blob: 50340d18508d31df49b7d891c6badfb5993e7ecd [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CloneFunctionInto interface, which is used as the
11// low-level function cloner. This is used by the CloneFunction and function
12// inliner to do the dirty work of copying the body of a function around.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/Cloning.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
Devang Patel2d9d4282009-02-10 07:48:18 +000020#include "llvm/IntrinsicInst.h"
Nate Begemanc368b5b2008-04-25 06:37:06 +000021#include "llvm/GlobalVariable.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Function.h"
23#include "llvm/Support/CFG.h"
24#include "llvm/Support/Compiler.h"
Anton Korobeynikovad7ea242007-11-09 12:27:04 +000025#include "llvm/Transforms/Utils/ValueMapper.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000026#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/ADT/SmallVector.h"
28#include <map>
29using namespace llvm;
30
31// CloneBasicBlock - See comments in Cloning.h
32BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
33 DenseMap<const Value*, Value*> &ValueMap,
34 const char *NameSuffix, Function *F,
35 ClonedCodeInfo *CodeInfo) {
Gabor Greifd6da1d02008-04-06 20:25:17 +000036 BasicBlock *NewBB = BasicBlock::Create("", F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
38
39 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
40
41 // Loop over all instructions, and copy them over.
42 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
43 II != IE; ++II) {
44 Instruction *NewInst = II->clone();
45 if (II->hasName())
46 NewInst->setName(II->getName()+NameSuffix);
47 NewBB->getInstList().push_back(NewInst);
48 ValueMap[II] = NewInst; // Add instruction map to value.
49
50 hasCalls |= isa<CallInst>(II);
51 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
52 if (isa<ConstantInt>(AI->getArraySize()))
53 hasStaticAllocas = true;
54 else
55 hasDynamicAllocas = true;
56 }
57 }
58
59 if (CodeInfo) {
60 CodeInfo->ContainsCalls |= hasCalls;
61 CodeInfo->ContainsUnwinds |= isa<UnwindInst>(BB->getTerminator());
62 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
63 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
64 BB != &BB->getParent()->getEntryBlock();
65 }
66 return NewBB;
67}
68
69// Clone OldFunc into NewFunc, transforming the old arguments into references to
70// ArgMap values.
71//
72void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
73 DenseMap<const Value*, Value*> &ValueMap,
74 std::vector<ReturnInst*> &Returns,
75 const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
76 assert(NameSuffix && "NameSuffix cannot be null!");
77
78#ifndef NDEBUG
79 for (Function::const_arg_iterator I = OldFunc->arg_begin(),
80 E = OldFunc->arg_end(); I != E; ++I)
81 assert(ValueMap.count(I) && "No mapping from source argument specified!");
82#endif
83
Duncan Sands0cc90582008-05-26 19:58:59 +000084 // Clone any attributes.
Andrew Lenharth1c864f62008-10-07 18:08:38 +000085 if (NewFunc->arg_size() == OldFunc->arg_size())
86 NewFunc->copyAttributesFrom(OldFunc);
87 else {
88 //Some arguments were deleted with the ValueMap. Copy arguments one by one
89 for (Function::const_arg_iterator I = OldFunc->arg_begin(),
90 E = OldFunc->arg_end(); I != E; ++I)
91 if (Argument* Anew = dyn_cast<Argument>(ValueMap[I]))
92 Anew->addAttr( OldFunc->getAttributes()
93 .getParamAttributes(I->getArgNo() + 1));
94 NewFunc->setAttributes(NewFunc->getAttributes()
95 .addAttr(0, OldFunc->getAttributes()
96 .getRetAttributes()));
97 NewFunc->setAttributes(NewFunc->getAttributes()
98 .addAttr(~0, OldFunc->getAttributes()
99 .getFnAttributes()));
100
101 }
Anton Korobeynikov649382f2008-03-23 16:03:00 +0000102
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 // Loop over all of the basic blocks in the function, cloning them as
104 // appropriate. Note that we save BE this way in order to handle cloning of
105 // recursive functions into themselves.
106 //
107 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
108 BI != BE; ++BI) {
109 const BasicBlock &BB = *BI;
110
111 // Create a new basic block and copy instructions into it!
112 BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
113 CodeInfo);
114 ValueMap[&BB] = CBB; // Add basic block mapping.
115
116 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
117 Returns.push_back(RI);
118 }
119
120 // Loop over all of the instructions in the function, fixing up operand
121 // references as we go. This uses ValueMap to do all the hard work.
122 //
123 for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +0000124 BE = NewFunc->end(); BB != BE; ++BB)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000125 // Loop over all instructions, fixing each one as we find it...
126 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
127 RemapInstruction(II, ValueMap);
128}
129
130/// CloneFunction - Return a copy of the specified function, but without
131/// embedding the function into another module. Also, any references specified
132/// in the ValueMap are changed to refer to their mapped value instead of the
133/// original one. If any of the arguments to the function are in the ValueMap,
134/// the arguments are deleted from the resultant function. The ValueMap is
135/// updated to include mappings from all of the instructions and basicblocks in
136/// the function from their old to new values.
137///
138Function *llvm::CloneFunction(const Function *F,
139 DenseMap<const Value*, Value*> &ValueMap,
140 ClonedCodeInfo *CodeInfo) {
141 std::vector<const Type*> ArgTypes;
142
143 // The user might be deleting arguments to the function by specifying them in
144 // the ValueMap. If so, we need to not add the arguments to the arg ty vector
145 //
146 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
147 I != E; ++I)
148 if (ValueMap.count(I) == 0) // Haven't mapped the argument to anything yet?
149 ArgTypes.push_back(I->getType());
150
151 // Create a new function type...
152 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
153 ArgTypes, F->getFunctionType()->isVarArg());
154
155 // Create the new function...
Gabor Greifd6da1d02008-04-06 20:25:17 +0000156 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157
158 // Loop over the arguments, copying the names of the mapped arguments over...
159 Function::arg_iterator DestI = NewF->arg_begin();
160 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
161 I != E; ++I)
162 if (ValueMap.count(I) == 0) { // Is this argument preserved?
163 DestI->setName(I->getName()); // Copy the name over...
164 ValueMap[I] = DestI++; // Add mapping to ValueMap
165 }
166
167 std::vector<ReturnInst*> Returns; // Ignore returns cloned...
168 CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
169 return NewF;
170}
171
172
173
174namespace {
175 /// PruningFunctionCloner - This class is a private class used to implement
176 /// the CloneAndPruneFunctionInto method.
177 struct VISIBILITY_HIDDEN PruningFunctionCloner {
178 Function *NewFunc;
179 const Function *OldFunc;
180 DenseMap<const Value*, Value*> &ValueMap;
181 std::vector<ReturnInst*> &Returns;
182 const char *NameSuffix;
183 ClonedCodeInfo *CodeInfo;
184 const TargetData *TD;
Devang Patel2d9d4282009-02-10 07:48:18 +0000185 Value *DbgFnStart;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000186 public:
187 PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
188 DenseMap<const Value*, Value*> &valueMap,
189 std::vector<ReturnInst*> &returns,
190 const char *nameSuffix,
191 ClonedCodeInfo *codeInfo,
192 const TargetData *td)
193 : NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
Devang Patel2d9d4282009-02-10 07:48:18 +0000194 NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td), DbgFnStart(NULL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000195 }
196
197 /// CloneBlock - The specified block is found to be reachable, clone it and
198 /// anything that it can reach.
199 void CloneBlock(const BasicBlock *BB,
200 std::vector<const BasicBlock*> &ToClone);
201
202 public:
203 /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
204 /// mapping its operands through ValueMap if they are available.
205 Constant *ConstantFoldMappedInstruction(const Instruction *I);
206 };
207}
208
209/// CloneBlock - The specified block is found to be reachable, clone it and
210/// anything that it can reach.
211void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
212 std::vector<const BasicBlock*> &ToClone){
213 Value *&BBEntry = ValueMap[BB];
214
215 // Have we already cloned this block?
216 if (BBEntry) return;
217
218 // Nope, clone it now.
219 BasicBlock *NewBB;
Gabor Greifd6da1d02008-04-06 20:25:17 +0000220 BBEntry = NewBB = BasicBlock::Create();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000221 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
222
223 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
224
225 // Loop over all instructions, and copy them over, DCE'ing as we go. This
226 // loop doesn't include the terminator.
227 for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
228 II != IE; ++II) {
229 // If this instruction constant folds, don't bother cloning the instruction,
230 // instead, just add the constant to the value map.
231 if (Constant *C = ConstantFoldMappedInstruction(II)) {
232 ValueMap[II] = C;
233 continue;
234 }
Devang Patel2d9d4282009-02-10 07:48:18 +0000235
236 // Do not clone llvm.dbg.func.start and corresponding llvm.dbg.region.end.
237 if (const DbgFuncStartInst *DFSI = dyn_cast<DbgFuncStartInst>(II)) {
238 DbgFnStart = DFSI->getSubprogram();
239 continue;
240 }
241 if (const DbgRegionEndInst *DREIS = dyn_cast<DbgRegionEndInst>(II)) {
242 if (DREIS->getContext() == DbgFnStart)
243 continue;
244 }
245
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000246 Instruction *NewInst = II->clone();
247 if (II->hasName())
248 NewInst->setName(II->getName()+NameSuffix);
249 NewBB->getInstList().push_back(NewInst);
250 ValueMap[II] = NewInst; // Add instruction map to value.
251
252 hasCalls |= isa<CallInst>(II);
253 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
254 if (isa<ConstantInt>(AI->getArraySize()))
255 hasStaticAllocas = true;
256 else
257 hasDynamicAllocas = true;
258 }
259 }
260
261 // Finally, clone over the terminator.
262 const TerminatorInst *OldTI = BB->getTerminator();
263 bool TerminatorDone = false;
264 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
265 if (BI->isConditional()) {
266 // If the condition was a known constant in the callee...
267 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
268 // Or is a known constant in the caller...
269 if (Cond == 0)
270 Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
271
272 // Constant fold to uncond branch!
273 if (Cond) {
274 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
Gabor Greifd6da1d02008-04-06 20:25:17 +0000275 ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000276 ToClone.push_back(Dest);
277 TerminatorDone = true;
278 }
279 }
280 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
281 // If switching on a value known constant in the caller.
282 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
283 if (Cond == 0) // Or known constant after constant prop in the callee...
284 Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
285 if (Cond) { // Constant fold to uncond branch!
286 BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
Gabor Greifd6da1d02008-04-06 20:25:17 +0000287 ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000288 ToClone.push_back(Dest);
289 TerminatorDone = true;
290 }
291 }
292
293 if (!TerminatorDone) {
294 Instruction *NewInst = OldTI->clone();
295 if (OldTI->hasName())
296 NewInst->setName(OldTI->getName()+NameSuffix);
297 NewBB->getInstList().push_back(NewInst);
298 ValueMap[OldTI] = NewInst; // Add instruction map to value.
299
300 // Recursively clone any reachable successor blocks.
301 const TerminatorInst *TI = BB->getTerminator();
302 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
303 ToClone.push_back(TI->getSuccessor(i));
304 }
305
306 if (CodeInfo) {
307 CodeInfo->ContainsCalls |= hasCalls;
308 CodeInfo->ContainsUnwinds |= isa<UnwindInst>(OldTI);
309 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
310 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
311 BB != &BB->getParent()->front();
312 }
313
314 if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
315 Returns.push_back(RI);
316}
317
318/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
319/// mapping its operands through ValueMap if they are available.
320Constant *PruningFunctionCloner::
321ConstantFoldMappedInstruction(const Instruction *I) {
322 SmallVector<Constant*, 8> Ops;
323 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
324 if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
325 ValueMap)))
326 Ops.push_back(Op);
327 else
328 return 0; // All operands not constant!
329
Chris Lattnerd6e56912007-12-10 22:53:04 +0000330 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
331 return ConstantFoldCompareInstOperands(CI->getPredicate(),
332 &Ops[0], Ops.size(), TD);
Nate Begemanc368b5b2008-04-25 06:37:06 +0000333
Nate Begemanc6962632008-04-25 17:45:52 +0000334 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
335 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
Nate Begemanc368b5b2008-04-25 06:37:06 +0000336 if (!LI->isVolatile() && CE->getOpcode() == Instruction::GetElementPtr)
337 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
338 if (GV->isConstant() && !GV->isDeclaration())
339 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(),
340 CE);
341
342 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0],
343 Ops.size(), TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344}
345
346/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
347/// except that it does some simple constant prop and DCE on the fly. The
348/// effect of this is to copy significantly less code in cases where (for
349/// example) a function call with constant arguments is inlined, and those
350/// constant arguments cause a significant amount of code in the callee to be
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000351/// dead. Since this doesn't produce an exact copy of the input, it can't be
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000352/// used for things like CloneFunction or CloneModule.
353void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
354 DenseMap<const Value*, Value*> &ValueMap,
355 std::vector<ReturnInst*> &Returns,
356 const char *NameSuffix,
357 ClonedCodeInfo *CodeInfo,
358 const TargetData *TD) {
359 assert(NameSuffix && "NameSuffix cannot be null!");
360
361#ifndef NDEBUG
362 for (Function::const_arg_iterator II = OldFunc->arg_begin(),
363 E = OldFunc->arg_end(); II != E; ++II)
364 assert(ValueMap.count(II) && "No mapping from source argument specified!");
365#endif
Duncan Sands0cc90582008-05-26 19:58:59 +0000366
367 PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368 NameSuffix, CodeInfo, TD);
369
370 // Clone the entry block, and anything recursively reachable from it.
371 std::vector<const BasicBlock*> CloneWorklist;
372 CloneWorklist.push_back(&OldFunc->getEntryBlock());
373 while (!CloneWorklist.empty()) {
374 const BasicBlock *BB = CloneWorklist.back();
375 CloneWorklist.pop_back();
376 PFC.CloneBlock(BB, CloneWorklist);
377 }
378
379 // Loop over all of the basic blocks in the old function. If the block was
380 // reachable, we have cloned it and the old block is now in the value map:
381 // insert it into the new function in the right order. If not, ignore it.
382 //
383 // Defer PHI resolution until rest of function is resolved.
384 std::vector<const PHINode*> PHIToResolve;
385 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
386 BI != BE; ++BI) {
387 BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
388 if (NewBB == 0) continue; // Dead block.
389
390 // Add the new block to the new function.
391 NewFunc->getBasicBlockList().push_back(NewBB);
392
393 // Loop over all of the instructions in the block, fixing up operand
394 // references as we go. This uses ValueMap to do all the hard work.
395 //
396 BasicBlock::iterator I = NewBB->begin();
397
398 // Handle PHI nodes specially, as we have to remove references to dead
399 // blocks.
400 if (PHINode *PN = dyn_cast<PHINode>(I)) {
401 // Skip over all PHI nodes, remembering them for later.
402 BasicBlock::const_iterator OldI = BI->begin();
403 for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI)
404 PHIToResolve.push_back(cast<PHINode>(OldI));
405 }
406
407 // Otherwise, remap the rest of the instructions normally.
408 for (; I != NewBB->end(); ++I)
409 RemapInstruction(I, ValueMap);
410 }
411
412 // Defer PHI resolution until rest of function is resolved, PHI resolution
413 // requires the CFG to be up-to-date.
414 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
415 const PHINode *OPN = PHIToResolve[phino];
416 unsigned NumPreds = OPN->getNumIncomingValues();
417 const BasicBlock *OldBB = OPN->getParent();
418 BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
419
420 // Map operands for blocks that are live and remove operands for blocks
421 // that are dead.
422 for (; phino != PHIToResolve.size() &&
423 PHIToResolve[phino]->getParent() == OldBB; ++phino) {
424 OPN = PHIToResolve[phino];
425 PHINode *PN = cast<PHINode>(ValueMap[OPN]);
426 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
427 if (BasicBlock *MappedBlock =
428 cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
429 Value *InVal = MapValue(PN->getIncomingValue(pred), ValueMap);
430 assert(InVal && "Unknown input value?");
431 PN->setIncomingValue(pred, InVal);
432 PN->setIncomingBlock(pred, MappedBlock);
433 } else {
434 PN->removeIncomingValue(pred, false);
435 --pred, --e; // Revisit the next entry.
436 }
437 }
438 }
439
440 // The loop above has removed PHI entries for those blocks that are dead
441 // and has updated others. However, if a block is live (i.e. copied over)
442 // but its terminator has been changed to not go to this block, then our
443 // phi nodes will have invalid entries. Update the PHI nodes in this
444 // case.
445 PHINode *PN = cast<PHINode>(NewBB->begin());
446 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
447 if (NumPreds != PN->getNumIncomingValues()) {
448 assert(NumPreds < PN->getNumIncomingValues());
449 // Count how many times each predecessor comes to this block.
450 std::map<BasicBlock*, unsigned> PredCount;
451 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
452 PI != E; ++PI)
453 --PredCount[*PI];
454
455 // Figure out how many entries to remove from each PHI.
456 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
457 ++PredCount[PN->getIncomingBlock(i)];
458
459 // At this point, the excess predecessor entries are positive in the
460 // map. Loop over all of the PHIs and remove excess predecessor
461 // entries.
462 BasicBlock::iterator I = NewBB->begin();
463 for (; (PN = dyn_cast<PHINode>(I)); ++I) {
464 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
465 E = PredCount.end(); PCI != E; ++PCI) {
466 BasicBlock *Pred = PCI->first;
467 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
468 PN->removeIncomingValue(Pred, false);
469 }
470 }
471 }
472
473 // If the loops above have made these phi nodes have 0 or 1 operand,
474 // replace them with undef or the input value. We must do this for
475 // correctness, because 0-operand phis are not valid.
476 PN = cast<PHINode>(NewBB->begin());
477 if (PN->getNumIncomingValues() == 0) {
478 BasicBlock::iterator I = NewBB->begin();
479 BasicBlock::const_iterator OldI = OldBB->begin();
480 while ((PN = dyn_cast<PHINode>(I++))) {
481 Value *NV = UndefValue::get(PN->getType());
482 PN->replaceAllUsesWith(NV);
483 assert(ValueMap[OldI] == PN && "ValueMap mismatch");
484 ValueMap[OldI] = NV;
485 PN->eraseFromParent();
486 ++OldI;
487 }
488 }
489 // NOTE: We cannot eliminate single entry phi nodes here, because of
490 // ValueMap. Single entry phi nodes can have multiple ValueMap entries
491 // pointing at them. Thus, deleting one would require scanning the ValueMap
492 // to update any entries in it that would require that. This would be
493 // really slow.
494 }
495
496 // Now that the inlined function body has been fully constructed, go through
497 // and zap unconditional fall-through branches. This happen all the time when
498 // specializing code: code specialization turns conditional branches into
499 // uncond branches, and this code folds them.
500 Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
501 while (I != NewFunc->end()) {
502 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
503 if (!BI || BI->isConditional()) { ++I; continue; }
504
505 // Note that we can't eliminate uncond branches if the destination has
506 // single-entry PHI nodes. Eliminating the single-entry phi nodes would
507 // require scanning the ValueMap to update any entries that point to the phi
508 // node.
509 BasicBlock *Dest = BI->getSuccessor(0);
510 if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {
511 ++I; continue;
512 }
513
514 // We know all single-entry PHI nodes in the inlined function have been
515 // removed, so we just need to splice the blocks.
516 BI->eraseFromParent();
517
518 // Move all the instructions in the succ to the pred.
519 I->getInstList().splice(I->end(), Dest->getInstList());
520
521 // Make all PHI nodes that referred to Dest now refer to I as their source.
522 Dest->replaceAllUsesWith(I);
523
524 // Remove the dest block.
525 Dest->eraseFromParent();
526
527 // Do not increment I, iteratively merge all things this block branches to.
528 }
529}