| //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass eliminates machine instruction PHI nodes by inserting copy |
| // instructions. This destroys SSA information, but is the desired input for |
| // some register allocators. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "phielim" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/Compiler.h" |
| #include <algorithm> |
| #include <map> |
| using namespace llvm; |
| |
| STATISTIC(NumAtomic, "Number of atomic phis lowered"); |
| |
| namespace { |
| class VISIBILITY_HIDDEN PNE : public MachineFunctionPass { |
| MachineRegisterInfo *MRI; // Machine register information |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| PNE() : MachineFunctionPass(&ID) {} |
| |
| virtual bool runOnMachineFunction(MachineFunction &Fn); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addPreserved<LiveVariables>(); |
| AU.addPreservedID(MachineLoopInfoID); |
| AU.addPreservedID(MachineDominatorsID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| private: |
| /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions |
| /// in predecessor basic blocks. |
| /// |
| bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); |
| void LowerAtomicPHINode(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator AfterPHIsIt); |
| |
| /// analyzePHINodes - Gather information about the PHI nodes in |
| /// here. In particular, we want to map the number of uses of a virtual |
| /// register which is used in a PHI node. We map that to the BB the |
| /// vreg is coming from. This is used later to determine when the vreg |
| /// is killed in the BB. |
| /// |
| void analyzePHINodes(const MachineFunction& Fn); |
| |
| // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from |
| // SrcReg. This needs to be after any def or uses of SrcReg, but before |
| // any subsequent point where control flow might jump out of the basic |
| // block. |
| MachineBasicBlock::iterator FindCopyInsertPoint(MachineBasicBlock &MBB, |
| unsigned SrcReg); |
| |
| // SkipPHIsAndLabels - Copies need to be inserted after phi nodes and |
| // also after any exception handling labels: in landing pads execution |
| // starts at the label, so any copies placed before it won't be executed! |
| MachineBasicBlock::iterator SkipPHIsAndLabels(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I) { |
| // Rather than assuming that EH labels come before other kinds of labels, |
| // just skip all labels. |
| while (I != MBB.end() && |
| (I->getOpcode() == TargetInstrInfo::PHI || I->isLabel())) |
| ++I; |
| return I; |
| } |
| |
| typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair; |
| typedef std::map<BBVRegPair, unsigned> VRegPHIUse; |
| |
| VRegPHIUse VRegPHIUseCount; |
| |
| // Defs of PHI sources which are implicit_def. |
| SmallPtrSet<MachineInstr*, 4> ImpDefs; |
| }; |
| } |
| |
| char PNE::ID = 0; |
| static RegisterPass<PNE> |
| X("phi-node-elimination", "Eliminate PHI nodes for register allocation"); |
| |
| const PassInfo *const llvm::PHIEliminationID = &X; |
| |
| bool PNE::runOnMachineFunction(MachineFunction &Fn) { |
| MRI = &Fn.getRegInfo(); |
| |
| analyzePHINodes(Fn); |
| |
| bool Changed = false; |
| |
| // Eliminate PHI instructions by inserting copies into predecessor blocks. |
| for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| Changed |= EliminatePHINodes(Fn, *I); |
| |
| // Remove dead IMPLICIT_DEF instructions. |
| for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(), |
| E = ImpDefs.end(); I != E; ++I) { |
| MachineInstr *DefMI = *I; |
| unsigned DefReg = DefMI->getOperand(0).getReg(); |
| if (MRI->use_empty(DefReg)) |
| DefMI->eraseFromParent(); |
| } |
| |
| ImpDefs.clear(); |
| VRegPHIUseCount.clear(); |
| return Changed; |
| } |
| |
| |
| /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in |
| /// predecessor basic blocks. |
| /// |
| bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) { |
| if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI) |
| return false; // Quick exit for basic blocks without PHIs. |
| |
| // Get an iterator to the first instruction after the last PHI node (this may |
| // also be the end of the basic block). |
| MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin()); |
| |
| while (MBB.front().getOpcode() == TargetInstrInfo::PHI) |
| LowerAtomicPHINode(MBB, AfterPHIsIt); |
| |
| return true; |
| } |
| |
| /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node |
| /// are implicit_def's. |
| static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, |
| const MachineRegisterInfo *MRI) { |
| for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { |
| unsigned SrcReg = MPhi->getOperand(i).getReg(); |
| const MachineInstr *DefMI = MRI->getVRegDef(SrcReg); |
| if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF) |
| return false; |
| } |
| return true; |
| } |
| |
| // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg. |
| // This needs to be after any def or uses of SrcReg, but before any subsequent |
| // point where control flow might jump out of the basic block. |
| MachineBasicBlock::iterator PNE::FindCopyInsertPoint(MachineBasicBlock &MBB, |
| unsigned SrcReg) { |
| // Handle the trivial case trivially. |
| if (MBB.empty()) |
| return MBB.begin(); |
| |
| // If this basic block does not contain an invoke, then control flow always |
| // reaches the end of it, so place the copy there. The logic below works in |
| // this case too, but is more expensive. |
| if (!isa<InvokeInst>(MBB.getBasicBlock()->getTerminator())) |
| return MBB.getFirstTerminator(); |
| |
| // Discover any definition/uses in this basic block. |
| SmallPtrSet<MachineInstr*, 8> DefUsesInMBB; |
| for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg), |
| RE = MRI->reg_end(); RI != RE; ++RI) { |
| MachineInstr *DefUseMI = &*RI; |
| if (DefUseMI->getParent() == &MBB) |
| DefUsesInMBB.insert(DefUseMI); |
| } |
| |
| MachineBasicBlock::iterator InsertPoint; |
| if (DefUsesInMBB.empty()) { |
| // No def/uses. Insert the copy at the start of the basic block. |
| InsertPoint = MBB.begin(); |
| } else if (DefUsesInMBB.size() == 1) { |
| // Insert the copy immediately after the definition/use. |
| InsertPoint = *DefUsesInMBB.begin(); |
| ++InsertPoint; |
| } else { |
| // Insert the copy immediately after the last definition/use. |
| InsertPoint = MBB.end(); |
| while (!DefUsesInMBB.count(&*--InsertPoint)) {} |
| ++InsertPoint; |
| } |
| |
| // Make sure the copy goes after any phi nodes however. |
| return SkipPHIsAndLabels(MBB, InsertPoint); |
| } |
| |
| /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, |
| /// under the assuption that it needs to be lowered in a way that supports |
| /// atomic execution of PHIs. This lowering method is always correct all of the |
| /// time. |
| /// |
| void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator AfterPHIsIt) { |
| // Unlink the PHI node from the basic block, but don't delete the PHI yet. |
| MachineInstr *MPhi = MBB.remove(MBB.begin()); |
| |
| unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; |
| unsigned DestReg = MPhi->getOperand(0).getReg(); |
| bool isDead = MPhi->getOperand(0).isDead(); |
| |
| // Create a new register for the incoming PHI arguments. |
| MachineFunction &MF = *MBB.getParent(); |
| const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); |
| unsigned IncomingReg = 0; |
| |
| // Insert a register to register copy at the top of the current block (but |
| // after any remaining phi nodes) which copies the new incoming register |
| // into the phi node destination. |
| const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); |
| if (isSourceDefinedByImplicitDef(MPhi, MRI)) |
| // If all sources of a PHI node are implicit_def, just emit an |
| // implicit_def instead of a copy. |
| BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), |
| TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg); |
| else { |
| IncomingReg = MF.getRegInfo().createVirtualRegister(RC); |
| TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC); |
| } |
| |
| // Update live variable information if there is any. |
| LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>(); |
| if (LV) { |
| MachineInstr *PHICopy = prior(AfterPHIsIt); |
| |
| if (IncomingReg) { |
| // Increment use count of the newly created virtual register. |
| LV->getVarInfo(IncomingReg).NumUses++; |
| |
| // Add information to LiveVariables to know that the incoming value is |
| // killed. Note that because the value is defined in several places (once |
| // each for each incoming block), the "def" block and instruction fields |
| // for the VarInfo is not filled in. |
| LV->addVirtualRegisterKilled(IncomingReg, PHICopy); |
| } |
| |
| // Since we are going to be deleting the PHI node, if it is the last use of |
| // any registers, or if the value itself is dead, we need to move this |
| // information over to the new copy we just inserted. |
| LV->removeVirtualRegistersKilled(MPhi); |
| |
| // If the result is dead, update LV. |
| if (isDead) { |
| LV->addVirtualRegisterDead(DestReg, PHICopy); |
| LV->removeVirtualRegisterDead(DestReg, MPhi); |
| } |
| } |
| |
| // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. |
| for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) |
| --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(), |
| MPhi->getOperand(i).getReg())]; |
| |
| // Now loop over all of the incoming arguments, changing them to copy into the |
| // IncomingReg register in the corresponding predecessor basic block. |
| SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; |
| for (int i = NumSrcs - 1; i >= 0; --i) { |
| unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); |
| assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && |
| "Machine PHI Operands must all be virtual registers!"); |
| |
| // If source is defined by an implicit def, there is no need to insert a |
| // copy. |
| MachineInstr *DefMI = MRI->getVRegDef(SrcReg); |
| if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) { |
| ImpDefs.insert(DefMI); |
| continue; |
| } |
| |
| // Get the MachineBasicBlock equivalent of the BasicBlock that is the source |
| // path the PHI. |
| MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); |
| |
| // Check to make sure we haven't already emitted the copy for this block. |
| // This can happen because PHI nodes may have multiple entries for the same |
| // basic block. |
| if (!MBBsInsertedInto.insert(&opBlock)) |
| continue; // If the copy has already been emitted, we're done. |
| |
| // Find a safe location to insert the copy, this may be the first terminator |
| // in the block (or end()). |
| MachineBasicBlock::iterator InsertPos = FindCopyInsertPoint(opBlock, SrcReg); |
| |
| // Insert the copy. |
| TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC); |
| |
| // Now update live variable information if we have it. Otherwise we're done |
| if (!LV) continue; |
| |
| // We want to be able to insert a kill of the register if this PHI (aka, the |
| // copy we just inserted) is the last use of the source value. Live |
| // variable analysis conservatively handles this by saying that the value is |
| // live until the end of the block the PHI entry lives in. If the value |
| // really is dead at the PHI copy, there will be no successor blocks which |
| // have the value live-in. |
| // |
| // Check to see if the copy is the last use, and if so, update the live |
| // variables information so that it knows the copy source instruction kills |
| // the incoming value. |
| LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg); |
| |
| // Loop over all of the successors of the basic block, checking to see if |
| // the value is either live in the block, or if it is killed in the block. |
| // Also check to see if this register is in use by another PHI node which |
| // has not yet been eliminated. If so, it will be killed at an appropriate |
| // point later. |
| |
| // Is it used by any PHI instructions in this block? |
| bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0; |
| |
| std::vector<MachineBasicBlock*> OpSuccBlocks; |
| |
| // Otherwise, scan successors, including the BB the PHI node lives in. |
| for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), |
| E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) { |
| MachineBasicBlock *SuccMBB = *SI; |
| |
| // Is it alive in this successor? |
| unsigned SuccIdx = SuccMBB->getNumber(); |
| if (InRegVI.AliveBlocks.test(SuccIdx)) { |
| ValueIsLive = true; |
| break; |
| } |
| |
| OpSuccBlocks.push_back(SuccMBB); |
| } |
| |
| // Check to see if this value is live because there is a use in a successor |
| // that kills it. |
| if (!ValueIsLive) { |
| switch (OpSuccBlocks.size()) { |
| case 1: { |
| MachineBasicBlock *MBB = OpSuccBlocks[0]; |
| for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) |
| if (InRegVI.Kills[i]->getParent() == MBB) { |
| ValueIsLive = true; |
| break; |
| } |
| break; |
| } |
| case 2: { |
| MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1]; |
| for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) |
| if (InRegVI.Kills[i]->getParent() == MBB1 || |
| InRegVI.Kills[i]->getParent() == MBB2) { |
| ValueIsLive = true; |
| break; |
| } |
| break; |
| } |
| default: |
| std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); |
| for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) |
| if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), |
| InRegVI.Kills[i]->getParent())) { |
| ValueIsLive = true; |
| break; |
| } |
| } |
| } |
| |
| // Okay, if we now know that the value is not live out of the block, we can |
| // add a kill marker in this block saying that it kills the incoming value! |
| if (!ValueIsLive) { |
| // In our final twist, we have to decide which instruction kills the |
| // register. In most cases this is the copy, however, the first |
| // terminator instruction at the end of the block may also use the value. |
| // In this case, we should mark *it* as being the killing block, not the |
| // copy. |
| MachineBasicBlock::iterator KillInst = prior(InsertPos); |
| MachineBasicBlock::iterator Term = opBlock.getFirstTerminator(); |
| if (Term != opBlock.end()) { |
| if (Term->readsRegister(SrcReg)) |
| KillInst = Term; |
| |
| // Check that no other terminators use values. |
| #ifndef NDEBUG |
| for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end(); |
| ++TI) { |
| assert(!TI->readsRegister(SrcReg) && |
| "Terminator instructions cannot use virtual registers unless" |
| "they are the first terminator in a block!"); |
| } |
| #endif |
| } |
| |
| // Finally, mark it killed. |
| LV->addVirtualRegisterKilled(SrcReg, KillInst); |
| |
| // This vreg no longer lives all of the way through opBlock. |
| unsigned opBlockNum = opBlock.getNumber(); |
| InRegVI.AliveBlocks.reset(opBlockNum); |
| } |
| } |
| |
| // Really delete the PHI instruction now! |
| MF.DeleteMachineInstr(MPhi); |
| ++NumAtomic; |
| } |
| |
| /// analyzePHINodes - Gather information about the PHI nodes in here. In |
| /// particular, we want to map the number of uses of a virtual register which is |
| /// used in a PHI node. We map that to the BB the vreg is coming from. This is |
| /// used later to determine when the vreg is killed in the BB. |
| /// |
| void PNE::analyzePHINodes(const MachineFunction& Fn) { |
| for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); |
| I != E; ++I) |
| for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); |
| BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) |
| for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) |
| ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(), |
| BBI->getOperand(i).getReg())]; |
| } |