |
| if (Parser.getTok().is(AsmToken::Caret)) { |
| Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); |
| Parser.Lex(); // Eat '^' token. |
| } |
| |
| return false; |
| } |
| |
| // Helper function to parse the lane index for vector lists. |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index) { |
| Index = 0; // Always return a defined index value. |
| if (Parser.getTok().is(AsmToken::LBrac)) { |
| Parser.Lex(); // Eat the '['. |
| if (Parser.getTok().is(AsmToken::RBrac)) { |
| // "Dn[]" is the 'all lanes' syntax. |
| LaneKind = AllLanes; |
| Parser.Lex(); // Eat the ']'. |
| return MatchOperand_Success; |
| } |
| |
| // There's an optional '#' token here. Normally there wouldn't be, but |
| // inline assemble puts one in, and it's friendly to accept that. |
| if (Parser.getTok().is(AsmToken::Hash)) |
| Parser.Lex(); // Eat the '#' |
| |
| const MCExpr *LaneIndex; |
| SMLoc Loc = Parser.getTok().getLoc(); |
| if (getParser().ParseExpression(LaneIndex)) { |
| Error(Loc, "illegal expression"); |
| return MatchOperand_ParseFail; |
| } |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); |
| if (!CE) { |
| Error(Loc, "lane index must be empty or an integer"); |
| return MatchOperand_ParseFail; |
| } |
| if (Parser.getTok().isNot(AsmToken::RBrac)) { |
| Error(Parser.getTok().getLoc(), "']' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat the ']'. |
| int64_t Val = CE->getValue(); |
| |
| // FIXME: Make this range check context sensitive for .8, .16, .32. |
| if (Val < 0 || Val > 7) { |
| Error(Parser.getTok().getLoc(), "lane index out of range"); |
| return MatchOperand_ParseFail; |
| } |
| Index = Val; |
| LaneKind = IndexedLane; |
| return MatchOperand_Success; |
| } |
| LaneKind = NoLanes; |
| return MatchOperand_Success; |
| } |
| |
| // parse a vector register list |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| VectorLaneTy LaneKind; |
| unsigned LaneIndex; |
| SMLoc S = Parser.getTok().getLoc(); |
| // As an extension (to match gas), support a plain D register or Q register |
| // (without encosing curly braces) as a single or double entry list, |
| // respectively. |
| if (Parser.getTok().is(AsmToken::Identifier)) { |
| int Reg = tryParseRegister(); |
| if (Reg == -1) |
| return MatchOperand_NoMatch; |
| SMLoc E = Parser.getTok().getLoc(); |
| if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { |
| OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex); |
| if (Res != MatchOperand_Success) |
| return Res; |
| switch (LaneKind) { |
| case NoLanes: |
| E = Parser.getTok().getLoc(); |
| Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); |
| break; |
| case AllLanes: |
| E = Parser.getTok().getLoc(); |
| Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, |
| S, E)); |
| break; |
| case IndexedLane: |
| Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, |
| LaneIndex, |
| false, S, E)); |
| break; |
| } |
| return MatchOperand_Success; |
| } |
| if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
| Reg = getDRegFromQReg(Reg); |
| OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex); |
| if (Res != MatchOperand_Success) |
| return Res; |
| switch (LaneKind) { |
| case NoLanes: |
| E = Parser.getTok().getLoc(); |
| Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, |
| &ARMMCRegisterClasses[ARM::DPairRegClassID]); |
| Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); |
| break; |
| case AllLanes: |
| E = Parser.getTok().getLoc(); |
| Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, |
| &ARMMCRegisterClasses[ARM::DPairRegClassID]); |
| Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, |
| S, E)); |
| break; |
| case IndexedLane: |
| Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, |
| LaneIndex, |
| false, S, E)); |
| break; |
| } |
| return MatchOperand_Success; |
| } |
| Error(S, "vector register expected"); |
| return MatchOperand_ParseFail; |
| } |
| |
| if (Parser.getTok().isNot(AsmToken::LCurly)) |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat '{' token. |
| SMLoc RegLoc = Parser.getTok().getLoc(); |
| |
| int Reg = tryParseRegister(); |
| if (Reg == -1) { |
| Error(RegLoc, "register expected"); |
| return MatchOperand_ParseFail; |
| } |
| unsigned Count = 1; |
| int Spacing = 0; |
| unsigned FirstReg = Reg; |
| // The list is of D registers, but we also allow Q regs and just interpret |
| // them as the two D sub-registers. |
| if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
| FirstReg = Reg = getDRegFromQReg(Reg); |
| Spacing = 1; // double-spacing requires explicit D registers, otherwise |
| // it's ambiguous with four-register single spaced. |
| ++Reg; |
| ++Count; |
| } |
| if (parseVectorLane(LaneKind, LaneIndex) != MatchOperand_Success) |
| return MatchOperand_ParseFail; |
| |
| while (Parser.getTok().is(AsmToken::Comma) || |
| Parser.getTok().is(AsmToken::Minus)) { |
| if (Parser.getTok().is(AsmToken::Minus)) { |
| if (!Spacing) |
| Spacing = 1; // Register range implies a single spaced list. |
| else if (Spacing == 2) { |
| Error(Parser.getTok().getLoc(), |
| "sequential registers in double spaced list"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat the minus. |
| SMLoc EndLoc = Parser.getTok().getLoc(); |
| int EndReg = tryParseRegister(); |
| if (EndReg == -1) { |
| Error(EndLoc, "register expected"); |
| return MatchOperand_ParseFail; |
| } |
| // Allow Q regs and just interpret them as the two D sub-registers. |
| if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) |
| EndReg = getDRegFromQReg(EndReg) + 1; |
| // If the register is the same as the start reg, there's nothing |
| // more to do. |
| if (Reg == EndReg) |
| continue; |
| // The register must be in the same register class as the first. |
| if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { |
| Error(EndLoc, "invalid register in register list"); |
| return MatchOperand_ParseFail; |
| } |
| // Ranges must go from low to high. |
| if (Reg > EndReg) { |
| Error(EndLoc, "bad range in register list"); |
| return MatchOperand_ParseFail; |
| } |
| // Parse the lane specifier if present. |
| VectorLaneTy NextLaneKind; |
| unsigned NextLaneIndex; |
| if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success) |
| return MatchOperand_ParseFail; |
| if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { |
| Error(EndLoc, "mismatched lane index in register list"); |
| return MatchOperand_ParseFail; |
| } |
| EndLoc = Parser.getTok().getLoc(); |
| |
| // Add all the registers in the range to the register list. |
| Count += EndReg - Reg; |
| Reg = EndReg; |
| continue; |
| } |
| Parser.Lex(); // Eat the comma. |
| RegLoc = Parser.getTok().getLoc(); |
| int OldReg = Reg; |
| Reg = tryParseRegister(); |
| if (Reg == -1) { |
| Error(RegLoc, "register expected"); |
| return MatchOperand_ParseFail; |
| } |
| // vector register lists must be contiguous. |
| // It's OK to use the enumeration values directly here rather, as the |
| // VFP register classes have the enum sorted properly. |
| // |
| // The list is of D registers, but we also allow Q regs and just interpret |
| // them as the two D sub-registers. |
| if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
| if (!Spacing) |
| Spacing = 1; // Register range implies a single spaced list. |
| else if (Spacing == 2) { |
| Error(RegLoc, |
| "invalid register in double-spaced list (must be 'D' register')"); |
| return MatchOperand_ParseFail; |
| } |
| Reg = getDRegFromQReg(Reg); |
| if (Reg != OldReg + 1) { |
| Error(RegLoc, "non-contiguous register range"); |
| return MatchOperand_ParseFail; |
| } |
| ++Reg; |
| Count += 2; |
| // Parse the lane specifier if present. |
| VectorLaneTy NextLaneKind; |
| unsigned NextLaneIndex; |
| SMLoc EndLoc = Parser.getTok().getLoc(); |
| if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success) |
| return MatchOperand_ParseFail; |
| if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { |
| Error(EndLoc, "mismatched lane index in register list"); |
| return MatchOperand_ParseFail; |
| } |
| continue; |
| } |
| // Normal D register. |
| // Figure out the register spacing (single or double) of the list if |
| // we don't know it already. |
| if (!Spacing) |
| Spacing = 1 + (Reg == OldReg + 2); |
| |
| // Just check that it's contiguous and keep going. |
| if (Reg != OldReg + Spacing) { |
| Error(RegLoc, "non-contiguous register range"); |
| return MatchOperand_ParseFail; |
| } |
| ++Count; |
| // Parse the lane specifier if present. |
| VectorLaneTy NextLaneKind; |
| unsigned NextLaneIndex; |
| SMLoc EndLoc = Parser.getTok().getLoc(); |
| if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success) |
| return MatchOperand_ParseFail; |
| if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { |
| Error(EndLoc, "mismatched lane index in register list"); |
| return MatchOperand_ParseFail; |
| } |
| } |
| |
| SMLoc E = Parser.getTok().getLoc(); |
| if (Parser.getTok().isNot(AsmToken::RCurly)) { |
| Error(E, "'}' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat '}' token. |
| |
| switch (LaneKind) { |
| case NoLanes: |
| // Two-register operands have been converted to the |
| // composite register classes. |
| if (Count == 2) { |
| const MCRegisterClass *RC = (Spacing == 1) ? |
| &ARMMCRegisterClasses[ARM::DPairRegClassID] : |
| &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; |
| FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); |
| } |
| |
| Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, |
| (Spacing == 2), S, E)); |
| break; |
| case AllLanes: |
| // Two-register operands have been converted to the |
| // composite register classes. |
| if (Count == 2) { |
| const MCRegisterClass *RC = (Spacing == 1) ? |
| &ARMMCRegisterClasses[ARM::DPairRegClassID] : |
| &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; |
| FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); |
| } |
| Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, |
| (Spacing == 2), |
| S, E)); |
| break; |
| case IndexedLane: |
| Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, |
| LaneIndex, |
| (Spacing == 2), |
| S, E)); |
| break; |
| } |
| return MatchOperand_Success; |
| } |
| |
| /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| unsigned Opt; |
| |
| if (Tok.is(AsmToken::Identifier)) { |
| StringRef OptStr = Tok.getString(); |
| |
| Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) |
| .Case("sy", ARM_MB::SY) |
| .Case("st", ARM_MB::ST) |
| .Case("sh", ARM_MB::ISH) |
| .Case("ish", ARM_MB::ISH) |
| .Case("shst", ARM_MB::ISHST) |
| .Case("ishst", ARM_MB::ISHST) |
| .Case("nsh", ARM_MB::NSH) |
| .Case("un", ARM_MB::NSH) |
| .Case("nshst", ARM_MB::NSHST) |
| .Case("unst", ARM_MB::NSHST) |
| .Case("osh", ARM_MB::OSH) |
| .Case("oshst", ARM_MB::OSHST) |
| .Default(~0U); |
| |
| if (Opt == ~0U) |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat identifier token. |
| } else if (Tok.is(AsmToken::Hash) || |
| Tok.is(AsmToken::Dollar) || |
| Tok.is(AsmToken::Integer)) { |
| if (Parser.getTok().isNot(AsmToken::Integer)) |
| Parser.Lex(); // Eat the '#'. |
| SMLoc Loc = Parser.getTok().getLoc(); |
| |
| const MCExpr *MemBarrierID; |
| if (getParser().ParseExpression(MemBarrierID)) { |
| Error(Loc, "illegal expression"); |
| return MatchOperand_ParseFail; |
| } |
| |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); |
| if (!CE) { |
| Error(Loc, "constant expression expected"); |
| return MatchOperand_ParseFail; |
| } |
| |
| int Val = CE->getValue(); |
| if (Val & ~0xf) { |
| Error(Loc, "immediate value out of range"); |
| return MatchOperand_ParseFail; |
| } |
| |
| Opt = ARM_MB::RESERVED_0 + Val; |
| } else |
| return MatchOperand_ParseFail; |
| |
| Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); |
| return MatchOperand_Success; |
| } |
| |
| /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (!Tok.is(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| StringRef IFlagsStr = Tok.getString(); |
| |
| // An iflags string of "none" is interpreted to mean that none of the AIF |
| // bits are set. Not a terribly useful instruction, but a valid encoding. |
| unsigned IFlags = 0; |
| if (IFlagsStr != "none") { |
| for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { |
| unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) |
| .Case("a", ARM_PROC::A) |
| .Case("i", ARM_PROC::I) |
| .Case("f", ARM_PROC::F) |
| .Default(~0U); |
| |
| // If some specific iflag is already set, it means that some letter is |
| // present more than once, this is not acceptable. |
| if (Flag == ~0U || (IFlags & Flag)) |
| return MatchOperand_NoMatch; |
| |
| IFlags |= Flag; |
| } |
| } |
| |
| Parser.Lex(); // Eat identifier token. |
| Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); |
| return MatchOperand_Success; |
| } |
| |
| /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); |
| StringRef Mask = Tok.getString(); |
| |
| if (isMClass()) { |
| // See ARMv6-M 10.1.1 |
| std::string Name = Mask.lower(); |
| unsigned FlagsVal = StringSwitch<unsigned>(Name) |
| // Note: in the documentation: |
| // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias |
| // for MSR APSR_nzcvq. |
| // but we do make it an alias here. This is so to get the "mask encoding" |
| // bits correct on MSR APSR writes. |
| // |
| // FIXME: Note the 0xc00 "mask encoding" bits version of the registers |
| // should really only be allowed when writing a special register. Note |
| // they get dropped in the MRS instruction reading a special register as |
| // the SYSm field is only 8 bits. |
| // |
| // FIXME: the _g and _nzcvqg versions are only allowed if the processor |
| // includes the DSP extension but that is not checked. |
| .Case("apsr", 0x800) |
| .Case("apsr_nzcvq", 0x800) |
| .Case("apsr_g", 0x400) |
| .Case("apsr_nzcvqg", 0xc00) |
| .Case("iapsr", 0x801) |
| .Case("iapsr_nzcvq", 0x801) |
| .Case("iapsr_g", 0x401) |
| .Case("iapsr_nzcvqg", 0xc01) |
| .Case("eapsr", 0x802) |
| .Case("eapsr_nzcvq", 0x802) |
| .Case("eapsr_g", 0x402) |
| .Case("eapsr_nzcvqg", 0xc02) |
| .Case("xpsr", 0x803) |
| .Case("xpsr_nzcvq", 0x803) |
| .Case("xpsr_g", 0x403) |
| .Case("xpsr_nzcvqg", 0xc03) |
| .Case("ipsr", 0x805) |
| .Case("epsr", 0x806) |
| .Case("iepsr", 0x807) |
| .Case("msp", 0x808) |
| .Case("psp", 0x809) |
| .Case("primask", 0x810) |
| .Case("basepri", 0x811) |
| .Case("basepri_max", 0x812) |
| .Case("faultmask", 0x813) |
| .Case("control", 0x814) |
| .Default(~0U); |
| |
| if (FlagsVal == ~0U) |
| return MatchOperand_NoMatch; |
| |
| if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) |
| // basepri, basepri_max and faultmask only valid for V7m. |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat identifier token. |
| Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); |
| return MatchOperand_Success; |
| } |
| |
| // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" |
| size_t Start = 0, Next = Mask.find('_'); |
| StringRef Flags = ""; |
| std::string SpecReg = Mask.slice(Start, Next).lower(); |
| if (Next != StringRef::npos) |
| Flags = Mask.slice(Next+1, Mask.size()); |
| |
| // FlagsVal contains the complete mask: |
| // 3-0: Mask |
| // 4: Special Reg (cpsr, apsr => 0; spsr => 1) |
| unsigned FlagsVal = 0; |
| |
| if (SpecReg == "apsr") { |
| FlagsVal = StringSwitch<unsigned>(Flags) |
| .Case("nzcvq", 0x8) // same as CPSR_f |
| .Case("g", 0x4) // same as CPSR_s |
| .Case("nzcvqg", 0xc) // same as CPSR_fs |
| .Default(~0U); |
| |
| if (FlagsVal == ~0U) { |
| if (!Flags.empty()) |
| return MatchOperand_NoMatch; |
| else |
| FlagsVal = 8; // No flag |
| } |
| } else if (SpecReg == "cpsr" || SpecReg == "spsr") { |
| // cpsr_all is an alias for cpsr_fc, as is plain cpsr. |
| if (Flags == "all" || Flags == "") |
| Flags = "fc"; |
| for (int i = 0, e = Flags.size(); i != e; ++i) { |
| unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) |
| .Case("c", 1) |
| .Case("x", 2) |
| .Case("s", 4) |
| .Case("f", 8) |
| .Default(~0U); |
| |
| // If some specific flag is already set, it means that some letter is |
| // present more than once, this is not acceptable. |
| if (FlagsVal == ~0U || (FlagsVal & Flag)) |
| return MatchOperand_NoMatch; |
| FlagsVal |= Flag; |
| } |
| } else // No match for special register. |
| return MatchOperand_NoMatch; |
| |
| // Special register without flags is NOT equivalent to "fc" flags. |
| // NOTE: This is a divergence from gas' behavior. Uncommenting the following |
| // two lines would enable gas compatibility at the expense of breaking |
| // round-tripping. |
| // |
| // if (!FlagsVal) |
| // FlagsVal = 0x9; |
| |
| // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) |
| if (SpecReg == "spsr") |
| FlagsVal |= 16; |
| |
| Parser.Lex(); // Eat identifier token. |
| Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); |
| return MatchOperand_Success; |
| } |
| |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op, |
| int Low, int High) { |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) { |
| Error(Parser.getTok().getLoc(), Op + " operand expected."); |
| return MatchOperand_ParseFail; |
| } |
| StringRef ShiftName = Tok.getString(); |
| std::string LowerOp = Op.lower(); |
| std::string UpperOp = Op.upper(); |
| if (ShiftName != LowerOp && ShiftName != UpperOp) { |
| Error(Parser.getTok().getLoc(), Op + " operand expected."); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat shift type token. |
| |
| // There must be a '#' and a shift amount. |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) { |
| Error(Parser.getTok().getLoc(), "'#' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat hash token. |
| |
| const MCExpr *ShiftAmount; |
| SMLoc Loc = Parser.getTok().getLoc(); |
| if (getParser().ParseExpression(ShiftAmount)) { |
| Error(Loc, "illegal expression"); |
| return MatchOperand_ParseFail; |
| } |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); |
| if (!CE) { |
| Error(Loc, "constant expression expected"); |
| return MatchOperand_ParseFail; |
| } |
| int Val = CE->getValue(); |
| if (Val < Low || Val > High) { |
| Error(Loc, "immediate value out of range"); |
| return MatchOperand_ParseFail; |
| } |
| |
| Operands.push_back(ARMOperand::CreateImm(CE, Loc, Parser.getTok().getLoc())); |
| |
| return MatchOperand_Success; |
| } |
| |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc S = Tok.getLoc(); |
| if (Tok.isNot(AsmToken::Identifier)) { |
| Error(Tok.getLoc(), "'be' or 'le' operand expected"); |
| return MatchOperand_ParseFail; |
| } |
| int Val = StringSwitch<int>(Tok.getString()) |
| .Case("be", 1) |
| .Case("le", 0) |
| .Default(-1); |
| Parser.Lex(); // Eat the token. |
| |
| if (Val == -1) { |
| Error(Tok.getLoc(), "'be' or 'le' operand expected"); |
| return MatchOperand_ParseFail; |
| } |
| Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val, |
| getContext()), |
| S, Parser.getTok().getLoc())); |
| return MatchOperand_Success; |
| } |
| |
| /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT |
| /// instructions. Legal values are: |
| /// lsl #n 'n' in [0,31] |
| /// asr #n 'n' in [1,32] |
| /// n == 32 encoded as n == 0. |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc S = Tok.getLoc(); |
| if (Tok.isNot(AsmToken::Identifier)) { |
| Error(S, "shift operator 'asr' or 'lsl' expected"); |
| return MatchOperand_ParseFail; |
| } |
| StringRef ShiftName = Tok.getString(); |
| bool isASR; |
| if (ShiftName == "lsl" || ShiftName == "LSL") |
| isASR = false; |
| else if (ShiftName == "asr" || ShiftName == "ASR") |
| isASR = true; |
| else { |
| Error(S, "shift operator 'asr' or 'lsl' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat the operator. |
| |
| // A '#' and a shift amount. |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) { |
| Error(Parser.getTok().getLoc(), "'#' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat hash token. |
| |
| const MCExpr *ShiftAmount; |
| SMLoc E = Parser.getTok().getLoc(); |
| if (getParser().ParseExpression(ShiftAmount)) { |
| Error(E, "malformed shift expression"); |
| return MatchOperand_ParseFail; |
| } |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); |
| if (!CE) { |
| Error(E, "shift amount must be an immediate"); |
| return MatchOperand_ParseFail; |
| } |
| |
| int64_t Val = CE->getValue(); |
| if (isASR) { |
| // Shift amount must be in [1,32] |
| if (Val < 1 || Val > 32) { |
| Error(E, "'asr' shift amount must be in range [1,32]"); |
| return MatchOperand_ParseFail; |
| } |
| // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. |
| if (isThumb() && Val == 32) { |
| Error(E, "'asr #32' shift amount not allowed in Thumb mode"); |
| return MatchOperand_ParseFail; |
| } |
| if (Val == 32) Val = 0; |
| } else { |
| // Shift amount must be in [1,32] |
| if (Val < 0 || Val > 31) { |
| Error(E, "'lsr' shift amount must be in range [0,31]"); |
| return MatchOperand_ParseFail; |
| } |
| } |
| |
| E = Parser.getTok().getLoc(); |
| Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, E)); |
| |
| return MatchOperand_Success; |
| } |
| |
| /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family |
| /// of instructions. Legal values are: |
| /// ror #n 'n' in {0, 8, 16, 24} |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc S = Tok.getLoc(); |
| if (Tok.isNot(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| StringRef ShiftName = Tok.getString(); |
| if (ShiftName != "ror" && ShiftName != "ROR") |
| return MatchOperand_NoMatch; |
| Parser.Lex(); // Eat the operator. |
| |
| // A '#' and a rotate amount. |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) { |
| Error(Parser.getTok().getLoc(), "'#' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat hash token. |
| |
| const MCExpr *ShiftAmount; |
| SMLoc E = Parser.getTok().getLoc(); |
| if (getParser().ParseExpression(ShiftAmount)) { |
| Error(E, "malformed rotate expression"); |
| return MatchOperand_ParseFail; |
| } |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); |
| if (!CE) { |
| Error(E, "rotate amount must be an immediate"); |
| return MatchOperand_ParseFail; |
| } |
| |
| int64_t Val = CE->getValue(); |
| // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) |
| // normally, zero is represented in asm by omitting the rotate operand |
| // entirely. |
| if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { |
| Error(E, "'ror' rotate amount must be 8, 16, or 24"); |
| return MatchOperand_ParseFail; |
| } |
| |
| E = Parser.getTok().getLoc(); |
| Operands.push_back(ARMOperand::CreateRotImm(Val, S, E)); |
| |
| return MatchOperand_Success; |
| } |
| |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| SMLoc S = Parser.getTok().getLoc(); |
| // The bitfield descriptor is really two operands, the LSB and the width. |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) { |
| Error(Parser.getTok().getLoc(), "'#' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat hash token. |
| |
| const MCExpr *LSBExpr; |
| SMLoc E = Parser.getTok().getLoc(); |
| if (getParser().ParseExpression(LSBExpr)) { |
| Error(E, "malformed immediate expression"); |
| return MatchOperand_ParseFail; |
| } |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); |
| if (!CE) { |
| Error(E, "'lsb' operand must be an immediate"); |
| return MatchOperand_ParseFail; |
| } |
| |
| int64_t LSB = CE->getValue(); |
| // The LSB must be in the range [0,31] |
| if (LSB < 0 || LSB > 31) { |
| Error(E, "'lsb' operand must be in the range [0,31]"); |
| return MatchOperand_ParseFail; |
| } |
| E = Parser.getTok().getLoc(); |
| |
| // Expect another immediate operand. |
| if (Parser.getTok().isNot(AsmToken::Comma)) { |
| Error(Parser.getTok().getLoc(), "too few operands"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat hash token. |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) { |
| Error(Parser.getTok().getLoc(), "'#' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat hash token. |
| |
| const MCExpr *WidthExpr; |
| if (getParser().ParseExpression(WidthExpr)) { |
| Error(E, "malformed immediate expression"); |
| return MatchOperand_ParseFail; |
| } |
| CE = dyn_cast<MCConstantExpr>(WidthExpr); |
| if (!CE) { |
| Error(E, "'width' operand must be an immediate"); |
| return MatchOperand_ParseFail; |
| } |
| |
| int64_t Width = CE->getValue(); |
| // The LSB must be in the range [1,32-lsb] |
| if (Width < 1 || Width > 32 - LSB) { |
| Error(E, "'width' operand must be in the range [1,32-lsb]"); |
| return MatchOperand_ParseFail; |
| } |
| E = Parser.getTok().getLoc(); |
| |
| Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, E)); |
| |
| return MatchOperand_Success; |
| } |
| |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Check for a post-index addressing register operand. Specifically: |
| // postidx_reg := '+' register {, shift} |
| // | '-' register {, shift} |
| // | register {, shift} |
| |
| // This method must return MatchOperand_NoMatch without consuming any tokens |
| // in the case where there is no match, as other alternatives take other |
| // parse methods. |
| AsmToken Tok = Parser.getTok(); |
| SMLoc S = Tok.getLoc(); |
| bool haveEaten = false; |
| bool isAdd = true; |
| int Reg = -1; |
| if (Tok.is(AsmToken::Plus)) { |
| Parser.Lex(); // Eat the '+' token. |
| haveEaten = true; |
| } else if (Tok.is(AsmToken::Minus)) { |
| Parser.Lex(); // Eat the '-' token. |
| isAdd = false; |
| haveEaten = true; |
| } |
| if (Parser.getTok().is(AsmToken::Identifier)) |
| Reg = tryParseRegister(); |
| if (Reg == -1) { |
| if (!haveEaten) |
| return MatchOperand_NoMatch; |
| Error(Parser.getTok().getLoc(), "register expected"); |
| return MatchOperand_ParseFail; |
| } |
| SMLoc E = Parser.getTok().getLoc(); |
| |
| ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; |
| unsigned ShiftImm = 0; |
| if (Parser.getTok().is(AsmToken::Comma)) { |
| Parser.Lex(); // Eat the ','. |
| if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) |
| return MatchOperand_ParseFail; |
| } |
| |
| Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, |
| ShiftImm, S, E)); |
| |
| return MatchOperand_Success; |
| } |
| |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Check for a post-index addressing register operand. Specifically: |
| // am3offset := '+' register |
| // | '-' register |
| // | register |
| // | # imm |
| // | # + imm |
| // | # - imm |
| |
| // This method must return MatchOperand_NoMatch without consuming any tokens |
| // in the case where there is no match, as other alternatives take other |
| // parse methods. |
| AsmToken Tok = Parser.getTok(); |
| SMLoc S = Tok.getLoc(); |
| |
| // Do immediates first, as we always parse those if we have a '#'. |
| if (Parser.getTok().is(AsmToken::Hash) || |
| Parser.getTok().is(AsmToken::Dollar)) { |
| Parser.Lex(); // Eat the '#'. |
| // Explicitly look for a '-', as we need to encode negative zero |
| // differently. |
| bool isNegative = Parser.getTok().is(AsmToken::Minus); |
| const MCExpr *Offset; |
| if (getParser().ParseExpression(Offset)) |
| return MatchOperand_ParseFail; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); |
| if (!CE) { |
| Error(S, "constant expression expected"); |
| return MatchOperand_ParseFail; |
| } |
| SMLoc E = Tok.getLoc(); |
| // Negative zero is encoded as the flag value INT32_MIN. |
| int32_t Val = CE->getValue(); |
| if (isNegative && Val == 0) |
| Val = INT32_MIN; |
| |
| Operands.push_back( |
| ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E)); |
| |
| return MatchOperand_Success; |
| } |
| |
| |
| bool haveEaten = false; |
| bool isAdd = true; |
| int Reg = -1; |
| if (Tok.is(AsmToken::Plus)) { |
| Parser.Lex(); // Eat the '+' token. |
| haveEaten = true; |
| } else if (Tok.is(AsmToken::Minus)) { |
| Parser.Lex(); // Eat the '-' token. |
| isAdd = false; |
| haveEaten = true; |
| } |
| if (Parser.getTok().is(AsmToken::Identifier)) |
| Reg = tryParseRegister(); |
| if (Reg == -1) { |
| if (!haveEaten) |
| return MatchOperand_NoMatch; |
| Error(Parser.getTok().getLoc(), "register expected"); |
| return MatchOperand_ParseFail; |
| } |
| SMLoc E = Parser.getTok().getLoc(); |
| |
| Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, |
| 0, S, E)); |
| |
| return MatchOperand_Success; |
| } |
| |
| /// cvtT2LdrdPre - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtT2LdrdPre(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Rt, Rt2 |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1); |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateReg(0)); |
| // addr |
| ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2); |
| // pred |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtT2StrdPre - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtT2StrdPre(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateReg(0)); |
| // Rt, Rt2 |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1); |
| // addr |
| ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2); |
| // pred |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtLdWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| |
| ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2); |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtStWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2); |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtLdWriteBackRegAddrMode2 - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtLdWriteBackRegAddrMode2(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| |
| ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3); |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtLdWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtLdWriteBackRegAddrModeImm12(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| |
| ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2); |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| |
| /// cvtStWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtStWriteBackRegAddrModeImm12(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2); |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtStWriteBackRegAddrMode2 - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtStWriteBackRegAddrMode2(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3); |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtStWriteBackRegAddrMode3 - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtStWriteBackRegAddrMode3(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3); |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtLdExtTWriteBackImm - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtLdExtTWriteBackImm(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Rt |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| // addr |
| ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1); |
| // offset |
| ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1); |
| // pred |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtLdExtTWriteBackReg - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtLdExtTWriteBackReg(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Rt |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| // addr |
| ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1); |
| // offset |
| ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2); |
| // pred |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtStExtTWriteBackImm - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtStExtTWriteBackImm(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| // Rt |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| // addr |
| ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1); |
| // offset |
| ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1); |
| // pred |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtStExtTWriteBackReg - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtStExtTWriteBackReg(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| // Rt |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| // addr |
| ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1); |
| // offset |
| ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2); |
| // pred |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtLdrdPre - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtLdrdPre(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Rt, Rt2 |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1); |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| // addr |
| ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3); |
| // pred |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtStrdPre - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtStrdPre(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| // Rt, Rt2 |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1); |
| // addr |
| ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3); |
| // pred |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtLdWriteBackRegAddrMode3 - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtLdWriteBackRegAddrMode3(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1); |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3); |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// cvtThumbMultiply - Convert parsed operands to MCInst. |
| /// Needed here because the Asm Gen Matcher can't handle properly tied operands |
| /// when they refer multiple MIOperands inside a single one. |
| void ARMAsmParser:: |
| cvtThumbMultiply(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1); |
| ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1); |
| // If we have a three-operand form, make sure to set Rn to be the operand |
| // that isn't the same as Rd. |
| unsigned RegOp = 4; |
| if (Operands.size() == 6 && |
| ((ARMOperand*)Operands[4])->getReg() == |
| ((ARMOperand*)Operands[3])->getReg()) |
| RegOp = 5; |
| ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1); |
| Inst.addOperand(Inst.getOperand(0)); |
| ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2); |
| } |
| |
| void ARMAsmParser:: |
| cvtVLDwbFixed(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Vd |
| ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1); |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| // Vn |
| ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2); |
| // pred |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| void ARMAsmParser:: |
| cvtVLDwbRegister(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Vd |
| ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1); |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| // Vn |
| ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2); |
| // Vm |
| ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1); |
| // pred |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| void ARMAsmParser:: |
| cvtVSTwbFixed(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| // Vn |
| ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2); |
| // Vt |
| ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1); |
| // pred |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| void ARMAsmParser:: |
| cvtVSTwbRegister(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Create a writeback register dummy placeholder. |
| Inst.addOperand(MCOperand::CreateImm(0)); |
| // Vn |
| ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2); |
| // Vm |
| ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1); |
| // Vt |
| ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1); |
| // pred |
| ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2); |
| } |
| |
| /// Parse an ARM memory expression, return false if successful else return true |
| /// or an error. The first token must be a '[' when called. |
| bool ARMAsmParser:: |
| parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| SMLoc S, E; |
| assert(Parser.getTok().is(AsmToken::LBrac) && |
| "Token is not a Left Bracket"); |
| S = Parser.getTok().getLoc(); |
| Parser.Lex(); // Eat left bracket token. |
| |
| const AsmToken &BaseRegTok = Parser.getTok(); |
| int BaseRegNum = tryParseRegister(); |
| if (BaseRegNum == -1) |
| return Error(BaseRegTok.getLoc(), "register expected"); |
| |
| // The next token must either be a comma or a closing bracket. |
| const AsmToken &Tok = Parser.getTok(); |
| if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac)) |
| return Error(Tok.getLoc(), "malformed memory operand"); |
| |
| if (Tok.is(AsmToken::RBrac)) { |
| E = Tok.getLoc(); |
| Parser.Lex(); // Eat right bracket token. |
| |
| Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift, |
| 0, 0, false, S, E)); |
| |
| // If there's a pre-indexing writeback marker, '!', just add it as a token |
| // operand. It's rather odd, but syntactically valid. |
| if (Parser.getTok().is(AsmToken::Exclaim)) { |
| Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); |
| Parser.Lex(); // Eat the '!'. |
| } |
| |
| return false; |
| } |
| |
| assert(Tok.is(AsmToken::Comma) && "Lost comma in memory operand?!"); |
| Parser.Lex(); // Eat the comma. |
| |
| // If we have a ':', it's an alignment specifier. |
| if (Parser.getTok().is(AsmToken::Colon)) { |
| Parser.Lex(); // Eat the ':'. |
| E = Parser.getTok().getLoc(); |
| |
| const MCExpr *Expr; |
| if (getParser().ParseExpression(Expr)) |
| return true; |
| |
| // The expression has to be a constant. Memory references with relocations |
| // don't come through here, as they use the <label> forms of the relevant |
| // instructions. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); |
| if (!CE) |
| return Error (E, "constant expression expected"); |
| |
| unsigned Align = 0; |
| switch (CE->getValue()) { |
| default: |
| return Error(E, |
| "alignment specifier must be 16, 32, 64, 128, or 256 bits"); |
| case 16: Align = 2; break; |
| case 32: Align = 4; break; |
| case 64: Align = 8; break; |
| case 128: Align = 16; break; |
| case 256: Align = 32; break; |
| } |
| |
| // Now we should have the closing ']' |
| E = Parser.getTok().getLoc(); |
| if (Parser.getTok().isNot(AsmToken::RBrac)) |
| return Error(E, "']' expected"); |
| Parser.Lex(); // Eat right bracket token. |
| |
| // Don't worry about range checking the value here. That's handled by |
| // the is*() predicates. |
| Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, |
| ARM_AM::no_shift, 0, Align, |
| false, S, E)); |
| |
| // If there's a pre-indexing writeback marker, '!', just add it as a token |
| // operand. |
| if (Parser.getTok().is(AsmToken::Exclaim)) { |
| Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); |
| Parser.Lex(); // Eat the '!'. |
| } |
| |
| return false; |
| } |
| |
| // If we have a '#', it's an immediate offset, else assume it's a register |
| // offset. Be friendly and also accept a plain integer (without a leading |
| // hash) for gas compatibility. |
| if (Parser.getTok().is(AsmToken::Hash) || |
| Parser.getTok().is(AsmToken::Dollar) || |
| Parser.getTok().is(AsmToken::Integer)) { |
| if (Parser.getTok().isNot(AsmToken::Integer)) |
| Parser.Lex(); // Eat the '#'. |
| E = Parser.getTok().getLoc(); |
| |
| bool isNegative = getParser().getTok().is(AsmToken::Minus); |
| const MCExpr *Offset; |
| if (getParser().ParseExpression(Offset)) |
| return true; |
| |
| // The expression has to be a constant. Memory references with relocations |
| // don't come through here, as they use the <label> forms of the relevant |
| // instructions. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); |
| if (!CE) |
| return Error (E, "constant expression expected"); |
| |
| // If the constant was #-0, represent it as INT32_MIN. |
| int32_t Val = CE->getValue(); |
| if (isNegative && Val == 0) |
| CE = MCConstantExpr::Create(INT32_MIN, getContext()); |
| |
| // Now we should have the closing ']' |
| E = Parser.getTok().getLoc(); |
| if (Parser.getTok().isNot(AsmToken::RBrac)) |
| return Error(E, "']' expected"); |
| Parser.Lex(); // Eat right bracket token. |
| |
| // Don't worry about range checking the value here. That's handled by |
| // the is*() predicates. |
| Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, |
| ARM_AM::no_shift, 0, 0, |
| false, S, E)); |
| |
| // If there's a pre-indexing writeback marker, '!', just add it as a token |
| // operand. |
| if (Parser.getTok().is(AsmToken::Exclaim)) { |
| Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); |
| Parser.Lex(); // Eat the '!'. |
| } |
| |
| return false; |
| } |
| |
| // The register offset is optionally preceded by a '+' or '-' |
| bool isNegative = false; |
| if (Parser.getTok().is(AsmToken::Minus)) { |
| isNegative = true; |
| Parser.Lex(); // Eat the '-'. |
| } else if (Parser.getTok().is(AsmToken::Plus)) { |
| // Nothing to do. |
| Parser.Lex(); // Eat the '+'. |
| } |
| |
| E = Parser.getTok().getLoc(); |
| int OffsetRegNum = tryParseRegister(); |
| if (OffsetRegNum == -1) |
| return Error(E, "register expected"); |
| |
| // If there's a shift operator, handle it. |
| ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; |
| unsigned ShiftImm = 0; |
| if (Parser.getTok().is(AsmToken::Comma)) { |
| Parser.Lex(); // Eat the ','. |
| if (parseMemRegOffsetShift(ShiftType, ShiftImm)) |
| return true; |
| } |
| |
| // Now we should have the closing ']' |
| E = Parser.getTok().getLoc(); |
| if (Parser.getTok().isNot(AsmToken::RBrac)) |
| return Error(E, "']' expected"); |
| Parser.Lex(); // Eat right bracket token. |
| |
| Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum, |
| ShiftType, ShiftImm, 0, isNegative, |
| S, E)); |
| |
| // If there's a pre-indexing writeback marker, '!', just add it as a token |
| // operand. |
| if (Parser.getTok().is(AsmToken::Exclaim)) { |
| Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); |
| Parser.Lex(); // Eat the '!'. |
| } |
| |
| return false; |
| } |
| |
| /// parseMemRegOffsetShift - one of these two: |
| /// ( lsl | lsr | asr | ror ) , # shift_amount |
| /// rrx |
| /// return true if it parses a shift otherwise it returns false. |
| bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, |
| unsigned &Amount) { |
| SMLoc Loc = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) |
| return true; |
| StringRef ShiftName = Tok.getString(); |
| if (ShiftName == "lsl" || ShiftName == "LSL" || |
| ShiftName == "asl" || ShiftName == "ASL") |
| St = ARM_AM::lsl; |
| else if (ShiftName == "lsr" || ShiftName == "LSR") |
| St = ARM_AM::lsr; |
| else if (ShiftName == "asr" || ShiftName == "ASR") |
| St = ARM_AM::asr; |
| else if (ShiftName == "ror" || ShiftName == "ROR") |
| St = ARM_AM::ror; |
| else if (ShiftName == "rrx" || ShiftName == "RRX") |
| St = ARM_AM::rrx; |
| else |
| return Error(Loc, "illegal shift operator"); |
| Parser.Lex(); // Eat shift type token. |
| |
| // rrx stands alone. |
| Amount = 0; |
| if (St != ARM_AM::rrx) { |
| Loc = Parser.getTok().getLoc(); |
| // A '#' and a shift amount. |
| const AsmToken &HashTok = Parser.getTok(); |
| if (HashTok.isNot(AsmToken::Hash) && |
| HashTok.isNot(AsmToken::Dollar)) |
| return Error(HashTok.getLoc(), "'#' expected"); |
| Parser.Lex(); // Eat hash token. |
| |
| const MCExpr *Expr; |
| if (getParser().ParseExpression(Expr)) |
| return true; |
| // Range check the immediate. |
| // lsl, ror: 0 <= imm <= 31 |
| // lsr, asr: 0 <= imm <= 32 |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); |
| if (!CE) |
| return Error(Loc, "shift amount must be an immediate"); |
| int64_t Imm = CE->getValue(); |
| if (Imm < 0 || |
| ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || |
| ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) |
| return Error(Loc, "immediate shift value out of range"); |
| // If <ShiftTy> #0, turn it into a no_shift. |
| if (Imm == 0) |
| St = ARM_AM::lsl; |
| // For consistency, treat lsr #32 and asr #32 as having immediate value 0. |
| if (Imm == 32) |
| Imm = 0; |
| Amount = Imm; |
| } |
| |
| return false; |
| } |
| |
| /// parseFPImm - A floating point immediate expression operand. |
| ARMAsmParser::OperandMatchResultTy ARMAsmParser:: |
| parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Anything that can accept a floating point constant as an operand |
| // needs to go through here, as the regular ParseExpression is |
| // integer only. |
| // |
| // This routine still creates a generic Immediate operand, containing |
| // a bitcast of the 64-bit floating point value. The various operands |
| // that accept floats can check whether the value is valid for them |
| // via the standard is*() predicates. |
| |
| SMLoc S = Parser.getTok().getLoc(); |
| |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) |
| return MatchOperand_NoMatch; |
| |
| // Disambiguate the VMOV forms that can accept an FP immediate. |
| // vmov.f32 <sreg>, #imm |
| // vmov.f64 <dreg>, #imm |
| // vmov.f32 <dreg>, #imm @ vector f32x2 |
| // vmov.f32 <qreg>, #imm @ vector f32x4 |
| // |
| // There are also the NEON VMOV instructions which expect an |
| // integer constant. Make sure we don't try to parse an FPImm |
| // for these: |
| // vmov.i{8|16|32|64} <dreg|qreg>, #imm |
| ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]); |
| if (!TyOp->isToken() || (TyOp->getToken() != ".f32" && |
| TyOp->getToken() != ".f64")) |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat the '#'. |
| |
| // Handle negation, as that still comes through as a separate token. |
| bool isNegative = false; |
| if (Parser.getTok().is(AsmToken::Minus)) { |
| isNegative = true; |
| Parser.Lex(); |
| } |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc Loc = Tok.getLoc(); |
| if (Tok.is(AsmToken::Real)) { |
| APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); |
| uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); |
| // If we had a '-' in front, toggle the sign bit. |
| IntVal ^= (uint64_t)isNegative << 31; |
| Parser.Lex(); // Eat the token. |
| Operands.push_back(ARMOperand::CreateImm( |
| MCConstantExpr::Create(IntVal, getContext()), |
| S, Parser.getTok().getLoc())); |
| return MatchOperand_Success; |
| } |
| // Also handle plain integers. Instructions which allow floating point |
| // immediates also allow a raw encoded 8-bit value. |
| if (Tok.is(AsmToken::Integer)) { |
| int64_t Val = Tok.getIntVal(); |
| Parser.Lex(); // Eat the token. |
| if (Val > 255 || Val < 0) { |
| Error(Loc, "encoded floating point value out of range"); |
| return MatchOperand_ParseFail; |
| } |
| double RealVal = ARM_AM::getFPImmFloat(Val); |
| Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue(); |
| Operands.push_back(ARMOperand::CreateImm( |
| MCConstantExpr::Create(Val, getContext()), S, |
| Parser.getTok().getLoc())); |
| return MatchOperand_Success; |
| } |
| |
| Error(Loc, "invalid floating point immediate"); |
| return MatchOperand_ParseFail; |
| } |
| |
| /// Parse a arm instruction operand. For now this parses the operand regardless |
| /// of the mnemonic. |
| bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands, |
| StringRef Mnemonic) { |
| SMLoc S, E; |
| |
| // Check if the current operand has a custom associated parser, if so, try to |
| // custom parse the operand, or fallback to the general approach. |
| OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); |
| if (ResTy == MatchOperand_Success) |
| return false; |
| // If there wasn't a custom match, try the generic matcher below. Otherwise, |
| // there was a match, but an error occurred, in which case, just return that |
| // the operand parsing failed. |
| if (ResTy == MatchOperand_ParseFail) |
| return true; |
| |
| switch (getLexer().getKind()) { |
| default: |
| Error(Parser.getTok().getLoc(), "unexpected token in operand"); |
| return true; |
| case AsmToken::Identifier: { |
| if (!tryParseRegisterWithWriteBack(Operands)) |
| return false; |
| int Res = tryParseShiftRegister(Operands); |
| if (Res == 0) // success |
| return false; |
| else if (Res == -1) // irrecoverable error |
| return true; |
| // If this is VMRS, check for the apsr_nzcv operand. |
| if (Mnemonic == "vmrs" && |
| Parser.getTok().getString().equals_lower("apsr_nzcv")) { |
| S = Parser.getTok().getLoc(); |
| Parser.Lex(); |
| Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); |
| return false; |
| } |
| |
| // Fall though for the Identifier case that is not a register or a |
| // special name. |
| } |
| case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) |
| case AsmToken::Integer: // things like 1f and 2b as a branch targets |
| case AsmToken::String: // quoted label names. |
| case AsmToken::Dot: { // . as a branch target |
| // This was not a register so parse other operands that start with an |
| // identifier (like labels) as expressions and create them as immediates. |
| const MCExpr *IdVal; |
| S = Parser.getTok().getLoc(); |
| if (getParser().ParseExpression(IdVal)) |
| return true; |
| E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); |
| Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); |
| return false; |
| } |
| case AsmToken::LBrac: |
| return parseMemory(Operands); |
| case AsmToken::LCurly: |
| return parseRegisterList(Operands); |
| case AsmToken::Dollar: |
| case AsmToken::Hash: { |
| // #42 -> immediate. |
| S = Parser.getTok().getLoc(); |
| Parser.Lex(); |
| |
| if (Parser.getTok().isNot(AsmToken::Colon)) { |
| bool isNegative = Parser.getTok().is(AsmToken::Minus); |
| const MCExpr *ImmVal; |
| if (getParser().ParseExpression(ImmVal)) |
| return true; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); |
| if (CE) { |
| int32_t Val = CE->getValue(); |
| if (isNegative && Val == 0) |
| ImmVal = MCConstantExpr::Create(INT32_MIN, getContext()); |
| } |
| E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); |
| Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); |
| return false; |
| } |
| // w/ a ':' after the '#', it's just like a plain ':'. |
| // FALLTHROUGH |
| } |
| case AsmToken::Colon: { |
| // ":lower16:" and ":upper16:" expression prefixes |
| // FIXME: Check it's an expression prefix, |
| // e.g. (FOO - :lower16:BAR) isn't legal. |
| ARMMCExpr::VariantKind RefKind; |
| if (parsePrefix(RefKind)) |
| return true; |
| |
| const MCExpr *SubExprVal; |
| if (getParser().ParseExpression(SubExprVal)) |
| return true; |
| |
| const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal, |
| getContext()); |
| E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); |
| Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); |
| return false; |
| } |
| } |
| } |
| |
| // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. |
| // :lower16: and :upper16:. |
| bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { |
| RefKind = ARMMCExpr::VK_ARM_None; |
| |
| // :lower16: and :upper16: modifiers |
| assert(getLexer().is(AsmToken::Colon) && "expected a :"); |
| Parser.Lex(); // Eat ':' |
| |
| if (getLexer().isNot(AsmToken::Identifier)) { |
| Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); |
| return true; |
| } |
| |
| StringRef IDVal = Parser.getTok().getIdentifier(); |
| if (IDVal == "lower16") { |
| RefKind = ARMMCExpr::VK_ARM_LO16; |
| } else if (IDVal == "upper16") { |
| RefKind = ARMMCExpr::VK_ARM_HI16; |
| } else { |
| Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); |
| return true; |
| } |
| Parser.Lex(); |
| |
| if (getLexer().isNot(AsmToken::Colon)) { |
| Error(Parser.getTok().getLoc(), "unexpected token after prefix"); |
| return true; |
| } |
| Parser.Lex(); // Eat the last ':' |
| return false; |
| } |
| |
| /// \brief Given a mnemonic, split out possible predication code and carry |
| /// setting letters to form a canonical mnemonic and flags. |
| // |
| // FIXME: Would be nice to autogen this. |
| // FIXME: This is a bit of a maze of special cases. |
| StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, |
| unsigned &PredicationCode, |
| bool &CarrySetting, |
| unsigned &ProcessorIMod, |
| StringRef &ITMask) { |
| PredicationCode = ARMCC::AL; |
| CarrySetting = false; |
| ProcessorIMod = 0; |
| |
| // Ignore some mnemonics we know aren't predicated forms. |
| // |
| // FIXME: Would be nice to autogen this. |
| if ((Mnemonic == "movs" && isThumb()) || |
| Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || |
| Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || |
| Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || |
| Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || |
| Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || |
| Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || |
| Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || |
| Mnemonic == "fmuls") |
| return Mnemonic; |
| |
| // First, split out any predication code. Ignore mnemonics we know aren't |
| // predicated but do have a carry-set and so weren't caught above. |
| if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && |
| Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && |
| Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && |
| Mnemonic != "sbcs" && Mnemonic != "rscs") { |
| unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) |
| .Case("eq", ARMCC::EQ) |
| .Case("ne", ARMCC::NE) |
| .Case("hs", ARMCC::HS) |
| .Case("cs", ARMCC::HS) |
| .Case("lo", ARMCC::LO) |
| .Case("cc", ARMCC::LO) |
| .Case("mi", ARMCC::MI) |
| .Case("pl", ARMCC::PL) |
| .Case("vs", ARMCC::VS) |
| .Case("vc", ARMCC::VC) |
| .Case("hi", ARMCC::HI) |
| .Case("ls", ARMCC::LS) |
| .Case("ge", ARMCC::GE) |
| .Case("lt", ARMCC::LT) |
| .Case("gt", ARMCC::GT) |
| .Case("le", ARMCC::LE) |
| .Case("al", ARMCC::AL) |
| .Default(~0U); |
| if (CC != ~0U) { |
| Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); |
| PredicationCode = CC; |
| } |
| } |
| |
| // Next, determine if we have a carry setting bit. We explicitly ignore all |
| // the instructions we know end in 's'. |
| if (Mnemonic.endswith("s") && |
| !(Mnemonic == "cps" || Mnemonic == "mls" || |
| Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || |
| Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || |
| Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || |
| Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || |
| Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || |
| Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || |
| Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || |
| Mnemonic == "vfms" || Mnemonic == "vfnms" || |
| (Mnemonic == "movs" && isThumb()))) { |
| Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); |
| CarrySetting = true; |
| } |
| |
| // The "cps" instruction can have a interrupt mode operand which is glued into |
| // the mnemonic. Check if this is the case, split it and parse the imod op |
| if (Mnemonic.startswith("cps")) { |
| // Split out any imod code. |
| unsigned IMod = |
| StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) |
| .Case("ie", ARM_PROC::IE) |
| .Case("id", ARM_PROC::ID) |
| .Default(~0U); |
| if (IMod != ~0U) { |
| Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); |
| ProcessorIMod = IMod; |
| } |
| } |
| |
| // The "it" instruction has the condition mask on the end of the mnemonic. |
| if (Mnemonic.startswith("it")) { |
| ITMask = Mnemonic.slice(2, Mnemonic.size()); |
| Mnemonic = Mnemonic.slice(0, 2); |
| } |
| |
| return Mnemonic; |
| } |
| |
| /// \brief Given a canonical mnemonic, determine if the instruction ever allows |
| /// inclusion of carry set or predication code operands. |
| // |
| // FIXME: It would be nice to autogen this. |
| void ARMAsmParser:: |
| getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet, |
| bool &CanAcceptPredicationCode) { |
| if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || |
| Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || |
| Mnemonic == "add" || Mnemonic == "adc" || |
| Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" || |
| Mnemonic == "orr" || Mnemonic == "mvn" || |
| Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" || |
| Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" || |
| Mnemonic == "vfm" || Mnemonic == "vfnm" || |
| (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" || |
| Mnemonic == "mla" || Mnemonic == "smlal" || |
| Mnemonic == "umlal" || Mnemonic == "umull"))) { |
| CanAcceptCarrySet = true; |
| } else |
| CanAcceptCarrySet = false; |
| |
| if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" || |
| Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" || |
| Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" || |
| Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" || |
| Mnemonic == "dsb" || Mnemonic == "isb" || Mnemonic == "setend" || |
| (Mnemonic == "clrex" && !isThumb()) || |
| (Mnemonic == "nop" && isThumbOne()) || |
| ((Mnemonic == "pld" || Mnemonic == "pli" || Mnemonic == "pldw" || |
| Mnemonic == "ldc2" || Mnemonic == "ldc2l" || |
| Mnemonic == "stc2" || Mnemonic == "stc2l") && !isThumb()) || |
| ((Mnemonic.startswith("rfe") || Mnemonic.startswith("srs")) && |
| !isThumb()) || |
| Mnemonic.startswith("cps") || (Mnemonic == "movs" && isThumbOne())) { |
| CanAcceptPredicationCode = false; |
| } else |
| CanAcceptPredicationCode = true; |
| |
| if (isThumb()) { |
| if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" || |
| Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp") |
| CanAcceptPredicationCode = false; |
| } |
| } |
| |
| bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // FIXME: This is all horribly hacky. We really need a better way to deal |
| // with optional operands like this in the matcher table. |
| |
| // The 'mov' mnemonic is special. One variant has a cc_out operand, while |
| // another does not. Specifically, the MOVW instruction does not. So we |
| // special case it here and remove the defaulted (non-setting) cc_out |
| // operand if that's the instruction we're trying to match. |
| // |
| // We do this as post-processing of the explicit operands rather than just |
| // conditionally adding the cc_out in the first place because we need |
| // to check the type of the parsed immediate operand. |
| if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && |
| !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() && |
| static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() && |
| static_cast<ARMOperand*>(Operands[1])->getReg() == 0) |
| return true; |
| |
| // Register-register 'add' for thumb does not have a cc_out operand |
| // when there are only two register operands. |
| if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && |
| static_cast<ARMOperand*>(Operands[3])->isReg() && |
| static_cast<ARMOperand*>(Operands[4])->isReg() && |
| static_cast<ARMOperand*>(Operands[1])->getReg() == 0) |
| return true; |
| // Register-register 'add' for thumb does not have a cc_out operand |
| // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do |
| // have to check the immediate range here since Thumb2 has a variant |
| // that can handle a different range and has a cc_out operand. |
| if (((isThumb() && Mnemonic == "add") || |
| (isThumbTwo() && Mnemonic == "sub")) && |
| Operands.size() == 6 && |
| static_cast<ARMOperand*>(Operands[3])->isReg() && |
| static_cast<ARMOperand*>(Operands[4])->isReg() && |
| static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP && |
| static_cast<ARMOperand*>(Operands[1])->getReg() == 0 && |
| ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) || |
| static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4())) |
| return true; |
| // For Thumb2, add/sub immediate does not have a cc_out operand for the |
| // imm0_4095 variant. That's the least-preferred variant when |
| // selecting via the generic "add" mnemonic, so to know that we |
| // should remove the cc_out operand, we have to explicitly check that |
| // it's not one of the other variants. Ugh. |
| if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && |
| Operands.size() == 6 && |
| static_cast<ARMOperand*>(Operands[3])->isReg() && |
| static_cast<ARMOperand*>(Operands[4])->isReg() && |
| static_cast<ARMOperand*>(Operands[5])->isImm()) { |
| // Nest conditions rather than one big 'if' statement for readability. |
| // |
| // If either register is a high reg, it's either one of the SP |
| // variants (handled above) or a 32-bit encoding, so we just |
| // check against T3. If the second register is the PC, this is an |
| // alternate form of ADR, which uses encoding T4, so check for that too. |
| if ((!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) || |
| !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg())) && |
| static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC && |
| static_cast<ARMOperand*>(Operands[5])->isT2SOImm()) |
| return false; |
| // If both registers are low, we're in an IT block, and the immediate is |
| // in range, we should use encoding T1 instead, which has a cc_out. |
| if (inITBlock() && |
| isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) && |
| isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) && |
| static_cast<ARMOperand*>(Operands[5])->isImm0_7()) |
| return false; |
| |
| // Otherwise, we use encoding T4, which does not have a cc_out |
| // operand. |
| return true; |
| } |
| |
| // The thumb2 multiply instruction doesn't have a CCOut register, so |
| // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to |
| // use the 16-bit encoding or not. |
| if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && |
| static_cast<ARMOperand*>(Operands[1])->getReg() == 0 && |
| static_cast<ARMOperand*>(Operands[3])->isReg() && |
| static_cast<ARMOperand*>(Operands[4])->isReg() && |
| static_cast<ARMOperand*>(Operands[5])->isReg() && |
| // If the registers aren't low regs, the destination reg isn't the |
| // same as one of the source regs, or the cc_out operand is zero |
| // outside of an IT block, we have to use the 32-bit encoding, so |
| // remove the cc_out operand. |
| (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) || |
| !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) || |
| !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) || |
| !inITBlock() || |
| (static_cast<ARMOperand*>(Operands[3])->getReg() != |
| static_cast<ARMOperand*>(Operands[5])->getReg() && |
| static_cast<ARMOperand*>(Operands[3])->getReg() != |
| static_cast<ARMOperand*>(Operands[4])->getReg()))) |
| return true; |
| |
| // Also check the 'mul' syntax variant that doesn't specify an explicit |
| // destination register. |
| if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && |
| static_cast<ARMOperand*>(Operands[1])->getReg() == 0 && |
| static_cast<ARMOperand*>(Operands[3])->isReg() && |
| static_cast<ARMOperand*>(Operands[4])->isReg() && |
| // If the registers aren't low regs or the cc_out operand is zero |
| // outside of an IT block, we have to use the 32-bit encoding, so |
| // remove the cc_out operand. |
| (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) || |
| !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) || |
| !inITBlock())) |
| return true; |
| |
| |
| |
| // Register-register 'add/sub' for thumb does not have a cc_out operand |
| // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also |
| // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't |
| // right, this will result in better diagnostics (which operand is off) |
| // anyway. |
| if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && |
| (Operands.size() == 5 || Operands.size() == 6) && |
| static_cast<ARMOperand*>(Operands[3])->isReg() && |
| static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP && |
| static_cast<ARMOperand*>(Operands[1])->getReg() == 0 && |
| (static_cast<ARMOperand*>(Operands[4])->isImm() || |
| (Operands.size() == 6 && |
| static_cast<ARMOperand*>(Operands[5])->isImm()))) |
| return true; |
| |
| return false; |
| } |
| |
| static bool isDataTypeToken(StringRef Tok) { |
| return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || |
| Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || |
| Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || |
| Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || |
| Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || |
| Tok == ".f" || Tok == ".d"; |
| } |
| |
| // FIXME: This bit should probably be handled via an explicit match class |
| // in the .td files that matches the suffix instead of having it be |
| // a literal string token the way it is now. |
| static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { |
| return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); |
| } |
| |
| static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features); |
| /// Parse an arm instruction mnemonic followed by its operands. |
| bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| // Apply mnemonic aliases before doing anything else, as the destination |
| // mnemnonic may include suffices and we want to handle them normally. |
| // The generic tblgen'erated code does this later, at the start of |
| // MatchInstructionImpl(), but that's too late for aliases that include |
| // any sort of suffix. |
| unsigned AvailableFeatures = getAvailableFeatures(); |
| applyMnemonicAliases(Name, AvailableFeatures); |
| |
| // First check for the ARM-specific .req directive. |
| if (Parser.getTok().is(AsmToken::Identifier) && |
| Parser.getTok().getIdentifier() == ".req") { |
| parseDirectiveReq(Name, NameLoc); |
| // We always return 'error' for this, as we're done with this |
| // statement and don't need to match the 'instruction." |
| return true; |
| } |
| |
| // Create the leading tokens for the mnemonic, split by '.' characters. |
| size_t Start = 0, Next = Name.find('.'); |
| StringRef Mnemonic = Name.slice(Start, Next); |
| |
| // Split out the predication code and carry setting flag from the mnemonic. |
| unsigned PredicationCode; |
| unsigned ProcessorIMod; |
| bool CarrySetting; |
| StringRef ITMask; |
| Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, |
| ProcessorIMod, ITMask); |
| |
| // In Thumb1, only the branch (B) instruction can be predicated. |
| if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { |
| Parser.EatToEndOfStatement(); |
| return Error(NameLoc, "conditional execution not supported in Thumb1"); |
| } |
| |
| Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); |
| |
| // Handle the IT instruction ITMask. Convert it to a bitmask. This |
| // is the mask as it will be for the IT encoding if the conditional |
| // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case |
| // where the conditional bit0 is zero, the instruction post-processing |
| // will adjust the mask accordingly. |
| if (Mnemonic == "it") { |
| SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); |
| if (ITMask.size() > 3) { |
| Parser.EatToEndOfStatement(); |
| return Error(Loc, "too many conditions on IT instruction"); |
| } |
| unsigned Mask = 8; |
| for (unsigned i = ITMask.size(); i != 0; --i) { |
| char pos = ITMask[i - 1]; |
| if (pos != 't' && pos != 'e') { |
| Parser.EatToEndOfStatement(); |
| return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); |
| } |
| Mask >>= 1; |
| if (ITMask[i - 1] == 't') |
| Mask |= 8; |
| } |
| Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); |
| } |
| |
| // FIXME: This is all a pretty gross hack. We should automatically handle |
| // optional operands like this via tblgen. |
| |
| // Next, add the CCOut and ConditionCode operands, if needed. |
| // |
| // For mnemonics which can ever incorporate a carry setting bit or predication |
| // code, our matching model involves us always generating CCOut and |
| // ConditionCode operands to match the mnemonic "as written" and then we let |
| // the matcher deal with finding the right instruction or generating an |
| // appropriate error. |
| bool CanAcceptCarrySet, CanAcceptPredicationCode; |
| getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode); |
| |
| // If we had a carry-set on an instruction that can't do that, issue an |
| // error. |
| if (!CanAcceptCarrySet && CarrySetting) { |
| Parser.EatToEndOfStatement(); |
| return Error(NameLoc, "instruction '" + Mnemonic + |
| "' can not set flags, but 's' suffix specified"); |
| } |
| // If we had a predication code on an instruction that can't do that, issue an |
| // error. |
| if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { |
| Parser.EatToEndOfStatement(); |
| return Error(NameLoc, "instruction '" + Mnemonic + |
| "' is not predicable, but condition code specified"); |
| } |
| |
| // Add the carry setting operand, if necessary. |
| if (CanAcceptCarrySet) { |
| SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); |
| Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, |
| Loc)); |
| } |
| |
| // Add the predication code operand, if necessary. |
| if (CanAcceptPredicationCode) { |
| SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + |
| CarrySetting); |
| Operands.push_back(ARMOperand::CreateCondCode( |
| ARMCC::CondCodes(PredicationCode), Loc)); |
| } |
| |
| // Add the processor imod operand, if necessary. |
| if (ProcessorIMod) { |
| Operands.push_back(ARMOperand::CreateImm( |
| MCConstantExpr::Create(ProcessorIMod, getContext()), |
| NameLoc, NameLoc)); |
| } |
| |
| // Add the remaining tokens in the mnemonic. |
| while (Next != StringRef::npos) { |
| Start = Next; |
| Next = Name.find('.', Start + 1); |
| StringRef ExtraToken = Name.slice(Start, Next); |
| |
| // Some NEON instructions have an optional datatype suffix that is |
| // completely ignored. Check for that. |
| if (isDataTypeToken(ExtraToken) && |
| doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) |
| continue; |
| |
| if (ExtraToken != ".n") { |
| SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); |
| Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); |
| } |
| } |
| |
| // Read the remaining operands. |
| if (getLexer().isNot(AsmToken::EndOfStatement)) { |
| // Read the first operand. |
| if (parseOperand(Operands, Mnemonic)) { |
| Parser.EatToEndOfStatement(); |
| return true; |
| } |
| |
| while (getLexer().is(AsmToken::Comma)) { |
| Parser.Lex(); // Eat the comma. |
| |
| // Parse and remember the operand. |
| if (parseOperand(Operands, Mnemonic)) { |
| Parser.EatToEndOfStatement(); |
| return true; |
| } |
| } |
| } |
| |
| if (getLexer().isNot(AsmToken::EndOfStatement)) { |
| SMLoc Loc = getLexer().getLoc(); |
| Parser.EatToEndOfStatement(); |
| return Error(Loc, "unexpected token in argument list"); |
| } |
| |
| Parser.Lex(); // Consume the EndOfStatement |
| |
| // Some instructions, mostly Thumb, have forms for the same mnemonic that |
| // do and don't have a cc_out optional-def operand. With some spot-checks |
| // of the operand list, we can figure out which variant we're trying to |
| // parse and adjust accordingly before actually matching. We shouldn't ever |
| // try to remove a cc_out operand that was explicitly set on the the |
| // mnemonic, of course (CarrySetting == true). Reason number #317 the |
| // table driven matcher doesn't fit well with the ARM instruction set. |
| if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) { |
| ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]); |
| Operands.erase(Operands.begin() + 1); |
| delete Op; |
| } |
| |
| // ARM mode 'blx' need special handling, as the register operand version |
| // is predicable, but the label operand version is not. So, we can't rely |
| // on the Mnemonic based checking to correctly figure out when to put |
| // a k_CondCode operand in the list. If we're trying to match the label |
| // version, remove the k_CondCode operand here. |
| if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && |
| static_cast<ARMOperand*>(Operands[2])->isImm()) { |
| ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]); |
| Operands.erase(Operands.begin() + 1); |
| delete Op; |
| } |
| |
| // The vector-compare-to-zero instructions have a literal token "#0" at |
| // the end that comes to here as an immediate operand. Convert it to a |
| // token to play nicely with the matcher. |
| if ((Mnemonic == "vceq" || Mnemonic == "vcge" || Mnemonic == "vcgt" || |
| Mnemonic == "vcle" || Mnemonic == "vclt") && Operands.size() == 6 && |
| static_cast<ARMOperand*>(Operands[5])->isImm()) { |
| ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm()); |
| if (CE && CE->getValue() == 0) { |
| Operands.erase(Operands.begin() + 5); |
| Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc())); |
| delete Op; |
| } |
| } |
| // VCMP{E} does the same thing, but with a different operand count. |
| if ((Mnemonic == "vcmp" || Mnemonic == "vcmpe") && Operands.size() == 5 && |
| static_cast<ARMOperand*>(Operands[4])->isImm()) { |
| ARMOperand *Op = static_cast<ARMOperand*>(Operands[4]); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm()); |
| if (CE && CE->getValue() == 0) { |
| Operands.erase(Operands.begin() + 4); |
| Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc())); |
| delete Op; |
| } |
| } |
| // Similarly, the Thumb1 "RSB" instruction has a literal "#0" on the |
| // end. Convert it to a token here. Take care not to convert those |
| // that should hit the Thumb2 encoding. |
| if (Mnemonic == "rsb" && isThumb() && Operands.size() == 6 && |
| static_cast<ARMOperand*>(Operands[3])->isReg() && |
| static_cast<ARMOperand*>(Operands[4])->isReg() && |
| static_cast<ARMOperand*>(Operands[5])->isImm()) { |
| ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm()); |
| if (CE && CE->getValue() == 0 && |
| (isThumbOne() || |
| // The cc_out operand matches the IT block. |
| ((inITBlock() != CarrySetting) && |
| // Neither register operand is a high register. |
| (isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) && |
| isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()))))){ |
| Operands.erase(Operands.begin() + 5); |
| Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc())); |
| delete Op; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Validate context-sensitive operand constraints. |
| |
| // return 'true' if register list contains non-low GPR registers, |
| // 'false' otherwise. If Reg is in the register list or is HiReg, set |
| // 'containsReg' to true. |
| static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg, |
| unsigned HiReg, bool &containsReg) { |
| containsReg = false; |
| for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { |
| unsigned OpReg = Inst.getOperand(i).getReg(); |
| if (OpReg == Reg) |
| containsReg = true; |
| // Anything other than a low register isn't legal here. |
| if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) |
| return true; |
| } |
| return false; |
| } |
| |
| // Check if the specified regisgter is in the register list of the inst, |
| // starting at the indicated operand number. |
| static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) { |
| for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { |
| unsigned OpReg = Inst.getOperand(i).getReg(); |
| if (OpReg == Reg) |
| return true; |
| } |
| return false; |
| } |
| |
| // FIXME: We would really prefer to have MCInstrInfo (the wrapper around |
| // the ARMInsts array) instead. Getting that here requires awkward |
| // API changes, though. Better way? |
| namespace llvm { |
| extern const MCInstrDesc ARMInsts[]; |
| } |
| static const MCInstrDesc &getInstDesc(unsigned Opcode) { |
| return ARMInsts[Opcode]; |
| } |
| |
| // FIXME: We would really like to be able to tablegen'erate this. |
| bool ARMAsmParser:: |
| validateInstruction(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode()); |
| SMLoc Loc = Operands[0]->getStartLoc(); |
| // Check the IT block state first. |
| // NOTE: BKPT instruction has the interesting property of being |
| // allowed in IT blocks, but not being predicable. It just always |
| // executes. |
| if (inITBlock() && Inst.getOpcode() != ARM::tBKPT && |
| Inst.getOpcode() != ARM::BKPT) { |
| unsigned bit = 1; |
| if (ITState.FirstCond) |
| ITState.FirstCond = false; |
| else |
| bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; |
| // The instruction must be predicable. |
| if (!MCID.isPredicable()) |
| return Error(Loc, "instructions in IT block must be predicable"); |
| unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); |
| unsigned ITCond = bit ? ITState.Cond : |
| ARMCC::getOppositeCondition(ITState.Cond); |
| if (Cond != ITCond) { |
| // Find the condition code Operand to get its SMLoc information. |
| SMLoc CondLoc; |
| for (unsigned i = 1; i < Operands.size(); ++i) |
| if (static_cast<ARMOperand*>(Operands[i])->isCondCode()) |
| CondLoc = Operands[i]->getStartLoc(); |
| return Error(CondLoc, "incorrect condition in IT block; got '" + |
| StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + |
| "', but expected '" + |
| ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); |
| } |
| // Check for non-'al' condition codes outside of the IT block. |
| } else if (isThumbTwo() && MCID.isPredicable() && |
| Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != |
| ARMCC::AL && Inst.getOpcode() != ARM::tB && |
| Inst.getOpcode() != ARM::t2B) |
| return Error(Loc, "predicated instructions must be in IT block"); |
| |
| switch (Inst.getOpcode()) { |
| case ARM::LDRD: |
| case ARM::LDRD_PRE: |
| case ARM::LDRD_POST: |
| case ARM::LDREXD: { |
| // Rt2 must be Rt + 1. |
| unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); |
| unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); |
| if (Rt2 != Rt + 1) |
| return Error(Operands[3]->getStartLoc(), |
| "destination operands must be sequential"); |
| return false; |
| } |
| case ARM::STRD: { |
| // Rt2 must be Rt + 1. |
| unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); |
| unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); |
| if (Rt2 != Rt + 1) |
| return Error(Operands[3]->getStartLoc(), |
| "source operands must be sequential"); |
| return false; |
| } |
| case ARM::STRD_PRE: |
| case ARM::STRD_POST: |
| case ARM::STREXD: { |
| // Rt2 must be Rt + 1. |
| unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); |
| unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); |
| if (Rt2 != Rt + 1) |
| return Error(Operands[3]->getStartLoc(), |
| "source operands must be sequential"); |
| return false; |
| } |
| case ARM::SBFX: |
| case ARM::UBFX: { |
| // width must be in range [1, 32-lsb] |
| unsigned lsb = Inst.getOperand(2).getImm(); |
| unsigned widthm1 = Inst.getOperand(3).getImm(); |
| if (widthm1 >= 32 - lsb) |
| return Error(Operands[5]->getStartLoc(), |
| "bitfield width must be in range [1,32-lsb]"); |
| return false; |
| } |
| case ARM::tLDMIA: { |
| // If we're parsing Thumb2, the .w variant is available and handles |
| // most cases that are normally illegal for a Thumb1 LDM |
| // instruction. We'll make the transformation in processInstruction() |
| // if necessary. |
| // |
| // Thumb LDM instructions are writeback iff the base register is not |
| // in the register list. |
| unsigned Rn = Inst.getOperand(0).getReg(); |
| bool hasWritebackToken = |
| (static_cast<ARMOperand*>(Operands[3])->isToken() && |
| static_cast<ARMOperand*>(Operands[3])->getToken() == "!"); |
| bool listContainsBase; |
| if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo()) |
| return Error(Operands[3 + hasWritebackToken]->getStartLoc(), |
| "registers must be in range r0-r7"); |
| // If we should have writeback, then there should be a '!' token. |
| if (!listContainsBase && !hasWritebackToken && !isThumbTwo()) |
| return Error(Operands[2]->getStartLoc(), |
| "writeback operator '!' expected"); |
| // If we should not have writeback, there must not be a '!'. This is |
| // true even for the 32-bit wide encodings. |
| if (listContainsBase && hasWritebackToken) |
| return Error(Operands[3]->getStartLoc(), |
| "writeback operator '!' not allowed when base register " |
| "in register list"); |
| |
| break; |
| } |
| case ARM::t2LDMIA_UPD: { |
| if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) |
| return Error(Operands[4]->getStartLoc(), |
| "writeback operator '!' not allowed when base register " |
| "in register list"); |
| break; |
| } |
| case ARM::tMUL: { |
| // The second source operand must be the same register as the destination |
| // operand. |
| // |
| // In this case, we must directly check the parsed operands because the |
| // cvtThumbMultiply() function is written in such a way that it guarantees |
| // this first statement is always true for the new Inst. Essentially, the |
| // destination is unconditionally copied into the second source operand |
| // without checking to see if it matches what we actually parsed. |
| if (Operands.size() == 6 && |
| (((ARMOperand*)Operands[3])->getReg() != |
| ((ARMOperand*)Operands[5])->getReg()) && |
| (((ARMOperand*)Operands[3])->getReg() != |
| ((ARMOperand*)Operands[4])->getReg())) { |
| return Error(Operands[3]->getStartLoc(), |
| "destination register must match source register"); |
| } |
| break; |
| } |
| // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, |
| // so only issue a diagnostic for thumb1. The instructions will be |
| // switched to the t2 encodings in processInstruction() if necessary. |
| case ARM::tPOP: { |
| bool listContainsBase; |
| if (checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase) && |
| !isThumbTwo()) |
| return Error(Operands[2]->getStartLoc(), |
| "registers must be in range r0-r7 or pc"); |
| break; |
| } |
| case ARM::tPUSH: { |
| bool listContainsBase; |
| if (checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase) && |
| !isThumbTwo()) |
| return Error(Operands[2]->getStartLoc(), |
| "registers must be in range r0-r7 or lr"); |
| break; |
| } |
| case ARM::tSTMIA_UPD: { |
| bool listContainsBase; |
| if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase) && !isThumbTwo()) |
| return Error(Operands[4]->getStartLoc(), |
| "registers must be in range r0-r7"); |
| break; |
| } |
| case ARM::tADDrSP: { |
| // If the non-SP source operand and the destination operand are not the |
| // same, we need thumb2 (for the wide encoding), or we have an error. |
| if (!isThumbTwo() && |
| Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { |
| return Error(Operands[4]->getStartLoc(), |
| "source register must be the same as destination"); |
| } |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { |
| switch(Opc) { |
| default: llvm_unreachable("unexpected opcode!"); |
| // VST1LN |
| case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; |
| case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; |
| case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; |
| case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; |
| case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; |
| case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; |
| case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; |
| case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; |
| case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; |
| |
| // VST2LN |
| case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; |
| case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; |
| case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; |
| case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; |
| case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; |
| |
| case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; |
| case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; |
| case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; |
| case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; |
| case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; |
| |
| case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; |
| case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; |
| case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; |
| case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; |
| case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; |
| |
| // VST3LN |
| case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; |
| case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; |
| case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; |
| case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; |
| case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; |
| case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; |
| case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; |
| case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; |
| case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; |
| case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; |
| case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; |
| case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; |
| case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; |
| case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; |
| case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; |
| |
| // VST3 |
| case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; |
| case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; |
| case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; |
| case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; |
| case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; |
| case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; |
| case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; |
| case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; |
| case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; |
| case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; |
| case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; |
| case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; |
| case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; |
| case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; |
| case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; |
| case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; |
| case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; |
| case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; |
| |
| // VST4LN |
| case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; |
| case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; |
| case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; |
| case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; |
| case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; |
| case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; |
| case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; |
| case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; |
| case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; |
| case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; |
| case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; |
| case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; |
| case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; |
| case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; |
| case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; |
| |
| // VST4 |
| case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; |
| case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; |
| case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; |
| case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; |
| case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; |
| case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; |
| case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; |
| case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; |
| case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; |
| case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; |
| case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; |
| case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; |
| case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; |
| case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; |
| case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; |
| case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; |
| case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; |
| case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; |
| } |
| } |
| |
| static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { |
| switch(Opc) { |
| default: llvm_unreachable("unexpected opcode!"); |
| // VLD1LN |
| case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; |
| case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; |
| case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; |
| case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; |
| case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; |
| case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; |
| case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; |
| case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; |
| case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; |
| |
| // VLD2LN |
| case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; |
| case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; |
| case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; |
| case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; |
| case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; |
| case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; |
| case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; |
| case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; |
| case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; |
| case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; |
| case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; |
| case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; |
| case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; |
| case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; |
| case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; |
| |
| // VLD3DUP |
| case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; |
| case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; |
| case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; |
| case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; |
| case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD; |
| case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; |
| case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; |
| case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; |
| case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; |
| case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; |
| case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; |
| case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; |
| case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; |
| case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; |
| case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; |
| case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; |
| case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; |
| case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; |
| |
| // VLD3LN |
| case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; |
| case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; |
| case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; |
| case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; |
| case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; |
| case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; |
| case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; |
| case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; |
| case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; |
| case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; |
| case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; |
| case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; |
| case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; |
| case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; |
| case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; |
| |
| // VLD3 |
| case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; |
| case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; |
| case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; |
| case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; |
| case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; |
| case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; |
| case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; |
| case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; |
| case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; |
| case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; |
| case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; |
| case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; |
| case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; |
| case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; |
| case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; |
| case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; |
| case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; |
| case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; |
| |
| // VLD4LN |
| case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; |
| case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; |
| case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; |
| case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD; |
| case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; |
| case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; |
| case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; |
| case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; |
| case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; |
| case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; |
| case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; |
| case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; |
| case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; |
| case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; |
| case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; |
| |
| // VLD4DUP |
| case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; |
| case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; |
| case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; |
| case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; |
| case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; |
| case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; |
| case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; |
| case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; |
| case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; |
| case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; |
| case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; |
| case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; |
| case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; |
| case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; |
| case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; |
| case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; |
| case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; |
| case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; |
| |
| // VLD4 |
| case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; |
| case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; |
| case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; |
| case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; |
| case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; |
| case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; |
| case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; |
| case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; |
| case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; |
| case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; |
| case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; |
| case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; |
| case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; |
| case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; |
| case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; |
| case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; |
| case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; |
| case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; |
| } |
| } |
| |
| bool ARMAsmParser:: |
| processInstruction(MCInst &Inst, |
| const SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| switch (Inst.getOpcode()) { |
| // Alias for alternate form of 'ADR Rd, #imm' instruction. |
| case ARM::ADDri: { |
| if (Inst.getOperand(1).getReg() != ARM::PC || |
| Inst.getOperand(5).getReg() != 0) |
| return false; |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::ADR); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| // Aliases for alternate PC+imm syntax of LDR instructions. |
| case ARM::t2LDRpcrel: |
| Inst.setOpcode(ARM::t2LDRpci); |
| return true; |
| case ARM::t2LDRBpcrel: |
| Inst.setOpcode(ARM::t2LDRBpci); |
| return true; |
| case ARM::t2LDRHpcrel: |
| Inst.setOpcode(ARM::t2LDRHpci); |
| return true; |
| case ARM::t2LDRSBpcrel: |
| Inst.setOpcode(ARM::t2LDRSBpci); |
| return true; |
| case ARM::t2LDRSHpcrel: |
| Inst.setOpcode(ARM::t2LDRSHpci); |
| return true; |
| // Handle NEON VST complex aliases. |
| case ARM::VST1LNdWB_register_Asm_8: |
| case ARM::VST1LNdWB_register_Asm_16: |
| case ARM::VST1LNdWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST2LNdWB_register_Asm_8: |
| case ARM::VST2LNdWB_register_Asm_16: |
| case ARM::VST2LNdWB_register_Asm_32: |
| case ARM::VST2LNqWB_register_Asm_16: |
| case ARM::VST2LNqWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST3LNdWB_register_Asm_8: |
| case ARM::VST3LNdWB_register_Asm_16: |
| case ARM::VST3LNdWB_register_Asm_32: |
| case ARM::VST3LNqWB_register_Asm_16: |
| case ARM::VST3LNqWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST4LNdWB_register_Asm_8: |
| case ARM::VST4LNdWB_register_Asm_16: |
| case ARM::VST4LNdWB_register_Asm_32: |
| case ARM::VST4LNqWB_register_Asm_16: |
| case ARM::VST4LNqWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST1LNdWB_fixed_Asm_8: |
| case ARM::VST1LNdWB_fixed_Asm_16: |
| case ARM::VST1LNdWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST2LNdWB_fixed_Asm_8: |
| case ARM::VST2LNdWB_fixed_Asm_16: |
| case ARM::VST2LNdWB_fixed_Asm_32: |
| case ARM::VST2LNqWB_fixed_Asm_16: |
| case ARM::VST2LNqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST3LNdWB_fixed_Asm_8: |
| case ARM::VST3LNdWB_fixed_Asm_16: |
| case ARM::VST3LNdWB_fixed_Asm_32: |
| case ARM::VST3LNqWB_fixed_Asm_16: |
| case ARM::VST3LNqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST4LNdWB_fixed_Asm_8: |
| case ARM::VST4LNdWB_fixed_Asm_16: |
| case ARM::VST4LNdWB_fixed_Asm_32: |
| case ARM::VST4LNqWB_fixed_Asm_16: |
| case ARM::VST4LNqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST1LNdAsm_8: |
| case ARM::VST1LNdAsm_16: |
| case ARM::VST1LNdAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST2LNdAsm_8: |
| case ARM::VST2LNdAsm_16: |
| case ARM::VST2LNdAsm_32: |
| case ARM::VST2LNqAsm_16: |
| case ARM::VST2LNqAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST3LNdAsm_8: |
| case ARM::VST3LNdAsm_16: |
| case ARM::VST3LNdAsm_32: |
| case ARM::VST3LNqAsm_16: |
| case ARM::VST3LNqAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST4LNdAsm_8: |
| case ARM::VST4LNdAsm_16: |
| case ARM::VST4LNdAsm_32: |
| case ARM::VST4LNqAsm_16: |
| case ARM::VST4LNqAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // Handle NEON VLD complex aliases. |
| case ARM::VLD1LNdWB_register_Asm_8: |
| case ARM::VLD1LNdWB_register_Asm_16: |
| case ARM::VLD1LNdWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD2LNdWB_register_Asm_8: |
| case ARM::VLD2LNdWB_register_Asm_16: |
| case ARM::VLD2LNdWB_register_Asm_32: |
| case ARM::VLD2LNqWB_register_Asm_16: |
| case ARM::VLD2LNqWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3LNdWB_register_Asm_8: |
| case ARM::VLD3LNdWB_register_Asm_16: |
| case ARM::VLD3LNdWB_register_Asm_32: |
| case ARM::VLD3LNqWB_register_Asm_16: |
| case ARM::VLD3LNqWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4LNdWB_register_Asm_8: |
| case ARM::VLD4LNdWB_register_Asm_16: |
| case ARM::VLD4LNdWB_register_Asm_32: |
| case ARM::VLD4LNqWB_register_Asm_16: |
| case ARM::VLD4LNqWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD1LNdWB_fixed_Asm_8: |
| case ARM::VLD1LNdWB_fixed_Asm_16: |
| case ARM::VLD1LNdWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD2LNdWB_fixed_Asm_8: |
| case ARM::VLD2LNdWB_fixed_Asm_16: |
| case ARM::VLD2LNdWB_fixed_Asm_32: |
| case ARM::VLD2LNqWB_fixed_Asm_16: |
| case ARM::VLD2LNqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3LNdWB_fixed_Asm_8: |
| case ARM::VLD3LNdWB_fixed_Asm_16: |
| case ARM::VLD3LNdWB_fixed_Asm_32: |
| case ARM::VLD3LNqWB_fixed_Asm_16: |
| case ARM::VLD3LNqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4LNdWB_fixed_Asm_8: |
| case ARM::VLD4LNdWB_fixed_Asm_16: |
| case ARM::VLD4LNdWB_fixed_Asm_32: |
| case ARM::VLD4LNqWB_fixed_Asm_16: |
| case ARM::VLD4LNqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD1LNdAsm_8: |
| case ARM::VLD1LNdAsm_16: |
| case ARM::VLD1LNdAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD2LNdAsm_8: |
| case ARM::VLD2LNdAsm_16: |
| case ARM::VLD2LNdAsm_32: |
| case ARM::VLD2LNqAsm_16: |
| case ARM::VLD2LNqAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3LNdAsm_8: |
| case ARM::VLD3LNdAsm_16: |
| case ARM::VLD3LNdAsm_32: |
| case ARM::VLD3LNqAsm_16: |
| case ARM::VLD3LNqAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4LNdAsm_8: |
| case ARM::VLD4LNdAsm_16: |
| case ARM::VLD4LNdAsm_32: |
| case ARM::VLD4LNqAsm_16: |
| case ARM::VLD4LNqAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // VLD3DUP single 3-element structure to all lanes instructions. |
| case ARM::VLD3DUPdAsm_8: |
| case ARM::VLD3DUPdAsm_16: |
| case ARM::VLD3DUPdAsm_32: |
| case ARM::VLD3DUPqAsm_8: |
| case ARM::VLD3DUPqAsm_16: |
| case ARM::VLD3DUPqAsm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3DUPdWB_fixed_Asm_8: |
| case ARM::VLD3DUPdWB_fixed_Asm_16: |
| case ARM::VLD3DUPdWB_fixed_Asm_32: |
| case ARM::VLD3DUPqWB_fixed_Asm_8: |
| case ARM::VLD3DUPqWB_fixed_Asm_16: |
| case ARM::VLD3DUPqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3DUPdWB_register_Asm_8: |
| case ARM::VLD3DUPdWB_register_Asm_16: |
| case ARM::VLD3DUPdWB_register_Asm_32: |
| case ARM::VLD3DUPqWB_register_Asm_8: |
| case ARM::VLD3DUPqWB_register_Asm_16: |
| case ARM::VLD3DUPqWB_register_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // Rm |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // VLD3 multiple 3-element structure instructions. |
| case ARM::VLD3dAsm_8: |
| case ARM::VLD3dAsm_16: |
| case ARM::VLD3dAsm_32: |
| case ARM::VLD3qAsm_8: |
| case ARM::VLD3qAsm_16: |
| case ARM::VLD3qAsm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3dWB_fixed_Asm_8: |
| case ARM::VLD3dWB_fixed_Asm_16: |
| case ARM::VLD3dWB_fixed_Asm_32: |
| case ARM::VLD3qWB_fixed_Asm_8: |
| case ARM::VLD3qWB_fixed_Asm_16: |
| case ARM::VLD3qWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3dWB_register_Asm_8: |
| case ARM::VLD3dWB_register_Asm_16: |
| case ARM::VLD3dWB_register_Asm_32: |
| case ARM::VLD3qWB_register_Asm_8: |
| case ARM::VLD3qWB_register_Asm_16: |
| case ARM::VLD3qWB_register_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // Rm |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // VLD4DUP single 3-element structure to all lanes instructions. |
| case ARM::VLD4DUPdAsm_8: |
| case ARM::VLD4DUPdAsm_16: |
| case ARM::VLD4DUPdAsm_32: |
| case ARM::VLD4DUPqAsm_8: |
| case ARM::VLD4DUPqAsm_16: |
| case ARM::VLD4DUPqAsm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4DUPdWB_fixed_Asm_8: |
| case ARM::VLD4DUPdWB_fixed_Asm_16: |
| case ARM::VLD4DUPdWB_fixed_Asm_32: |
| case ARM::VLD4DUPqWB_fixed_Asm_8: |
| case ARM::VLD4DUPqWB_fixed_Asm_16: |
| case ARM::VLD4DUPqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4DUPdWB_register_Asm_8: |
| case ARM::VLD4DUPdWB_register_Asm_16: |
| case ARM::VLD4DUPdWB_register_Asm_32: |
| case ARM::VLD4DUPqWB_register_Asm_8: |
| case ARM::VLD4DUPqWB_register_Asm_16: |
| case ARM::VLD4DUPqWB_register_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // Rm |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // VLD4 multiple 4-element structure instructions. |
| case ARM::VLD4dAsm_8: |
| case ARM::VLD4dAsm_16: |
| case ARM::VLD4dAsm_32: |
| case ARM::VLD4qAsm_8: |
| case ARM::VLD4qAsm_16: |
| case ARM::VLD4qAsm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4dWB_fixed_Asm_8: |
| case ARM::VLD4dWB_fixed_Asm_16: |
| case ARM::VLD4dWB_fixed_Asm_32: |
| case ARM::VLD4qWB_fixed_Asm_8: |
| case ARM::VLD4qWB_fixed_Asm_16: |
| case ARM::VLD4qWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4dWB_register_Asm_8: |
| case ARM::VLD4dWB_register_Asm_16: |
| case ARM::VLD4dWB_register_Asm_32: |
| case ARM::VLD4qWB_register_Asm_8: |
| case ARM::VLD4qWB_register_Asm_16: |
| case ARM::VLD4qWB_register_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // Rm |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // VST3 multiple 3-element structure instructions. |
| case ARM::VST3dAsm_8: |
| case ARM::VST3dAsm_16: |
| case ARM::VST3dAsm_32: |
| case ARM::VST3qAsm_8: |
| case ARM::VST3qAsm_16: |
| case ARM::VST3qAsm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST3dWB_fixed_Asm_8: |
| case ARM::VST3dWB_fixed_Asm_16: |
| case ARM::VST3dWB_fixed_Asm_32: |
| case ARM::VST3qWB_fixed_Asm_8: |
| case ARM::VST3qWB_fixed_Asm_16: |
| case ARM::VST3qWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST3dWB_register_Asm_8: |
| case ARM::VST3dWB_register_Asm_16: |
| case ARM::VST3dWB_register_Asm_32: |
| case ARM::VST3qWB_register_Asm_8: |
| case ARM::VST3qWB_register_Asm_16: |
| case ARM::VST3qWB_register_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // VST4 multiple 3-element structure instructions. |
| case ARM::VST4dAsm_8: |
| case ARM::VST4dAsm_16: |
| case ARM::VST4dAsm_32: |
| case ARM::VST4qAsm_8: |
| case ARM::VST4qAsm_16: |
| case ARM::VST4qAsm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST4dWB_fixed_Asm_8: |
| case ARM::VST4dWB_fixed_Asm_16: |
| case ARM::VST4dWB_fixed_Asm_32: |
| case ARM::VST4qWB_fixed_Asm_8: |
| case ARM::VST4qWB_fixed_Asm_16: |
| case ARM::VST4qWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST4dWB_register_Asm_8: |
| case ARM::VST4dWB_register_Asm_16: |
| case ARM::VST4dWB_register_Asm_32: |
| case ARM::VST4qWB_register_Asm_8: |
| case ARM::VST4qWB_register_Asm_16: |
| case ARM::VST4qWB_register_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // Handle encoding choice for the shift-immediate instructions. |
| case ARM::t2LSLri: |
| case ARM::t2LSRri: |
| case ARM::t2ASRri: { |
| if (isARMLowRegister(Inst.getOperand(0).getReg()) && |
| Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && |
| Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && |
| !(static_cast<ARMOperand*>(Operands[3])->isToken() && |
| static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) { |
| unsigned NewOpc; |
| switch (Inst.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode"); |
| case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; |
| case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; |
| case ARM::t2ASRri: NewOpc = ARM::tASRri; break; |
| } |
| // The Thumb1 operands aren't in the same order. Awesome, eh? |
| MCInst TmpInst; |
| TmpInst.setOpcode(NewOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(5)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| return false; |
| } |
| |
| // Handle the Thumb2 mode MOV complex aliases. |
| case ARM::t2MOVsr: |
| case ARM::t2MOVSsr: { |
| // Which instruction to expand to depends on the CCOut operand and |
| // whether we're in an IT block if the register operands are low |
| // registers. |
| bool isNarrow = false; |
| if (isARMLowRegister(Inst.getOperand(0).getReg()) && |
| isARMLowRegister(Inst.getOperand(1).getReg()) && |
| isARMLowRegister(Inst.getOperand(2).getReg()) && |
| Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && |
| inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) |
| isNarrow = true; |
| MCInst TmpInst; |
| unsigned newOpc; |
| switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { |
| default: llvm_unreachable("unexpected opcode!"); |
| case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; |
| case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; |
| case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; |
| case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; |
| } |
| TmpInst.setOpcode(newOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rd |
| if (isNarrow) |
| TmpInst.addOperand(MCOperand::CreateReg( |
| Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // Rm |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| if (!isNarrow) |
| TmpInst.addOperand(MCOperand::CreateReg( |
| Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::t2MOVsi: |
| case ARM::t2MOVSsi: { |
| // Which instruction to expand to depends on the CCOut operand and |
| // whether we're in an IT block if the register operands are low |
| // registers. |
| bool isNarrow = false; |
| if (isARMLowRegister(Inst.getOperand(0).getReg()) && |
| isARMLowRegister(Inst.getOperand(1).getReg()) && |
| inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) |
| isNarrow = true; |
| MCInst TmpInst; |
| unsigned newOpc; |
| switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { |
| default: llvm_unreachable("unexpected opcode!"); |
| case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; |
| case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; |
| case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; |
| case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; |
| case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; |
| } |
| unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); |
| if (Amount == 32) Amount = 0; |
| TmpInst.setOpcode(newOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rd |
| if (isNarrow) |
| TmpInst.addOperand(MCOperand::CreateReg( |
| Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| if (newOpc != ARM::t2RRX) |
| TmpInst.addOperand(MCOperand::CreateImm(Amount)); |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| if (!isNarrow) |
| TmpInst.addOperand(MCOperand::CreateReg( |
| Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); |
| Inst = TmpInst; |
| return true; |
| } |
| // Handle the ARM mode MOV complex aliases. |
| case ARM::ASRr: |
| case ARM::LSRr: |
| case ARM::LSLr: |
| case ARM::RORr: { |
| ARM_AM::ShiftOpc ShiftTy; |
| switch(Inst.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode!"); |
| case ARM::ASRr: ShiftTy = ARM_AM::asr; break; |
| case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; |
| case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; |
| case ARM::RORr: ShiftTy = ARM_AM::ror; break; |
| } |
| unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::MOVsr); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rd |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // Rm |
| TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| TmpInst.addOperand(Inst.getOperand(5)); // cc_out |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::ASRi: |
| case ARM::LSRi: |
| case ARM::LSLi: |
| case ARM::RORi: { |
| ARM_AM::ShiftOpc ShiftTy; |
| switch(Inst.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode!"); |
| case ARM::ASRi: ShiftTy = ARM_AM::asr; break; |
| case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; |
| case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; |
| case ARM::RORi: ShiftTy = ARM_AM::ror; break; |
| } |
| // A shift by zero is a plain MOVr, not a MOVsi. |
| unsigned Amt = Inst.getOperand(2).getImm(); |
| unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; |
| // A shift by 32 should be encoded as 0 when permitted |
| if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) |
| Amt = 0; |
| unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); |
| MCInst TmpInst; |
| TmpInst.setOpcode(Opc); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rd |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| if (Opc == ARM::MOVsi) |
| TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| TmpInst.addOperand(Inst.getOperand(5)); // cc_out |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::RRXi: { |
| unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::MOVsi); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rd |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty |
| TmpInst.addOperand(Inst.getOperand(2)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); // cc_out |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::t2LDMIA_UPD: { |
| // If this is a load of a single register, then we should use |
| // a post-indexed LDR instruction instead, per the ARM ARM. |
| if (Inst.getNumOperands() != 5) |
| return false; |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::t2LDR_POST); |
| TmpInst.addOperand(Inst.getOperand(4)); // Rt |
| TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(MCOperand::CreateImm(4)); |
| TmpInst.addOperand(Inst.getOperand(2)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::t2STMDB_UPD: { |
| // If this is a store of a single register, then we should use |
| // a pre-indexed STR instruction instead, per the ARM ARM. |
| if (Inst.getNumOperands() != 5) |
| return false; |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::t2STR_PRE); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(4)); // Rt |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(MCOperand::CreateImm(-4)); |
| TmpInst.addOperand(Inst.getOperand(2)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::LDMIA_UPD: |
| // If this is a load of a single register via a 'pop', then we should use |
| // a post-indexed LDR instruction instead, per the ARM ARM. |
| if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" && |
| Inst.getNumOperands() == 5) { |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::LDR_POST_IMM); |
| TmpInst.addOperand(Inst.getOperand(4)); // Rt |
| TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(MCOperand::CreateReg(0)); // am2offset |
| TmpInst.addOperand(MCOperand::CreateImm(4)); |
| TmpInst.addOperand(Inst.getOperand(2)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| return true; |
| } |
| break; |
| case ARM::STMDB_UPD: |
| // If this is a store of a single register via a 'push', then we should use |
| // a pre-indexed STR instruction instead, per the ARM ARM. |
| if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" && |
| Inst.getNumOperands() == 5) { |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::STR_PRE_IMM); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(4)); // Rt |
| TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 |
| TmpInst.addOperand(MCOperand::CreateImm(-4)); |
| TmpInst.addOperand(Inst.getOperand(2)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| } |
| break; |
| case ARM::t2ADDri12: |
| // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" |
| // mnemonic was used (not "addw"), encoding T3 is preferred. |
| if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" || |
| ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) |
| break; |
| Inst.setOpcode(ARM::t2ADDri); |
| Inst.addOperand(MCOperand::CreateReg(0)); // cc_out |
| break; |
| case ARM::t2SUBri12: |
| // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" |
| // mnemonic was used (not "subw"), encoding T3 is preferred. |
| if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" || |
| ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) |
| break; |
| Inst.setOpcode(ARM::t2SUBri); |
| Inst.addOperand(MCOperand::CreateReg(0)); // cc_out |
| break; |
| case ARM::tADDi8: |
| // If the immediate is in the range 0-7, we want tADDi3 iff Rd was |
| // explicitly specified. From the ARM ARM: "Encoding T1 is preferred |
| // to encoding T2 if <Rd> is specified and encoding T2 is preferred |
| // to encoding T1 if <Rd> is omitted." |
| if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { |
| Inst.setOpcode(ARM::tADDi3); |
| return true; |
| } |
| break; |
| case ARM::tSUBi8: |
| // If the immediate is in the range 0-7, we want tADDi3 iff Rd was |
| // explicitly specified. From the ARM ARM: "Encoding T1 is preferred |
| // to encoding T2 if <Rd> is specified and encoding T2 is preferred |
| // to encoding T1 if <Rd> is omitted." |
| if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { |
| Inst.setOpcode(ARM::tSUBi3); |
| return true; |
| } |
| break; |
| case ARM::t2ADDri: |
| case ARM::t2SUBri: { |
| // If the destination and first source operand are the same, and |
| // the flags are compatible with the current IT status, use encoding T2 |
| // instead of T3. For compatibility with the system 'as'. Make sure the |
| // wide encoding wasn't explicit. |
| if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || |
| !isARMLowRegister(Inst.getOperand(0).getReg()) || |
| (unsigned)Inst.getOperand(2).getImm() > 255 || |
| ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || |
| (inITBlock() && Inst.getOperand(5).getReg() != 0)) || |
| (static_cast<ARMOperand*>(Operands[3])->isToken() && |
| static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) |
| break; |
| MCInst TmpInst; |
| TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? |
| ARM::tADDi8 : ARM::tSUBi8); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(5)); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::t2ADDrr: { |
| // If the destination and first source operand are the same, and |
| // there's no setting of the flags, use encoding T2 instead of T3. |
| // Note that this is only for ADD, not SUB. This mirrors the system |
| // 'as' behaviour. Make sure the wide encoding wasn't explicit. |
| if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || |
| Inst.getOperand(5).getReg() != 0 || |
| (static_cast<ARMOperand*>(Operands[3])->isToken() && |
| static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) |
| break; |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::tADDhirr); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::tADDrSP: { |
| // If the non-SP source operand and the destination operand are not the |
| // same, we need to use the 32-bit encoding if it's available. |
| if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { |
| Inst.setOpcode(ARM::t2ADDrr); |
| Inst.addOperand(MCOperand::CreateReg(0)); // cc_out |
| return true; |
| } |
| break; |
| } |
| case ARM::tB: |
| // A Thumb conditional branch outside of an IT block is a tBcc. |
| if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { |
| Inst.setOpcode(ARM::tBcc); |
| return true; |
| } |
| break; |
| case ARM::t2B: |
| // A Thumb2 conditional branch outside of an IT block is a t2Bcc. |
| if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ |
| Inst.setOpcode(ARM::t2Bcc); |
| return true; |
| } |
| break; |
| case ARM::t2Bcc: |
| // If the conditional is AL or we're in an IT block, we really want t2B. |
| if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { |
| Inst.setOpcode(ARM::t2B); |
| return true; |
| } |
| break; |
| case ARM::tBcc: |
| // If the conditional is AL, we really want tB. |
| if (Inst.getOperand(1).getImm() == ARMCC::AL) { |
| Inst.setOpcode(ARM::tB); |
| return true; |
| } |
| break; |
| case ARM::tLDMIA: { |
| // If the register list contains any high registers, or if the writeback |
| // doesn't match what tLDMIA can do, we need to use the 32-bit encoding |
| // instead if we're in Thumb2. Otherwise, this should have generated |
| // an error in validateInstruction(). |
| unsigned Rn = Inst.getOperand(0).getReg(); |
| bool hasWritebackToken = |
| (static_cast<ARMOperand*>(Operands[3])->isToken() && |
| static_cast<ARMOperand*>(Operands[3])->getToken() == "!"); |
| bool listContainsBase; |
| if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || |
| (!listContainsBase && !hasWritebackToken) || |
| (listContainsBase && hasWritebackToken)) { |
| // 16-bit encoding isn't sufficient. Switch to the 32-bit version. |
| assert (isThumbTwo()); |
| Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); |
| // If we're switching to the updating version, we need to insert |
| // the writeback tied operand. |
| if (hasWritebackToken) |
| Inst.insert(Inst.begin(), |
| MCOperand::CreateReg(Inst.getOperand(0).getReg())); |
| return true; |
| } |
| break; |
| } |
| case ARM::tSTMIA_UPD: { |
| // If the register list contains any high registers, we need to use |
| // the 32-bit encoding instead if we're in Thumb2. Otherwise, this |
| // should have generated an error in validateInstruction(). |
| unsigned Rn = Inst.getOperand(0).getReg(); |
| bool listContainsBase; |
| if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { |
| // 16-bit encoding isn't sufficient. Switch to the 32-bit version. |
| assert (isThumbTwo()); |
| Inst.setOpcode(ARM::t2STMIA_UPD); |
| return true; |
| } |
| break; |
| } |
| case ARM::tPOP: { |
| bool listContainsBase; |
| // If the register list contains any high registers, we need to use |
| // the 32-bit encoding instead if we're in Thumb2. Otherwise, this |
| // should have generated an error in validateInstruction(). |
| if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) |
| return false; |
| assert (isThumbTwo()); |
| Inst.setOpcode(ARM::t2LDMIA_UPD); |
| // Add the base register and writeback operands. |
| Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP)); |
| Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP)); |
| return true; |
| } |
| case ARM::tPUSH: { |
| bool listContainsBase; |
| if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) |
| return false; |
| assert (isThumbTwo()); |
| Inst.setOpcode(ARM::t2STMDB_UPD); |
| // Add the base register and writeback operands. |
| Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP)); |
| Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP)); |
| return true; |
| } |
| case ARM::t2MOVi: { |
| // If we can use the 16-bit encoding and the user didn't explicitly |
| // request the 32-bit variant, transform it here. |
| if (isARMLowRegister(Inst.getOperand(0).getReg()) && |
| (unsigned)Inst.getOperand(1).getImm() <= 255 && |
| ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && |
| Inst.getOperand(4).getReg() == ARM::CPSR) || |
| (inITBlock() && Inst.getOperand(4).getReg() == 0)) && |
| (!static_cast<ARMOperand*>(Operands[2])->isToken() || |
| static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) { |
| // The operands aren't in the same order for tMOVi8... |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::tMOVi8); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| return true; |
| } |
| break; |
| } |
| case ARM::t2MOVr: { |
| // If we can use the 16-bit encoding and the user didn't explicitly |
| // request the 32-bit variant, transform it here. |
| if (isARMLowRegister(Inst.getOperand(0).getReg()) && |
| isARMLowRegister(Inst.getOperand(1).getReg()) && |
| Inst.getOperand(2).getImm() == ARMCC::AL && |
| Inst.getOperand(4).getReg() == ARM::CPSR && |
| (!static_cast<ARMOperand*>(Operands[2])->isToken() || |
| static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) { |
| // The operands aren't the same for tMOV[S]r... (no cc_out) |
| MCInst TmpInst; |
| TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| return true; |
| } |
| break; |
| } |
| case ARM::t2SXTH: |
| case ARM::t2SXTB: |
| case ARM::t2UXTH: |
| case ARM::t2UXTB: { |
| // If we can use the 16-bit encoding and the user didn't explicitly |
| // request the 32-bit variant, transform it here. |
| if (isARMLowRegister(Inst.getOperand(0).getReg()) && |
| isARMLowRegister(Inst.getOperand(1).getReg()) && |
| Inst.getOperand(2).getImm() == 0 && |
| (!static_cast<ARMOperand*>(Operands[2])->isToken() || |
| static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) { |
| unsigned NewOpc; |
| switch (Inst.getOpcode()) { |
| default: llvm_unreachable("Illegal opcode!"); |
| case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; |
| case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; |
| case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; |
| case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; |
| } |
| // The operands aren't the same for thumb1 (no rotate operand). |
| MCInst TmpInst; |
| TmpInst.setOpcode(NewOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| break; |
| } |
| case ARM::MOVsi: { |
| ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); |
| // rrx shifts and asr/lsr of #32 is encoded as 0 |
| if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) |
| return false; |
| if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { |
| // Shifting by zero is accepted as a vanilla 'MOVr' |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::MOVr); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| return false; |
| } |
| case ARM::ANDrsi: |
| case ARM::ORRrsi: |
| case ARM::EORrsi: |
| case ARM::BICrsi: |
| case ARM::SUBrsi: |
| case ARM::ADDrsi: { |
| unsigned newOpc; |
| ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); |
| if (SOpc == ARM_AM::rrx) return false; |
| switch (Inst.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode!"); |
| case ARM::ANDrsi: newOpc = ARM::ANDrr; break; |
| case ARM::ORRrsi: newOpc = ARM::ORRrr; break; |
| case ARM::EORrsi: newOpc = ARM::EORrr; break; |
| case ARM::BICrsi: newOpc = ARM::BICrr; break; |
| case ARM::SUBrsi: newOpc = ARM::SUBrr; break; |
| case ARM::ADDrsi: newOpc = ARM::ADDrr; break; |
| } |
| // If the shift is by zero, use the non-shifted instruction definition. |
| // The exception is for right shifts, where 0 == 32 |
| if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && |
| !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { |
| MCInst TmpInst; |
| TmpInst.setOpcode(newOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| TmpInst.addOperand(Inst.getOperand(5)); |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| return false; |
| } |
| case ARM::ITasm: |
| case ARM::t2IT: { |
| // The mask bits for all but the first condition are represented as |
| // the low bit of the condition code value implies 't'. We currently |
| // always have 1 implies 't', so XOR toggle the bits if the low bit |
| // of the condition code is zero. |
| MCOperand &MO = Inst.getOperand(1); |
| unsigned Mask = MO.getImm(); |
| unsigned OrigMask = Mask; |
| unsigned TZ = CountTrailingZeros_32(Mask); |
| if ((Inst.getOperand(0).getImm() & 1) == 0) { |
| assert(Mask && TZ <= 3 && "illegal IT mask value!"); |
| for (unsigned i = 3; i != TZ; --i) |
| Mask ^= 1 << i; |
| } |
| MO.setImm(Mask); |
| |
| // Set up the IT block state according to the IT instruction we just |
| // matched. |
| assert(!inITBlock() && "nested IT blocks?!"); |
| ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); |
| ITState.Mask = OrigMask; // Use the original mask, not the updated one. |
| ITState.CurPosition = 0; |
| ITState.FirstCond = true; |
| break; |
| } |
| case ARM::t2LSLrr: |
| case ARM::t2LSRrr: |
| case ARM::t2ASRrr: |
| case ARM::t2SBCrr: |
| case ARM::t2RORrr: |
| case ARM::t2BICrr: |
| { |
| // Assemblers should use the narrow encodings of these instructions when permissible. |
| if ((isARMLowRegister(Inst.getOperand(1).getReg()) && |
| isARMLowRegister(Inst.getOperand(2).getReg())) && |
| Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && |
| ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || |
| (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && |
| (!static_cast<ARMOperand*>(Operands[3])->isToken() || |
| !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) { |
| unsigned NewOpc; |
| switch (Inst.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode"); |
| case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; |
| case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; |
| case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; |
| case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; |
| case ARM::t2RORrr: NewOpc = ARM::tROR; break; |
| case ARM::t2BICrr: NewOpc = ARM::tBIC; break; |
| } |
| MCInst TmpInst; |
| TmpInst.setOpcode(NewOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(5)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| return false; |
| } |
| case ARM::t2ANDrr: |
| case ARM::t2EORrr: |
| case ARM::t2ADCrr: |
| case ARM::t2ORRrr: |
| { |
| // Assemblers should use the narrow encodings of these instructions when permissible. |
| // These instructions are special in that they are commutable, so shorter encodings |
| // are available more often. |
| if ((isARMLowRegister(Inst.getOperand(1).getReg()) && |
| isARMLowRegister(Inst.getOperand(2).getReg())) && |
| (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || |
| Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && |
| ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || |
| (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && |
| (!static_cast<ARMOperand*>(Operands[3])->isToken() || |
| !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) { |
| unsigned NewOpc; |
| switch (Inst.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode"); |
| case ARM::t2ADCrr: NewOpc = ARM::tADC; break; |
| case ARM::t2ANDrr: NewOpc = ARM::tAND; break; |
| case ARM::t2EORrr: NewOpc = ARM::tEOR; break; |
| case ARM::t2ORRrr: NewOpc = ARM::tORR; break; |
| } |
| MCInst TmpInst; |
| TmpInst.setOpcode(NewOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(5)); |
| if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| } else { |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| } |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| return false; |
| } |
| } |
| return false; |
| } |
| |
| unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { |
| // 16-bit thumb arithmetic instructions either require or preclude the 'S' |
| // suffix depending on whether they're in an IT block or not. |
| unsigned Opc = Inst.getOpcode(); |
| const MCInstrDesc &MCID = getInstDesc(Opc); |
| if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { |
| assert(MCID.hasOptionalDef() && |
| "optionally flag setting instruction missing optional def operand"); |
| assert(MCID.NumOperands == Inst.getNumOperands() && |
| "operand count mismatch!"); |
| // Find the optional-def operand (cc_out). |
| unsigned OpNo; |
| for (OpNo = 0; |
| !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; |
| ++OpNo) |
| ; |
| // If we're parsing Thumb1, reject it completely. |
| if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) |
| return Match_MnemonicFail; |
| // If we're parsing Thumb2, which form is legal depends on whether we're |
| // in an IT block. |
| if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && |
| !inITBlock()) |
| return Match_RequiresITBlock; |
| if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && |
| inITBlock()) |
| return Match_RequiresNotITBlock; |
| } |
| // Some high-register supporting Thumb1 encodings only allow both registers |
| // to be from r0-r7 when in Thumb2. |
| else if (Opc == ARM::tADDhirr && isThumbOne() && |
| isARMLowRegister(Inst.getOperand(1).getReg()) && |
| isARMLowRegister(Inst.getOperand(2).getReg())) |
| return Match_RequiresThumb2; |
| // Others only require ARMv6 or later. |
| else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() && |
| isARMLowRegister(Inst.getOperand(0).getReg()) && |
| isARMLowRegister(Inst.getOperand(1).getReg())) |
| return Match_RequiresV6; |
| return Match_Success; |
| } |
| |
| static const char *getSubtargetFeatureName(unsigned Val); |
| bool ARMAsmParser:: |
| MatchAndEmitInstruction(SMLoc IDLoc, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands, |
| MCStreamer &Out) { |
| MCInst Inst; |
| unsigned Kind; |
| unsigned ErrorInfo; |
| unsigned MatchResult; |
| |
| MatchResult = MatchInstructionImpl(Operands, Kind, Inst, ErrorInfo); |
| switch (MatchResult) { |
| default: break; |
| case Match_Success: |
| // Context sensitive operand constraints aren't handled by the matcher, |
| // so check them here. |
| if (validateInstruction(Inst, Operands)) { |
| // Still progress the IT block, otherwise one wrong condition causes |
| // nasty cascading errors. |
| forwardITPosition(); |
| return true; |
| } |
| |
| // Some instructions need post-processing to, for example, tweak which |
| // encoding is selected. Loop on it while changes happen so the |
| // individual transformations can chain off each other. E.g., |
| // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) |
| while (processInstruction(Inst, Operands)) |
| ; |
| |
| // Only move forward at the very end so that everything in validate |
| // and process gets a consistent answer about whether we're in an IT |
| // block. |
| forwardITPosition(); |
| |
| // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and |
| // doesn't actually encode. |
| if (Inst.getOpcode() == ARM::ITasm) |
| return false; |
| |
| Inst.setLoc(IDLoc); |
| Out.EmitInstruction(Inst); |
| return false; |
| case Match_MissingFeature: { |
| assert(ErrorInfo && "Unknown missing feature!"); |
| // Special case the error message for the very common case where only |
| // a single subtarget feature is missing (Thumb vs. ARM, e.g.). |
| std::string Msg = "instruction requires:"; |
| unsigned Mask = 1; |
| for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { |
| if (ErrorInfo & Mask) { |
| Msg += " "; |
| Msg += getSubtargetFeatureName(ErrorInfo & Mask); |
| } |
| Mask <<= 1; |
| } |
| return Error(IDLoc, Msg); |
| } |
| case Match_InvalidOperand: { |
| SMLoc ErrorLoc = IDLoc; |
| if (ErrorInfo != ~0U) { |
| if (ErrorInfo >= Operands.size()) |
| return Error(IDLoc, "too few operands for instruction"); |
| |
| ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc(); |
| if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; |
| } |
| |
| return Error(ErrorLoc, "invalid operand for instruction"); |
| } |
| case Match_MnemonicFail: |
| return Error(IDLoc, "invalid instruction", |
| ((ARMOperand*)Operands[0])->getLocRange()); |
| case Match_RequiresNotITBlock: |
| return Error(IDLoc, "flag setting instruction only valid outside IT block"); |
| case Match_RequiresITBlock: |
| return Error(IDLoc, "instruction only valid inside IT block"); |
| case Match_RequiresV6: |
| return Error(IDLoc, "instruction variant requires ARMv6 or later"); |
| case Match_RequiresThumb2: |
| return Error(IDLoc, "instruction variant requires Thumb2"); |
| case Match_ImmRange0_15: { |
| SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc(); |
| if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; |
| return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); |
| } |
| } |
| |
| llvm_unreachable("Implement any new match types added!"); |
| } |
| |
| /// parseDirective parses the arm specific directives |
| bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { |
| StringRef IDVal = DirectiveID.getIdentifier(); |
| if (IDVal == ".word") |
| return parseDirectiveWord(4, DirectiveID.getLoc()); |
| else if (IDVal == ".thumb") |
| return parseDirectiveThumb(DirectiveID.getLoc()); |
| else if (IDVal == ".arm") |
| return parseDirectiveARM(DirectiveID.getLoc()); |
| else if (IDVal == ".thumb_func") |
| return parseDirectiveThumbFunc(DirectiveID.getLoc()); |
| else if (IDVal == ".code") |
| return parseDirectiveCode(DirectiveID.getLoc()); |
| else if (IDVal == ".syntax") |
| return parseDirectiveSyntax(DirectiveID.getLoc()); |
| else if (IDVal == ".unreq") |
| return parseDirectiveUnreq(DirectiveID.getLoc()); |
| else if (IDVal == ".arch") |
| return parseDirectiveArch(DirectiveID.getLoc()); |
| else if (IDVal == ".eabi_attribute") |
| return parseDirectiveEabiAttr(DirectiveID.getLoc()); |
| return true; |
| } |
| |
| /// parseDirectiveWord |
| /// ::= .word [ expression (, expression)* ] |
| bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) { |
| if (getLexer().isNot(AsmToken::EndOfStatement)) { |
| for (;;) { |
| const MCExpr *Value; |
| if (getParser().ParseExpression(Value)) |
| return true; |
| |
| getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/); |
| |
| if (getLexer().is(AsmToken::EndOfStatement)) |
| break; |
| |
| // FIXME: Improve diagnostic. |
| if (getLexer().isNot(AsmToken::Comma)) |
| return Error(L, "unexpected token in directive"); |
| Parser.Lex(); |
| } |
| } |
| |
| Parser.Lex(); |
| return false; |
| } |
| |
| /// parseDirectiveThumb |
| /// ::= .thumb |
| bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { |
| if (getLexer().isNot(AsmToken::EndOfStatement)) |
| return Error(L, "unexpected token in directive"); |
| Parser.Lex(); |
| |
| if (!isThumb()) |
| SwitchMode(); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); |
| return false; |
| } |
| |
| /// parseDirectiveARM |
| /// ::= .arm |
| bool ARMAsmParser::parseDirectiveARM(SMLoc L) { |
| if (getLexer().isNot(AsmToken::EndOfStatement)) |
| return Error(L, "unexpected token in directive"); |
| Parser.Lex(); |
| |
| if (isThumb()) |
| SwitchMode(); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); |
| return false; |
| } |
| |
| /// parseDirectiveThumbFunc |
| /// ::= .thumbfunc symbol_name |
| bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { |
| const MCAsmInfo &MAI = getParser().getStreamer().getContext().getAsmInfo(); |
| bool isMachO = MAI.hasSubsectionsViaSymbols(); |
| StringRef Name; |
| bool needFuncName = true; |
| |
| // Darwin asm has (optionally) function name after .thumb_func direction |
| // ELF doesn't |
| if (isMachO) { |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::EndOfStatement)) { |
| if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) |
| return Error(L, "unexpected token in .thumb_func directive"); |
| Name = Tok.getIdentifier(); |
| Parser.Lex(); // Consume the identifier token. |
| needFuncName = false; |
| } |
| } |
| |
| if (getLexer().isNot(AsmToken::EndOfStatement)) |
| return Error(L, "unexpected token in directive"); |
| |
| // Eat the end of statement and any blank lines that follow. |
| while (getLexer().is(AsmToken::EndOfStatement)) |
| Parser.Lex(); |
| |
| // FIXME: assuming function name will be the line following .thumb_func |
| // We really should be checking the next symbol definition even if there's |
| // stuff in between. |
| if (needFuncName) { |
| Name = Parser.getTok().getIdentifier(); |
| } |
| |
| // Mark symbol as a thumb symbol. |
| MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name); |
| getParser().getStreamer().EmitThumbFunc(Func); |
| return false; |
| } |
| |
| /// parseDirectiveSyntax |
| /// ::= .syntax unified | divided |
| bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) |
| return Error(L, "unexpected token in .syntax directive"); |
| StringRef Mode = Tok.getString(); |
| if (Mode == "unified" || Mode == "UNIFIED") |
| Parser.Lex(); |
| else if (Mode == "divided" || Mode == "DIVIDED") |
| return Error(L, "'.syntax divided' arm asssembly not supported"); |
| else |
| return Error(L, "unrecognized syntax mode in .syntax directive"); |
| |
| if (getLexer().isNot(AsmToken::EndOfStatement)) |
| return Error(Parser.getTok().getLoc(), "unexpected token in directive"); |
| Parser.Lex(); |
| |
| // TODO tell the MC streamer the mode |
| // getParser().getStreamer().Emit???(); |
| return false; |
| } |
| |
| /// parseDirectiveCode |
| /// ::= .code 16 | 32 |
| bool ARMAsmParser::parseDirectiveCode(SMLoc L) { |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Integer)) |
| return Error(L, "unexpected token in .code directive"); |
| int64_t Val = Parser.getTok().getIntVal(); |
| if (Val == 16) |
| Parser.Lex(); |
| else if (Val == 32) |
| Parser.Lex(); |
| else |
| return Error(L, "invalid operand to .code directive"); |
| |
| if (getLexer().isNot(AsmToken::EndOfStatement)) |
| return Error(Parser.getTok().getLoc(), "unexpected token in directive"); |
| Parser.Lex(); |
| |
| if (Val == 16) { |
| if (!isThumb()) |
| SwitchMode(); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); |
| } else { |
| if (isThumb()) |
| SwitchMode(); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); |
| } |
| |
| return false; |
| } |
| |
| /// parseDirectiveReq |
| /// ::= name .req registername |
| bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { |
| Parser.Lex(); // Eat the '.req' token. |
| unsigned Reg; |
| SMLoc SRegLoc, ERegLoc; |
| if (ParseRegister(Reg, SRegLoc, ERegLoc)) { |
| Parser.EatToEndOfStatement(); |
| return Error(SRegLoc, "register name expected"); |
| } |
| |
| // Shouldn't be anything else. |
| if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { |
| Parser.EatToEndOfStatement(); |
| return Error(Parser.getTok().getLoc(), |
| "unexpected input in .req directive."); |
| } |
| |
| Parser.Lex(); // Consume the EndOfStatement |
| |
| if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg) |
| return Error(SRegLoc, "redefinition of '" + Name + |
| "' does not match original."); |
| |
| return false; |
| } |
| |
| /// parseDirectiveUneq |
| /// ::= .unreq registername |
| bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { |
| if (Parser.getTok().isNot(AsmToken::Identifier)) { |
| Parser.EatToEndOfStatement(); |
| return Error(L, "unexpected input in .unreq directive."); |
| } |
| RegisterReqs.erase(Parser.getTok().getIdentifier()); |
| Parser.Lex(); // Eat the identifier. |
| return false; |
| } |
| |
| /// parseDirectiveArch |
| /// ::= .arch token |
| bool ARMAsmParser::parseDirectiveArch(SMLoc L) { |
| return true; |
| } |
| |
| /// parseDirectiveEabiAttr |
| /// ::= .eabi_attribute int, int |
| bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { |
| return true; |
| } |
| |
| extern "C" void LLVMInitializeARMAsmLexer(); |
| |
| /// Force static initialization. |
| extern "C" void LLVMInitializeARMAsmParser() { |
| RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget); |
| RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget); |
| LLVMInitializeARMAsmLexer(); |
| } |
| |
| #define GET_REGISTER_MATCHER |
| #define GET_SUBTARGET_FEATURE_NAME |
| #define GET_MATCHER_IMPLEMENTATION |
| #include "ARMGenAsmMatcher.inc" |