blob: f4be9704b7a8936ebe4bae111cc014c880eface6 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a module pass that applies a variety of small
11// optimizations for calls to specific well-known function calls (e.g. runtime
12// library functions). For example, a call to the function "exit(3)" that
13// occurs within the main() function can be transformed into a simple "return 3"
14// instruction. Any optimization that takes this form (replace call to library
15// function with simpler code that provides the same result) belongs in this
16// file.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "simplify-libcalls"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Instructions.h"
24#include "llvm/Module.h"
25#include "llvm/Pass.h"
Anton Korobeynikov05d33ee2008-02-20 11:27:49 +000026#include "llvm/ADT/StringMap.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/ADT/Statistic.h"
28#include "llvm/Config/config.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Transforms/IPO.h"
Anton Korobeynikov357a27d2008-02-20 11:08:44 +000033#include <cstring>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000034using namespace llvm;
35
36/// This statistic keeps track of the total number of library calls that have
37/// been simplified regardless of which call it is.
38STATISTIC(SimplifiedLibCalls, "Number of library calls simplified");
39
40namespace {
41 // Forward declarations
42 class LibCallOptimization;
43 class SimplifyLibCalls;
44
45/// This list is populated by the constructor for LibCallOptimization class.
46/// Therefore all subclasses are registered here at static initialization time
47/// and this list is what the SimplifyLibCalls pass uses to apply the individual
48/// optimizations to the call sites.
49/// @brief The list of optimizations deriving from LibCallOptimization
50static LibCallOptimization *OptList = 0;
51
52/// This class is the abstract base class for the set of optimizations that
53/// corresponds to one library call. The SimplifyLibCalls pass will call the
54/// ValidateCalledFunction method to ask the optimization if a given Function
55/// is the kind that the optimization can handle. If the subclass returns true,
56/// then SImplifyLibCalls will also call the OptimizeCall method to perform,
57/// or attempt to perform, the optimization(s) for the library call. Otherwise,
58/// OptimizeCall won't be called. Subclasses are responsible for providing the
59/// name of the library call (strlen, strcpy, etc.) to the LibCallOptimization
60/// constructor. This is used to efficiently select which call instructions to
61/// optimize. The criteria for a "lib call" is "anything with well known
62/// semantics", typically a library function that is defined by an international
63/// standard. Because the semantics are well known, the optimizations can
64/// generally short-circuit actually calling the function if there's a simpler
65/// way (e.g. strlen(X) can be reduced to a constant if X is a constant global).
66/// @brief Base class for library call optimizations
67class VISIBILITY_HIDDEN LibCallOptimization {
68 LibCallOptimization **Prev, *Next;
69 const char *FunctionName; ///< Name of the library call we optimize
70#ifndef NDEBUG
71 Statistic occurrences; ///< debug statistic (-debug-only=simplify-libcalls)
72#endif
73public:
74 /// The \p fname argument must be the name of the library function being
75 /// optimized by the subclass.
76 /// @brief Constructor that registers the optimization.
77 LibCallOptimization(const char *FName, const char *Description)
78 : FunctionName(FName) {
79
80#ifndef NDEBUG
81 occurrences.construct("simplify-libcalls", Description);
82#endif
83 // Register this optimizer in the list of optimizations.
84 Next = OptList;
85 OptList = this;
86 Prev = &OptList;
87 if (Next) Next->Prev = &Next;
88 }
89
90 /// getNext - All libcall optimizations are chained together into a list,
91 /// return the next one in the list.
92 LibCallOptimization *getNext() { return Next; }
93
94 /// @brief Deregister from the optlist
95 virtual ~LibCallOptimization() {
96 *Prev = Next;
97 if (Next) Next->Prev = Prev;
98 }
99
100 /// The implementation of this function in subclasses should determine if
101 /// \p F is suitable for the optimization. This method is called by
102 /// SimplifyLibCalls::runOnModule to short circuit visiting all the call
103 /// sites of such a function if that function is not suitable in the first
104 /// place. If the called function is suitabe, this method should return true;
105 /// false, otherwise. This function should also perform any lazy
106 /// initialization that the LibCallOptimization needs to do, if its to return
107 /// true. This avoids doing initialization until the optimizer is actually
108 /// going to be called upon to do some optimization.
109 /// @brief Determine if the function is suitable for optimization
110 virtual bool ValidateCalledFunction(
111 const Function* F, ///< The function that is the target of call sites
112 SimplifyLibCalls& SLC ///< The pass object invoking us
113 ) = 0;
114
115 /// The implementations of this function in subclasses is the heart of the
116 /// SimplifyLibCalls algorithm. Sublcasses of this class implement
117 /// OptimizeCall to determine if (a) the conditions are right for optimizing
118 /// the call and (b) to perform the optimization. If an action is taken
119 /// against ci, the subclass is responsible for returning true and ensuring
120 /// that ci is erased from its parent.
121 /// @brief Optimize a call, if possible.
122 virtual bool OptimizeCall(
123 CallInst* ci, ///< The call instruction that should be optimized.
124 SimplifyLibCalls& SLC ///< The pass object invoking us
125 ) = 0;
126
127 /// @brief Get the name of the library call being optimized
128 const char *getFunctionName() const { return FunctionName; }
129
130 bool ReplaceCallWith(CallInst *CI, Value *V) {
131 if (!CI->use_empty())
132 CI->replaceAllUsesWith(V);
133 CI->eraseFromParent();
134 return true;
135 }
136
137 /// @brief Called by SimplifyLibCalls to update the occurrences statistic.
138 void succeeded() {
139#ifndef NDEBUG
140 DEBUG(++occurrences);
141#endif
142 }
143};
144
145/// This class is an LLVM Pass that applies each of the LibCallOptimization
146/// instances to all the call sites in a module, relatively efficiently. The
147/// purpose of this pass is to provide optimizations for calls to well-known
148/// functions with well-known semantics, such as those in the c library. The
149/// class provides the basic infrastructure for handling runOnModule. Whenever
150/// this pass finds a function call, it asks the appropriate optimizer to
151/// validate the call (ValidateLibraryCall). If it is validated, then
152/// the OptimizeCall method is also called.
153/// @brief A ModulePass for optimizing well-known function calls.
154class VISIBILITY_HIDDEN SimplifyLibCalls : public ModulePass {
155public:
156 static char ID; // Pass identification, replacement for typeid
157 SimplifyLibCalls() : ModulePass((intptr_t)&ID) {}
158
159 /// We need some target data for accurate signature details that are
160 /// target dependent. So we require target data in our AnalysisUsage.
161 /// @brief Require TargetData from AnalysisUsage.
162 virtual void getAnalysisUsage(AnalysisUsage& Info) const {
163 // Ask that the TargetData analysis be performed before us so we can use
164 // the target data.
165 Info.addRequired<TargetData>();
166 }
167
168 /// For this pass, process all of the function calls in the module, calling
169 /// ValidateLibraryCall and OptimizeCall as appropriate.
170 /// @brief Run all the lib call optimizations on a Module.
171 virtual bool runOnModule(Module &M) {
172 reset(M);
173
174 bool result = false;
Anton Korobeynikov05d33ee2008-02-20 11:27:49 +0000175 StringMap<LibCallOptimization*> OptznMap;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176 for (LibCallOptimization *Optzn = OptList; Optzn; Optzn = Optzn->getNext())
177 OptznMap[Optzn->getFunctionName()] = Optzn;
178
179 // The call optimizations can be recursive. That is, the optimization might
180 // generate a call to another function which can also be optimized. This way
181 // we make the LibCallOptimization instances very specific to the case they
182 // handle. It also means we need to keep running over the function calls in
183 // the module until we don't get any more optimizations possible.
184 bool found_optimization = false;
185 do {
186 found_optimization = false;
187 for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
188 // All the "well-known" functions are external and have external linkage
189 // because they live in a runtime library somewhere and were (probably)
190 // not compiled by LLVM. So, we only act on external functions that
191 // have external or dllimport linkage and non-empty uses.
192 if (!FI->isDeclaration() ||
193 !(FI->hasExternalLinkage() || FI->hasDLLImportLinkage()) ||
194 FI->use_empty())
195 continue;
196
197 // Get the optimization class that pertains to this function
Anton Korobeynikov05d33ee2008-02-20 11:27:49 +0000198 StringMap<LibCallOptimization*>::iterator OMI =
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000199 OptznMap.find(FI->getName());
200 if (OMI == OptznMap.end()) continue;
201
202 LibCallOptimization *CO = OMI->second;
203
204 // Make sure the called function is suitable for the optimization
205 if (!CO->ValidateCalledFunction(FI, *this))
206 continue;
207
208 // Loop over each of the uses of the function
209 for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end();
210 UI != UE ; ) {
211 // If the use of the function is a call instruction
212 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) {
213 // Do the optimization on the LibCallOptimization.
214 if (CO->OptimizeCall(CI, *this)) {
215 ++SimplifiedLibCalls;
216 found_optimization = result = true;
217 CO->succeeded();
218 }
219 }
220 }
221 }
222 } while (found_optimization);
223
224 return result;
225 }
226
227 /// @brief Return the *current* module we're working on.
228 Module* getModule() const { return M; }
229
230 /// @brief Return the *current* target data for the module we're working on.
231 TargetData* getTargetData() const { return TD; }
232
233 /// @brief Return the size_t type -- syntactic shortcut
234 const Type* getIntPtrType() const { return TD->getIntPtrType(); }
235
236 /// @brief Return a Function* for the putchar libcall
237 Constant *get_putchar() {
238 if (!putchar_func)
239 putchar_func =
240 M->getOrInsertFunction("putchar", Type::Int32Ty, Type::Int32Ty, NULL);
241 return putchar_func;
242 }
243
244 /// @brief Return a Function* for the puts libcall
245 Constant *get_puts() {
246 if (!puts_func)
247 puts_func = M->getOrInsertFunction("puts", Type::Int32Ty,
Christopher Lambbb2f2222007-12-17 01:12:55 +0000248 PointerType::getUnqual(Type::Int8Ty),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000249 NULL);
250 return puts_func;
251 }
252
253 /// @brief Return a Function* for the fputc libcall
254 Constant *get_fputc(const Type* FILEptr_type) {
255 if (!fputc_func)
256 fputc_func = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
257 FILEptr_type, NULL);
258 return fputc_func;
259 }
260
261 /// @brief Return a Function* for the fputs libcall
262 Constant *get_fputs(const Type* FILEptr_type) {
263 if (!fputs_func)
264 fputs_func = M->getOrInsertFunction("fputs", Type::Int32Ty,
Christopher Lambbb2f2222007-12-17 01:12:55 +0000265 PointerType::getUnqual(Type::Int8Ty),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000266 FILEptr_type, NULL);
267 return fputs_func;
268 }
269
270 /// @brief Return a Function* for the fwrite libcall
271 Constant *get_fwrite(const Type* FILEptr_type) {
272 if (!fwrite_func)
273 fwrite_func = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
Christopher Lambbb2f2222007-12-17 01:12:55 +0000274 PointerType::getUnqual(Type::Int8Ty),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000275 TD->getIntPtrType(),
276 TD->getIntPtrType(),
277 FILEptr_type, NULL);
278 return fwrite_func;
279 }
280
281 /// @brief Return a Function* for the sqrt libcall
282 Constant *get_sqrt() {
283 if (!sqrt_func)
284 sqrt_func = M->getOrInsertFunction("sqrt", Type::DoubleTy,
285 Type::DoubleTy, NULL);
286 return sqrt_func;
287 }
288
289 /// @brief Return a Function* for the strcpy libcall
290 Constant *get_strcpy() {
291 if (!strcpy_func)
292 strcpy_func = M->getOrInsertFunction("strcpy",
Christopher Lambbb2f2222007-12-17 01:12:55 +0000293 PointerType::getUnqual(Type::Int8Ty),
294 PointerType::getUnqual(Type::Int8Ty),
295 PointerType::getUnqual(Type::Int8Ty),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000296 NULL);
297 return strcpy_func;
298 }
299
300 /// @brief Return a Function* for the strlen libcall
301 Constant *get_strlen() {
302 if (!strlen_func)
303 strlen_func = M->getOrInsertFunction("strlen", TD->getIntPtrType(),
Christopher Lambbb2f2222007-12-17 01:12:55 +0000304 PointerType::getUnqual(Type::Int8Ty),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305 NULL);
306 return strlen_func;
307 }
308
309 /// @brief Return a Function* for the memchr libcall
310 Constant *get_memchr() {
311 if (!memchr_func)
312 memchr_func = M->getOrInsertFunction("memchr",
Christopher Lambbb2f2222007-12-17 01:12:55 +0000313 PointerType::getUnqual(Type::Int8Ty),
314 PointerType::getUnqual(Type::Int8Ty),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000315 Type::Int32Ty, TD->getIntPtrType(),
316 NULL);
317 return memchr_func;
318 }
319
320 /// @brief Return a Function* for the memcpy libcall
321 Constant *get_memcpy() {
322 if (!memcpy_func) {
Christopher Lambbb2f2222007-12-17 01:12:55 +0000323 const Type *SBP = PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000324 const char *N = TD->getIntPtrType() == Type::Int32Ty ?
325 "llvm.memcpy.i32" : "llvm.memcpy.i64";
326 memcpy_func = M->getOrInsertFunction(N, Type::VoidTy, SBP, SBP,
327 TD->getIntPtrType(), Type::Int32Ty,
328 NULL);
329 }
330 return memcpy_func;
331 }
332
333 Constant *getUnaryFloatFunction(const char *Name, Constant *&Cache) {
334 if (!Cache)
335 Cache = M->getOrInsertFunction(Name, Type::FloatTy, Type::FloatTy, NULL);
336 return Cache;
337 }
338
339 Constant *get_floorf() { return getUnaryFloatFunction("floorf", floorf_func);}
340 Constant *get_ceilf() { return getUnaryFloatFunction( "ceilf", ceilf_func);}
341 Constant *get_roundf() { return getUnaryFloatFunction("roundf", roundf_func);}
342 Constant *get_rintf() { return getUnaryFloatFunction( "rintf", rintf_func);}
343 Constant *get_nearbyintf() { return getUnaryFloatFunction("nearbyintf",
344 nearbyintf_func); }
345private:
346 /// @brief Reset our cached data for a new Module
347 void reset(Module& mod) {
348 M = &mod;
349 TD = &getAnalysis<TargetData>();
350 putchar_func = 0;
351 puts_func = 0;
352 fputc_func = 0;
353 fputs_func = 0;
354 fwrite_func = 0;
355 memcpy_func = 0;
356 memchr_func = 0;
357 sqrt_func = 0;
358 strcpy_func = 0;
359 strlen_func = 0;
360 floorf_func = 0;
361 ceilf_func = 0;
362 roundf_func = 0;
363 rintf_func = 0;
364 nearbyintf_func = 0;
365 }
366
367private:
368 /// Caches for function pointers.
369 Constant *putchar_func, *puts_func;
370 Constant *fputc_func, *fputs_func, *fwrite_func;
371 Constant *memcpy_func, *memchr_func;
372 Constant *sqrt_func;
373 Constant *strcpy_func, *strlen_func;
374 Constant *floorf_func, *ceilf_func, *roundf_func;
375 Constant *rintf_func, *nearbyintf_func;
376 Module *M; ///< Cached Module
377 TargetData *TD; ///< Cached TargetData
378};
379
380char SimplifyLibCalls::ID = 0;
381// Register the pass
382RegisterPass<SimplifyLibCalls>
383X("simplify-libcalls", "Simplify well-known library calls");
384
385} // anonymous namespace
386
387// The only public symbol in this file which just instantiates the pass object
388ModulePass *llvm::createSimplifyLibCallsPass() {
389 return new SimplifyLibCalls();
390}
391
392// Classes below here, in the anonymous namespace, are all subclasses of the
393// LibCallOptimization class, each implementing all optimizations possible for a
394// single well-known library call. Each has a static singleton instance that
395// auto registers it into the "optlist" global above.
396namespace {
397
398// Forward declare utility functions.
399static bool GetConstantStringInfo(Value *V, std::string &Str);
400static Value *CastToCStr(Value *V, Instruction *IP);
401
402/// This LibCallOptimization will find instances of a call to "exit" that occurs
403/// within the "main" function and change it to a simple "ret" instruction with
404/// the same value passed to the exit function. When this is done, it splits the
405/// basic block at the exit(3) call and deletes the call instruction.
406/// @brief Replace calls to exit in main with a simple return
407struct VISIBILITY_HIDDEN ExitInMainOptimization : public LibCallOptimization {
408 ExitInMainOptimization() : LibCallOptimization("exit",
409 "Number of 'exit' calls simplified") {}
410
411 // Make sure the called function looks like exit (int argument, int return
412 // type, external linkage, not varargs).
413 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
414 return F->arg_size() >= 1 && F->arg_begin()->getType()->isInteger();
415 }
416
417 virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) {
418 // To be careful, we check that the call to exit is coming from "main", that
419 // main has external linkage, and the return type of main and the argument
420 // to exit have the same type.
421 Function *from = ci->getParent()->getParent();
422 if (from->hasExternalLinkage())
423 if (from->getReturnType() == ci->getOperand(1)->getType())
424 if (from->getName() == "main") {
425 // Okay, time to actually do the optimization. First, get the basic
426 // block of the call instruction
427 BasicBlock* bb = ci->getParent();
428
429 // Create a return instruction that we'll replace the call with.
430 // Note that the argument of the return is the argument of the call
431 // instruction.
432 new ReturnInst(ci->getOperand(1), ci);
433
434 // Split the block at the call instruction which places it in a new
435 // basic block.
436 bb->splitBasicBlock(ci);
437
438 // The block split caused a branch instruction to be inserted into
439 // the end of the original block, right after the return instruction
440 // that we put there. That's not a valid block, so delete the branch
441 // instruction.
442 bb->getInstList().pop_back();
443
444 // Now we can finally get rid of the call instruction which now lives
445 // in the new basic block.
446 ci->eraseFromParent();
447
448 // Optimization succeeded, return true.
449 return true;
450 }
451 // We didn't pass the criteria for this optimization so return false
452 return false;
453 }
454} ExitInMainOptimizer;
455
456/// This LibCallOptimization will simplify a call to the strcat library
457/// function. The simplification is possible only if the string being
458/// concatenated is a constant array or a constant expression that results in
459/// a constant string. In this case we can replace it with strlen + llvm.memcpy
460/// of the constant string. Both of these calls are further reduced, if possible
461/// on subsequent passes.
462/// @brief Simplify the strcat library function.
463struct VISIBILITY_HIDDEN StrCatOptimization : public LibCallOptimization {
464public:
465 /// @brief Default constructor
466 StrCatOptimization() : LibCallOptimization("strcat",
467 "Number of 'strcat' calls simplified") {}
468
469public:
470
471 /// @brief Make sure that the "strcat" function has the right prototype
472 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
473 const FunctionType *FT = F->getFunctionType();
474 return FT->getNumParams() == 2 &&
Christopher Lambbb2f2222007-12-17 01:12:55 +0000475 FT->getReturnType() == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000476 FT->getParamType(0) == FT->getReturnType() &&
477 FT->getParamType(1) == FT->getReturnType();
478 }
479
480 /// @brief Optimize the strcat library function
481 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
482 // Extract some information from the instruction
483 Value *Dst = CI->getOperand(1);
484 Value *Src = CI->getOperand(2);
485
486 // Extract the initializer (while making numerous checks) from the
487 // source operand of the call to strcat.
488 std::string SrcStr;
489 if (!GetConstantStringInfo(Src, SrcStr))
490 return false;
491
492 // Handle the simple, do-nothing case
493 if (SrcStr.empty())
494 return ReplaceCallWith(CI, Dst);
495
496 // We need to find the end of the destination string. That's where the
497 // memory is to be moved to. We just generate a call to strlen.
498 CallInst *DstLen = new CallInst(SLC.get_strlen(), Dst,
499 Dst->getName()+".len", CI);
500
501 // Now that we have the destination's length, we must index into the
502 // destination's pointer to get the actual memcpy destination (end of
503 // the string .. we're concatenating).
504 Dst = new GetElementPtrInst(Dst, DstLen, Dst->getName()+".indexed", CI);
505
506 // We have enough information to now generate the memcpy call to
507 // do the concatenation for us.
508 Value *Vals[] = {
509 Dst, Src,
510 ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1), // copy nul byte.
511 ConstantInt::get(Type::Int32Ty, 1) // alignment
512 };
David Greeneb1c4a7b2007-08-01 03:43:44 +0000513 new CallInst(SLC.get_memcpy(), Vals, Vals + 4, "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000514
515 return ReplaceCallWith(CI, Dst);
516 }
517} StrCatOptimizer;
518
519/// This LibCallOptimization will simplify a call to the strchr library
520/// function. It optimizes out cases where the arguments are both constant
521/// and the result can be determined statically.
522/// @brief Simplify the strcmp library function.
523struct VISIBILITY_HIDDEN StrChrOptimization : public LibCallOptimization {
524public:
525 StrChrOptimization() : LibCallOptimization("strchr",
526 "Number of 'strchr' calls simplified") {}
527
528 /// @brief Make sure that the "strchr" function has the right prototype
529 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
530 const FunctionType *FT = F->getFunctionType();
531 return FT->getNumParams() == 2 &&
Christopher Lambbb2f2222007-12-17 01:12:55 +0000532 FT->getReturnType() == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000533 FT->getParamType(0) == FT->getReturnType() &&
534 isa<IntegerType>(FT->getParamType(1));
535 }
536
537 /// @brief Perform the strchr optimizations
538 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
539 // Check that the first argument to strchr is a constant array of sbyte.
540 std::string Str;
541 if (!GetConstantStringInfo(CI->getOperand(1), Str))
542 return false;
543
544 // If the second operand is not constant, just lower this to memchr since we
545 // know the length of the input string.
546 ConstantInt *CSI = dyn_cast<ConstantInt>(CI->getOperand(2));
547 if (!CSI) {
548 Value *Args[3] = {
549 CI->getOperand(1),
550 CI->getOperand(2),
551 ConstantInt::get(SLC.getIntPtrType(), Str.size()+1)
552 };
David Greeneb1c4a7b2007-08-01 03:43:44 +0000553 return ReplaceCallWith(CI, new CallInst(SLC.get_memchr(), Args, Args + 3,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000554 CI->getName(), CI));
555 }
556
557 // strchr can find the nul character.
558 Str += '\0';
559
560 // Get the character we're looking for
561 char CharValue = CSI->getSExtValue();
562
563 // Compute the offset
564 uint64_t i = 0;
565 while (1) {
566 if (i == Str.size()) // Didn't find the char. strchr returns null.
567 return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
568 // Did we find our match?
569 if (Str[i] == CharValue)
570 break;
571 ++i;
572 }
573
574 // strchr(s+n,c) -> gep(s+n+i,c)
575 // (if c is a constant integer and s is a constant string)
576 Value *Idx = ConstantInt::get(Type::Int64Ty, i);
577 Value *GEP = new GetElementPtrInst(CI->getOperand(1), Idx,
578 CI->getOperand(1)->getName() +
579 ".strchr", CI);
580 return ReplaceCallWith(CI, GEP);
581 }
582} StrChrOptimizer;
583
584/// This LibCallOptimization will simplify a call to the strcmp library
585/// function. It optimizes out cases where one or both arguments are constant
586/// and the result can be determined statically.
587/// @brief Simplify the strcmp library function.
588struct VISIBILITY_HIDDEN StrCmpOptimization : public LibCallOptimization {
589public:
590 StrCmpOptimization() : LibCallOptimization("strcmp",
591 "Number of 'strcmp' calls simplified") {}
592
593 /// @brief Make sure that the "strcmp" function has the right prototype
594 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
595 const FunctionType *FT = F->getFunctionType();
596 return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 2 &&
597 FT->getParamType(0) == FT->getParamType(1) &&
Christopher Lambbb2f2222007-12-17 01:12:55 +0000598 FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000599 }
600
601 /// @brief Perform the strcmp optimization
602 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
603 // First, check to see if src and destination are the same. If they are,
604 // then the optimization is to replace the CallInst with a constant 0
605 // because the call is a no-op.
606 Value *Str1P = CI->getOperand(1);
607 Value *Str2P = CI->getOperand(2);
608 if (Str1P == Str2P) // strcmp(x,x) -> 0
609 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
610
611 std::string Str1;
612 if (!GetConstantStringInfo(Str1P, Str1))
613 return false;
614 if (Str1.empty()) {
615 // strcmp("", x) -> *x
616 Value *V = new LoadInst(Str2P, CI->getName()+".load", CI);
617 V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
618 return ReplaceCallWith(CI, V);
619 }
620
621 std::string Str2;
622 if (!GetConstantStringInfo(Str2P, Str2))
623 return false;
624 if (Str2.empty()) {
625 // strcmp(x,"") -> *x
626 Value *V = new LoadInst(Str1P, CI->getName()+".load", CI);
627 V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
628 return ReplaceCallWith(CI, V);
629 }
630
631 // strcmp(x, y) -> cnst (if both x and y are constant strings)
632 int R = strcmp(Str1.c_str(), Str2.c_str());
633 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R));
634 }
635} StrCmpOptimizer;
636
637/// This LibCallOptimization will simplify a call to the strncmp library
638/// function. It optimizes out cases where one or both arguments are constant
639/// and the result can be determined statically.
640/// @brief Simplify the strncmp library function.
641struct VISIBILITY_HIDDEN StrNCmpOptimization : public LibCallOptimization {
642public:
643 StrNCmpOptimization() : LibCallOptimization("strncmp",
644 "Number of 'strncmp' calls simplified") {}
645
646 /// @brief Make sure that the "strncmp" function has the right prototype
647 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
648 const FunctionType *FT = F->getFunctionType();
649 return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 3 &&
650 FT->getParamType(0) == FT->getParamType(1) &&
Christopher Lambbb2f2222007-12-17 01:12:55 +0000651 FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000652 isa<IntegerType>(FT->getParamType(2));
653 return false;
654 }
655
656 /// @brief Perform the strncmp optimization
657 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
658 // First, check to see if src and destination are the same. If they are,
659 // then the optimization is to replace the CallInst with a constant 0
660 // because the call is a no-op.
661 Value *Str1P = CI->getOperand(1);
662 Value *Str2P = CI->getOperand(2);
663 if (Str1P == Str2P) // strncmp(x,x, n) -> 0
664 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
665
666 // Check the length argument, if it is Constant zero then the strings are
667 // considered equal.
668 uint64_t Length;
669 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
670 Length = LengthArg->getZExtValue();
671 else
672 return false;
673
674 if (Length == 0) // strncmp(x,y,0) -> 0
675 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
676
677 std::string Str1;
678 if (!GetConstantStringInfo(Str1P, Str1))
679 return false;
680 if (Str1.empty()) {
681 // strncmp("", x, n) -> *x
682 Value *V = new LoadInst(Str2P, CI->getName()+".load", CI);
683 V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
684 return ReplaceCallWith(CI, V);
685 }
686
687 std::string Str2;
688 if (!GetConstantStringInfo(Str2P, Str2))
689 return false;
690 if (Str2.empty()) {
691 // strncmp(x, "", n) -> *x
692 Value *V = new LoadInst(Str1P, CI->getName()+".load", CI);
693 V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
694 return ReplaceCallWith(CI, V);
695 }
696
697 // strncmp(x, y, n) -> cnst (if both x and y are constant strings)
698 int R = strncmp(Str1.c_str(), Str2.c_str(), Length);
699 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R));
700 }
701} StrNCmpOptimizer;
702
703/// This LibCallOptimization will simplify a call to the strcpy library
704/// function. Two optimizations are possible:
705/// (1) If src and dest are the same and not volatile, just return dest
706/// (2) If the src is a constant then we can convert to llvm.memmove
707/// @brief Simplify the strcpy library function.
708struct VISIBILITY_HIDDEN StrCpyOptimization : public LibCallOptimization {
709public:
710 StrCpyOptimization() : LibCallOptimization("strcpy",
711 "Number of 'strcpy' calls simplified") {}
712
713 /// @brief Make sure that the "strcpy" function has the right prototype
714 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
715 const FunctionType *FT = F->getFunctionType();
716 return FT->getNumParams() == 2 &&
717 FT->getParamType(0) == FT->getParamType(1) &&
718 FT->getReturnType() == FT->getParamType(0) &&
Christopher Lambbb2f2222007-12-17 01:12:55 +0000719 FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000720 }
721
722 /// @brief Perform the strcpy optimization
723 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
724 // First, check to see if src and destination are the same. If they are,
725 // then the optimization is to replace the CallInst with the destination
726 // because the call is a no-op. Note that this corresponds to the
727 // degenerate strcpy(X,X) case which should have "undefined" results
728 // according to the C specification. However, it occurs sometimes and
729 // we optimize it as a no-op.
730 Value *Dst = CI->getOperand(1);
731 Value *Src = CI->getOperand(2);
732 if (Dst == Src) {
733 // strcpy(x, x) -> x
734 return ReplaceCallWith(CI, Dst);
735 }
736
737 // Get the length of the constant string referenced by the Src operand.
738 std::string SrcStr;
739 if (!GetConstantStringInfo(Src, SrcStr))
740 return false;
741
742 // If the constant string's length is zero we can optimize this by just
743 // doing a store of 0 at the first byte of the destination
Dan Gohman301f4052008-01-29 13:02:09 +0000744 if (SrcStr.empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 new StoreInst(ConstantInt::get(Type::Int8Ty, 0), Dst, CI);
746 return ReplaceCallWith(CI, Dst);
747 }
748
749 // We have enough information to now generate the memcpy call to
750 // do the concatenation for us.
751 Value *MemcpyOps[] = {
752 Dst, Src, // Pass length including nul byte.
753 ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1),
754 ConstantInt::get(Type::Int32Ty, 1) // alignment
755 };
David Greeneb1c4a7b2007-08-01 03:43:44 +0000756 new CallInst(SLC.get_memcpy(), MemcpyOps, MemcpyOps + 4, "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757
758 return ReplaceCallWith(CI, Dst);
759 }
760} StrCpyOptimizer;
761
762/// This LibCallOptimization will simplify a call to the strlen library
763/// function by replacing it with a constant value if the string provided to
764/// it is a constant array.
765/// @brief Simplify the strlen library function.
766struct VISIBILITY_HIDDEN StrLenOptimization : public LibCallOptimization {
767 StrLenOptimization() : LibCallOptimization("strlen",
768 "Number of 'strlen' calls simplified") {}
769
770 /// @brief Make sure that the "strlen" function has the right prototype
771 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
772 const FunctionType *FT = F->getFunctionType();
773 return FT->getNumParams() == 1 &&
Christopher Lambbb2f2222007-12-17 01:12:55 +0000774 FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000775 isa<IntegerType>(FT->getReturnType());
776 }
777
778 /// @brief Perform the strlen optimization
779 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
780 // Make sure we're dealing with an sbyte* here.
781 Value *Src = CI->getOperand(1);
782
783 // Does the call to strlen have exactly one use?
784 if (CI->hasOneUse()) {
785 // Is that single use a icmp operator?
786 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CI->use_back()))
787 // Is it compared against a constant integer?
788 if (ConstantInt *Cst = dyn_cast<ConstantInt>(Cmp->getOperand(1))) {
789 // If its compared against length 0 with == or !=
790 if (Cst->getZExtValue() == 0 && Cmp->isEquality()) {
791 // strlen(x) != 0 -> *x != 0
792 // strlen(x) == 0 -> *x == 0
793 Value *V = new LoadInst(Src, Src->getName()+".first", CI);
794 V = new ICmpInst(Cmp->getPredicate(), V,
795 ConstantInt::get(Type::Int8Ty, 0),
796 Cmp->getName()+".strlen", CI);
797 Cmp->replaceAllUsesWith(V);
798 Cmp->eraseFromParent();
799 return ReplaceCallWith(CI, 0); // no uses.
800 }
801 }
802 }
803
804 // Get the length of the constant string operand
805 std::string Str;
806 if (!GetConstantStringInfo(Src, Str))
807 return false;
808
809 // strlen("xyz") -> 3 (for example)
810 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), Str.size()));
811 }
812} StrLenOptimizer;
813
814/// IsOnlyUsedInEqualsComparison - Return true if it only matters that the value
815/// is equal or not-equal to zero.
816static bool IsOnlyUsedInEqualsZeroComparison(Instruction *I) {
817 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
818 UI != E; ++UI) {
819 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
820 if (IC->isEquality())
821 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
822 if (C->isNullValue())
823 continue;
824 // Unknown instruction.
825 return false;
826 }
827 return true;
828}
829
830/// This memcmpOptimization will simplify a call to the memcmp library
831/// function.
832struct VISIBILITY_HIDDEN memcmpOptimization : public LibCallOptimization {
833 /// @brief Default Constructor
834 memcmpOptimization()
835 : LibCallOptimization("memcmp", "Number of 'memcmp' calls simplified") {}
836
837 /// @brief Make sure that the "memcmp" function has the right prototype
838 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) {
839 Function::const_arg_iterator AI = F->arg_begin();
840 if (F->arg_size() != 3 || !isa<PointerType>(AI->getType())) return false;
841 if (!isa<PointerType>((++AI)->getType())) return false;
842 if (!(++AI)->getType()->isInteger()) return false;
843 if (!F->getReturnType()->isInteger()) return false;
844 return true;
845 }
846
847 /// Because of alignment and instruction information that we don't have, we
848 /// leave the bulk of this to the code generators.
849 ///
850 /// Note that we could do much more if we could force alignment on otherwise
851 /// small aligned allocas, or if we could indicate that loads have a small
852 /// alignment.
853 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &TD) {
854 Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
855
856 // If the two operands are the same, return zero.
857 if (LHS == RHS) {
858 // memcmp(s,s,x) -> 0
859 return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
860 }
861
862 // Make sure we have a constant length.
863 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
864 if (!LenC) return false;
865 uint64_t Len = LenC->getZExtValue();
866
867 // If the length is zero, this returns 0.
868 switch (Len) {
869 case 0:
870 // memcmp(s1,s2,0) -> 0
871 return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
872 case 1: {
873 // memcmp(S1,S2,1) -> *(ubyte*)S1 - *(ubyte*)S2
Christopher Lambbb2f2222007-12-17 01:12:55 +0000874 const Type *UCharPtr = PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000875 CastInst *Op1Cast = CastInst::create(
876 Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI);
877 CastInst *Op2Cast = CastInst::create(
878 Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI);
879 Value *S1V = new LoadInst(Op1Cast, LHS->getName()+".val", CI);
880 Value *S2V = new LoadInst(Op2Cast, RHS->getName()+".val", CI);
881 Value *RV = BinaryOperator::createSub(S1V, S2V, CI->getName()+".diff",CI);
882 if (RV->getType() != CI->getType())
883 RV = CastInst::createIntegerCast(RV, CI->getType(), false,
884 RV->getName(), CI);
885 return ReplaceCallWith(CI, RV);
886 }
887 case 2:
888 if (IsOnlyUsedInEqualsZeroComparison(CI)) {
889 // TODO: IF both are aligned, use a short load/compare.
890
891 // memcmp(S1,S2,2) -> S1[0]-S2[0] | S1[1]-S2[1] iff only ==/!= 0 matters
Christopher Lambbb2f2222007-12-17 01:12:55 +0000892 const Type *UCharPtr = PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000893 CastInst *Op1Cast = CastInst::create(
894 Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI);
895 CastInst *Op2Cast = CastInst::create(
896 Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI);
897 Value *S1V1 = new LoadInst(Op1Cast, LHS->getName()+".val1", CI);
898 Value *S2V1 = new LoadInst(Op2Cast, RHS->getName()+".val1", CI);
899 Value *D1 = BinaryOperator::createSub(S1V1, S2V1,
900 CI->getName()+".d1", CI);
901 Constant *One = ConstantInt::get(Type::Int32Ty, 1);
902 Value *G1 = new GetElementPtrInst(Op1Cast, One, "next1v", CI);
903 Value *G2 = new GetElementPtrInst(Op2Cast, One, "next2v", CI);
904 Value *S1V2 = new LoadInst(G1, LHS->getName()+".val2", CI);
905 Value *S2V2 = new LoadInst(G2, RHS->getName()+".val2", CI);
906 Value *D2 = BinaryOperator::createSub(S1V2, S2V2,
907 CI->getName()+".d1", CI);
908 Value *Or = BinaryOperator::createOr(D1, D2, CI->getName()+".res", CI);
909 if (Or->getType() != CI->getType())
910 Or = CastInst::createIntegerCast(Or, CI->getType(), false /*ZExt*/,
911 Or->getName(), CI);
912 return ReplaceCallWith(CI, Or);
913 }
914 break;
915 default:
916 break;
917 }
918
919 return false;
920 }
921} memcmpOptimizer;
922
Chris Lattnerd3c51ad2008-01-28 04:41:43 +0000923/// This LibCallOptimization will simplify a call to the memcpy library
924/// function. It simply converts them into calls to llvm.memcpy.*;
925/// the resulting call should be optimized later.
926/// @brief Simplify the memcpy library function.
927struct VISIBILITY_HIDDEN MemCpyOptimization : public LibCallOptimization {
928public:
929 MemCpyOptimization() : LibCallOptimization("memcpy",
930 "Number of 'memcpy' calls simplified") {}
931
932 /// @brief Make sure that the "memcpy" function has the right prototype
933 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
934 const FunctionType *FT = F->getFunctionType();
935 const Type* voidPtr = PointerType::getUnqual(Type::Int8Ty);
936 return FT->getReturnType() == voidPtr && FT->getNumParams() == 3 &&
937 FT->getParamType(0) == voidPtr &&
938 FT->getParamType(1) == voidPtr &&
939 FT->getParamType(2) == SLC.getIntPtrType();
940 }
941
942 /// @brief Perform the memcpy optimization
943 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
944 Value *MemcpyOps[] = {
945 CI->getOperand(1), CI->getOperand(2), CI->getOperand(3),
946 ConstantInt::get(Type::Int32Ty, 1) // align = 1 always.
947 };
948 new CallInst(SLC.get_memcpy(), MemcpyOps, MemcpyOps + 4, "", CI);
949 // memcpy always returns the destination
950 return ReplaceCallWith(CI, CI->getOperand(1));
951 }
952} MemCpyOptimizer;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953
954/// This LibCallOptimization will simplify a call to the memcpy library
955/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8
956/// bytes depending on the length of the string and the alignment. Additional
957/// optimizations are possible in code generation (sequence of immediate store)
958/// @brief Simplify the memcpy library function.
959struct VISIBILITY_HIDDEN LLVMMemCpyMoveOptzn : public LibCallOptimization {
960 LLVMMemCpyMoveOptzn(const char* fname, const char* desc)
961 : LibCallOptimization(fname, desc) {}
962
963 /// @brief Make sure that the "memcpy" function has the right prototype
964 virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD) {
965 // Just make sure this has 4 arguments per LLVM spec.
966 return (f->arg_size() == 4);
967 }
968
969 /// Because of alignment and instruction information that we don't have, we
970 /// leave the bulk of this to the code generators. The optimization here just
971 /// deals with a few degenerate cases where the length of the string and the
972 /// alignment match the sizes of our intrinsic types so we can do a load and
973 /// store instead of the memcpy call.
974 /// @brief Perform the memcpy optimization.
975 virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD) {
976 // Make sure we have constant int values to work with
977 ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3));
978 if (!LEN)
979 return false;
980 ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4));
981 if (!ALIGN)
982 return false;
983
984 // If the length is larger than the alignment, we can't optimize
985 uint64_t len = LEN->getZExtValue();
986 uint64_t alignment = ALIGN->getZExtValue();
987 if (alignment == 0)
988 alignment = 1; // Alignment 0 is identity for alignment 1
989 if (len > alignment)
990 return false;
991
992 // Get the type we will cast to, based on size of the string
993 Value* dest = ci->getOperand(1);
994 Value* src = ci->getOperand(2);
995 const Type* castType = 0;
996 switch (len) {
997 case 0:
998 // memcpy(d,s,0,a) -> d
999 return ReplaceCallWith(ci, 0);
1000 case 1: castType = Type::Int8Ty; break;
1001 case 2: castType = Type::Int16Ty; break;
1002 case 4: castType = Type::Int32Ty; break;
1003 case 8: castType = Type::Int64Ty; break;
1004 default:
1005 return false;
1006 }
1007
1008 // Cast source and dest to the right sized primitive and then load/store
1009 CastInst* SrcCast = CastInst::create(Instruction::BitCast,
Christopher Lambbb2f2222007-12-17 01:12:55 +00001010 src, PointerType::getUnqual(castType), src->getName()+".cast", ci);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011 CastInst* DestCast = CastInst::create(Instruction::BitCast,
Christopher Lambbb2f2222007-12-17 01:12:55 +00001012 dest, PointerType::getUnqual(castType),dest->getName()+".cast", ci);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001013 LoadInst* LI = new LoadInst(SrcCast,SrcCast->getName()+".val",ci);
1014 new StoreInst(LI, DestCast, ci);
1015 return ReplaceCallWith(ci, 0);
1016 }
1017};
1018
1019/// This LibCallOptimization will simplify a call to the memcpy/memmove library
1020/// functions.
1021LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer32("llvm.memcpy.i32",
1022 "Number of 'llvm.memcpy' calls simplified");
1023LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer64("llvm.memcpy.i64",
1024 "Number of 'llvm.memcpy' calls simplified");
1025LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer32("llvm.memmove.i32",
1026 "Number of 'llvm.memmove' calls simplified");
1027LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer64("llvm.memmove.i64",
1028 "Number of 'llvm.memmove' calls simplified");
1029
1030/// This LibCallOptimization will simplify a call to the memset library
1031/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8
1032/// bytes depending on the length argument.
1033struct VISIBILITY_HIDDEN LLVMMemSetOptimization : public LibCallOptimization {
1034 /// @brief Default Constructor
1035 LLVMMemSetOptimization(const char *Name) : LibCallOptimization(Name,
1036 "Number of 'llvm.memset' calls simplified") {}
1037
1038 /// @brief Make sure that the "memset" function has the right prototype
1039 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) {
1040 // Just make sure this has 3 arguments per LLVM spec.
1041 return F->arg_size() == 4;
1042 }
1043
1044 /// Because of alignment and instruction information that we don't have, we
1045 /// leave the bulk of this to the code generators. The optimization here just
1046 /// deals with a few degenerate cases where the length parameter is constant
1047 /// and the alignment matches the sizes of our intrinsic types so we can do
1048 /// store instead of the memcpy call. Other calls are transformed into the
1049 /// llvm.memset intrinsic.
1050 /// @brief Perform the memset optimization.
1051 virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &TD) {
1052 // Make sure we have constant int values to work with
1053 ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3));
1054 if (!LEN)
1055 return false;
1056 ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4));
1057 if (!ALIGN)
1058 return false;
1059
1060 // Extract the length and alignment
1061 uint64_t len = LEN->getZExtValue();
1062 uint64_t alignment = ALIGN->getZExtValue();
1063
1064 // Alignment 0 is identity for alignment 1
1065 if (alignment == 0)
1066 alignment = 1;
1067
1068 // If the length is zero, this is a no-op
1069 if (len == 0) {
1070 // memset(d,c,0,a) -> noop
1071 return ReplaceCallWith(ci, 0);
1072 }
1073
1074 // If the length is larger than the alignment, we can't optimize
1075 if (len > alignment)
1076 return false;
1077
1078 // Make sure we have a constant ubyte to work with so we can extract
1079 // the value to be filled.
1080 ConstantInt* FILL = dyn_cast<ConstantInt>(ci->getOperand(2));
1081 if (!FILL)
1082 return false;
1083 if (FILL->getType() != Type::Int8Ty)
1084 return false;
1085
1086 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
1087
1088 // Extract the fill character
1089 uint64_t fill_char = FILL->getZExtValue();
1090 uint64_t fill_value = fill_char;
1091
1092 // Get the type we will cast to, based on size of memory area to fill, and
1093 // and the value we will store there.
1094 Value* dest = ci->getOperand(1);
1095 const Type* castType = 0;
1096 switch (len) {
1097 case 1:
1098 castType = Type::Int8Ty;
1099 break;
1100 case 2:
1101 castType = Type::Int16Ty;
1102 fill_value |= fill_char << 8;
1103 break;
1104 case 4:
1105 castType = Type::Int32Ty;
1106 fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24;
1107 break;
1108 case 8:
1109 castType = Type::Int64Ty;
1110 fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24;
1111 fill_value |= fill_char << 32 | fill_char << 40 | fill_char << 48;
1112 fill_value |= fill_char << 56;
1113 break;
1114 default:
1115 return false;
1116 }
1117
1118 // Cast dest to the right sized primitive and then load/store
Christopher Lambbb2f2222007-12-17 01:12:55 +00001119 CastInst* DestCast = new BitCastInst(dest, PointerType::getUnqual(castType),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001120 dest->getName()+".cast", ci);
1121 new StoreInst(ConstantInt::get(castType,fill_value),DestCast, ci);
1122 return ReplaceCallWith(ci, 0);
1123 }
1124};
1125
1126LLVMMemSetOptimization MemSet32Optimizer("llvm.memset.i32");
1127LLVMMemSetOptimization MemSet64Optimizer("llvm.memset.i64");
1128
1129
1130/// This LibCallOptimization will simplify calls to the "pow" library
1131/// function. It looks for cases where the result of pow is well known and
1132/// substitutes the appropriate value.
1133/// @brief Simplify the pow library function.
1134struct VISIBILITY_HIDDEN PowOptimization : public LibCallOptimization {
1135public:
1136 /// @brief Default Constructor
1137 PowOptimization() : LibCallOptimization("pow",
1138 "Number of 'pow' calls simplified") {}
1139
1140 /// @brief Make sure that the "pow" function has the right prototype
1141 virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
1142 // Just make sure this has 2 arguments
1143 return (f->arg_size() == 2);
1144 }
1145
1146 /// @brief Perform the pow optimization.
1147 virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
1148 const Type *Ty = cast<Function>(ci->getOperand(0))->getReturnType();
Dale Johannesen3b5303b2007-09-28 18:06:58 +00001149 if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
1150 return false; // FIXME long double not yet supported
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001151 Value* base = ci->getOperand(1);
1152 Value* expn = ci->getOperand(2);
1153 if (ConstantFP *Op1 = dyn_cast<ConstantFP>(base)) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001154 if (Op1->isExactlyValue(1.0)) // pow(1.0,x) -> 1.0
1155 return ReplaceCallWith(ci, ConstantFP::get(Ty,
1156 Ty==Type::FloatTy ? APFloat(1.0f) : APFloat(1.0)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001157 } else if (ConstantFP* Op2 = dyn_cast<ConstantFP>(expn)) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001158 if (Op2->getValueAPF().isZero()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001159 // pow(x,0.0) -> 1.0
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001160 return ReplaceCallWith(ci, ConstantFP::get(Ty,
1161 Ty==Type::FloatTy ? APFloat(1.0f) : APFloat(1.0)));
1162 } else if (Op2->isExactlyValue(0.5)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001163 // pow(x,0.5) -> sqrt(x)
1164 CallInst* sqrt_inst = new CallInst(SLC.get_sqrt(), base,
1165 ci->getName()+".pow",ci);
1166 return ReplaceCallWith(ci, sqrt_inst);
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001167 } else if (Op2->isExactlyValue(1.0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001168 // pow(x,1.0) -> x
1169 return ReplaceCallWith(ci, base);
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001170 } else if (Op2->isExactlyValue(-1.0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001171 // pow(x,-1.0) -> 1.0/x
1172 Value *div_inst =
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001173 BinaryOperator::createFDiv(ConstantFP::get(Ty,
1174 Ty==Type::FloatTy ? APFloat(1.0f) : APFloat(1.0)),
1175 base, ci->getName()+".pow", ci);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001176 return ReplaceCallWith(ci, div_inst);
1177 }
1178 }
1179 return false; // opt failed
1180 }
1181} PowOptimizer;
1182
1183/// This LibCallOptimization will simplify calls to the "printf" library
1184/// function. It looks for cases where the result of printf is not used and the
1185/// operation can be reduced to something simpler.
1186/// @brief Simplify the printf library function.
1187struct VISIBILITY_HIDDEN PrintfOptimization : public LibCallOptimization {
1188public:
1189 /// @brief Default Constructor
1190 PrintfOptimization() : LibCallOptimization("printf",
1191 "Number of 'printf' calls simplified") {}
1192
1193 /// @brief Make sure that the "printf" function has the right prototype
1194 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1195 // Just make sure this has at least 1 argument and returns an integer or
1196 // void type.
1197 const FunctionType *FT = F->getFunctionType();
1198 return FT->getNumParams() >= 1 &&
1199 (isa<IntegerType>(FT->getReturnType()) ||
1200 FT->getReturnType() == Type::VoidTy);
1201 }
1202
1203 /// @brief Perform the printf optimization.
1204 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1205 // All the optimizations depend on the length of the first argument and the
1206 // fact that it is a constant string array. Check that now
1207 std::string FormatStr;
1208 if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
1209 return false;
1210
1211 // If this is a simple constant string with no format specifiers that ends
1212 // with a \n, turn it into a puts call.
1213 if (FormatStr.empty()) {
1214 // Tolerate printf's declared void.
1215 if (CI->use_empty()) return ReplaceCallWith(CI, 0);
1216 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
1217 }
1218
1219 if (FormatStr.size() == 1) {
1220 // Turn this into a putchar call, even if it is a %.
1221 Value *V = ConstantInt::get(Type::Int32Ty, FormatStr[0]);
1222 new CallInst(SLC.get_putchar(), V, "", CI);
1223 if (CI->use_empty()) return ReplaceCallWith(CI, 0);
1224 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
1225 }
1226
1227 // Check to see if the format str is something like "foo\n", in which case
1228 // we convert it to a puts call. We don't allow it to contain any format
1229 // characters.
1230 if (FormatStr[FormatStr.size()-1] == '\n' &&
1231 FormatStr.find('%') == std::string::npos) {
1232 // Create a string literal with no \n on it. We expect the constant merge
1233 // pass to be run after this pass, to merge duplicate strings.
1234 FormatStr.erase(FormatStr.end()-1);
1235 Constant *Init = ConstantArray::get(FormatStr, true);
1236 Constant *GV = new GlobalVariable(Init->getType(), true,
1237 GlobalVariable::InternalLinkage,
1238 Init, "str",
1239 CI->getParent()->getParent()->getParent());
1240 // Cast GV to be a pointer to char.
Christopher Lambbb2f2222007-12-17 01:12:55 +00001241 GV = ConstantExpr::getBitCast(GV, PointerType::getUnqual(Type::Int8Ty));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242 new CallInst(SLC.get_puts(), GV, "", CI);
1243
1244 if (CI->use_empty()) return ReplaceCallWith(CI, 0);
Dale Johannesen488548a2007-10-24 20:14:50 +00001245 // The return value from printf includes the \n we just removed, so +1.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001246 return ReplaceCallWith(CI,
Dale Johannesen488548a2007-10-24 20:14:50 +00001247 ConstantInt::get(CI->getType(),
1248 FormatStr.size()+1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 }
1250
1251
1252 // Only support %c or "%s\n" for now.
1253 if (FormatStr.size() < 2 || FormatStr[0] != '%')
1254 return false;
1255
1256 // Get the second character and switch on its value
1257 switch (FormatStr[1]) {
1258 default: return false;
1259 case 's':
1260 if (FormatStr != "%s\n" || CI->getNumOperands() < 3 ||
1261 // TODO: could insert strlen call to compute string length.
1262 !CI->use_empty())
1263 return false;
1264
1265 // printf("%s\n",str) -> puts(str)
1266 new CallInst(SLC.get_puts(), CastToCStr(CI->getOperand(2), CI),
1267 CI->getName(), CI);
1268 return ReplaceCallWith(CI, 0);
1269 case 'c': {
1270 // printf("%c",c) -> putchar(c)
1271 if (FormatStr.size() != 2 || CI->getNumOperands() < 3)
1272 return false;
1273
1274 Value *V = CI->getOperand(2);
1275 if (!isa<IntegerType>(V->getType()) ||
1276 cast<IntegerType>(V->getType())->getBitWidth() > 32)
1277 return false;
1278
1279 V = CastInst::createZExtOrBitCast(V, Type::Int32Ty, CI->getName()+".int",
1280 CI);
1281 new CallInst(SLC.get_putchar(), V, "", CI);
1282 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
1283 }
1284 }
1285 }
1286} PrintfOptimizer;
1287
1288/// This LibCallOptimization will simplify calls to the "fprintf" library
1289/// function. It looks for cases where the result of fprintf is not used and the
1290/// operation can be reduced to something simpler.
1291/// @brief Simplify the fprintf library function.
1292struct VISIBILITY_HIDDEN FPrintFOptimization : public LibCallOptimization {
1293public:
1294 /// @brief Default Constructor
1295 FPrintFOptimization() : LibCallOptimization("fprintf",
1296 "Number of 'fprintf' calls simplified") {}
1297
1298 /// @brief Make sure that the "fprintf" function has the right prototype
1299 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1300 const FunctionType *FT = F->getFunctionType();
1301 return FT->getNumParams() == 2 && // two fixed arguments.
Christopher Lambbb2f2222007-12-17 01:12:55 +00001302 FT->getParamType(1) == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001303 isa<PointerType>(FT->getParamType(0)) &&
1304 isa<IntegerType>(FT->getReturnType());
1305 }
1306
1307 /// @brief Perform the fprintf optimization.
1308 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1309 // If the call has more than 3 operands, we can't optimize it
1310 if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4)
1311 return false;
1312
1313 // All the optimizations depend on the format string.
1314 std::string FormatStr;
1315 if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
1316 return false;
1317
1318 // If this is just a format string, turn it into fwrite.
1319 if (CI->getNumOperands() == 3) {
1320 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1321 if (FormatStr[i] == '%')
1322 return false; // we found a format specifier
1323
1324 // fprintf(file,fmt) -> fwrite(fmt,strlen(fmt),file)
1325 const Type *FILEty = CI->getOperand(1)->getType();
1326
1327 Value *FWriteArgs[] = {
1328 CI->getOperand(2),
1329 ConstantInt::get(SLC.getIntPtrType(), FormatStr.size()),
1330 ConstantInt::get(SLC.getIntPtrType(), 1),
1331 CI->getOperand(1)
1332 };
David Greeneb1c4a7b2007-08-01 03:43:44 +00001333 new CallInst(SLC.get_fwrite(FILEty), FWriteArgs, FWriteArgs + 4, CI->getName(), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001334 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(),
1335 FormatStr.size()));
1336 }
1337
1338 // The remaining optimizations require the format string to be length 2:
1339 // "%s" or "%c".
1340 if (FormatStr.size() != 2 || FormatStr[0] != '%')
1341 return false;
1342
1343 // Get the second character and switch on its value
1344 switch (FormatStr[1]) {
1345 case 'c': {
1346 // fprintf(file,"%c",c) -> fputc(c,file)
1347 const Type *FILETy = CI->getOperand(1)->getType();
1348 Value *C = CastInst::createZExtOrBitCast(CI->getOperand(3), Type::Int32Ty,
1349 CI->getName()+".int", CI);
David Greeneb1c4a7b2007-08-01 03:43:44 +00001350 SmallVector<Value *, 2> Args;
1351 Args.push_back(C);
1352 Args.push_back(CI->getOperand(1));
1353 new CallInst(SLC.get_fputc(FILETy), Args.begin(), Args.end(), "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001354 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
1355 }
1356 case 's': {
1357 const Type *FILETy = CI->getOperand(1)->getType();
1358
1359 // If the result of the fprintf call is used, we can't do this.
1360 // TODO: we should insert a strlen call.
1361 if (!CI->use_empty())
1362 return false;
1363
1364 // fprintf(file,"%s",str) -> fputs(str,file)
David Greeneb1c4a7b2007-08-01 03:43:44 +00001365 SmallVector<Value *, 2> Args;
1366 Args.push_back(CastToCStr(CI->getOperand(3), CI));
1367 Args.push_back(CI->getOperand(1));
1368 new CallInst(SLC.get_fputs(FILETy), Args.begin(),
1369 Args.end(), CI->getName(), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001370 return ReplaceCallWith(CI, 0);
1371 }
1372 default:
1373 return false;
1374 }
1375 }
1376} FPrintFOptimizer;
1377
1378/// This LibCallOptimization will simplify calls to the "sprintf" library
1379/// function. It looks for cases where the result of sprintf is not used and the
1380/// operation can be reduced to something simpler.
1381/// @brief Simplify the sprintf library function.
1382struct VISIBILITY_HIDDEN SPrintFOptimization : public LibCallOptimization {
1383public:
1384 /// @brief Default Constructor
1385 SPrintFOptimization() : LibCallOptimization("sprintf",
1386 "Number of 'sprintf' calls simplified") {}
1387
1388 /// @brief Make sure that the "sprintf" function has the right prototype
1389 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1390 const FunctionType *FT = F->getFunctionType();
1391 return FT->getNumParams() == 2 && // two fixed arguments.
Christopher Lambbb2f2222007-12-17 01:12:55 +00001392 FT->getParamType(1) == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001393 FT->getParamType(0) == FT->getParamType(1) &&
1394 isa<IntegerType>(FT->getReturnType());
1395 }
1396
1397 /// @brief Perform the sprintf optimization.
1398 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1399 // If the call has more than 3 operands, we can't optimize it
1400 if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4)
1401 return false;
1402
1403 std::string FormatStr;
1404 if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
1405 return false;
1406
1407 if (CI->getNumOperands() == 3) {
1408 // Make sure there's no % in the constant array
1409 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1410 if (FormatStr[i] == '%')
1411 return false; // we found a format specifier
1412
1413 // sprintf(str,fmt) -> llvm.memcpy(str,fmt,strlen(fmt),1)
1414 Value *MemCpyArgs[] = {
1415 CI->getOperand(1), CI->getOperand(2),
1416 ConstantInt::get(SLC.getIntPtrType(),
1417 FormatStr.size()+1), // Copy the nul byte.
1418 ConstantInt::get(Type::Int32Ty, 1)
1419 };
David Greeneb1c4a7b2007-08-01 03:43:44 +00001420 new CallInst(SLC.get_memcpy(), MemCpyArgs, MemCpyArgs + 4, "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001421 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(),
1422 FormatStr.size()));
1423 }
1424
1425 // The remaining optimizations require the format string to be "%s" or "%c".
1426 if (FormatStr.size() != 2 || FormatStr[0] != '%')
1427 return false;
1428
1429 // Get the second character and switch on its value
1430 switch (FormatStr[1]) {
1431 case 'c': {
1432 // sprintf(dest,"%c",chr) -> store chr, dest
1433 Value *V = CastInst::createTruncOrBitCast(CI->getOperand(3),
1434 Type::Int8Ty, "char", CI);
1435 new StoreInst(V, CI->getOperand(1), CI);
1436 Value *Ptr = new GetElementPtrInst(CI->getOperand(1),
1437 ConstantInt::get(Type::Int32Ty, 1),
1438 CI->getOperand(1)->getName()+".end",
1439 CI);
1440 new StoreInst(ConstantInt::get(Type::Int8Ty,0), Ptr, CI);
1441 return ReplaceCallWith(CI, ConstantInt::get(Type::Int32Ty, 1));
1442 }
1443 case 's': {
1444 // sprintf(dest,"%s",str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1445 Value *Len = new CallInst(SLC.get_strlen(),
1446 CastToCStr(CI->getOperand(3), CI),
1447 CI->getOperand(3)->getName()+".len", CI);
1448 Value *UnincLen = Len;
1449 Len = BinaryOperator::createAdd(Len, ConstantInt::get(Len->getType(), 1),
1450 Len->getName()+"1", CI);
1451 Value *MemcpyArgs[4] = {
1452 CI->getOperand(1),
1453 CastToCStr(CI->getOperand(3), CI),
1454 Len,
1455 ConstantInt::get(Type::Int32Ty, 1)
1456 };
David Greeneb1c4a7b2007-08-01 03:43:44 +00001457 new CallInst(SLC.get_memcpy(), MemcpyArgs, MemcpyArgs + 4, "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001458
1459 // The strlen result is the unincremented number of bytes in the string.
1460 if (!CI->use_empty()) {
1461 if (UnincLen->getType() != CI->getType())
1462 UnincLen = CastInst::createIntegerCast(UnincLen, CI->getType(), false,
1463 Len->getName(), CI);
1464 CI->replaceAllUsesWith(UnincLen);
1465 }
1466 return ReplaceCallWith(CI, 0);
1467 }
1468 }
1469 return false;
1470 }
1471} SPrintFOptimizer;
1472
1473/// This LibCallOptimization will simplify calls to the "fputs" library
1474/// function. It looks for cases where the result of fputs is not used and the
1475/// operation can be reduced to something simpler.
1476/// @brief Simplify the fputs library function.
1477struct VISIBILITY_HIDDEN FPutsOptimization : public LibCallOptimization {
1478public:
1479 /// @brief Default Constructor
1480 FPutsOptimization() : LibCallOptimization("fputs",
1481 "Number of 'fputs' calls simplified") {}
1482
1483 /// @brief Make sure that the "fputs" function has the right prototype
1484 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1485 // Just make sure this has 2 arguments
1486 return F->arg_size() == 2;
1487 }
1488
1489 /// @brief Perform the fputs optimization.
1490 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1491 // If the result is used, none of these optimizations work.
1492 if (!CI->use_empty())
1493 return false;
1494
1495 // All the optimizations depend on the length of the first argument and the
1496 // fact that it is a constant string array. Check that now
1497 std::string Str;
1498 if (!GetConstantStringInfo(CI->getOperand(1), Str))
1499 return false;
1500
1501 const Type *FILETy = CI->getOperand(2)->getType();
1502 // fputs(s,F) -> fwrite(s,1,len,F) (if s is constant and strlen(s) > 1)
1503 Value *FWriteParms[4] = {
1504 CI->getOperand(1),
1505 ConstantInt::get(SLC.getIntPtrType(), Str.size()),
1506 ConstantInt::get(SLC.getIntPtrType(), 1),
1507 CI->getOperand(2)
1508 };
David Greeneb1c4a7b2007-08-01 03:43:44 +00001509 new CallInst(SLC.get_fwrite(FILETy), FWriteParms, FWriteParms + 4, "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001510 return ReplaceCallWith(CI, 0); // Known to have no uses (see above).
1511 }
1512} FPutsOptimizer;
1513
1514/// This LibCallOptimization will simplify calls to the "fwrite" function.
1515struct VISIBILITY_HIDDEN FWriteOptimization : public LibCallOptimization {
1516public:
1517 /// @brief Default Constructor
1518 FWriteOptimization() : LibCallOptimization("fwrite",
1519 "Number of 'fwrite' calls simplified") {}
1520
1521 /// @brief Make sure that the "fputs" function has the right prototype
1522 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1523 const FunctionType *FT = F->getFunctionType();
1524 return FT->getNumParams() == 4 &&
Christopher Lambbb2f2222007-12-17 01:12:55 +00001525 FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001526 FT->getParamType(1) == FT->getParamType(2) &&
1527 isa<IntegerType>(FT->getParamType(1)) &&
1528 isa<PointerType>(FT->getParamType(3)) &&
1529 isa<IntegerType>(FT->getReturnType());
1530 }
1531
1532 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1533 // Get the element size and count.
1534 uint64_t EltSize, EltCount;
1535 if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getOperand(2)))
1536 EltSize = C->getZExtValue();
1537 else
1538 return false;
1539 if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getOperand(3)))
1540 EltCount = C->getZExtValue();
1541 else
1542 return false;
1543
1544 // If this is writing zero records, remove the call (it's a noop).
1545 if (EltSize * EltCount == 0)
1546 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
1547
1548 // If this is writing one byte, turn it into fputc.
1549 if (EltSize == 1 && EltCount == 1) {
David Greeneb1c4a7b2007-08-01 03:43:44 +00001550 SmallVector<Value *, 2> Args;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001551 // fwrite(s,1,1,F) -> fputc(s[0],F)
1552 Value *Ptr = CI->getOperand(1);
1553 Value *Val = new LoadInst(Ptr, Ptr->getName()+".byte", CI);
David Greeneb1c4a7b2007-08-01 03:43:44 +00001554 Args.push_back(new ZExtInst(Val, Type::Int32Ty, Val->getName()+".int", CI));
1555 Args.push_back(CI->getOperand(4));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001556 const Type *FILETy = CI->getOperand(4)->getType();
David Greeneb1c4a7b2007-08-01 03:43:44 +00001557 new CallInst(SLC.get_fputc(FILETy), Args.begin(), Args.end(), "", CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001558 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
1559 }
1560 return false;
1561 }
1562} FWriteOptimizer;
1563
1564/// This LibCallOptimization will simplify calls to the "isdigit" library
1565/// function. It simply does range checks the parameter explicitly.
1566/// @brief Simplify the isdigit library function.
1567struct VISIBILITY_HIDDEN isdigitOptimization : public LibCallOptimization {
1568public:
1569 isdigitOptimization() : LibCallOptimization("isdigit",
1570 "Number of 'isdigit' calls simplified") {}
1571
1572 /// @brief Make sure that the "isdigit" function has the right prototype
1573 virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
1574 // Just make sure this has 1 argument
1575 return (f->arg_size() == 1);
1576 }
1577
1578 /// @brief Perform the toascii optimization.
1579 virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
1580 if (ConstantInt* CI = dyn_cast<ConstantInt>(ci->getOperand(1))) {
1581 // isdigit(c) -> 0 or 1, if 'c' is constant
1582 uint64_t val = CI->getZExtValue();
1583 if (val >= '0' && val <= '9')
1584 return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 1));
1585 else
1586 return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 0));
1587 }
1588
1589 // isdigit(c) -> (unsigned)c - '0' <= 9
1590 CastInst* cast = CastInst::createIntegerCast(ci->getOperand(1),
1591 Type::Int32Ty, false/*ZExt*/, ci->getOperand(1)->getName()+".uint", ci);
1592 BinaryOperator* sub_inst = BinaryOperator::createSub(cast,
1593 ConstantInt::get(Type::Int32Ty,0x30),
1594 ci->getOperand(1)->getName()+".sub",ci);
1595 ICmpInst* setcond_inst = new ICmpInst(ICmpInst::ICMP_ULE,sub_inst,
1596 ConstantInt::get(Type::Int32Ty,9),
1597 ci->getOperand(1)->getName()+".cmp",ci);
1598 CastInst* c2 = new ZExtInst(setcond_inst, Type::Int32Ty,
1599 ci->getOperand(1)->getName()+".isdigit", ci);
1600 return ReplaceCallWith(ci, c2);
1601 }
1602} isdigitOptimizer;
1603
1604struct VISIBILITY_HIDDEN isasciiOptimization : public LibCallOptimization {
1605public:
1606 isasciiOptimization()
1607 : LibCallOptimization("isascii", "Number of 'isascii' calls simplified") {}
1608
1609 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1610 return F->arg_size() == 1 && F->arg_begin()->getType()->isInteger() &&
1611 F->getReturnType()->isInteger();
1612 }
1613
1614 /// @brief Perform the isascii optimization.
1615 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1616 // isascii(c) -> (unsigned)c < 128
1617 Value *V = CI->getOperand(1);
1618 Value *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, V,
1619 ConstantInt::get(V->getType(), 128),
1620 V->getName()+".isascii", CI);
1621 if (Cmp->getType() != CI->getType())
1622 Cmp = new ZExtInst(Cmp, CI->getType(), Cmp->getName(), CI);
1623 return ReplaceCallWith(CI, Cmp);
1624 }
1625} isasciiOptimizer;
1626
1627
1628/// This LibCallOptimization will simplify calls to the "toascii" library
1629/// function. It simply does the corresponding and operation to restrict the
1630/// range of values to the ASCII character set (0-127).
1631/// @brief Simplify the toascii library function.
1632struct VISIBILITY_HIDDEN ToAsciiOptimization : public LibCallOptimization {
1633public:
1634 /// @brief Default Constructor
1635 ToAsciiOptimization() : LibCallOptimization("toascii",
1636 "Number of 'toascii' calls simplified") {}
1637
1638 /// @brief Make sure that the "fputs" function has the right prototype
1639 virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
1640 // Just make sure this has 2 arguments
1641 return (f->arg_size() == 1);
1642 }
1643
1644 /// @brief Perform the toascii optimization.
1645 virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
1646 // toascii(c) -> (c & 0x7f)
1647 Value *chr = ci->getOperand(1);
1648 Value *and_inst = BinaryOperator::createAnd(chr,
1649 ConstantInt::get(chr->getType(),0x7F),ci->getName()+".toascii",ci);
1650 return ReplaceCallWith(ci, and_inst);
1651 }
1652} ToAsciiOptimizer;
1653
1654/// This LibCallOptimization will simplify calls to the "ffs" library
1655/// calls which find the first set bit in an int, long, or long long. The
1656/// optimization is to compute the result at compile time if the argument is
1657/// a constant.
1658/// @brief Simplify the ffs library function.
1659struct VISIBILITY_HIDDEN FFSOptimization : public LibCallOptimization {
1660protected:
1661 /// @brief Subclass Constructor
1662 FFSOptimization(const char* funcName, const char* description)
1663 : LibCallOptimization(funcName, description) {}
1664
1665public:
1666 /// @brief Default Constructor
1667 FFSOptimization() : LibCallOptimization("ffs",
1668 "Number of 'ffs' calls simplified") {}
1669
1670 /// @brief Make sure that the "ffs" function has the right prototype
1671 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1672 // Just make sure this has 2 arguments
1673 return F->arg_size() == 1 && F->getReturnType() == Type::Int32Ty;
1674 }
1675
1676 /// @brief Perform the ffs optimization.
1677 virtual bool OptimizeCall(CallInst *TheCall, SimplifyLibCalls &SLC) {
1678 if (ConstantInt *CI = dyn_cast<ConstantInt>(TheCall->getOperand(1))) {
1679 // ffs(cnst) -> bit#
1680 // ffsl(cnst) -> bit#
1681 // ffsll(cnst) -> bit#
1682 uint64_t val = CI->getZExtValue();
1683 int result = 0;
1684 if (val) {
1685 ++result;
1686 while ((val & 1) == 0) {
1687 ++result;
1688 val >>= 1;
1689 }
1690 }
1691 return ReplaceCallWith(TheCall, ConstantInt::get(Type::Int32Ty, result));
1692 }
1693
1694 // ffs(x) -> x == 0 ? 0 : llvm.cttz(x)+1
1695 // ffsl(x) -> x == 0 ? 0 : llvm.cttz(x)+1
1696 // ffsll(x) -> x == 0 ? 0 : llvm.cttz(x)+1
1697 const Type *ArgType = TheCall->getOperand(1)->getType();
1698 const char *CTTZName;
1699 assert(ArgType->getTypeID() == Type::IntegerTyID &&
1700 "llvm.cttz argument is not an integer?");
1701 unsigned BitWidth = cast<IntegerType>(ArgType)->getBitWidth();
1702 if (BitWidth == 8)
1703 CTTZName = "llvm.cttz.i8";
1704 else if (BitWidth == 16)
1705 CTTZName = "llvm.cttz.i16";
1706 else if (BitWidth == 32)
1707 CTTZName = "llvm.cttz.i32";
1708 else {
1709 assert(BitWidth == 64 && "Unknown bitwidth");
1710 CTTZName = "llvm.cttz.i64";
1711 }
1712
1713 Constant *F = SLC.getModule()->getOrInsertFunction(CTTZName, ArgType,
1714 ArgType, NULL);
1715 Value *V = CastInst::createIntegerCast(TheCall->getOperand(1), ArgType,
1716 false/*ZExt*/, "tmp", TheCall);
1717 Value *V2 = new CallInst(F, V, "tmp", TheCall);
1718 V2 = CastInst::createIntegerCast(V2, Type::Int32Ty, false/*ZExt*/,
1719 "tmp", TheCall);
1720 V2 = BinaryOperator::createAdd(V2, ConstantInt::get(Type::Int32Ty, 1),
1721 "tmp", TheCall);
1722 Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, V,
1723 Constant::getNullValue(V->getType()), "tmp",
1724 TheCall);
1725 V2 = new SelectInst(Cond, ConstantInt::get(Type::Int32Ty, 0), V2,
1726 TheCall->getName(), TheCall);
1727 return ReplaceCallWith(TheCall, V2);
1728 }
1729} FFSOptimizer;
1730
1731/// This LibCallOptimization will simplify calls to the "ffsl" library
1732/// calls. It simply uses FFSOptimization for which the transformation is
1733/// identical.
1734/// @brief Simplify the ffsl library function.
1735struct VISIBILITY_HIDDEN FFSLOptimization : public FFSOptimization {
1736public:
1737 /// @brief Default Constructor
1738 FFSLOptimization() : FFSOptimization("ffsl",
1739 "Number of 'ffsl' calls simplified") {}
1740
1741} FFSLOptimizer;
1742
1743/// This LibCallOptimization will simplify calls to the "ffsll" library
1744/// calls. It simply uses FFSOptimization for which the transformation is
1745/// identical.
1746/// @brief Simplify the ffsl library function.
1747struct VISIBILITY_HIDDEN FFSLLOptimization : public FFSOptimization {
1748public:
1749 /// @brief Default Constructor
1750 FFSLLOptimization() : FFSOptimization("ffsll",
1751 "Number of 'ffsll' calls simplified") {}
1752
1753} FFSLLOptimizer;
1754
1755/// This optimizes unary functions that take and return doubles.
1756struct UnaryDoubleFPOptimizer : public LibCallOptimization {
1757 UnaryDoubleFPOptimizer(const char *Fn, const char *Desc)
1758 : LibCallOptimization(Fn, Desc) {}
1759
1760 // Make sure that this function has the right prototype
1761 virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
1762 return F->arg_size() == 1 && F->arg_begin()->getType() == Type::DoubleTy &&
1763 F->getReturnType() == Type::DoubleTy;
1764 }
1765
1766 /// ShrinkFunctionToFloatVersion - If the input to this function is really a
1767 /// float, strength reduce this to a float version of the function,
1768 /// e.g. floor((double)FLT) -> (double)floorf(FLT). This can only be called
1769 /// when the target supports the destination function and where there can be
1770 /// no precision loss.
1771 static bool ShrinkFunctionToFloatVersion(CallInst *CI, SimplifyLibCalls &SLC,
1772 Constant *(SimplifyLibCalls::*FP)()){
1773 if (FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1)))
1774 if (Cast->getOperand(0)->getType() == Type::FloatTy) {
1775 Value *New = new CallInst((SLC.*FP)(), Cast->getOperand(0),
1776 CI->getName(), CI);
1777 New = new FPExtInst(New, Type::DoubleTy, CI->getName(), CI);
1778 CI->replaceAllUsesWith(New);
1779 CI->eraseFromParent();
1780 if (Cast->use_empty())
1781 Cast->eraseFromParent();
1782 return true;
1783 }
1784 return false;
1785 }
1786};
1787
1788
1789struct VISIBILITY_HIDDEN FloorOptimization : public UnaryDoubleFPOptimizer {
1790 FloorOptimization()
1791 : UnaryDoubleFPOptimizer("floor", "Number of 'floor' calls simplified") {}
1792
1793 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1794#ifdef HAVE_FLOORF
1795 // If this is a float argument passed in, convert to floorf.
1796 if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_floorf))
1797 return true;
1798#endif
1799 return false; // opt failed
1800 }
1801} FloorOptimizer;
1802
1803struct VISIBILITY_HIDDEN CeilOptimization : public UnaryDoubleFPOptimizer {
1804 CeilOptimization()
1805 : UnaryDoubleFPOptimizer("ceil", "Number of 'ceil' calls simplified") {}
1806
1807 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1808#ifdef HAVE_CEILF
1809 // If this is a float argument passed in, convert to ceilf.
1810 if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_ceilf))
1811 return true;
1812#endif
1813 return false; // opt failed
1814 }
1815} CeilOptimizer;
1816
1817struct VISIBILITY_HIDDEN RoundOptimization : public UnaryDoubleFPOptimizer {
1818 RoundOptimization()
1819 : UnaryDoubleFPOptimizer("round", "Number of 'round' calls simplified") {}
1820
1821 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1822#ifdef HAVE_ROUNDF
1823 // If this is a float argument passed in, convert to roundf.
1824 if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_roundf))
1825 return true;
1826#endif
1827 return false; // opt failed
1828 }
1829} RoundOptimizer;
1830
1831struct VISIBILITY_HIDDEN RintOptimization : public UnaryDoubleFPOptimizer {
1832 RintOptimization()
1833 : UnaryDoubleFPOptimizer("rint", "Number of 'rint' calls simplified") {}
1834
1835 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1836#ifdef HAVE_RINTF
1837 // If this is a float argument passed in, convert to rintf.
1838 if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_rintf))
1839 return true;
1840#endif
1841 return false; // opt failed
1842 }
1843} RintOptimizer;
1844
1845struct VISIBILITY_HIDDEN NearByIntOptimization : public UnaryDoubleFPOptimizer {
1846 NearByIntOptimization()
1847 : UnaryDoubleFPOptimizer("nearbyint",
1848 "Number of 'nearbyint' calls simplified") {}
1849
1850 virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
1851#ifdef HAVE_NEARBYINTF
1852 // If this is a float argument passed in, convert to nearbyintf.
1853 if (ShrinkFunctionToFloatVersion(CI, SLC,&SimplifyLibCalls::get_nearbyintf))
1854 return true;
1855#endif
1856 return false; // opt failed
1857 }
1858} NearByIntOptimizer;
1859
1860/// GetConstantStringInfo - This function computes the length of a
1861/// null-terminated constant array of integers. This function can't rely on the
1862/// size of the constant array because there could be a null terminator in the
1863/// middle of the array.
1864///
1865/// We also have to bail out if we find a non-integer constant initializer
1866/// of one of the elements or if there is no null-terminator. The logic
1867/// below checks each of these conditions and will return true only if all
1868/// conditions are met. If the conditions aren't met, this returns false.
1869///
1870/// If successful, the \p Array param is set to the constant array being
1871/// indexed, the \p Length parameter is set to the length of the null-terminated
1872/// string pointed to by V, the \p StartIdx value is set to the first
1873/// element of the Array that V points to, and true is returned.
1874static bool GetConstantStringInfo(Value *V, std::string &Str) {
1875 // Look through noop bitcast instructions.
1876 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1877 if (BCI->getType() == BCI->getOperand(0)->getType())
1878 return GetConstantStringInfo(BCI->getOperand(0), Str);
1879 return false;
1880 }
1881
1882 // If the value is not a GEP instruction nor a constant expression with a
1883 // GEP instruction, then return false because ConstantArray can't occur
1884 // any other way
1885 User *GEP = 0;
1886 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1887 GEP = GEPI;
1888 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1889 if (CE->getOpcode() != Instruction::GetElementPtr)
1890 return false;
1891 GEP = CE;
1892 } else {
1893 return false;
1894 }
1895
1896 // Make sure the GEP has exactly three arguments.
1897 if (GEP->getNumOperands() != 3)
1898 return false;
1899
1900 // Check to make sure that the first operand of the GEP is an integer and
1901 // has value 0 so that we are sure we're indexing into the initializer.
1902 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
1903 if (!Idx->isZero())
1904 return false;
1905 } else
1906 return false;
1907
1908 // If the second index isn't a ConstantInt, then this is a variable index
1909 // into the array. If this occurs, we can't say anything meaningful about
1910 // the string.
1911 uint64_t StartIdx = 0;
1912 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1913 StartIdx = CI->getZExtValue();
1914 else
1915 return false;
1916
1917 // The GEP instruction, constant or instruction, must reference a global
1918 // variable that is a constant and is initialized. The referenced constant
1919 // initializer is the array that we'll use for optimization.
1920 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1921 if (!GV || !GV->isConstant() || !GV->hasInitializer())
1922 return false;
1923 Constant *GlobalInit = GV->getInitializer();
1924
1925 // Handle the ConstantAggregateZero case
1926 if (isa<ConstantAggregateZero>(GlobalInit)) {
1927 // This is a degenerate case. The initializer is constant zero so the
1928 // length of the string must be zero.
1929 Str.clear();
1930 return true;
1931 }
1932
1933 // Must be a Constant Array
1934 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1935 if (!Array) return false;
1936
1937 // Get the number of elements in the array
1938 uint64_t NumElts = Array->getType()->getNumElements();
1939
1940 // Traverse the constant array from StartIdx (derived above) which is
1941 // the place the GEP refers to in the array.
1942 for (unsigned i = StartIdx; i < NumElts; ++i) {
1943 Constant *Elt = Array->getOperand(i);
1944 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1945 if (!CI) // This array isn't suitable, non-int initializer.
1946 return false;
1947 if (CI->isZero())
1948 return true; // we found end of string, success!
1949 Str += (char)CI->getZExtValue();
1950 }
1951
1952 return false; // The array isn't null terminated.
1953}
1954
1955/// CastToCStr - Return V if it is an sbyte*, otherwise cast it to sbyte*,
1956/// inserting the cast before IP, and return the cast.
1957/// @brief Cast a value to a "C" string.
1958static Value *CastToCStr(Value *V, Instruction *IP) {
1959 assert(isa<PointerType>(V->getType()) &&
1960 "Can't cast non-pointer type to C string type");
Christopher Lambbb2f2222007-12-17 01:12:55 +00001961 const Type *SBPTy = PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001962 if (V->getType() != SBPTy)
1963 return new BitCastInst(V, SBPTy, V->getName(), IP);
1964 return V;
1965}
1966
1967// TODO:
1968// Additional cases that we need to add to this file:
1969//
1970// cbrt:
1971// * cbrt(expN(X)) -> expN(x/3)
1972// * cbrt(sqrt(x)) -> pow(x,1/6)
1973// * cbrt(sqrt(x)) -> pow(x,1/9)
1974//
1975// cos, cosf, cosl:
1976// * cos(-x) -> cos(x)
1977//
1978// exp, expf, expl:
1979// * exp(log(x)) -> x
1980//
1981// log, logf, logl:
1982// * log(exp(x)) -> x
1983// * log(x**y) -> y*log(x)
1984// * log(exp(y)) -> y*log(e)
1985// * log(exp2(y)) -> y*log(2)
1986// * log(exp10(y)) -> y*log(10)
1987// * log(sqrt(x)) -> 0.5*log(x)
1988// * log(pow(x,y)) -> y*log(x)
1989//
1990// lround, lroundf, lroundl:
1991// * lround(cnst) -> cnst'
1992//
1993// memcmp:
1994// * memcmp(x,y,l) -> cnst
1995// (if all arguments are constant and strlen(x) <= l and strlen(y) <= l)
1996//
1997// memmove:
1998// * memmove(d,s,l,a) -> memcpy(d,s,l,a)
1999// (if s is a global constant array)
2000//
2001// pow, powf, powl:
2002// * pow(exp(x),y) -> exp(x*y)
2003// * pow(sqrt(x),y) -> pow(x,y*0.5)
2004// * pow(pow(x,y),z)-> pow(x,y*z)
2005//
2006// puts:
2007// * puts("") -> putchar("\n")
2008//
2009// round, roundf, roundl:
2010// * round(cnst) -> cnst'
2011//
2012// signbit:
2013// * signbit(cnst) -> cnst'
2014// * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2015//
2016// sqrt, sqrtf, sqrtl:
2017// * sqrt(expN(x)) -> expN(x*0.5)
2018// * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2019// * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2020//
2021// stpcpy:
2022// * stpcpy(str, "literal") ->
2023// llvm.memcpy(str,"literal",strlen("literal")+1,1)
2024// strrchr:
2025// * strrchr(s,c) -> reverse_offset_of_in(c,s)
2026// (if c is a constant integer and s is a constant string)
2027// * strrchr(s1,0) -> strchr(s1,0)
2028//
2029// strncat:
2030// * strncat(x,y,0) -> x
2031// * strncat(x,y,0) -> x (if strlen(y) = 0)
2032// * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y))
2033//
2034// strncpy:
2035// * strncpy(d,s,0) -> d
2036// * strncpy(d,s,l) -> memcpy(d,s,l,1)
2037// (if s and l are constants)
2038//
2039// strpbrk:
2040// * strpbrk(s,a) -> offset_in_for(s,a)
2041// (if s and a are both constant strings)
2042// * strpbrk(s,"") -> 0
2043// * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
2044//
2045// strspn, strcspn:
2046// * strspn(s,a) -> const_int (if both args are constant)
2047// * strspn("",a) -> 0
2048// * strspn(s,"") -> 0
2049// * strcspn(s,a) -> const_int (if both args are constant)
2050// * strcspn("",a) -> 0
2051// * strcspn(s,"") -> strlen(a)
2052//
2053// strstr:
2054// * strstr(x,x) -> x
2055// * strstr(s1,s2) -> offset_of_s2_in(s1)
2056// (if s1 and s2 are constant strings)
2057//
2058// tan, tanf, tanl:
2059// * tan(atan(x)) -> x
2060//
2061// trunc, truncf, truncl:
2062// * trunc(cnst) -> cnst'
2063//
2064//
2065}