blob: 84f62273d51664eaf245569c22d90d1093541689 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// Register - You should define one instance of this class for each register
25// in the target machine. String n will become the "name" of the register.
26class Register<string n> {
27 string Namespace = "";
28 string Name = n;
29
30 // SpillSize - If this value is set to a non-zero value, it is the size in
31 // bits of the spill slot required to hold this register. If this value is
32 // set to zero, the information is inferred from any register classes the
33 // register belongs to.
34 int SpillSize = 0;
35
36 // SpillAlignment - This value is used to specify the alignment required for
37 // spilling the register. Like SpillSize, this should only be explicitly
38 // specified if the register is not in a register class.
39 int SpillAlignment = 0;
40
41 // Aliases - A list of registers that this register overlaps with. A read or
42 // modification of this register can potentially read or modify the aliased
43 // registers.
44 list<Register> Aliases = [];
45
46 // SubRegs - A list of registers that are parts of this register. Note these
47 // are "immediate" sub-registers and the registers within the list do not
48 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
49 // not [AX, AH, AL].
50 list<Register> SubRegs = [];
51
52 // DwarfNumber - Number used internally by gcc/gdb to identify the register.
53 // These values can be determined by locating the <target>.h file in the
54 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
55 // order of these names correspond to the enumeration used by gcc. A value of
56 // -1 indicates that the gcc number is undefined.
57 int DwarfNumber = -1;
58}
59
60// RegisterWithSubRegs - This can be used to define instances of Register which
61// need to specify sub-registers.
62// List "subregs" specifies which registers are sub-registers to this one. This
63// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
64// This allows the code generator to be careful not to put two values with
65// overlapping live ranges into registers which alias.
66class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
67 let SubRegs = subregs;
68}
69
70// SubRegSet - This can be used to define a specific mapping of registers to
71// indices, for use as named subregs of a particular physical register. Each
72// register in 'subregs' becomes an addressable subregister at index 'n' of the
73// corresponding register in 'regs'.
74class SubRegSet<int n, list<Register> regs, list<Register> subregs> {
75 int index = n;
76
77 list<Register> From = regs;
78 list<Register> To = subregs;
79}
80
81// RegisterClass - Now that all of the registers are defined, and aliases
82// between registers are defined, specify which registers belong to which
83// register classes. This also defines the default allocation order of
84// registers by register allocators.
85//
86class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
87 list<Register> regList> {
88 string Namespace = namespace;
89
90 // RegType - Specify the list ValueType of the registers in this register
91 // class. Note that all registers in a register class must have the same
92 // ValueTypes. This is a list because some targets permit storing different
93 // types in same register, for example vector values with 128-bit total size,
94 // but different count/size of items, like SSE on x86.
95 //
96 list<ValueType> RegTypes = regTypes;
97
98 // Size - Specify the spill size in bits of the registers. A default value of
99 // zero lets tablgen pick an appropriate size.
100 int Size = 0;
101
102 // Alignment - Specify the alignment required of the registers when they are
103 // stored or loaded to memory.
104 //
105 int Alignment = alignment;
106
107 // MemberList - Specify which registers are in this class. If the
108 // allocation_order_* method are not specified, this also defines the order of
109 // allocation used by the register allocator.
110 //
111 list<Register> MemberList = regList;
112
113 // SubClassList - Specify which register classes correspond to subregisters
114 // of this class. The order should be by subregister set index.
115 list<RegisterClass> SubRegClassList = [];
116
117 // MethodProtos/MethodBodies - These members can be used to insert arbitrary
118 // code into a generated register class. The normal usage of this is to
119 // overload virtual methods.
120 code MethodProtos = [{}];
121 code MethodBodies = [{}];
122}
123
124
125//===----------------------------------------------------------------------===//
126// DwarfRegNum - This class provides a mapping of the llvm register enumeration
127// to the register numbering used by gcc and gdb. These values are used by a
128// debug information writer (ex. DwarfWriter) to describe where values may be
129// located during execution.
130class DwarfRegNum<int N> {
131 // DwarfNumber - Number used internally by gcc/gdb to identify the register.
132 // These values can be determined by locating the <target>.h file in the
133 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
134 // order of these names correspond to the enumeration used by gcc. A value of
135 // -1 indicates that the gcc number is undefined.
136 int DwarfNumber = N;
137}
138
139//===----------------------------------------------------------------------===//
140// Pull in the common support for scheduling
141//
142include "TargetSchedule.td"
143
144class Predicate; // Forward def
145
146//===----------------------------------------------------------------------===//
147// Instruction set description - These classes correspond to the C++ classes in
148// the Target/TargetInstrInfo.h file.
149//
150class Instruction {
151 string Name = ""; // The opcode string for this instruction
152 string Namespace = "";
153
Evan Chengb783fa32007-07-19 01:14:50 +0000154 dag OutOperandList; // An dag containing the MI def operand list.
155 dag InOperandList; // An dag containing the MI use operand list.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000156 string AsmString = ""; // The .s format to print the instruction with.
157
158 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
159 // otherwise, uninitialized.
160 list<dag> Pattern;
161
162 // The follow state will eventually be inferred automatically from the
163 // instruction pattern.
164
165 list<Register> Uses = []; // Default to using no non-operand registers
166 list<Register> Defs = []; // Default to modifying no non-operand registers
167
168 // Predicates - List of predicates which will be turned into isel matching
169 // code.
170 list<Predicate> Predicates = [];
171
172 // Code size.
173 int CodeSize = 0;
174
175 // Added complexity passed onto matching pattern.
176 int AddedComplexity = 0;
177
178 // These bits capture information about the high-level semantics of the
179 // instruction.
180 bit isReturn = 0; // Is this instruction a return instruction?
181 bit isBranch = 0; // Is this instruction a branch instruction?
182 bit isBarrier = 0; // Can control flow fall through this instruction?
183 bit isCall = 0; // Is this instruction a call instruction?
184 bit isLoad = 0; // Is this instruction a load instruction?
185 bit isStore = 0; // Is this instruction a store instruction?
186 bit isTwoAddress = 0; // Is this a two address instruction?
187 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
188 bit isCommutable = 0; // Is this 3 operand instruction commutable?
189 bit isTerminator = 0; // Is this part of the terminator for a basic block?
190 bit isReMaterializable = 0; // Is this instruction re-materializable?
191 bit isPredicable = 0; // Is this instruction predicable?
192 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
193 bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.
194 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000195 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
196
197 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
198
199 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
200
201 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
202 /// be encoded into the output machineinstr.
203 string DisableEncoding = "";
204}
205
206/// Imp - Helper class for specifying the implicit uses/defs set for an
207/// instruction.
208class Imp<list<Register> uses, list<Register> defs> {
209 list<Register> Uses = uses;
210 list<Register> Defs = defs;
211}
212
213/// Predicates - These are extra conditionals which are turned into instruction
214/// selector matching code. Currently each predicate is just a string.
215class Predicate<string cond> {
216 string CondString = cond;
217}
218
219/// NoHonorSignDependentRounding - This predicate is true if support for
220/// sign-dependent-rounding is not enabled.
221def NoHonorSignDependentRounding
222 : Predicate<"!HonorSignDependentRoundingFPMath()">;
223
224class Requires<list<Predicate> preds> {
225 list<Predicate> Predicates = preds;
226}
227
228/// ops definition - This is just a simple marker used to identify the operands
Evan Chengb783fa32007-07-19 01:14:50 +0000229/// list for an instruction. outs and ins are identical both syntatically and
230/// semantically, they are used to define def operands and use operands to
231/// improve readibility. This should be used like this:
232/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000233def ops;
Evan Chengb783fa32007-07-19 01:14:50 +0000234def outs;
235def ins;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000236
237/// variable_ops definition - Mark this instruction as taking a variable number
238/// of operands.
239def variable_ops;
240
241/// ptr_rc definition - Mark this operand as being a pointer value whose
242/// register class is resolved dynamically via a callback to TargetInstrInfo.
243/// FIXME: We should probably change this to a class which contain a list of
244/// flags. But currently we have but one flag.
245def ptr_rc;
246
247/// Operand Types - These provide the built-in operand types that may be used
248/// by a target. Targets can optionally provide their own operand types as
249/// needed, though this should not be needed for RISC targets.
250class Operand<ValueType ty> {
251 ValueType Type = ty;
252 string PrintMethod = "printOperand";
253 dag MIOperandInfo = (ops);
254}
255
256def i1imm : Operand<i1>;
257def i8imm : Operand<i8>;
258def i16imm : Operand<i16>;
259def i32imm : Operand<i32>;
260def i64imm : Operand<i64>;
261
262/// zero_reg definition - Special node to stand for the zero register.
263///
264def zero_reg;
265
266/// PredicateOperand - This can be used to define a predicate operand for an
267/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
268/// AlwaysVal specifies the value of this predicate when set to "always
269/// execute".
270class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
271 : Operand<ty> {
272 let MIOperandInfo = OpTypes;
273 dag DefaultOps = AlwaysVal;
274}
275
276/// OptionalDefOperand - This is used to define a optional definition operand
277/// for an instruction. DefaultOps is the register the operand represents if none
278/// is supplied, e.g. zero_reg.
279class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
280 : Operand<ty> {
281 let MIOperandInfo = OpTypes;
282 dag DefaultOps = defaultops;
283}
284
285
286// InstrInfo - This class should only be instantiated once to provide parameters
287// which are global to the the target machine.
288//
289class InstrInfo {
290 // If the target wants to associate some target-specific information with each
291 // instruction, it should provide these two lists to indicate how to assemble
292 // the target specific information into the 32 bits available.
293 //
294 list<string> TSFlagsFields = [];
295 list<int> TSFlagsShifts = [];
296
297 // Target can specify its instructions in either big or little-endian formats.
298 // For instance, while both Sparc and PowerPC are big-endian platforms, the
299 // Sparc manual specifies its instructions in the format [31..0] (big), while
300 // PowerPC specifies them using the format [0..31] (little).
301 bit isLittleEndianEncoding = 0;
302}
303
304// Standard Instructions.
305def PHI : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000306 let OutOperandList = (ops);
307 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308 let AsmString = "PHINODE";
309 let Namespace = "TargetInstrInfo";
310}
311def INLINEASM : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000312 let OutOperandList = (ops);
313 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000314 let AsmString = "";
315 let Namespace = "TargetInstrInfo";
316}
317def LABEL : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000318 let OutOperandList = (ops);
319 let InOperandList = (ops i32imm:$id);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000320 let AsmString = "";
321 let Namespace = "TargetInstrInfo";
322 let hasCtrlDep = 1;
323}
Christopher Lamb071a2a72007-07-26 07:48:21 +0000324def EXTRACT_SUBREG : Instruction {
325 let OutOperandList = (ops variable_ops);
326 let InOperandList = (ops variable_ops);
327 let AsmString = "";
328 let Namespace = "TargetInstrInfo";
329}
330def INSERT_SUBREG : Instruction {
331 let OutOperandList = (ops variable_ops);
332 let InOperandList = (ops variable_ops);
333 let AsmString = "";
334 let Namespace = "TargetInstrInfo";
335}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336
337//===----------------------------------------------------------------------===//
338// AsmWriter - This class can be implemented by targets that need to customize
339// the format of the .s file writer.
340//
341// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
342// on X86 for example).
343//
344class AsmWriter {
345 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
346 // class. Generated AsmWriter classes are always prefixed with the target
347 // name.
348 string AsmWriterClassName = "AsmPrinter";
349
350 // InstFormatName - AsmWriters can specify the name of the format string to
351 // print instructions with.
352 string InstFormatName = "AsmString";
353
354 // Variant - AsmWriters can be of multiple different variants. Variants are
355 // used to support targets that need to emit assembly code in ways that are
356 // mostly the same for different targets, but have minor differences in
357 // syntax. If the asmstring contains {|} characters in them, this integer
358 // will specify which alternative to use. For example "{x|y|z}" with Variant
359 // == 1, will expand to "y".
360 int Variant = 0;
361}
362def DefaultAsmWriter : AsmWriter;
363
364
365//===----------------------------------------------------------------------===//
366// Target - This class contains the "global" target information
367//
368class Target {
369 // InstructionSet - Instruction set description for this target.
370 InstrInfo InstructionSet;
371
372 // AssemblyWriters - The AsmWriter instances available for this target.
373 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
374}
375
376//===----------------------------------------------------------------------===//
377// SubtargetFeature - A characteristic of the chip set.
378//
379class SubtargetFeature<string n, string a, string v, string d,
380 list<SubtargetFeature> i = []> {
381 // Name - Feature name. Used by command line (-mattr=) to determine the
382 // appropriate target chip.
383 //
384 string Name = n;
385
386 // Attribute - Attribute to be set by feature.
387 //
388 string Attribute = a;
389
390 // Value - Value the attribute to be set to by feature.
391 //
392 string Value = v;
393
394 // Desc - Feature description. Used by command line (-mattr=) to display help
395 // information.
396 //
397 string Desc = d;
398
399 // Implies - Features that this feature implies are present. If one of those
400 // features isn't set, then this one shouldn't be set either.
401 //
402 list<SubtargetFeature> Implies = i;
403}
404
405//===----------------------------------------------------------------------===//
406// Processor chip sets - These values represent each of the chip sets supported
407// by the scheduler. Each Processor definition requires corresponding
408// instruction itineraries.
409//
410class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
411 // Name - Chip set name. Used by command line (-mcpu=) to determine the
412 // appropriate target chip.
413 //
414 string Name = n;
415
416 // ProcItin - The scheduling information for the target processor.
417 //
418 ProcessorItineraries ProcItin = pi;
419
420 // Features - list of
421 list<SubtargetFeature> Features = f;
422}
423
424//===----------------------------------------------------------------------===//
425// Pull in the common support for calling conventions.
426//
427include "TargetCallingConv.td"
428
429//===----------------------------------------------------------------------===//
430// Pull in the common support for DAG isel generation.
431//
432include "TargetSelectionDAG.td"