blob: 388071d1e9ac5bb33f7ed7f31b8c44f0c8dd4350 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PredicateSimplifier.cpp - Path Sensitive Simplifier ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// Path-sensitive optimizer. In a branch where x == y, replace uses of
11// x with y. Permits further optimization, such as the elimination of
12// the unreachable call:
13//
14// void test(int *p, int *q)
15// {
16// if (p != q)
17// return;
18//
19// if (*p != *q)
20// foo(); // unreachable
21// }
22//
23//===----------------------------------------------------------------------===//
24//
25// The InequalityGraph focusses on four properties; equals, not equals,
26// less-than and less-than-or-equals-to. The greater-than forms are also held
27// just to allow walking from a lesser node to a greater one. These properties
28// are stored in a lattice; LE can become LT or EQ, NE can become LT or GT.
29//
30// These relationships define a graph between values of the same type. Each
31// Value is stored in a map table that retrieves the associated Node. This
32// is how EQ relationships are stored; the map contains pointers from equal
33// Value to the same node. The node contains a most canonical Value* form
34// and the list of known relationships with other nodes.
35//
36// If two nodes are known to be inequal, then they will contain pointers to
37// each other with an "NE" relationship. If node getNode(%x) is less than
38// getNode(%y), then the %x node will contain <%y, GT> and %y will contain
39// <%x, LT>. This allows us to tie nodes together into a graph like this:
40//
41// %a < %b < %c < %d
42//
43// with four nodes representing the properties. The InequalityGraph provides
44// querying with "isRelatedBy" and mutators "addEquality" and "addInequality".
45// To find a relationship, we start with one of the nodes any binary search
46// through its list to find where the relationships with the second node start.
47// Then we iterate through those to find the first relationship that dominates
48// our context node.
49//
50// To create these properties, we wait until a branch or switch instruction
51// implies that a particular value is true (or false). The VRPSolver is
52// responsible for analyzing the variable and seeing what new inferences
53// can be made from each property. For example:
54//
55// %P = icmp ne i32* %ptr, null
56// %a = and i1 %P, %Q
57// br i1 %a label %cond_true, label %cond_false
58//
59// For the true branch, the VRPSolver will start with %a EQ true and look at
60// the definition of %a and find that it can infer that %P and %Q are both
61// true. From %P being true, it can infer that %ptr NE null. For the false
62// branch it can't infer anything from the "and" instruction.
63//
64// Besides branches, we can also infer properties from instruction that may
65// have undefined behaviour in certain cases. For example, the dividend of
66// a division may never be zero. After the division instruction, we may assume
67// that the dividend is not equal to zero.
68//
69//===----------------------------------------------------------------------===//
70//
71// The ValueRanges class stores the known integer bounds of a Value. When we
72// encounter i8 %a u< %b, the ValueRanges stores that %a = [1, 255] and
Nick Lewyckydd38f8e2007-08-04 18:45:32 +000073// %b = [0, 254].
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074//
75// It never stores an empty range, because that means that the code is
76// unreachable. It never stores a single-element range since that's an equality
77// relationship and better stored in the InequalityGraph, nor an empty range
78// since that is better stored in UnreachableBlocks.
79//
80//===----------------------------------------------------------------------===//
81
82#define DEBUG_TYPE "predsimplify"
83#include "llvm/Transforms/Scalar.h"
84#include "llvm/Constants.h"
85#include "llvm/DerivedTypes.h"
86#include "llvm/Instructions.h"
87#include "llvm/Pass.h"
88#include "llvm/ADT/DepthFirstIterator.h"
89#include "llvm/ADT/SetOperations.h"
90#include "llvm/ADT/SetVector.h"
91#include "llvm/ADT/Statistic.h"
92#include "llvm/ADT/STLExtras.h"
93#include "llvm/Analysis/Dominators.h"
94#include "llvm/Assembly/Writer.h"
95#include "llvm/Support/CFG.h"
96#include "llvm/Support/Compiler.h"
97#include "llvm/Support/ConstantRange.h"
98#include "llvm/Support/Debug.h"
99#include "llvm/Support/InstVisitor.h"
100#include "llvm/Target/TargetData.h"
101#include "llvm/Transforms/Utils/Local.h"
102#include <algorithm>
103#include <deque>
104#include <sstream>
105#include <stack>
106using namespace llvm;
107
108STATISTIC(NumVarsReplaced, "Number of argument substitutions");
109STATISTIC(NumInstruction , "Number of instructions removed");
110STATISTIC(NumSimple , "Number of simple replacements");
111STATISTIC(NumBlocks , "Number of blocks marked unreachable");
112STATISTIC(NumSnuggle , "Number of comparisons snuggled");
113
114namespace {
115 class DomTreeDFS {
116 public:
117 class Node {
118 friend class DomTreeDFS;
119 public:
120 typedef std::vector<Node *>::iterator iterator;
121 typedef std::vector<Node *>::const_iterator const_iterator;
122
123 unsigned getDFSNumIn() const { return DFSin; }
124 unsigned getDFSNumOut() const { return DFSout; }
125
126 BasicBlock *getBlock() const { return BB; }
127
128 iterator begin() { return Children.begin(); }
129 iterator end() { return Children.end(); }
130
131 const_iterator begin() const { return Children.begin(); }
132 const_iterator end() const { return Children.end(); }
133
134 bool dominates(const Node *N) const {
135 return DFSin <= N->DFSin && DFSout >= N->DFSout;
136 }
137
138 bool DominatedBy(const Node *N) const {
139 return N->dominates(this);
140 }
141
142 /// Sorts by the number of descendants. With this, you can iterate
143 /// through a sorted list and the first matching entry is the most
144 /// specific match for your basic block. The order provided is stable;
145 /// DomTreeDFS::Nodes with the same number of descendants are sorted by
146 /// DFS in number.
147 bool operator<(const Node &N) const {
148 unsigned spread = DFSout - DFSin;
149 unsigned N_spread = N.DFSout - N.DFSin;
150 if (spread == N_spread) return DFSin < N.DFSin;
151 return spread < N_spread;
152 }
153 bool operator>(const Node &N) const { return N < *this; }
154
155 private:
156 unsigned DFSin, DFSout;
157 BasicBlock *BB;
158
159 std::vector<Node *> Children;
160 };
161
162 // XXX: this may be slow. Instead of using "new" for each node, consider
163 // putting them in a vector to keep them contiguous.
164 explicit DomTreeDFS(DominatorTree *DT) {
165 std::stack<std::pair<Node *, DomTreeNode *> > S;
166
167 Entry = new Node;
168 Entry->BB = DT->getRootNode()->getBlock();
169 S.push(std::make_pair(Entry, DT->getRootNode()));
170
171 NodeMap[Entry->BB] = Entry;
172
173 while (!S.empty()) {
174 std::pair<Node *, DomTreeNode *> &Pair = S.top();
175 Node *N = Pair.first;
176 DomTreeNode *DTNode = Pair.second;
177 S.pop();
178
179 for (DomTreeNode::iterator I = DTNode->begin(), E = DTNode->end();
180 I != E; ++I) {
181 Node *NewNode = new Node;
182 NewNode->BB = (*I)->getBlock();
183 N->Children.push_back(NewNode);
184 S.push(std::make_pair(NewNode, *I));
185
186 NodeMap[NewNode->BB] = NewNode;
187 }
188 }
189
190 renumber();
191
192#ifndef NDEBUG
193 DEBUG(dump());
194#endif
195 }
196
197#ifndef NDEBUG
198 virtual
199#endif
200 ~DomTreeDFS() {
201 std::stack<Node *> S;
202
203 S.push(Entry);
204 while (!S.empty()) {
205 Node *N = S.top(); S.pop();
206
207 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
208 S.push(*I);
209
210 delete N;
211 }
212 }
213
214 /// getRootNode - This returns the entry node for the CFG of the function.
215 Node *getRootNode() const { return Entry; }
216
217 /// getNodeForBlock - return the node for the specified basic block.
218 Node *getNodeForBlock(BasicBlock *BB) const {
219 if (!NodeMap.count(BB)) return 0;
220 return const_cast<DomTreeDFS*>(this)->NodeMap[BB];
221 }
222
223 /// dominates - returns true if the basic block for I1 dominates that of
224 /// the basic block for I2. If the instructions belong to the same basic
225 /// block, the instruction first instruction sequentially in the block is
226 /// considered dominating.
227 bool dominates(Instruction *I1, Instruction *I2) {
228 BasicBlock *BB1 = I1->getParent(),
229 *BB2 = I2->getParent();
230 if (BB1 == BB2) {
231 if (isa<TerminatorInst>(I1)) return false;
232 if (isa<TerminatorInst>(I2)) return true;
233 if ( isa<PHINode>(I1) && !isa<PHINode>(I2)) return true;
234 if (!isa<PHINode>(I1) && isa<PHINode>(I2)) return false;
235
236 for (BasicBlock::const_iterator I = BB2->begin(), E = BB2->end();
237 I != E; ++I) {
238 if (&*I == I1) return true;
239 else if (&*I == I2) return false;
240 }
241 assert(!"Instructions not found in parent BasicBlock?");
242 } else {
243 Node *Node1 = getNodeForBlock(BB1),
244 *Node2 = getNodeForBlock(BB2);
245 return Node1 && Node2 && Node1->dominates(Node2);
246 }
247 }
248
249 private:
250 /// renumber - calculates the depth first search numberings and applies
251 /// them onto the nodes.
252 void renumber() {
253 std::stack<std::pair<Node *, Node::iterator> > S;
254 unsigned n = 0;
255
256 Entry->DFSin = ++n;
257 S.push(std::make_pair(Entry, Entry->begin()));
258
259 while (!S.empty()) {
260 std::pair<Node *, Node::iterator> &Pair = S.top();
261 Node *N = Pair.first;
262 Node::iterator &I = Pair.second;
263
264 if (I == N->end()) {
265 N->DFSout = ++n;
266 S.pop();
267 } else {
268 Node *Next = *I++;
269 Next->DFSin = ++n;
270 S.push(std::make_pair(Next, Next->begin()));
271 }
272 }
273 }
274
275#ifndef NDEBUG
276 virtual void dump() const {
277 dump(*cerr.stream());
278 }
279
280 void dump(std::ostream &os) const {
281 os << "Predicate simplifier DomTreeDFS: \n";
282 dump(Entry, 0, os);
283 os << "\n\n";
284 }
285
286 void dump(Node *N, int depth, std::ostream &os) const {
287 ++depth;
288 for (int i = 0; i < depth; ++i) { os << " "; }
289 os << "[" << depth << "] ";
290
291 os << N->getBlock()->getName() << " (" << N->getDFSNumIn()
292 << ", " << N->getDFSNumOut() << ")\n";
293
294 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
295 dump(*I, depth, os);
296 }
297#endif
298
299 Node *Entry;
300 std::map<BasicBlock *, Node *> NodeMap;
301 };
302
303 // SLT SGT ULT UGT EQ
304 // 0 1 0 1 0 -- GT 10
305 // 0 1 0 1 1 -- GE 11
306 // 0 1 1 0 0 -- SGTULT 12
307 // 0 1 1 0 1 -- SGEULE 13
308 // 0 1 1 1 0 -- SGT 14
309 // 0 1 1 1 1 -- SGE 15
310 // 1 0 0 1 0 -- SLTUGT 18
311 // 1 0 0 1 1 -- SLEUGE 19
312 // 1 0 1 0 0 -- LT 20
313 // 1 0 1 0 1 -- LE 21
314 // 1 0 1 1 0 -- SLT 22
315 // 1 0 1 1 1 -- SLE 23
316 // 1 1 0 1 0 -- UGT 26
317 // 1 1 0 1 1 -- UGE 27
318 // 1 1 1 0 0 -- ULT 28
319 // 1 1 1 0 1 -- ULE 29
320 // 1 1 1 1 0 -- NE 30
321 enum LatticeBits {
322 EQ_BIT = 1, UGT_BIT = 2, ULT_BIT = 4, SGT_BIT = 8, SLT_BIT = 16
323 };
324 enum LatticeVal {
325 GT = SGT_BIT | UGT_BIT,
326 GE = GT | EQ_BIT,
327 LT = SLT_BIT | ULT_BIT,
328 LE = LT | EQ_BIT,
329 NE = SLT_BIT | SGT_BIT | ULT_BIT | UGT_BIT,
330 SGTULT = SGT_BIT | ULT_BIT,
331 SGEULE = SGTULT | EQ_BIT,
332 SLTUGT = SLT_BIT | UGT_BIT,
333 SLEUGE = SLTUGT | EQ_BIT,
334 ULT = SLT_BIT | SGT_BIT | ULT_BIT,
335 UGT = SLT_BIT | SGT_BIT | UGT_BIT,
336 SLT = SLT_BIT | ULT_BIT | UGT_BIT,
337 SGT = SGT_BIT | ULT_BIT | UGT_BIT,
338 SLE = SLT | EQ_BIT,
339 SGE = SGT | EQ_BIT,
340 ULE = ULT | EQ_BIT,
341 UGE = UGT | EQ_BIT
342 };
343
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000344 /// validPredicate - determines whether a given value is actually a lattice
345 /// value. Only used in assertions or debugging.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000346 static bool validPredicate(LatticeVal LV) {
347 switch (LV) {
348 case GT: case GE: case LT: case LE: case NE:
349 case SGTULT: case SGT: case SGEULE:
350 case SLTUGT: case SLT: case SLEUGE:
351 case ULT: case UGT:
352 case SLE: case SGE: case ULE: case UGE:
353 return true;
354 default:
355 return false;
356 }
357 }
358
359 /// reversePredicate - reverse the direction of the inequality
360 static LatticeVal reversePredicate(LatticeVal LV) {
361 unsigned reverse = LV ^ (SLT_BIT|SGT_BIT|ULT_BIT|UGT_BIT); //preserve EQ_BIT
362
363 if ((reverse & (SLT_BIT|SGT_BIT)) == 0)
364 reverse |= (SLT_BIT|SGT_BIT);
365
366 if ((reverse & (ULT_BIT|UGT_BIT)) == 0)
367 reverse |= (ULT_BIT|UGT_BIT);
368
369 LatticeVal Rev = static_cast<LatticeVal>(reverse);
370 assert(validPredicate(Rev) && "Failed reversing predicate.");
371 return Rev;
372 }
373
374 /// ValueNumbering stores the scope-specific value numbers for a given Value.
375 class VISIBILITY_HIDDEN ValueNumbering {
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000376
377 /// VNPair is a tuple of {Value, index number, DomTreeDFS::Node}. It
378 /// includes the comparison operators necessary to allow you to store it
379 /// in a sorted vector.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000380 class VISIBILITY_HIDDEN VNPair {
381 public:
382 Value *V;
383 unsigned index;
384 DomTreeDFS::Node *Subtree;
385
386 VNPair(Value *V, unsigned index, DomTreeDFS::Node *Subtree)
387 : V(V), index(index), Subtree(Subtree) {}
388
389 bool operator==(const VNPair &RHS) const {
390 return V == RHS.V && Subtree == RHS.Subtree;
391 }
392
393 bool operator<(const VNPair &RHS) const {
394 if (V != RHS.V) return V < RHS.V;
395 return *Subtree < *RHS.Subtree;
396 }
397
398 bool operator<(Value *RHS) const {
399 return V < RHS;
400 }
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000401
402 bool operator>(Value *RHS) const {
403 return V > RHS;
404 }
405
406 friend bool operator<(Value *RHS, const VNPair &pair) {
407 return pair.operator>(RHS);
408 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409 };
410
411 typedef std::vector<VNPair> VNMapType;
412 VNMapType VNMap;
413
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000414 /// The canonical choice for value number at index.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415 std::vector<Value *> Values;
416
417 DomTreeDFS *DTDFS;
418
419 public:
420#ifndef NDEBUG
421 virtual ~ValueNumbering() {}
422 virtual void dump() {
423 dump(*cerr.stream());
424 }
425
426 void dump(std::ostream &os) {
427 for (unsigned i = 1; i <= Values.size(); ++i) {
428 os << i << " = ";
429 WriteAsOperand(os, Values[i-1]);
430 os << " {";
431 for (unsigned j = 0; j < VNMap.size(); ++j) {
432 if (VNMap[j].index == i) {
433 WriteAsOperand(os, VNMap[j].V);
434 os << " (" << VNMap[j].Subtree->getDFSNumIn() << ") ";
435 }
436 }
437 os << "}\n";
438 }
439 }
440#endif
441
442 /// compare - returns true if V1 is a better canonical value than V2.
443 bool compare(Value *V1, Value *V2) const {
444 if (isa<Constant>(V1))
445 return !isa<Constant>(V2);
446 else if (isa<Constant>(V2))
447 return false;
448 else if (isa<Argument>(V1))
449 return !isa<Argument>(V2);
450 else if (isa<Argument>(V2))
451 return false;
452
453 Instruction *I1 = dyn_cast<Instruction>(V1);
454 Instruction *I2 = dyn_cast<Instruction>(V2);
455
456 if (!I1 || !I2)
457 return V1->getNumUses() < V2->getNumUses();
458
459 return DTDFS->dominates(I1, I2);
460 }
461
462 ValueNumbering(DomTreeDFS *DTDFS) : DTDFS(DTDFS) {}
463
464 /// valueNumber - finds the value number for V under the Subtree. If
465 /// there is no value number, returns zero.
466 unsigned valueNumber(Value *V, DomTreeDFS::Node *Subtree) {
467 if (!(isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V))
468 || V->getType() == Type::VoidTy) return 0;
469
470 VNMapType::iterator E = VNMap.end();
471 VNPair pair(V, 0, Subtree);
472 VNMapType::iterator I = std::lower_bound(VNMap.begin(), E, pair);
473 while (I != E && I->V == V) {
474 if (I->Subtree->dominates(Subtree))
475 return I->index;
476 ++I;
477 }
478 return 0;
479 }
480
481 /// getOrInsertVN - always returns a value number, creating it if necessary.
482 unsigned getOrInsertVN(Value *V, DomTreeDFS::Node *Subtree) {
483 if (unsigned n = valueNumber(V, Subtree))
484 return n;
485 else
486 return newVN(V);
487 }
488
489 /// newVN - creates a new value number. Value V must not already have a
490 /// value number assigned.
491 unsigned newVN(Value *V) {
492 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
493 "Bad Value for value numbering.");
494 assert(V->getType() != Type::VoidTy && "Won't value number a void value");
495
496 Values.push_back(V);
497
498 VNPair pair = VNPair(V, Values.size(), DTDFS->getRootNode());
499 VNMapType::iterator I = std::lower_bound(VNMap.begin(), VNMap.end(), pair);
500 assert((I == VNMap.end() || value(I->index) != V) &&
501 "Attempt to create a duplicate value number.");
502 VNMap.insert(I, pair);
503
504 return Values.size();
505 }
506
507 /// value - returns the Value associated with a value number.
508 Value *value(unsigned index) const {
509 assert(index != 0 && "Zero index is reserved for not found.");
510 assert(index <= Values.size() && "Index out of range.");
511 return Values[index-1];
512 }
513
514 /// canonicalize - return a Value that is equal to V under Subtree.
515 Value *canonicalize(Value *V, DomTreeDFS::Node *Subtree) {
516 if (isa<Constant>(V)) return V;
517
518 if (unsigned n = valueNumber(V, Subtree))
519 return value(n);
520 else
521 return V;
522 }
523
524 /// addEquality - adds that value V belongs to the set of equivalent
525 /// values defined by value number n under Subtree.
526 void addEquality(unsigned n, Value *V, DomTreeDFS::Node *Subtree) {
527 assert(canonicalize(value(n), Subtree) == value(n) &&
528 "Node's 'canonical' choice isn't best within this subtree.");
529
530 // Suppose that we are given "%x -> node #1 (%y)". The problem is that
531 // we may already have "%z -> node #2 (%x)" somewhere above us in the
532 // graph. We need to find those edges and add "%z -> node #1 (%y)"
533 // to keep the lookups canonical.
534
535 std::vector<Value *> ToRepoint(1, V);
536
537 if (unsigned Conflict = valueNumber(V, Subtree)) {
538 for (VNMapType::iterator I = VNMap.begin(), E = VNMap.end();
539 I != E; ++I) {
540 if (I->index == Conflict && I->Subtree->dominates(Subtree))
541 ToRepoint.push_back(I->V);
542 }
543 }
544
545 for (std::vector<Value *>::iterator VI = ToRepoint.begin(),
546 VE = ToRepoint.end(); VI != VE; ++VI) {
547 Value *V = *VI;
548
549 VNPair pair(V, n, Subtree);
550 VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
551 VNMapType::iterator I = std::lower_bound(B, E, pair);
552 if (I != E && I->V == V && I->Subtree == Subtree)
553 I->index = n; // Update best choice
554 else
555 VNMap.insert(I, pair); // New Value
556
557 // XXX: we currently don't have to worry about updating values with
558 // more specific Subtrees, but we will need to for PHI node support.
559
560#ifndef NDEBUG
561 Value *V_n = value(n);
562 if (isa<Constant>(V) && isa<Constant>(V_n)) {
563 assert(V == V_n && "Constant equals different constant?");
564 }
565#endif
566 }
567 }
568
569 /// remove - removes all references to value V.
570 void remove(Value *V) {
571 VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
572 VNPair pair(V, 0, DTDFS->getRootNode());
573 VNMapType::iterator J = std::upper_bound(B, E, pair);
574 VNMapType::iterator I = J;
575
576 while (I != B && (I == E || I->V == V)) --I;
577
578 VNMap.erase(I, J);
579 }
580 };
581
582 /// The InequalityGraph stores the relationships between values.
583 /// Each Value in the graph is assigned to a Node. Nodes are pointer
584 /// comparable for equality. The caller is expected to maintain the logical
585 /// consistency of the system.
586 ///
587 /// The InequalityGraph class may invalidate Node*s after any mutator call.
588 /// @brief The InequalityGraph stores the relationships between values.
589 class VISIBILITY_HIDDEN InequalityGraph {
590 ValueNumbering &VN;
591 DomTreeDFS::Node *TreeRoot;
592
593 InequalityGraph(); // DO NOT IMPLEMENT
594 InequalityGraph(InequalityGraph &); // DO NOT IMPLEMENT
595 public:
596 InequalityGraph(ValueNumbering &VN, DomTreeDFS::Node *TreeRoot)
597 : VN(VN), TreeRoot(TreeRoot) {}
598
599 class Node;
600
601 /// An Edge is contained inside a Node making one end of the edge implicit
602 /// and contains a pointer to the other end. The edge contains a lattice
603 /// value specifying the relationship and an DomTreeDFS::Node specifying
604 /// the root in the dominator tree to which this edge applies.
605 class VISIBILITY_HIDDEN Edge {
606 public:
607 Edge(unsigned T, LatticeVal V, DomTreeDFS::Node *ST)
608 : To(T), LV(V), Subtree(ST) {}
609
610 unsigned To;
611 LatticeVal LV;
612 DomTreeDFS::Node *Subtree;
613
614 bool operator<(const Edge &edge) const {
615 if (To != edge.To) return To < edge.To;
616 return *Subtree < *edge.Subtree;
617 }
618
619 bool operator<(unsigned to) const {
620 return To < to;
621 }
622
623 bool operator>(unsigned to) const {
624 return To > to;
625 }
626
627 friend bool operator<(unsigned to, const Edge &edge) {
628 return edge.operator>(to);
629 }
630 };
631
632 /// A single node in the InequalityGraph. This stores the canonical Value
633 /// for the node, as well as the relationships with the neighbours.
634 ///
635 /// @brief A single node in the InequalityGraph.
636 class VISIBILITY_HIDDEN Node {
637 friend class InequalityGraph;
638
639 typedef SmallVector<Edge, 4> RelationsType;
640 RelationsType Relations;
641
642 // TODO: can this idea improve performance?
643 //friend class std::vector<Node>;
644 //Node(Node &N) { RelationsType.swap(N.RelationsType); }
645
646 public:
647 typedef RelationsType::iterator iterator;
648 typedef RelationsType::const_iterator const_iterator;
649
650#ifndef NDEBUG
651 virtual ~Node() {}
652 virtual void dump() const {
653 dump(*cerr.stream());
654 }
655 private:
656 void dump(std::ostream &os) const {
657 static const std::string names[32] =
658 { "000000", "000001", "000002", "000003", "000004", "000005",
659 "000006", "000007", "000008", "000009", " >", " >=",
660 " s>u<", "s>=u<=", " s>", " s>=", "000016", "000017",
661 " s<u>", "s<=u>=", " <", " <=", " s<", " s<=",
662 "000024", "000025", " u>", " u>=", " u<", " u<=",
663 " !=", "000031" };
664 for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) {
665 os << names[NI->LV] << " " << NI->To
666 << " (" << NI->Subtree->getDFSNumIn() << "), ";
667 }
668 }
669 public:
670#endif
671
672 iterator begin() { return Relations.begin(); }
673 iterator end() { return Relations.end(); }
674 const_iterator begin() const { return Relations.begin(); }
675 const_iterator end() const { return Relations.end(); }
676
677 iterator find(unsigned n, DomTreeDFS::Node *Subtree) {
678 iterator E = end();
679 for (iterator I = std::lower_bound(begin(), E, n);
680 I != E && I->To == n; ++I) {
681 if (Subtree->DominatedBy(I->Subtree))
682 return I;
683 }
684 return E;
685 }
686
687 const_iterator find(unsigned n, DomTreeDFS::Node *Subtree) const {
688 const_iterator E = end();
689 for (const_iterator I = std::lower_bound(begin(), E, n);
690 I != E && I->To == n; ++I) {
691 if (Subtree->DominatedBy(I->Subtree))
692 return I;
693 }
694 return E;
695 }
696
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000697 /// update - updates the lattice value for a given node, creating a new
698 /// entry if one doesn't exist. The new lattice value must not be
699 /// inconsistent with any previously existing value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000700 void update(unsigned n, LatticeVal R, DomTreeDFS::Node *Subtree) {
701 assert(validPredicate(R) && "Invalid predicate.");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000702
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000703 Edge edge(n, R, Subtree);
704 iterator B = begin(), E = end();
705 iterator I = std::lower_bound(B, E, edge);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000706
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000707 iterator J = I;
708 while (J != E && J->To == n) {
709 if (Subtree->DominatedBy(J->Subtree))
710 break;
711 ++J;
712 }
713
Nick Lewycky7f8b99b2007-08-18 23:18:03 +0000714 if (J != E && J->To == n) {
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000715 edge.LV = static_cast<LatticeVal>(J->LV & R);
716 assert(validPredicate(edge.LV) && "Invalid union of lattice values.");
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000717
Nick Lewycky7f8b99b2007-08-18 23:18:03 +0000718 if (edge.LV == J->LV)
719 return; // This update adds nothing new.
720 }
721
722 if (I != B) {
723 // We also have to tighten any edge beneath our update.
724 for (iterator K = I - 1; K->To == n; --K) {
725 if (K->Subtree->DominatedBy(Subtree)) {
726 LatticeVal LV = static_cast<LatticeVal>(K->LV & edge.LV);
727 assert(validPredicate(LV) && "Invalid union of lattice values");
728 K->LV = LV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000729 }
Nick Lewycky7f8b99b2007-08-18 23:18:03 +0000730 if (K == B) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000731 }
Nick Lewycky7f8b99b2007-08-18 23:18:03 +0000732 }
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000733
734 // Insert new edge at Subtree if it isn't already there.
735 if (I == E || I->To != n || Subtree != I->Subtree)
736 Relations.insert(I, edge);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737 }
738 };
739
740 private:
741
742 std::vector<Node> Nodes;
743
744 public:
745 /// node - returns the node object at a given value number. The pointer
746 /// returned may be invalidated on the next call to node().
747 Node *node(unsigned index) {
748 assert(VN.value(index)); // This triggers the necessary checks.
749 if (Nodes.size() < index) Nodes.resize(index);
750 return &Nodes[index-1];
751 }
752
753 /// isRelatedBy - true iff n1 op n2
754 bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
755 LatticeVal LV) {
756 if (n1 == n2) return LV & EQ_BIT;
757
758 Node *N1 = node(n1);
759 Node::iterator I = N1->find(n2, Subtree), E = N1->end();
760 if (I != E) return (I->LV & LV) == I->LV;
761
762 return false;
763 }
764
765 // The add* methods assume that your input is logically valid and may
766 // assertion-fail or infinitely loop if you attempt a contradiction.
767
768 /// addInequality - Sets n1 op n2.
769 /// It is also an error to call this on an inequality that is already true.
770 void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
771 LatticeVal LV1) {
772 assert(n1 != n2 && "A node can't be inequal to itself.");
773
774 if (LV1 != NE)
775 assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) &&
776 "Contradictory inequality.");
777
778 // Suppose we're adding %n1 < %n2. Find all the %a < %n1 and
779 // add %a < %n2 too. This keeps the graph fully connected.
780 if (LV1 != NE) {
781 // Break up the relationship into signed and unsigned comparison parts.
782 // If the signed parts of %a op1 %n1 match that of %n1 op2 %n2, and
783 // op1 and op2 aren't NE, then add %a op3 %n2. The new relationship
784 // should have the EQ_BIT iff it's set for both op1 and op2.
785
786 unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT);
787 unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT);
788
789 for (Node::iterator I = node(n1)->begin(), E = node(n1)->end(); I != E; ++I) {
790 if (I->LV != NE && I->To != n2) {
791
792 DomTreeDFS::Node *Local_Subtree = NULL;
793 if (Subtree->DominatedBy(I->Subtree))
794 Local_Subtree = Subtree;
795 else if (I->Subtree->DominatedBy(Subtree))
796 Local_Subtree = I->Subtree;
797
798 if (Local_Subtree) {
799 unsigned new_relationship = 0;
800 LatticeVal ILV = reversePredicate(I->LV);
801 unsigned ILV_s = ILV & (SLT_BIT|SGT_BIT);
802 unsigned ILV_u = ILV & (ULT_BIT|UGT_BIT);
803
804 if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
805 new_relationship |= ILV_s;
806 if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
807 new_relationship |= ILV_u;
808
809 if (new_relationship) {
810 if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
811 new_relationship |= (SLT_BIT|SGT_BIT);
812 if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
813 new_relationship |= (ULT_BIT|UGT_BIT);
814 if ((LV1 & EQ_BIT) && (ILV & EQ_BIT))
815 new_relationship |= EQ_BIT;
816
817 LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
818
819 node(I->To)->update(n2, NewLV, Local_Subtree);
820 node(n2)->update(I->To, reversePredicate(NewLV), Local_Subtree);
821 }
822 }
823 }
824 }
825
826 for (Node::iterator I = node(n2)->begin(), E = node(n2)->end(); I != E; ++I) {
827 if (I->LV != NE && I->To != n1) {
828 DomTreeDFS::Node *Local_Subtree = NULL;
829 if (Subtree->DominatedBy(I->Subtree))
830 Local_Subtree = Subtree;
831 else if (I->Subtree->DominatedBy(Subtree))
832 Local_Subtree = I->Subtree;
833
834 if (Local_Subtree) {
835 unsigned new_relationship = 0;
836 unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
837 unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
838
839 if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
840 new_relationship |= ILV_s;
841
842 if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
843 new_relationship |= ILV_u;
844
845 if (new_relationship) {
846 if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
847 new_relationship |= (SLT_BIT|SGT_BIT);
848 if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
849 new_relationship |= (ULT_BIT|UGT_BIT);
850 if ((LV1 & EQ_BIT) && (I->LV & EQ_BIT))
851 new_relationship |= EQ_BIT;
852
853 LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
854
855 node(n1)->update(I->To, NewLV, Local_Subtree);
856 node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree);
857 }
858 }
859 }
860 }
861 }
862
863 node(n1)->update(n2, LV1, Subtree);
864 node(n2)->update(n1, reversePredicate(LV1), Subtree);
865 }
866
867 /// remove - removes a node from the graph by removing all references to
868 /// and from it.
869 void remove(unsigned n) {
870 Node *N = node(n);
871 for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) {
872 Node::iterator Iter = node(NI->To)->find(n, TreeRoot);
873 do {
874 node(NI->To)->Relations.erase(Iter);
875 Iter = node(NI->To)->find(n, TreeRoot);
876 } while (Iter != node(NI->To)->end());
877 }
878 N->Relations.clear();
879 }
880
881#ifndef NDEBUG
882 virtual ~InequalityGraph() {}
883 virtual void dump() {
884 dump(*cerr.stream());
885 }
886
887 void dump(std::ostream &os) {
888 for (unsigned i = 1; i <= Nodes.size(); ++i) {
889 os << i << " = {";
890 node(i)->dump(os);
891 os << "}\n";
892 }
893 }
894#endif
895 };
896
897 class VRPSolver;
898
899 /// ValueRanges tracks the known integer ranges and anti-ranges of the nodes
900 /// in the InequalityGraph.
901 class VISIBILITY_HIDDEN ValueRanges {
902 ValueNumbering &VN;
903 TargetData *TD;
904
905 class VISIBILITY_HIDDEN ScopedRange {
906 typedef std::vector<std::pair<DomTreeDFS::Node *, ConstantRange> >
907 RangeListType;
908 RangeListType RangeList;
909
910 static bool swo(const std::pair<DomTreeDFS::Node *, ConstantRange> &LHS,
911 const std::pair<DomTreeDFS::Node *, ConstantRange> &RHS) {
912 return *LHS.first < *RHS.first;
913 }
914
915 public:
916#ifndef NDEBUG
917 virtual ~ScopedRange() {}
918 virtual void dump() const {
919 dump(*cerr.stream());
920 }
921
922 void dump(std::ostream &os) const {
923 os << "{";
924 for (const_iterator I = begin(), E = end(); I != E; ++I) {
925 os << I->second << " (" << I->first->getDFSNumIn() << "), ";
926 }
927 os << "}";
928 }
929#endif
930
931 typedef RangeListType::iterator iterator;
932 typedef RangeListType::const_iterator const_iterator;
933
934 iterator begin() { return RangeList.begin(); }
935 iterator end() { return RangeList.end(); }
936 const_iterator begin() const { return RangeList.begin(); }
937 const_iterator end() const { return RangeList.end(); }
938
939 iterator find(DomTreeDFS::Node *Subtree) {
940 static ConstantRange empty(1, false);
941 iterator E = end();
942 iterator I = std::lower_bound(begin(), E,
943 std::make_pair(Subtree, empty), swo);
944
945 while (I != E && !I->first->dominates(Subtree)) ++I;
946 return I;
947 }
948
949 const_iterator find(DomTreeDFS::Node *Subtree) const {
950 static const ConstantRange empty(1, false);
951 const_iterator E = end();
952 const_iterator I = std::lower_bound(begin(), E,
953 std::make_pair(Subtree, empty), swo);
954
955 while (I != E && !I->first->dominates(Subtree)) ++I;
956 return I;
957 }
958
959 void update(const ConstantRange &CR, DomTreeDFS::Node *Subtree) {
960 assert(!CR.isEmptySet() && "Empty ConstantRange.");
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000961 assert(!CR.isSingleElement() && "Refusing to store single element.");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000962
963 static ConstantRange empty(1, false);
964 iterator E = end();
965 iterator I =
966 std::lower_bound(begin(), E, std::make_pair(Subtree, empty), swo);
967
968 if (I != end() && I->first == Subtree) {
969 ConstantRange CR2 = I->second.maximalIntersectWith(CR);
970 assert(!CR2.isEmptySet() && !CR2.isSingleElement() &&
971 "Invalid union of ranges.");
972 I->second = CR2;
973 } else
974 RangeList.insert(I, std::make_pair(Subtree, CR));
975 }
976 };
977
978 std::vector<ScopedRange> Ranges;
979
980 void update(unsigned n, const ConstantRange &CR, DomTreeDFS::Node *Subtree){
981 if (CR.isFullSet()) return;
982 if (Ranges.size() < n) Ranges.resize(n);
983 Ranges[n-1].update(CR, Subtree);
984 }
985
986 /// create - Creates a ConstantRange that matches the given LatticeVal
987 /// relation with a given integer.
988 ConstantRange create(LatticeVal LV, const ConstantRange &CR) {
989 assert(!CR.isEmptySet() && "Can't deal with empty set.");
990
991 if (LV == NE)
992 return makeConstantRange(ICmpInst::ICMP_NE, CR);
993
994 unsigned LV_s = LV & (SGT_BIT|SLT_BIT);
995 unsigned LV_u = LV & (UGT_BIT|ULT_BIT);
996 bool hasEQ = LV & EQ_BIT;
997
998 ConstantRange Range(CR.getBitWidth());
999
1000 if (LV_s == SGT_BIT) {
1001 Range = Range.maximalIntersectWith(makeConstantRange(
1002 hasEQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SGT, CR));
1003 } else if (LV_s == SLT_BIT) {
1004 Range = Range.maximalIntersectWith(makeConstantRange(
1005 hasEQ ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_SLT, CR));
1006 }
1007
1008 if (LV_u == UGT_BIT) {
1009 Range = Range.maximalIntersectWith(makeConstantRange(
1010 hasEQ ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_UGT, CR));
1011 } else if (LV_u == ULT_BIT) {
1012 Range = Range.maximalIntersectWith(makeConstantRange(
1013 hasEQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT, CR));
1014 }
1015
1016 return Range;
1017 }
1018
1019 /// makeConstantRange - Creates a ConstantRange representing the set of all
1020 /// value that match the ICmpInst::Predicate with any of the values in CR.
1021 ConstantRange makeConstantRange(ICmpInst::Predicate ICmpOpcode,
1022 const ConstantRange &CR) {
1023 uint32_t W = CR.getBitWidth();
1024 switch (ICmpOpcode) {
1025 default: assert(!"Invalid ICmp opcode to makeConstantRange()");
1026 case ICmpInst::ICMP_EQ:
1027 return ConstantRange(CR.getLower(), CR.getUpper());
1028 case ICmpInst::ICMP_NE:
1029 if (CR.isSingleElement())
1030 return ConstantRange(CR.getUpper(), CR.getLower());
1031 return ConstantRange(W);
1032 case ICmpInst::ICMP_ULT:
1033 return ConstantRange(APInt::getMinValue(W), CR.getUnsignedMax());
1034 case ICmpInst::ICMP_SLT:
1035 return ConstantRange(APInt::getSignedMinValue(W), CR.getSignedMax());
1036 case ICmpInst::ICMP_ULE: {
1037 APInt UMax(CR.getUnsignedMax());
1038 if (UMax.isMaxValue())
1039 return ConstantRange(W);
1040 return ConstantRange(APInt::getMinValue(W), UMax + 1);
1041 }
1042 case ICmpInst::ICMP_SLE: {
1043 APInt SMax(CR.getSignedMax());
1044 if (SMax.isMaxSignedValue() || (SMax+1).isMaxSignedValue())
1045 return ConstantRange(W);
1046 return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
1047 }
1048 case ICmpInst::ICMP_UGT:
1049 return ConstantRange(CR.getUnsignedMin() + 1, APInt::getNullValue(W));
1050 case ICmpInst::ICMP_SGT:
1051 return ConstantRange(CR.getSignedMin() + 1,
1052 APInt::getSignedMinValue(W));
1053 case ICmpInst::ICMP_UGE: {
1054 APInt UMin(CR.getUnsignedMin());
1055 if (UMin.isMinValue())
1056 return ConstantRange(W);
1057 return ConstantRange(UMin, APInt::getNullValue(W));
1058 }
1059 case ICmpInst::ICMP_SGE: {
1060 APInt SMin(CR.getSignedMin());
1061 if (SMin.isMinSignedValue())
1062 return ConstantRange(W);
1063 return ConstantRange(SMin, APInt::getSignedMinValue(W));
1064 }
1065 }
1066 }
1067
1068#ifndef NDEBUG
1069 bool isCanonical(Value *V, DomTreeDFS::Node *Subtree) {
1070 return V == VN.canonicalize(V, Subtree);
1071 }
1072#endif
1073
1074 public:
1075
1076 ValueRanges(ValueNumbering &VN, TargetData *TD) : VN(VN), TD(TD) {}
1077
1078#ifndef NDEBUG
1079 virtual ~ValueRanges() {}
1080
1081 virtual void dump() const {
1082 dump(*cerr.stream());
1083 }
1084
1085 void dump(std::ostream &os) const {
1086 for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
1087 os << (i+1) << " = ";
1088 Ranges[i].dump(os);
1089 os << "\n";
1090 }
1091 }
1092#endif
1093
1094 /// range - looks up the ConstantRange associated with a value number.
1095 ConstantRange range(unsigned n, DomTreeDFS::Node *Subtree) {
1096 assert(VN.value(n)); // performs range checks
1097
1098 if (n <= Ranges.size()) {
1099 ScopedRange::iterator I = Ranges[n-1].find(Subtree);
1100 if (I != Ranges[n-1].end()) return I->second;
1101 }
1102
1103 Value *V = VN.value(n);
1104 ConstantRange CR = range(V);
1105 return CR;
1106 }
1107
1108 /// range - determine a range from a Value without performing any lookups.
1109 ConstantRange range(Value *V) const {
1110 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
1111 return ConstantRange(C->getValue());
1112 else if (isa<ConstantPointerNull>(V))
1113 return ConstantRange(APInt::getNullValue(typeToWidth(V->getType())));
1114 else
1115 return typeToWidth(V->getType());
1116 }
1117
1118 // typeToWidth - returns the number of bits necessary to store a value of
1119 // this type, or zero if unknown.
1120 uint32_t typeToWidth(const Type *Ty) const {
1121 if (TD)
1122 return TD->getTypeSizeInBits(Ty);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00001123 else
1124 return Ty->getPrimitiveSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001125 }
1126
1127 static bool isRelatedBy(const ConstantRange &CR1, const ConstantRange &CR2,
1128 LatticeVal LV) {
1129 switch (LV) {
1130 default: assert(!"Impossible lattice value!");
1131 case NE:
1132 return CR1.maximalIntersectWith(CR2).isEmptySet();
1133 case ULT:
1134 return CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
1135 case ULE:
1136 return CR1.getUnsignedMax().ule(CR2.getUnsignedMin());
1137 case UGT:
1138 return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax());
1139 case UGE:
1140 return CR1.getUnsignedMin().uge(CR2.getUnsignedMax());
1141 case SLT:
1142 return CR1.getSignedMax().slt(CR2.getSignedMin());
1143 case SLE:
1144 return CR1.getSignedMax().sle(CR2.getSignedMin());
1145 case SGT:
1146 return CR1.getSignedMin().sgt(CR2.getSignedMax());
1147 case SGE:
1148 return CR1.getSignedMin().sge(CR2.getSignedMax());
1149 case LT:
1150 return CR1.getUnsignedMax().ult(CR2.getUnsignedMin()) &&
1151 CR1.getSignedMax().slt(CR2.getUnsignedMin());
1152 case LE:
1153 return CR1.getUnsignedMax().ule(CR2.getUnsignedMin()) &&
1154 CR1.getSignedMax().sle(CR2.getUnsignedMin());
1155 case GT:
1156 return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax()) &&
1157 CR1.getSignedMin().sgt(CR2.getSignedMax());
1158 case GE:
1159 return CR1.getUnsignedMin().uge(CR2.getUnsignedMax()) &&
1160 CR1.getSignedMin().sge(CR2.getSignedMax());
1161 case SLTUGT:
1162 return CR1.getSignedMax().slt(CR2.getSignedMin()) &&
1163 CR1.getUnsignedMin().ugt(CR2.getUnsignedMax());
1164 case SLEUGE:
1165 return CR1.getSignedMax().sle(CR2.getSignedMin()) &&
1166 CR1.getUnsignedMin().uge(CR2.getUnsignedMax());
1167 case SGTULT:
1168 return CR1.getSignedMin().sgt(CR2.getSignedMax()) &&
1169 CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
1170 case SGEULE:
1171 return CR1.getSignedMin().sge(CR2.getSignedMax()) &&
1172 CR1.getUnsignedMax().ule(CR2.getUnsignedMin());
1173 }
1174 }
1175
1176 bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
1177 LatticeVal LV) {
1178 ConstantRange CR1 = range(n1, Subtree);
1179 ConstantRange CR2 = range(n2, Subtree);
1180
1181 // True iff all values in CR1 are LV to all values in CR2.
1182 return isRelatedBy(CR1, CR2, LV);
1183 }
1184
1185 void addToWorklist(Value *V, Constant *C, ICmpInst::Predicate Pred,
1186 VRPSolver *VRP);
1187 void markBlock(VRPSolver *VRP);
1188
1189 void mergeInto(Value **I, unsigned n, unsigned New,
1190 DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
1191 ConstantRange CR_New = range(New, Subtree);
1192 ConstantRange Merged = CR_New;
1193
1194 for (; n != 0; ++I, --n) {
1195 unsigned i = VN.valueNumber(*I, Subtree);
1196 ConstantRange CR_Kill = i ? range(i, Subtree) : range(*I);
1197 if (CR_Kill.isFullSet()) continue;
1198 Merged = Merged.maximalIntersectWith(CR_Kill);
1199 }
1200
1201 if (Merged.isFullSet() || Merged == CR_New) return;
1202
1203 applyRange(New, Merged, Subtree, VRP);
1204 }
1205
1206 void applyRange(unsigned n, const ConstantRange &CR,
1207 DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
1208 ConstantRange Merged = CR.maximalIntersectWith(range(n, Subtree));
1209 if (Merged.isEmptySet()) {
1210 markBlock(VRP);
1211 return;
1212 }
1213
1214 if (const APInt *I = Merged.getSingleElement()) {
1215 Value *V = VN.value(n); // XXX: redesign worklist.
1216 const Type *Ty = V->getType();
1217 if (Ty->isInteger()) {
1218 addToWorklist(V, ConstantInt::get(*I), ICmpInst::ICMP_EQ, VRP);
1219 return;
1220 } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1221 assert(*I == 0 && "Pointer is null but not zero?");
1222 addToWorklist(V, ConstantPointerNull::get(PTy),
1223 ICmpInst::ICMP_EQ, VRP);
1224 return;
1225 }
1226 }
1227
1228 update(n, Merged, Subtree);
1229 }
1230
1231 void addNotEquals(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
1232 VRPSolver *VRP) {
1233 ConstantRange CR1 = range(n1, Subtree);
1234 ConstantRange CR2 = range(n2, Subtree);
1235
1236 uint32_t W = CR1.getBitWidth();
1237
1238 if (const APInt *I = CR1.getSingleElement()) {
1239 if (CR2.isFullSet()) {
1240 ConstantRange NewCR2(CR1.getUpper(), CR1.getLower());
1241 applyRange(n2, NewCR2, Subtree, VRP);
1242 } else if (*I == CR2.getLower()) {
1243 APInt NewLower(CR2.getLower() + 1),
1244 NewUpper(CR2.getUpper());
1245 if (NewLower == NewUpper)
1246 NewLower = NewUpper = APInt::getMinValue(W);
1247
1248 ConstantRange NewCR2(NewLower, NewUpper);
1249 applyRange(n2, NewCR2, Subtree, VRP);
1250 } else if (*I == CR2.getUpper() - 1) {
1251 APInt NewLower(CR2.getLower()),
1252 NewUpper(CR2.getUpper() - 1);
1253 if (NewLower == NewUpper)
1254 NewLower = NewUpper = APInt::getMinValue(W);
1255
1256 ConstantRange NewCR2(NewLower, NewUpper);
1257 applyRange(n2, NewCR2, Subtree, VRP);
1258 }
1259 }
1260
1261 if (const APInt *I = CR2.getSingleElement()) {
1262 if (CR1.isFullSet()) {
1263 ConstantRange NewCR1(CR2.getUpper(), CR2.getLower());
1264 applyRange(n1, NewCR1, Subtree, VRP);
1265 } else if (*I == CR1.getLower()) {
1266 APInt NewLower(CR1.getLower() + 1),
1267 NewUpper(CR1.getUpper());
1268 if (NewLower == NewUpper)
1269 NewLower = NewUpper = APInt::getMinValue(W);
1270
1271 ConstantRange NewCR1(NewLower, NewUpper);
1272 applyRange(n1, NewCR1, Subtree, VRP);
1273 } else if (*I == CR1.getUpper() - 1) {
1274 APInt NewLower(CR1.getLower()),
1275 NewUpper(CR1.getUpper() - 1);
1276 if (NewLower == NewUpper)
1277 NewLower = NewUpper = APInt::getMinValue(W);
1278
1279 ConstantRange NewCR1(NewLower, NewUpper);
1280 applyRange(n1, NewCR1, Subtree, VRP);
1281 }
1282 }
1283 }
1284
1285 void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
1286 LatticeVal LV, VRPSolver *VRP) {
1287 assert(!isRelatedBy(n1, n2, Subtree, LV) && "Asked to do useless work.");
1288
1289 if (LV == NE) {
1290 addNotEquals(n1, n2, Subtree, VRP);
1291 return;
1292 }
1293
1294 ConstantRange CR1 = range(n1, Subtree);
1295 ConstantRange CR2 = range(n2, Subtree);
1296
1297 if (!CR1.isSingleElement()) {
1298 ConstantRange NewCR1 = CR1.maximalIntersectWith(create(LV, CR2));
1299 if (NewCR1 != CR1)
1300 applyRange(n1, NewCR1, Subtree, VRP);
1301 }
1302
1303 if (!CR2.isSingleElement()) {
1304 ConstantRange NewCR2 = CR2.maximalIntersectWith(
1305 create(reversePredicate(LV), CR1));
1306 if (NewCR2 != CR2)
1307 applyRange(n2, NewCR2, Subtree, VRP);
1308 }
1309 }
1310 };
1311
1312 /// UnreachableBlocks keeps tracks of blocks that are for one reason or
1313 /// another discovered to be unreachable. This is used to cull the graph when
1314 /// analyzing instructions, and to mark blocks with the "unreachable"
1315 /// terminator instruction after the function has executed.
1316 class VISIBILITY_HIDDEN UnreachableBlocks {
1317 private:
1318 std::vector<BasicBlock *> DeadBlocks;
1319
1320 public:
1321 /// mark - mark a block as dead
1322 void mark(BasicBlock *BB) {
1323 std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
1324 std::vector<BasicBlock *>::iterator I =
1325 std::lower_bound(DeadBlocks.begin(), E, BB);
1326
1327 if (I == E || *I != BB) DeadBlocks.insert(I, BB);
1328 }
1329
1330 /// isDead - returns whether a block is known to be dead already
1331 bool isDead(BasicBlock *BB) {
1332 std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
1333 std::vector<BasicBlock *>::iterator I =
1334 std::lower_bound(DeadBlocks.begin(), E, BB);
1335
1336 return I != E && *I == BB;
1337 }
1338
1339 /// kill - replace the dead blocks' terminator with an UnreachableInst.
1340 bool kill() {
1341 bool modified = false;
1342 for (std::vector<BasicBlock *>::iterator I = DeadBlocks.begin(),
1343 E = DeadBlocks.end(); I != E; ++I) {
1344 BasicBlock *BB = *I;
1345
1346 DOUT << "unreachable block: " << BB->getName() << "\n";
1347
1348 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
1349 SI != SE; ++SI) {
1350 BasicBlock *Succ = *SI;
1351 Succ->removePredecessor(BB);
1352 }
1353
1354 TerminatorInst *TI = BB->getTerminator();
1355 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1356 TI->eraseFromParent();
1357 new UnreachableInst(BB);
1358 ++NumBlocks;
1359 modified = true;
1360 }
1361 DeadBlocks.clear();
1362 return modified;
1363 }
1364 };
1365
1366 /// VRPSolver keeps track of how changes to one variable affect other
1367 /// variables, and forwards changes along to the InequalityGraph. It
1368 /// also maintains the correct choice for "canonical" in the IG.
1369 /// @brief VRPSolver calculates inferences from a new relationship.
1370 class VISIBILITY_HIDDEN VRPSolver {
1371 private:
1372 friend class ValueRanges;
1373
1374 struct Operation {
1375 Value *LHS, *RHS;
1376 ICmpInst::Predicate Op;
1377
1378 BasicBlock *ContextBB; // XXX use a DomTreeDFS::Node instead
1379 Instruction *ContextInst;
1380 };
1381 std::deque<Operation> WorkList;
1382
1383 ValueNumbering &VN;
1384 InequalityGraph &IG;
1385 UnreachableBlocks &UB;
1386 ValueRanges &VR;
1387 DomTreeDFS *DTDFS;
1388 DomTreeDFS::Node *Top;
1389 BasicBlock *TopBB;
1390 Instruction *TopInst;
1391 bool &modified;
1392
1393 typedef InequalityGraph::Node Node;
1394
1395 // below - true if the Instruction is dominated by the current context
1396 // block or instruction
1397 bool below(Instruction *I) {
1398 BasicBlock *BB = I->getParent();
1399 if (TopInst && TopInst->getParent() == BB) {
1400 if (isa<TerminatorInst>(TopInst)) return false;
1401 if (isa<TerminatorInst>(I)) return true;
1402 if ( isa<PHINode>(TopInst) && !isa<PHINode>(I)) return true;
1403 if (!isa<PHINode>(TopInst) && isa<PHINode>(I)) return false;
1404
1405 for (BasicBlock::const_iterator Iter = BB->begin(), E = BB->end();
1406 Iter != E; ++Iter) {
1407 if (&*Iter == TopInst) return true;
1408 else if (&*Iter == I) return false;
1409 }
1410 assert(!"Instructions not found in parent BasicBlock?");
1411 } else {
1412 DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB);
1413 if (!Node) return false;
1414 return Top->dominates(Node);
1415 }
1416 }
1417
1418 // aboveOrBelow - true if the Instruction either dominates or is dominated
1419 // by the current context block or instruction
1420 bool aboveOrBelow(Instruction *I) {
1421 BasicBlock *BB = I->getParent();
1422 DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB);
1423 if (!Node) return false;
1424
1425 return Top == Node || Top->dominates(Node) || Node->dominates(Top);
1426 }
1427
1428 bool makeEqual(Value *V1, Value *V2) {
1429 DOUT << "makeEqual(" << *V1 << ", " << *V2 << ")\n";
1430 DOUT << "context is ";
1431 if (TopInst) DOUT << "I: " << *TopInst << "\n";
1432 else DOUT << "BB: " << TopBB->getName()
1433 << "(" << Top->getDFSNumIn() << ")\n";
1434
1435 assert(V1->getType() == V2->getType() &&
1436 "Can't make two values with different types equal.");
1437
1438 if (V1 == V2) return true;
1439
1440 if (isa<Constant>(V1) && isa<Constant>(V2))
1441 return false;
1442
1443 unsigned n1 = VN.valueNumber(V1, Top), n2 = VN.valueNumber(V2, Top);
1444
1445 if (n1 && n2) {
1446 if (n1 == n2) return true;
1447 if (IG.isRelatedBy(n1, n2, Top, NE)) return false;
1448 }
1449
1450 if (n1) assert(V1 == VN.value(n1) && "Value isn't canonical.");
1451 if (n2) assert(V2 == VN.value(n2) && "Value isn't canonical.");
1452
1453 assert(!VN.compare(V2, V1) && "Please order parameters to makeEqual.");
1454
1455 assert(!isa<Constant>(V2) && "Tried to remove a constant.");
1456
1457 SetVector<unsigned> Remove;
1458 if (n2) Remove.insert(n2);
1459
1460 if (n1 && n2) {
1461 // Suppose we're being told that %x == %y, and %x <= %z and %y >= %z.
1462 // We can't just merge %x and %y because the relationship with %z would
1463 // be EQ and that's invalid. What we're doing is looking for any nodes
1464 // %z such that %x <= %z and %y >= %z, and vice versa.
1465
1466 Node::iterator end = IG.node(n2)->end();
1467
1468 // Find the intersection between N1 and N2 which is dominated by
1469 // Top. If we find %x where N1 <= %x <= N2 (or >=) then add %x to
1470 // Remove.
1471 for (Node::iterator I = IG.node(n1)->begin(), E = IG.node(n1)->end();
1472 I != E; ++I) {
1473 if (!(I->LV & EQ_BIT) || !Top->DominatedBy(I->Subtree)) continue;
1474
1475 unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
1476 unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
1477 Node::iterator NI = IG.node(n2)->find(I->To, Top);
1478 if (NI != end) {
1479 LatticeVal NILV = reversePredicate(NI->LV);
1480 unsigned NILV_s = NILV & (SLT_BIT|SGT_BIT);
1481 unsigned NILV_u = NILV & (ULT_BIT|UGT_BIT);
1482
1483 if ((ILV_s != (SLT_BIT|SGT_BIT) && ILV_s == NILV_s) ||
1484 (ILV_u != (ULT_BIT|UGT_BIT) && ILV_u == NILV_u))
1485 Remove.insert(I->To);
1486 }
1487 }
1488
1489 // See if one of the nodes about to be removed is actually a better
1490 // canonical choice than n1.
1491 unsigned orig_n1 = n1;
1492 SetVector<unsigned>::iterator DontRemove = Remove.end();
1493 for (SetVector<unsigned>::iterator I = Remove.begin()+1 /* skip n2 */,
1494 E = Remove.end(); I != E; ++I) {
1495 unsigned n = *I;
1496 Value *V = VN.value(n);
1497 if (VN.compare(V, V1)) {
1498 V1 = V;
1499 n1 = n;
1500 DontRemove = I;
1501 }
1502 }
1503 if (DontRemove != Remove.end()) {
1504 unsigned n = *DontRemove;
1505 Remove.remove(n);
1506 Remove.insert(orig_n1);
1507 }
1508 }
1509
1510 // We'd like to allow makeEqual on two values to perform a simple
1511 // substitution without every creating nodes in the IG whenever possible.
1512 //
1513 // The first iteration through this loop operates on V2 before going
1514 // through the Remove list and operating on those too. If all of the
1515 // iterations performed simple replacements then we exit early.
1516 bool mergeIGNode = false;
1517 unsigned i = 0;
1518 for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
1519 if (i) R = VN.value(Remove[i]); // skip n2.
1520
1521 // Try to replace the whole instruction. If we can, we're done.
1522 Instruction *I2 = dyn_cast<Instruction>(R);
1523 if (I2 && below(I2)) {
1524 std::vector<Instruction *> ToNotify;
1525 for (Value::use_iterator UI = R->use_begin(), UE = R->use_end();
1526 UI != UE;) {
1527 Use &TheUse = UI.getUse();
1528 ++UI;
1529 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser()))
1530 ToNotify.push_back(I);
1531 }
1532
1533 DOUT << "Simply removing " << *I2
1534 << ", replacing with " << *V1 << "\n";
1535 I2->replaceAllUsesWith(V1);
1536 // leave it dead; it'll get erased later.
1537 ++NumInstruction;
1538 modified = true;
1539
1540 for (std::vector<Instruction *>::iterator II = ToNotify.begin(),
1541 IE = ToNotify.end(); II != IE; ++II) {
1542 opsToDef(*II);
1543 }
1544
1545 continue;
1546 }
1547
1548 // Otherwise, replace all dominated uses.
1549 for (Value::use_iterator UI = R->use_begin(), UE = R->use_end();
1550 UI != UE;) {
1551 Use &TheUse = UI.getUse();
1552 ++UI;
1553 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
1554 if (below(I)) {
1555 TheUse.set(V1);
1556 modified = true;
1557 ++NumVarsReplaced;
1558 opsToDef(I);
1559 }
1560 }
1561 }
1562
1563 // If that killed the instruction, stop here.
1564 if (I2 && isInstructionTriviallyDead(I2)) {
1565 DOUT << "Killed all uses of " << *I2
1566 << ", replacing with " << *V1 << "\n";
1567 continue;
1568 }
1569
1570 // If we make it to here, then we will need to create a node for N1.
1571 // Otherwise, we can skip out early!
1572 mergeIGNode = true;
1573 }
1574
1575 if (!isa<Constant>(V1)) {
1576 if (Remove.empty()) {
1577 VR.mergeInto(&V2, 1, VN.getOrInsertVN(V1, Top), Top, this);
1578 } else {
1579 std::vector<Value*> RemoveVals;
1580 RemoveVals.reserve(Remove.size());
1581
1582 for (SetVector<unsigned>::iterator I = Remove.begin(),
1583 E = Remove.end(); I != E; ++I) {
1584 Value *V = VN.value(*I);
1585 if (!V->use_empty())
1586 RemoveVals.push_back(V);
1587 }
1588 VR.mergeInto(&RemoveVals[0], RemoveVals.size(),
1589 VN.getOrInsertVN(V1, Top), Top, this);
1590 }
1591 }
1592
1593 if (mergeIGNode) {
1594 // Create N1.
1595 if (!n1) n1 = VN.getOrInsertVN(V1, Top);
1596
1597 // Migrate relationships from removed nodes to N1.
1598 for (SetVector<unsigned>::iterator I = Remove.begin(), E = Remove.end();
1599 I != E; ++I) {
1600 unsigned n = *I;
1601 for (Node::iterator NI = IG.node(n)->begin(), NE = IG.node(n)->end();
1602 NI != NE; ++NI) {
1603 if (NI->Subtree->DominatedBy(Top)) {
1604 if (NI->To == n1) {
1605 assert((NI->LV & EQ_BIT) && "Node inequal to itself.");
1606 continue;
1607 }
1608 if (Remove.count(NI->To))
1609 continue;
1610
1611 IG.node(NI->To)->update(n1, reversePredicate(NI->LV), Top);
1612 IG.node(n1)->update(NI->To, NI->LV, Top);
1613 }
1614 }
1615 }
1616
1617 // Point V2 (and all items in Remove) to N1.
1618 if (!n2)
1619 VN.addEquality(n1, V2, Top);
1620 else {
1621 for (SetVector<unsigned>::iterator I = Remove.begin(),
1622 E = Remove.end(); I != E; ++I) {
1623 VN.addEquality(n1, VN.value(*I), Top);
1624 }
1625 }
1626
1627 // If !Remove.empty() then V2 = Remove[0]->getValue().
1628 // Even when Remove is empty, we still want to process V2.
1629 i = 0;
1630 for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
1631 if (i) R = VN.value(Remove[i]); // skip n2.
1632
1633 if (Instruction *I2 = dyn_cast<Instruction>(R)) {
1634 if (aboveOrBelow(I2))
1635 defToOps(I2);
1636 }
1637 for (Value::use_iterator UI = V2->use_begin(), UE = V2->use_end();
1638 UI != UE;) {
1639 Use &TheUse = UI.getUse();
1640 ++UI;
1641 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
1642 if (aboveOrBelow(I))
1643 opsToDef(I);
1644 }
1645 }
1646 }
1647 }
1648
1649 // re-opsToDef all dominated users of V1.
1650 if (Instruction *I = dyn_cast<Instruction>(V1)) {
1651 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1652 UI != UE;) {
1653 Use &TheUse = UI.getUse();
1654 ++UI;
1655 Value *V = TheUse.getUser();
1656 if (!V->use_empty()) {
1657 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
1658 if (aboveOrBelow(Inst))
1659 opsToDef(Inst);
1660 }
1661 }
1662 }
1663 }
1664
1665 return true;
1666 }
1667
1668 /// cmpInstToLattice - converts an CmpInst::Predicate to lattice value
1669 /// Requires that the lattice value be valid; does not accept ICMP_EQ.
1670 static LatticeVal cmpInstToLattice(ICmpInst::Predicate Pred) {
1671 switch (Pred) {
1672 case ICmpInst::ICMP_EQ:
1673 assert(!"No matching lattice value.");
1674 return static_cast<LatticeVal>(EQ_BIT);
1675 default:
1676 assert(!"Invalid 'icmp' predicate.");
1677 case ICmpInst::ICMP_NE:
1678 return NE;
1679 case ICmpInst::ICMP_UGT:
1680 return UGT;
1681 case ICmpInst::ICMP_UGE:
1682 return UGE;
1683 case ICmpInst::ICMP_ULT:
1684 return ULT;
1685 case ICmpInst::ICMP_ULE:
1686 return ULE;
1687 case ICmpInst::ICMP_SGT:
1688 return SGT;
1689 case ICmpInst::ICMP_SGE:
1690 return SGE;
1691 case ICmpInst::ICMP_SLT:
1692 return SLT;
1693 case ICmpInst::ICMP_SLE:
1694 return SLE;
1695 }
1696 }
1697
1698 public:
1699 VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB,
1700 ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified,
1701 BasicBlock *TopBB)
1702 : VN(VN),
1703 IG(IG),
1704 UB(UB),
1705 VR(VR),
1706 DTDFS(DTDFS),
1707 Top(DTDFS->getNodeForBlock(TopBB)),
1708 TopBB(TopBB),
1709 TopInst(NULL),
1710 modified(modified)
1711 {
1712 assert(Top && "VRPSolver created for unreachable basic block.");
1713 }
1714
1715 VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB,
1716 ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified,
1717 Instruction *TopInst)
1718 : VN(VN),
1719 IG(IG),
1720 UB(UB),
1721 VR(VR),
1722 DTDFS(DTDFS),
1723 Top(DTDFS->getNodeForBlock(TopInst->getParent())),
1724 TopBB(TopInst->getParent()),
1725 TopInst(TopInst),
1726 modified(modified)
1727 {
1728 assert(Top && "VRPSolver created for unreachable basic block.");
1729 assert(Top->getBlock() == TopInst->getParent() && "Context mismatch.");
1730 }
1731
1732 bool isRelatedBy(Value *V1, Value *V2, ICmpInst::Predicate Pred) const {
1733 if (Constant *C1 = dyn_cast<Constant>(V1))
1734 if (Constant *C2 = dyn_cast<Constant>(V2))
1735 return ConstantExpr::getCompare(Pred, C1, C2) ==
1736 ConstantInt::getTrue();
1737
1738 unsigned n1 = VN.valueNumber(V1, Top);
1739 unsigned n2 = VN.valueNumber(V2, Top);
1740
1741 if (n1 && n2) {
1742 if (n1 == n2) return Pred == ICmpInst::ICMP_EQ ||
1743 Pred == ICmpInst::ICMP_ULE ||
1744 Pred == ICmpInst::ICMP_UGE ||
1745 Pred == ICmpInst::ICMP_SLE ||
1746 Pred == ICmpInst::ICMP_SGE;
1747 if (Pred == ICmpInst::ICMP_EQ) return false;
1748 if (IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
1749 if (VR.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
1750 }
1751
1752 if ((n1 && !n2 && isa<Constant>(V2)) ||
1753 (n2 && !n1 && isa<Constant>(V1))) {
1754 ConstantRange CR1 = n1 ? VR.range(n1, Top) : VR.range(V1);
1755 ConstantRange CR2 = n2 ? VR.range(n2, Top) : VR.range(V2);
1756
1757 if (Pred == ICmpInst::ICMP_EQ)
1758 return CR1.isSingleElement() &&
1759 CR1.getSingleElement() == CR2.getSingleElement();
1760
1761 return VR.isRelatedBy(CR1, CR2, cmpInstToLattice(Pred));
1762 }
1763 if (Pred == ICmpInst::ICMP_EQ) return V1 == V2;
1764 return false;
1765 }
1766
1767 /// add - adds a new property to the work queue
1768 void add(Value *V1, Value *V2, ICmpInst::Predicate Pred,
1769 Instruction *I = NULL) {
1770 DOUT << "adding " << *V1 << " " << Pred << " " << *V2;
1771 if (I) DOUT << " context: " << *I;
1772 else DOUT << " default context (" << Top->getDFSNumIn() << ")";
1773 DOUT << "\n";
1774
1775 assert(V1->getType() == V2->getType() &&
1776 "Can't relate two values with different types.");
1777
1778 WorkList.push_back(Operation());
1779 Operation &O = WorkList.back();
1780 O.LHS = V1, O.RHS = V2, O.Op = Pred, O.ContextInst = I;
1781 O.ContextBB = I ? I->getParent() : TopBB;
1782 }
1783
1784 /// defToOps - Given an instruction definition that we've learned something
1785 /// new about, find any new relationships between its operands.
1786 void defToOps(Instruction *I) {
1787 Instruction *NewContext = below(I) ? I : TopInst;
1788 Value *Canonical = VN.canonicalize(I, Top);
1789
1790 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1791 const Type *Ty = BO->getType();
1792 assert(!Ty->isFPOrFPVector() && "Float in work queue!");
1793
1794 Value *Op0 = VN.canonicalize(BO->getOperand(0), Top);
1795 Value *Op1 = VN.canonicalize(BO->getOperand(1), Top);
1796
1797 // TODO: "and i32 -1, %x" EQ %y then %x EQ %y.
1798
1799 switch (BO->getOpcode()) {
1800 case Instruction::And: {
1801 // "and i32 %a, %b" EQ -1 then %a EQ -1 and %b EQ -1
1802 ConstantInt *CI = ConstantInt::getAllOnesValue(Ty);
1803 if (Canonical == CI) {
1804 add(CI, Op0, ICmpInst::ICMP_EQ, NewContext);
1805 add(CI, Op1, ICmpInst::ICMP_EQ, NewContext);
1806 }
1807 } break;
1808 case Instruction::Or: {
1809 // "or i32 %a, %b" EQ 0 then %a EQ 0 and %b EQ 0
1810 Constant *Zero = Constant::getNullValue(Ty);
1811 if (Canonical == Zero) {
1812 add(Zero, Op0, ICmpInst::ICMP_EQ, NewContext);
1813 add(Zero, Op1, ICmpInst::ICMP_EQ, NewContext);
1814 }
1815 } break;
1816 case Instruction::Xor: {
1817 // "xor i32 %c, %a" EQ %b then %a EQ %c ^ %b
1818 // "xor i32 %c, %a" EQ %c then %a EQ 0
1819 // "xor i32 %c, %a" NE %c then %a NE 0
1820 // Repeat the above, with order of operands reversed.
1821 Value *LHS = Op0;
1822 Value *RHS = Op1;
1823 if (!isa<Constant>(LHS)) std::swap(LHS, RHS);
1824
1825 if (ConstantInt *CI = dyn_cast<ConstantInt>(Canonical)) {
1826 if (ConstantInt *Arg = dyn_cast<ConstantInt>(LHS)) {
1827 add(RHS, ConstantInt::get(CI->getValue() ^ Arg->getValue()),
1828 ICmpInst::ICMP_EQ, NewContext);
1829 }
1830 }
1831 if (Canonical == LHS) {
1832 if (isa<ConstantInt>(Canonical))
1833 add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ,
1834 NewContext);
1835 } else if (isRelatedBy(LHS, Canonical, ICmpInst::ICMP_NE)) {
1836 add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_NE,
1837 NewContext);
1838 }
1839 } break;
1840 default:
1841 break;
1842 }
1843 } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
1844 // "icmp ult i32 %a, %y" EQ true then %a u< y
1845 // etc.
1846
1847 if (Canonical == ConstantInt::getTrue()) {
1848 add(IC->getOperand(0), IC->getOperand(1), IC->getPredicate(),
1849 NewContext);
1850 } else if (Canonical == ConstantInt::getFalse()) {
1851 add(IC->getOperand(0), IC->getOperand(1),
1852 ICmpInst::getInversePredicate(IC->getPredicate()), NewContext);
1853 }
1854 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
1855 if (I->getType()->isFPOrFPVector()) return;
1856
1857 // Given: "%a = select i1 %x, i32 %b, i32 %c"
1858 // %a EQ %b and %b NE %c then %x EQ true
1859 // %a EQ %c and %b NE %c then %x EQ false
1860
1861 Value *True = SI->getTrueValue();
1862 Value *False = SI->getFalseValue();
1863 if (isRelatedBy(True, False, ICmpInst::ICMP_NE)) {
1864 if (Canonical == VN.canonicalize(True, Top) ||
1865 isRelatedBy(Canonical, False, ICmpInst::ICMP_NE))
1866 add(SI->getCondition(), ConstantInt::getTrue(),
1867 ICmpInst::ICMP_EQ, NewContext);
1868 else if (Canonical == VN.canonicalize(False, Top) ||
1869 isRelatedBy(Canonical, True, ICmpInst::ICMP_NE))
1870 add(SI->getCondition(), ConstantInt::getFalse(),
1871 ICmpInst::ICMP_EQ, NewContext);
1872 }
1873 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1874 for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(),
1875 OE = GEPI->idx_end(); OI != OE; ++OI) {
1876 ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top));
1877 if (!Op || !Op->isZero()) return;
1878 }
1879 // TODO: The GEPI indices are all zero. Copy from definition to operand,
1880 // jumping the type plane as needed.
1881 if (isRelatedBy(GEPI, Constant::getNullValue(GEPI->getType()),
1882 ICmpInst::ICMP_NE)) {
1883 Value *Ptr = GEPI->getPointerOperand();
1884 add(Ptr, Constant::getNullValue(Ptr->getType()), ICmpInst::ICMP_NE,
1885 NewContext);
1886 }
1887 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
1888 const Type *SrcTy = CI->getSrcTy();
1889
1890 unsigned ci = VN.getOrInsertVN(CI, Top);
1891 uint32_t W = VR.typeToWidth(SrcTy);
1892 if (!W) return;
1893 ConstantRange CR = VR.range(ci, Top);
1894
1895 if (CR.isFullSet()) return;
1896
1897 switch (CI->getOpcode()) {
1898 default: break;
1899 case Instruction::ZExt:
1900 case Instruction::SExt:
1901 VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
1902 CR.truncate(W), Top, this);
1903 break;
1904 case Instruction::BitCast:
1905 VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
1906 CR, Top, this);
1907 break;
1908 }
1909 }
1910 }
1911
1912 /// opsToDef - A new relationship was discovered involving one of this
1913 /// instruction's operands. Find any new relationship involving the
1914 /// definition, or another operand.
1915 void opsToDef(Instruction *I) {
1916 Instruction *NewContext = below(I) ? I : TopInst;
1917
1918 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1919 Value *Op0 = VN.canonicalize(BO->getOperand(0), Top);
1920 Value *Op1 = VN.canonicalize(BO->getOperand(1), Top);
1921
1922 if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0))
1923 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
1924 add(BO, ConstantExpr::get(BO->getOpcode(), CI0, CI1),
1925 ICmpInst::ICMP_EQ, NewContext);
1926 return;
1927 }
1928
1929 // "%y = and i1 true, %x" then %x EQ %y
1930 // "%y = or i1 false, %x" then %x EQ %y
1931 // "%x = add i32 %y, 0" then %x EQ %y
1932 // "%x = mul i32 %y, 0" then %x EQ 0
1933
1934 Instruction::BinaryOps Opcode = BO->getOpcode();
1935 const Type *Ty = BO->getType();
1936 assert(!Ty->isFPOrFPVector() && "Float in work queue!");
1937
1938 Constant *Zero = Constant::getNullValue(Ty);
1939 ConstantInt *AllOnes = ConstantInt::getAllOnesValue(Ty);
1940
1941 switch (Opcode) {
1942 default: break;
1943 case Instruction::LShr:
1944 case Instruction::AShr:
1945 case Instruction::Shl:
1946 case Instruction::Sub:
1947 if (Op1 == Zero) {
1948 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1949 return;
1950 }
1951 break;
1952 case Instruction::Or:
1953 if (Op0 == AllOnes || Op1 == AllOnes) {
1954 add(BO, AllOnes, ICmpInst::ICMP_EQ, NewContext);
1955 return;
1956 } // fall-through
1957 case Instruction::Xor:
1958 case Instruction::Add:
1959 if (Op0 == Zero) {
1960 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
1961 return;
1962 } else if (Op1 == Zero) {
1963 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1964 return;
1965 }
1966 break;
1967 case Instruction::And:
1968 if (Op0 == AllOnes) {
1969 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
1970 return;
1971 } else if (Op1 == AllOnes) {
1972 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1973 return;
1974 }
1975 // fall-through
1976 case Instruction::Mul:
1977 if (Op0 == Zero || Op1 == Zero) {
1978 add(BO, Zero, ICmpInst::ICMP_EQ, NewContext);
1979 return;
1980 }
1981 break;
1982 }
1983
1984 // "%x = add i32 %y, %z" and %x EQ %y then %z EQ 0
1985 // "%x = add i32 %y, %z" and %x EQ %z then %y EQ 0
1986 // "%x = shl i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 0
1987 // "%x = udiv i32 %y, %z" and %x EQ %y then %z EQ 1
1988
1989 Value *Known = Op0, *Unknown = Op1,
1990 *TheBO = VN.canonicalize(BO, Top);
1991 if (Known != TheBO) std::swap(Known, Unknown);
1992 if (Known == TheBO) {
1993 switch (Opcode) {
1994 default: break;
1995 case Instruction::LShr:
1996 case Instruction::AShr:
1997 case Instruction::Shl:
1998 if (!isRelatedBy(Known, Zero, ICmpInst::ICMP_NE)) break;
1999 // otherwise, fall-through.
2000 case Instruction::Sub:
Nick Lewycky56d24822007-09-20 00:48:36 +00002001 if (Unknown == Op0) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002002 // otherwise, fall-through.
2003 case Instruction::Xor:
2004 case Instruction::Add:
2005 add(Unknown, Zero, ICmpInst::ICMP_EQ, NewContext);
2006 break;
2007 case Instruction::UDiv:
2008 case Instruction::SDiv:
2009 if (Unknown == Op1) break;
2010 if (isRelatedBy(Known, Zero, ICmpInst::ICMP_NE)) {
2011 Constant *One = ConstantInt::get(Ty, 1);
2012 add(Unknown, One, ICmpInst::ICMP_EQ, NewContext);
2013 }
2014 break;
2015 }
2016 }
2017
2018 // TODO: "%a = add i32 %b, 1" and %b > %z then %a >= %z.
2019
2020 } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
2021 // "%a = icmp ult i32 %b, %c" and %b u< %c then %a EQ true
2022 // "%a = icmp ult i32 %b, %c" and %b u>= %c then %a EQ false
2023 // etc.
2024
2025 Value *Op0 = VN.canonicalize(IC->getOperand(0), Top);
2026 Value *Op1 = VN.canonicalize(IC->getOperand(1), Top);
2027
2028 ICmpInst::Predicate Pred = IC->getPredicate();
2029 if (isRelatedBy(Op0, Op1, Pred))
2030 add(IC, ConstantInt::getTrue(), ICmpInst::ICMP_EQ, NewContext);
2031 else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred)))
2032 add(IC, ConstantInt::getFalse(), ICmpInst::ICMP_EQ, NewContext);
2033
2034 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
2035 if (I->getType()->isFPOrFPVector()) return;
2036
2037 // Given: "%a = select i1 %x, i32 %b, i32 %c"
2038 // %x EQ true then %a EQ %b
2039 // %x EQ false then %a EQ %c
2040 // %b EQ %c then %a EQ %b
2041
2042 Value *Canonical = VN.canonicalize(SI->getCondition(), Top);
2043 if (Canonical == ConstantInt::getTrue()) {
2044 add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
2045 } else if (Canonical == ConstantInt::getFalse()) {
2046 add(SI, SI->getFalseValue(), ICmpInst::ICMP_EQ, NewContext);
2047 } else if (VN.canonicalize(SI->getTrueValue(), Top) ==
2048 VN.canonicalize(SI->getFalseValue(), Top)) {
2049 add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
2050 }
2051 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
2052 const Type *DestTy = CI->getDestTy();
2053 if (DestTy->isFPOrFPVector()) return;
2054
2055 Value *Op = VN.canonicalize(CI->getOperand(0), Top);
2056 Instruction::CastOps Opcode = CI->getOpcode();
2057
2058 if (Constant *C = dyn_cast<Constant>(Op)) {
2059 add(CI, ConstantExpr::getCast(Opcode, C, DestTy),
2060 ICmpInst::ICMP_EQ, NewContext);
2061 }
2062
2063 uint32_t W = VR.typeToWidth(DestTy);
2064 unsigned ci = VN.getOrInsertVN(CI, Top);
2065 ConstantRange CR = VR.range(VN.getOrInsertVN(Op, Top), Top);
2066
2067 if (!CR.isFullSet()) {
2068 switch (Opcode) {
2069 default: break;
2070 case Instruction::ZExt:
2071 VR.applyRange(ci, CR.zeroExtend(W), Top, this);
2072 break;
2073 case Instruction::SExt:
2074 VR.applyRange(ci, CR.signExtend(W), Top, this);
2075 break;
2076 case Instruction::Trunc: {
2077 ConstantRange Result = CR.truncate(W);
2078 if (!Result.isFullSet())
2079 VR.applyRange(ci, Result, Top, this);
2080 } break;
2081 case Instruction::BitCast:
2082 VR.applyRange(ci, CR, Top, this);
2083 break;
2084 // TODO: other casts?
2085 }
2086 }
2087 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
2088 for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(),
2089 OE = GEPI->idx_end(); OI != OE; ++OI) {
2090 ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top));
2091 if (!Op || !Op->isZero()) return;
2092 }
2093 // TODO: The GEPI indices are all zero. Copy from operand to definition,
2094 // jumping the type plane as needed.
2095 Value *Ptr = GEPI->getPointerOperand();
2096 if (isRelatedBy(Ptr, Constant::getNullValue(Ptr->getType()),
2097 ICmpInst::ICMP_NE)) {
2098 add(GEPI, Constant::getNullValue(GEPI->getType()), ICmpInst::ICMP_NE,
2099 NewContext);
2100 }
2101 }
2102 }
2103
2104 /// solve - process the work queue
2105 void solve() {
2106 //DOUT << "WorkList entry, size: " << WorkList.size() << "\n";
2107 while (!WorkList.empty()) {
2108 //DOUT << "WorkList size: " << WorkList.size() << "\n";
2109
2110 Operation &O = WorkList.front();
2111 TopInst = O.ContextInst;
2112 TopBB = O.ContextBB;
2113 Top = DTDFS->getNodeForBlock(TopBB); // XXX move this into Context
2114
2115 O.LHS = VN.canonicalize(O.LHS, Top);
2116 O.RHS = VN.canonicalize(O.RHS, Top);
2117
2118 assert(O.LHS == VN.canonicalize(O.LHS, Top) && "Canonicalize isn't.");
2119 assert(O.RHS == VN.canonicalize(O.RHS, Top) && "Canonicalize isn't.");
2120
2121 DOUT << "solving " << *O.LHS << " " << O.Op << " " << *O.RHS;
2122 if (O.ContextInst) DOUT << " context inst: " << *O.ContextInst;
2123 else DOUT << " context block: " << O.ContextBB->getName();
2124 DOUT << "\n";
2125
2126 DEBUG(VN.dump());
2127 DEBUG(IG.dump());
2128 DEBUG(VR.dump());
2129
2130 // If they're both Constant, skip it. Check for contradiction and mark
2131 // the BB as unreachable if so.
2132 if (Constant *CI_L = dyn_cast<Constant>(O.LHS)) {
2133 if (Constant *CI_R = dyn_cast<Constant>(O.RHS)) {
2134 if (ConstantExpr::getCompare(O.Op, CI_L, CI_R) ==
2135 ConstantInt::getFalse())
2136 UB.mark(TopBB);
2137
2138 WorkList.pop_front();
2139 continue;
2140 }
2141 }
2142
2143 if (VN.compare(O.LHS, O.RHS)) {
2144 std::swap(O.LHS, O.RHS);
2145 O.Op = ICmpInst::getSwappedPredicate(O.Op);
2146 }
2147
2148 if (O.Op == ICmpInst::ICMP_EQ) {
2149 if (!makeEqual(O.RHS, O.LHS))
2150 UB.mark(TopBB);
2151 } else {
2152 LatticeVal LV = cmpInstToLattice(O.Op);
2153
2154 if ((LV & EQ_BIT) &&
2155 isRelatedBy(O.LHS, O.RHS, ICmpInst::getSwappedPredicate(O.Op))) {
2156 if (!makeEqual(O.RHS, O.LHS))
2157 UB.mark(TopBB);
2158 } else {
2159 if (isRelatedBy(O.LHS, O.RHS, ICmpInst::getInversePredicate(O.Op))){
2160 UB.mark(TopBB);
2161 WorkList.pop_front();
2162 continue;
2163 }
2164
2165 unsigned n1 = VN.getOrInsertVN(O.LHS, Top);
2166 unsigned n2 = VN.getOrInsertVN(O.RHS, Top);
2167
2168 if (n1 == n2) {
2169 if (O.Op != ICmpInst::ICMP_UGE && O.Op != ICmpInst::ICMP_ULE &&
2170 O.Op != ICmpInst::ICMP_SGE && O.Op != ICmpInst::ICMP_SLE)
2171 UB.mark(TopBB);
2172
2173 WorkList.pop_front();
2174 continue;
2175 }
2176
2177 if (VR.isRelatedBy(n1, n2, Top, LV) ||
2178 IG.isRelatedBy(n1, n2, Top, LV)) {
2179 WorkList.pop_front();
2180 continue;
2181 }
2182
2183 VR.addInequality(n1, n2, Top, LV, this);
2184 if ((!isa<ConstantInt>(O.RHS) && !isa<ConstantInt>(O.LHS)) ||
2185 LV == NE)
2186 IG.addInequality(n1, n2, Top, LV);
2187
2188 if (Instruction *I1 = dyn_cast<Instruction>(O.LHS)) {
2189 if (aboveOrBelow(I1))
2190 defToOps(I1);
2191 }
2192 if (isa<Instruction>(O.LHS) || isa<Argument>(O.LHS)) {
2193 for (Value::use_iterator UI = O.LHS->use_begin(),
2194 UE = O.LHS->use_end(); UI != UE;) {
2195 Use &TheUse = UI.getUse();
2196 ++UI;
2197 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
2198 if (aboveOrBelow(I))
2199 opsToDef(I);
2200 }
2201 }
2202 }
2203 if (Instruction *I2 = dyn_cast<Instruction>(O.RHS)) {
2204 if (aboveOrBelow(I2))
2205 defToOps(I2);
2206 }
2207 if (isa<Instruction>(O.RHS) || isa<Argument>(O.RHS)) {
2208 for (Value::use_iterator UI = O.RHS->use_begin(),
2209 UE = O.RHS->use_end(); UI != UE;) {
2210 Use &TheUse = UI.getUse();
2211 ++UI;
2212 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
2213 if (aboveOrBelow(I))
2214 opsToDef(I);
2215 }
2216 }
2217 }
2218 }
2219 }
2220 WorkList.pop_front();
2221 }
2222 }
2223 };
2224
2225 void ValueRanges::addToWorklist(Value *V, Constant *C,
2226 ICmpInst::Predicate Pred, VRPSolver *VRP) {
2227 VRP->add(V, C, Pred, VRP->TopInst);
2228 }
2229
2230 void ValueRanges::markBlock(VRPSolver *VRP) {
2231 VRP->UB.mark(VRP->TopBB);
2232 }
2233
2234 /// PredicateSimplifier - This class is a simplifier that replaces
2235 /// one equivalent variable with another. It also tracks what
2236 /// can't be equal and will solve setcc instructions when possible.
2237 /// @brief Root of the predicate simplifier optimization.
2238 class VISIBILITY_HIDDEN PredicateSimplifier : public FunctionPass {
2239 DomTreeDFS *DTDFS;
2240 bool modified;
2241 ValueNumbering *VN;
2242 InequalityGraph *IG;
2243 UnreachableBlocks UB;
2244 ValueRanges *VR;
2245
2246 std::vector<DomTreeDFS::Node *> WorkList;
2247
2248 public:
2249 static char ID; // Pass identification, replacement for typeid
2250 PredicateSimplifier() : FunctionPass((intptr_t)&ID) {}
2251
2252 bool runOnFunction(Function &F);
2253
2254 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
2255 AU.addRequiredID(BreakCriticalEdgesID);
2256 AU.addRequired<DominatorTree>();
2257 AU.addRequired<TargetData>();
2258 AU.addPreserved<TargetData>();
2259 }
2260
2261 private:
2262 /// Forwards - Adds new properties to VRPSolver and uses them to
2263 /// simplify instructions. Because new properties sometimes apply to
2264 /// a transition from one BasicBlock to another, this will use the
2265 /// PredicateSimplifier::proceedToSuccessor(s) interface to enter the
2266 /// basic block.
2267 /// @brief Performs abstract execution of the program.
2268 class VISIBILITY_HIDDEN Forwards : public InstVisitor<Forwards> {
2269 friend class InstVisitor<Forwards>;
2270 PredicateSimplifier *PS;
2271 DomTreeDFS::Node *DTNode;
2272
2273 public:
2274 ValueNumbering &VN;
2275 InequalityGraph &IG;
2276 UnreachableBlocks &UB;
2277 ValueRanges &VR;
2278
2279 Forwards(PredicateSimplifier *PS, DomTreeDFS::Node *DTNode)
2280 : PS(PS), DTNode(DTNode), VN(*PS->VN), IG(*PS->IG), UB(PS->UB),
2281 VR(*PS->VR) {}
2282
2283 void visitTerminatorInst(TerminatorInst &TI);
2284 void visitBranchInst(BranchInst &BI);
2285 void visitSwitchInst(SwitchInst &SI);
2286
2287 void visitAllocaInst(AllocaInst &AI);
2288 void visitLoadInst(LoadInst &LI);
2289 void visitStoreInst(StoreInst &SI);
2290
2291 void visitSExtInst(SExtInst &SI);
2292 void visitZExtInst(ZExtInst &ZI);
2293
2294 void visitBinaryOperator(BinaryOperator &BO);
2295 void visitICmpInst(ICmpInst &IC);
2296 };
2297
2298 // Used by terminator instructions to proceed from the current basic
2299 // block to the next. Verifies that "current" dominates "next",
2300 // then calls visitBasicBlock.
2301 void proceedToSuccessors(DomTreeDFS::Node *Current) {
2302 for (DomTreeDFS::Node::iterator I = Current->begin(),
2303 E = Current->end(); I != E; ++I) {
2304 WorkList.push_back(*I);
2305 }
2306 }
2307
2308 void proceedToSuccessor(DomTreeDFS::Node *Next) {
2309 WorkList.push_back(Next);
2310 }
2311
2312 // Visits each instruction in the basic block.
2313 void visitBasicBlock(DomTreeDFS::Node *Node) {
2314 BasicBlock *BB = Node->getBlock();
2315 DOUT << "Entering Basic Block: " << BB->getName()
2316 << " (" << Node->getDFSNumIn() << ")\n";
2317 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2318 visitInstruction(I++, Node);
2319 }
2320 }
2321
2322 // Tries to simplify each Instruction and add new properties.
2323 void visitInstruction(Instruction *I, DomTreeDFS::Node *DT) {
2324 DOUT << "Considering instruction " << *I << "\n";
2325 DEBUG(VN->dump());
2326 DEBUG(IG->dump());
2327 DEBUG(VR->dump());
2328
2329 // Sometimes instructions are killed in earlier analysis.
2330 if (isInstructionTriviallyDead(I)) {
2331 ++NumSimple;
2332 modified = true;
2333 if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode()))
2334 if (VN->value(n) == I) IG->remove(n);
2335 VN->remove(I);
2336 I->eraseFromParent();
2337 return;
2338 }
2339
2340#ifndef NDEBUG
2341 // Try to replace the whole instruction.
2342 Value *V = VN->canonicalize(I, DT);
2343 assert(V == I && "Late instruction canonicalization.");
2344 if (V != I) {
2345 modified = true;
2346 ++NumInstruction;
2347 DOUT << "Removing " << *I << ", replacing with " << *V << "\n";
2348 if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode()))
2349 if (VN->value(n) == I) IG->remove(n);
2350 VN->remove(I);
2351 I->replaceAllUsesWith(V);
2352 I->eraseFromParent();
2353 return;
2354 }
2355
2356 // Try to substitute operands.
2357 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2358 Value *Oper = I->getOperand(i);
2359 Value *V = VN->canonicalize(Oper, DT);
2360 assert(V == Oper && "Late operand canonicalization.");
2361 if (V != Oper) {
2362 modified = true;
2363 ++NumVarsReplaced;
2364 DOUT << "Resolving " << *I;
2365 I->setOperand(i, V);
2366 DOUT << " into " << *I;
2367 }
2368 }
2369#endif
2370
2371 std::string name = I->getParent()->getName();
2372 DOUT << "push (%" << name << ")\n";
2373 Forwards visit(this, DT);
2374 visit.visit(*I);
2375 DOUT << "pop (%" << name << ")\n";
2376 }
2377 };
2378
2379 bool PredicateSimplifier::runOnFunction(Function &F) {
2380 DominatorTree *DT = &getAnalysis<DominatorTree>();
2381 DTDFS = new DomTreeDFS(DT);
2382 TargetData *TD = &getAnalysis<TargetData>();
2383
2384 DOUT << "Entering Function: " << F.getName() << "\n";
2385
2386 modified = false;
2387 DomTreeDFS::Node *Root = DTDFS->getRootNode();
2388 VN = new ValueNumbering(DTDFS);
2389 IG = new InequalityGraph(*VN, Root);
2390 VR = new ValueRanges(*VN, TD);
2391 WorkList.push_back(Root);
2392
2393 do {
2394 DomTreeDFS::Node *DTNode = WorkList.back();
2395 WorkList.pop_back();
2396 if (!UB.isDead(DTNode->getBlock())) visitBasicBlock(DTNode);
2397 } while (!WorkList.empty());
2398
2399 delete DTDFS;
2400 delete VR;
2401 delete IG;
2402
2403 modified |= UB.kill();
2404
2405 return modified;
2406 }
2407
2408 void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst &TI) {
2409 PS->proceedToSuccessors(DTNode);
2410 }
2411
2412 void PredicateSimplifier::Forwards::visitBranchInst(BranchInst &BI) {
2413 if (BI.isUnconditional()) {
2414 PS->proceedToSuccessors(DTNode);
2415 return;
2416 }
2417
2418 Value *Condition = BI.getCondition();
2419 BasicBlock *TrueDest = BI.getSuccessor(0);
2420 BasicBlock *FalseDest = BI.getSuccessor(1);
2421
2422 if (isa<Constant>(Condition) || TrueDest == FalseDest) {
2423 PS->proceedToSuccessors(DTNode);
2424 return;
2425 }
2426
2427 for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
2428 I != E; ++I) {
2429 BasicBlock *Dest = (*I)->getBlock();
2430 DOUT << "Branch thinking about %" << Dest->getName()
2431 << "(" << PS->DTDFS->getNodeForBlock(Dest)->getDFSNumIn() << ")\n";
2432
2433 if (Dest == TrueDest) {
2434 DOUT << "(" << DTNode->getBlock()->getName() << ") true set:\n";
2435 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
2436 VRP.add(ConstantInt::getTrue(), Condition, ICmpInst::ICMP_EQ);
2437 VRP.solve();
2438 DEBUG(VN.dump());
2439 DEBUG(IG.dump());
2440 DEBUG(VR.dump());
2441 } else if (Dest == FalseDest) {
2442 DOUT << "(" << DTNode->getBlock()->getName() << ") false set:\n";
2443 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
2444 VRP.add(ConstantInt::getFalse(), Condition, ICmpInst::ICMP_EQ);
2445 VRP.solve();
2446 DEBUG(VN.dump());
2447 DEBUG(IG.dump());
2448 DEBUG(VR.dump());
2449 }
2450
2451 PS->proceedToSuccessor(*I);
2452 }
2453 }
2454
2455 void PredicateSimplifier::Forwards::visitSwitchInst(SwitchInst &SI) {
2456 Value *Condition = SI.getCondition();
2457
2458 // Set the EQProperty in each of the cases BBs, and the NEProperties
2459 // in the default BB.
2460
2461 for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
2462 I != E; ++I) {
2463 BasicBlock *BB = (*I)->getBlock();
2464 DOUT << "Switch thinking about BB %" << BB->getName()
2465 << "(" << PS->DTDFS->getNodeForBlock(BB)->getDFSNumIn() << ")\n";
2466
2467 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, BB);
2468 if (BB == SI.getDefaultDest()) {
2469 for (unsigned i = 1, e = SI.getNumCases(); i < e; ++i)
2470 if (SI.getSuccessor(i) != BB)
2471 VRP.add(Condition, SI.getCaseValue(i), ICmpInst::ICMP_NE);
2472 VRP.solve();
2473 } else if (ConstantInt *CI = SI.findCaseDest(BB)) {
2474 VRP.add(Condition, CI, ICmpInst::ICMP_EQ);
2475 VRP.solve();
2476 }
2477 PS->proceedToSuccessor(*I);
2478 }
2479 }
2480
2481 void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) {
2482 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &AI);
2483 VRP.add(Constant::getNullValue(AI.getType()), &AI, ICmpInst::ICMP_NE);
2484 VRP.solve();
2485 }
2486
2487 void PredicateSimplifier::Forwards::visitLoadInst(LoadInst &LI) {
2488 Value *Ptr = LI.getPointerOperand();
2489 // avoid "load uint* null" -> null NE null.
2490 if (isa<Constant>(Ptr)) return;
2491
2492 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &LI);
2493 VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE);
2494 VRP.solve();
2495 }
2496
2497 void PredicateSimplifier::Forwards::visitStoreInst(StoreInst &SI) {
2498 Value *Ptr = SI.getPointerOperand();
2499 if (isa<Constant>(Ptr)) return;
2500
2501 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
2502 VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE);
2503 VRP.solve();
2504 }
2505
2506 void PredicateSimplifier::Forwards::visitSExtInst(SExtInst &SI) {
2507 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
2508 uint32_t SrcBitWidth = cast<IntegerType>(SI.getSrcTy())->getBitWidth();
2509 uint32_t DstBitWidth = cast<IntegerType>(SI.getDestTy())->getBitWidth();
2510 APInt Min(APInt::getHighBitsSet(DstBitWidth, DstBitWidth-SrcBitWidth+1));
2511 APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth-1));
2512 VRP.add(ConstantInt::get(Min), &SI, ICmpInst::ICMP_SLE);
2513 VRP.add(ConstantInt::get(Max), &SI, ICmpInst::ICMP_SGE);
2514 VRP.solve();
2515 }
2516
2517 void PredicateSimplifier::Forwards::visitZExtInst(ZExtInst &ZI) {
2518 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &ZI);
2519 uint32_t SrcBitWidth = cast<IntegerType>(ZI.getSrcTy())->getBitWidth();
2520 uint32_t DstBitWidth = cast<IntegerType>(ZI.getDestTy())->getBitWidth();
2521 APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth));
2522 VRP.add(ConstantInt::get(Max), &ZI, ICmpInst::ICMP_UGE);
2523 VRP.solve();
2524 }
2525
2526 void PredicateSimplifier::Forwards::visitBinaryOperator(BinaryOperator &BO) {
2527 Instruction::BinaryOps ops = BO.getOpcode();
2528
2529 switch (ops) {
2530 default: break;
2531 case Instruction::URem:
2532 case Instruction::SRem:
2533 case Instruction::UDiv:
2534 case Instruction::SDiv: {
2535 Value *Divisor = BO.getOperand(1);
2536 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2537 VRP.add(Constant::getNullValue(Divisor->getType()), Divisor,
2538 ICmpInst::ICMP_NE);
2539 VRP.solve();
2540 break;
2541 }
2542 }
2543
2544 switch (ops) {
2545 default: break;
2546 case Instruction::Shl: {
2547 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2548 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE);
2549 VRP.solve();
2550 } break;
2551 case Instruction::AShr: {
2552 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2553 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_SLE);
2554 VRP.solve();
2555 } break;
2556 case Instruction::LShr:
2557 case Instruction::UDiv: {
2558 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2559 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE);
2560 VRP.solve();
2561 } break;
2562 case Instruction::URem: {
2563 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2564 VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE);
2565 VRP.solve();
2566 } break;
2567 case Instruction::And: {
2568 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2569 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE);
2570 VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE);
2571 VRP.solve();
2572 } break;
2573 case Instruction::Or: {
2574 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2575 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE);
2576 VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_UGE);
2577 VRP.solve();
2578 } break;
2579 }
2580 }
2581
2582 void PredicateSimplifier::Forwards::visitICmpInst(ICmpInst &IC) {
2583 // If possible, squeeze the ICmp predicate into something simpler.
2584 // Eg., if x = [0, 4) and we're being asked icmp uge %x, 3 then change
2585 // the predicate to eq.
2586
2587 // XXX: once we do full PHI handling, modifying the instruction in the
2588 // Forwards visitor will cause missed optimizations.
2589
2590 ICmpInst::Predicate Pred = IC.getPredicate();
2591
2592 switch (Pred) {
2593 default: break;
2594 case ICmpInst::ICMP_ULE: Pred = ICmpInst::ICMP_ULT; break;
2595 case ICmpInst::ICMP_UGE: Pred = ICmpInst::ICMP_UGT; break;
2596 case ICmpInst::ICMP_SLE: Pred = ICmpInst::ICMP_SLT; break;
2597 case ICmpInst::ICMP_SGE: Pred = ICmpInst::ICMP_SGT; break;
2598 }
2599 if (Pred != IC.getPredicate()) {
2600 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC);
2601 if (VRP.isRelatedBy(IC.getOperand(1), IC.getOperand(0),
2602 ICmpInst::ICMP_NE)) {
2603 ++NumSnuggle;
2604 PS->modified = true;
2605 IC.setPredicate(Pred);
2606 }
2607 }
2608
2609 Pred = IC.getPredicate();
2610
2611 if (ConstantInt *Op1 = dyn_cast<ConstantInt>(IC.getOperand(1))) {
2612 ConstantInt *NextVal = 0;
2613 switch (Pred) {
2614 default: break;
2615 case ICmpInst::ICMP_SLT:
2616 case ICmpInst::ICMP_ULT:
2617 if (Op1->getValue() != 0)
2618 NextVal = ConstantInt::get(Op1->getValue()-1);
2619 break;
2620 case ICmpInst::ICMP_SGT:
2621 case ICmpInst::ICMP_UGT:
2622 if (!Op1->getValue().isAllOnesValue())
2623 NextVal = ConstantInt::get(Op1->getValue()+1);
2624 break;
2625
2626 }
2627 if (NextVal) {
2628 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC);
2629 if (VRP.isRelatedBy(IC.getOperand(0), NextVal,
2630 ICmpInst::getInversePredicate(Pred))) {
2631 ICmpInst *NewIC = new ICmpInst(ICmpInst::ICMP_EQ, IC.getOperand(0),
2632 NextVal, "", &IC);
2633 NewIC->takeName(&IC);
2634 IC.replaceAllUsesWith(NewIC);
2635
2636 // XXX: prove this isn't necessary
2637 if (unsigned n = VN.valueNumber(&IC, PS->DTDFS->getRootNode()))
2638 if (VN.value(n) == &IC) IG.remove(n);
2639 VN.remove(&IC);
2640
2641 IC.eraseFromParent();
2642 ++NumSnuggle;
2643 PS->modified = true;
2644 }
2645 }
2646 }
2647 }
2648
2649 char PredicateSimplifier::ID = 0;
2650 RegisterPass<PredicateSimplifier> X("predsimplify",
2651 "Predicate Simplifier");
2652}
2653
2654FunctionPass *llvm::createPredicateSimplifierPass() {
2655 return new PredicateSimplifier();
2656}