blob: 92354cd2966bb3b14f445c56e8319d407df8e9a9 [file] [log] [blame]
Chris Lattner310968c2005-01-07 07:44:53 +00001//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
Misha Brukmanf976c852005-04-21 22:55:34 +00002//
Chris Lattner310968c2005-01-07 07:44:53 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanf976c852005-04-21 22:55:34 +00007//
Chris Lattner310968c2005-01-07 07:44:53 +00008//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
Owen Anderson07000c62006-05-12 06:33:49 +000015#include "llvm/Target/TargetData.h"
Chris Lattner310968c2005-01-07 07:44:53 +000016#include "llvm/Target/TargetMachine.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000017#include "llvm/Target/MRegisterInfo.h"
Chris Lattnerdc879292006-03-31 00:28:56 +000018#include "llvm/DerivedTypes.h"
Chris Lattner310968c2005-01-07 07:44:53 +000019#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000020#include "llvm/ADT/StringExtras.h"
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +000021#include "llvm/Support/MathExtras.h"
Chris Lattner310968c2005-01-07 07:44:53 +000022using namespace llvm;
23
24TargetLowering::TargetLowering(TargetMachine &tm)
Chris Lattner3e6e8cc2006-01-29 08:41:12 +000025 : TM(tm), TD(TM.getTargetData()) {
Evan Cheng33143dc2006-03-03 06:58:59 +000026 assert(ISD::BUILTIN_OP_END <= 156 &&
Chris Lattner310968c2005-01-07 07:44:53 +000027 "Fixed size array in TargetLowering is not large enough!");
Chris Lattnercba82f92005-01-16 07:28:11 +000028 // All operations default to being supported.
29 memset(OpActions, 0, sizeof(OpActions));
Chris Lattner310968c2005-01-07 07:44:53 +000030
Owen Andersona69571c2006-05-03 01:29:57 +000031 IsLittleEndian = TD->isLittleEndian();
32 ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
Chris Lattnerd6e49672005-01-19 03:36:14 +000033 ShiftAmtHandling = Undefined;
Chris Lattner310968c2005-01-07 07:44:53 +000034 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
Chris Lattner00ffed02006-03-01 04:52:55 +000035 memset(TargetDAGCombineArray, 0,
36 sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
Evan Chenga03a5dc2006-02-14 08:38:30 +000037 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
Reid Spencer0f9beca2005-08-27 19:09:02 +000038 allowUnalignedMemoryAccesses = false;
Chris Lattner8e6be8b2005-09-27 22:13:56 +000039 UseUnderscoreSetJmpLongJmp = false;
Nate Begeman405e3ec2005-10-21 00:02:42 +000040 IntDivIsCheap = false;
41 Pow2DivIsCheap = false;
Chris Lattneree4a7652006-01-25 18:57:15 +000042 StackPointerRegisterToSaveRestore = 0;
Evan Cheng0577a222006-01-25 18:52:42 +000043 SchedPreferenceInfo = SchedulingForLatency;
Duraid Madina0c9e0ff2006-09-04 07:44:11 +000044 JumpBufSize = 200;
45 JumpBufAlignment = 0;
Chris Lattner310968c2005-01-07 07:44:53 +000046}
47
Chris Lattnercba82f92005-01-16 07:28:11 +000048TargetLowering::~TargetLowering() {}
49
Chris Lattnerbb97d812005-01-16 01:10:58 +000050/// setValueTypeAction - Set the action for a particular value type. This
51/// assumes an action has not already been set for this value type.
Chris Lattnercba82f92005-01-16 07:28:11 +000052static void SetValueTypeAction(MVT::ValueType VT,
53 TargetLowering::LegalizeAction Action,
Chris Lattnerbb97d812005-01-16 01:10:58 +000054 TargetLowering &TLI,
55 MVT::ValueType *TransformToType,
Chris Lattner3e6e8cc2006-01-29 08:41:12 +000056 TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
57 ValueTypeActions.setTypeAction(VT, Action);
Chris Lattnercba82f92005-01-16 07:28:11 +000058 if (Action == TargetLowering::Promote) {
Chris Lattnerbb97d812005-01-16 01:10:58 +000059 MVT::ValueType PromoteTo;
60 if (VT == MVT::f32)
61 PromoteTo = MVT::f64;
62 else {
63 unsigned LargerReg = VT+1;
Chris Lattner9ed62c12005-08-24 16:34:12 +000064 while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
Chris Lattnerbb97d812005-01-16 01:10:58 +000065 ++LargerReg;
66 assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
67 "Nothing to promote to??");
68 }
69 PromoteTo = (MVT::ValueType)LargerReg;
70 }
71
72 assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
73 MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
74 "Can only promote from int->int or fp->fp!");
75 assert(VT < PromoteTo && "Must promote to a larger type!");
76 TransformToType[VT] = PromoteTo;
Chris Lattnercba82f92005-01-16 07:28:11 +000077 } else if (Action == TargetLowering::Expand) {
Nate Begeman4ef3b812005-11-22 01:29:36 +000078 assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +000079 "Cannot expand this type: target must support SOME integer reg!");
80 // Expand to the next smaller integer type!
81 TransformToType[VT] = (MVT::ValueType)(VT-1);
82 }
83}
84
85
Chris Lattner310968c2005-01-07 07:44:53 +000086/// computeRegisterProperties - Once all of the register classes are added,
87/// this allows us to compute derived properties we expose.
88void TargetLowering::computeRegisterProperties() {
Nate Begeman6a648612005-11-29 05:45:29 +000089 assert(MVT::LAST_VALUETYPE <= 32 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +000090 "Too many value types for ValueTypeActions to hold!");
91
Chris Lattner310968c2005-01-07 07:44:53 +000092 // Everything defaults to one.
93 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
94 NumElementsForVT[i] = 1;
Misha Brukmanf976c852005-04-21 22:55:34 +000095
Chris Lattner310968c2005-01-07 07:44:53 +000096 // Find the largest integer register class.
97 unsigned LargestIntReg = MVT::i128;
98 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
99 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
100
101 // Every integer value type larger than this largest register takes twice as
102 // many registers to represent as the previous ValueType.
103 unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
104 for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
105 NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
Chris Lattner310968c2005-01-07 07:44:53 +0000106
Chris Lattnerbb97d812005-01-16 01:10:58 +0000107 // Inspect all of the ValueType's possible, deciding how to process them.
108 for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
109 // If we are expanding this type, expand it!
110 if (getNumElements((MVT::ValueType)IntReg) != 1)
Chris Lattnercba82f92005-01-16 07:28:11 +0000111 SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
Chris Lattnerbb97d812005-01-16 01:10:58 +0000112 ValueTypeActions);
Chris Lattner9ed62c12005-08-24 16:34:12 +0000113 else if (!isTypeLegal((MVT::ValueType)IntReg))
Chris Lattnerbb97d812005-01-16 01:10:58 +0000114 // Otherwise, if we don't have native support, we must promote to a
115 // larger type.
Chris Lattnercba82f92005-01-16 07:28:11 +0000116 SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
117 TransformToType, ValueTypeActions);
Chris Lattnercfdfe4c2005-01-16 01:20:18 +0000118 else
119 TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
Misha Brukmanf976c852005-04-21 22:55:34 +0000120
Chris Lattnerbb97d812005-01-16 01:10:58 +0000121 // If the target does not have native support for F32, promote it to F64.
Chris Lattner9ed62c12005-08-24 16:34:12 +0000122 if (!isTypeLegal(MVT::f32))
Chris Lattnercba82f92005-01-16 07:28:11 +0000123 SetValueTypeAction(MVT::f32, Promote, *this,
124 TransformToType, ValueTypeActions);
Chris Lattnercfdfe4c2005-01-16 01:20:18 +0000125 else
126 TransformToType[MVT::f32] = MVT::f32;
Nate Begeman4ef3b812005-11-22 01:29:36 +0000127
128 // Set MVT::Vector to always be Expanded
129 SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
130 ValueTypeActions);
Chris Lattner3a5935842006-03-16 19:50:01 +0000131
132 // Loop over all of the legal vector value types, specifying an identity type
133 // transformation.
134 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
Evan Cheng677274b2006-03-23 23:24:51 +0000135 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
Chris Lattner3a5935842006-03-16 19:50:01 +0000136 if (isTypeLegal((MVT::ValueType)i))
137 TransformToType[i] = (MVT::ValueType)i;
138 }
Chris Lattnercfdfe4c2005-01-16 01:20:18 +0000139
Chris Lattner9ed62c12005-08-24 16:34:12 +0000140 assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
Chris Lattnercfdfe4c2005-01-16 01:20:18 +0000141 TransformToType[MVT::f64] = MVT::f64;
Chris Lattnerbb97d812005-01-16 01:10:58 +0000142}
Chris Lattnercba82f92005-01-16 07:28:11 +0000143
Evan Cheng72261582005-12-20 06:22:03 +0000144const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
145 return NULL;
146}
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000147
Chris Lattnerdc879292006-03-31 00:28:56 +0000148/// getPackedTypeBreakdown - Packed types are broken down into some number of
Evan Cheng7e399c12006-05-17 18:22:14 +0000149/// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32
Chris Lattnerdc879292006-03-31 00:28:56 +0000150/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
151///
152/// This method returns the number and type of the resultant breakdown.
153///
Chris Lattner79227e22006-03-31 00:46:36 +0000154unsigned TargetLowering::getPackedTypeBreakdown(const PackedType *PTy,
155 MVT::ValueType &PTyElementVT,
156 MVT::ValueType &PTyLegalElementVT) const {
Chris Lattnerdc879292006-03-31 00:28:56 +0000157 // Figure out the right, legal destination reg to copy into.
158 unsigned NumElts = PTy->getNumElements();
159 MVT::ValueType EltTy = getValueType(PTy->getElementType());
160
161 unsigned NumVectorRegs = 1;
162
163 // Divide the input until we get to a supported size. This will always
164 // end with a scalar if the target doesn't support vectors.
165 while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) {
166 NumElts >>= 1;
167 NumVectorRegs <<= 1;
168 }
169
170 MVT::ValueType VT;
Chris Lattnera6c9de42006-03-31 01:50:09 +0000171 if (NumElts == 1) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000172 VT = EltTy;
Chris Lattnera6c9de42006-03-31 01:50:09 +0000173 } else {
174 VT = getVectorType(EltTy, NumElts);
175 }
176 PTyElementVT = VT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000177
178 MVT::ValueType DestVT = getTypeToTransformTo(VT);
Chris Lattner79227e22006-03-31 00:46:36 +0000179 PTyLegalElementVT = DestVT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000180 if (DestVT < VT) {
181 // Value is expanded, e.g. i64 -> i16.
Chris Lattner79227e22006-03-31 00:46:36 +0000182 return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT));
Chris Lattnerdc879292006-03-31 00:28:56 +0000183 } else {
184 // Otherwise, promotion or legal types use the same number of registers as
185 // the vector decimated to the appropriate level.
Chris Lattner79227e22006-03-31 00:46:36 +0000186 return NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000187 }
188
Evan Chenge9b3da12006-05-17 18:10:06 +0000189 return 1;
Chris Lattnerdc879292006-03-31 00:28:56 +0000190}
191
Chris Lattnereb8146b2006-02-04 02:13:02 +0000192//===----------------------------------------------------------------------===//
193// Optimization Methods
194//===----------------------------------------------------------------------===//
195
Nate Begeman368e18d2006-02-16 21:11:51 +0000196/// ShrinkDemandedConstant - Check to see if the specified operand of the
197/// specified instruction is a constant integer. If so, check to see if there
198/// are any bits set in the constant that are not demanded. If so, shrink the
199/// constant and return true.
200bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
201 uint64_t Demanded) {
Chris Lattnerec665152006-02-26 23:36:02 +0000202 // FIXME: ISD::SELECT, ISD::SELECT_CC
Nate Begeman368e18d2006-02-16 21:11:51 +0000203 switch(Op.getOpcode()) {
204 default: break;
Nate Begemande996292006-02-03 22:24:05 +0000205 case ISD::AND:
Nate Begeman368e18d2006-02-16 21:11:51 +0000206 case ISD::OR:
207 case ISD::XOR:
208 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
209 if ((~Demanded & C->getValue()) != 0) {
210 MVT::ValueType VT = Op.getValueType();
211 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
212 DAG.getConstant(Demanded & C->getValue(),
213 VT));
214 return CombineTo(Op, New);
Nate Begemande996292006-02-03 22:24:05 +0000215 }
Nate Begemande996292006-02-03 22:24:05 +0000216 break;
217 }
218 return false;
219}
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000220
Nate Begeman368e18d2006-02-16 21:11:51 +0000221/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
222/// DemandedMask bits of the result of Op are ever used downstream. If we can
223/// use this information to simplify Op, create a new simplified DAG node and
224/// return true, returning the original and new nodes in Old and New. Otherwise,
225/// analyze the expression and return a mask of KnownOne and KnownZero bits for
226/// the expression (used to simplify the caller). The KnownZero/One bits may
227/// only be accurate for those bits in the DemandedMask.
228bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
229 uint64_t &KnownZero,
230 uint64_t &KnownOne,
231 TargetLoweringOpt &TLO,
232 unsigned Depth) const {
233 KnownZero = KnownOne = 0; // Don't know anything.
234 // Other users may use these bits.
235 if (!Op.Val->hasOneUse()) {
236 if (Depth != 0) {
237 // If not at the root, Just compute the KnownZero/KnownOne bits to
238 // simplify things downstream.
239 ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
240 return false;
241 }
242 // If this is the root being simplified, allow it to have multiple uses,
243 // just set the DemandedMask to all bits.
244 DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
245 } else if (DemandedMask == 0) {
246 // Not demanding any bits from Op.
247 if (Op.getOpcode() != ISD::UNDEF)
248 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
249 return false;
250 } else if (Depth == 6) { // Limit search depth.
251 return false;
252 }
253
254 uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000255 switch (Op.getOpcode()) {
256 case ISD::Constant:
Nate Begeman368e18d2006-02-16 21:11:51 +0000257 // We know all of the bits for a constant!
258 KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
259 KnownZero = ~KnownOne & DemandedMask;
Chris Lattnerec665152006-02-26 23:36:02 +0000260 return false; // Don't fall through, will infinitely loop.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000261 case ISD::AND:
Chris Lattner81cd3552006-02-27 00:36:27 +0000262 // If the RHS is a constant, check to see if the LHS would be zero without
263 // using the bits from the RHS. Below, we use knowledge about the RHS to
264 // simplify the LHS, here we're using information from the LHS to simplify
265 // the RHS.
266 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
267 uint64_t LHSZero, LHSOne;
268 ComputeMaskedBits(Op.getOperand(0), DemandedMask,
269 LHSZero, LHSOne, Depth+1);
270 // If the LHS already has zeros where RHSC does, this and is dead.
271 if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
272 return TLO.CombineTo(Op, Op.getOperand(0));
273 // If any of the set bits in the RHS are known zero on the LHS, shrink
274 // the constant.
275 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
276 return true;
277 }
278
Nate Begeman368e18d2006-02-16 21:11:51 +0000279 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
280 KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000281 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000282 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000283 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
284 KnownZero2, KnownOne2, TLO, Depth+1))
285 return true;
286 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
287
288 // If all of the demanded bits are known one on one side, return the other.
289 // These bits cannot contribute to the result of the 'and'.
290 if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
291 return TLO.CombineTo(Op, Op.getOperand(0));
292 if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
293 return TLO.CombineTo(Op, Op.getOperand(1));
294 // If all of the demanded bits in the inputs are known zeros, return zero.
295 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
296 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
297 // If the RHS is a constant, see if we can simplify it.
298 if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
299 return true;
Chris Lattner5f0c6582006-02-27 00:22:28 +0000300
Nate Begeman368e18d2006-02-16 21:11:51 +0000301 // Output known-1 bits are only known if set in both the LHS & RHS.
302 KnownOne &= KnownOne2;
303 // Output known-0 are known to be clear if zero in either the LHS | RHS.
304 KnownZero |= KnownZero2;
305 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000306 case ISD::OR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000307 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
308 KnownOne, TLO, Depth+1))
309 return true;
310 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
311 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
312 KnownZero2, KnownOne2, TLO, Depth+1))
313 return true;
314 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
315
316 // If all of the demanded bits are known zero on one side, return the other.
317 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen5755b172006-02-17 02:12:18 +0000318 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Nate Begeman368e18d2006-02-16 21:11:51 +0000319 return TLO.CombineTo(Op, Op.getOperand(0));
Jeff Cohen5755b172006-02-17 02:12:18 +0000320 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Nate Begeman368e18d2006-02-16 21:11:51 +0000321 return TLO.CombineTo(Op, Op.getOperand(1));
322 // If all of the potentially set bits on one side are known to be set on
323 // the other side, just use the 'other' side.
324 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
325 (DemandedMask & (~KnownZero)))
326 return TLO.CombineTo(Op, Op.getOperand(0));
327 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
328 (DemandedMask & (~KnownZero2)))
329 return TLO.CombineTo(Op, Op.getOperand(1));
330 // If the RHS is a constant, see if we can simplify it.
331 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
332 return true;
333
334 // Output known-0 bits are only known if clear in both the LHS & RHS.
335 KnownZero &= KnownZero2;
336 // Output known-1 are known to be set if set in either the LHS | RHS.
337 KnownOne |= KnownOne2;
338 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000339 case ISD::XOR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000340 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
341 KnownOne, TLO, Depth+1))
342 return true;
343 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
344 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
345 KnownOne2, TLO, Depth+1))
346 return true;
347 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
348
349 // If all of the demanded bits are known zero on one side, return the other.
350 // These bits cannot contribute to the result of the 'xor'.
351 if ((DemandedMask & KnownZero) == DemandedMask)
352 return TLO.CombineTo(Op, Op.getOperand(0));
353 if ((DemandedMask & KnownZero2) == DemandedMask)
354 return TLO.CombineTo(Op, Op.getOperand(1));
355
356 // Output known-0 bits are known if clear or set in both the LHS & RHS.
357 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
358 // Output known-1 are known to be set if set in only one of the LHS, RHS.
359 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
360
361 // If all of the unknown bits are known to be zero on one side or the other
362 // (but not both) turn this into an *inclusive* or.
363 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
364 if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
365 if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
366 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
367 Op.getOperand(0),
368 Op.getOperand(1)));
369 // If all of the demanded bits on one side are known, and all of the set
370 // bits on that side are also known to be set on the other side, turn this
371 // into an AND, as we know the bits will be cleared.
372 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
373 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
374 if ((KnownOne & KnownOne2) == KnownOne) {
375 MVT::ValueType VT = Op.getValueType();
376 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
377 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
378 ANDC));
379 }
380 }
381
382 // If the RHS is a constant, see if we can simplify it.
383 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
384 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
385 return true;
386
387 KnownZero = KnownZeroOut;
388 KnownOne = KnownOneOut;
389 break;
390 case ISD::SETCC:
391 // If we know the result of a setcc has the top bits zero, use this info.
392 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
393 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
394 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000395 case ISD::SELECT:
Nate Begeman368e18d2006-02-16 21:11:51 +0000396 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
397 KnownOne, TLO, Depth+1))
398 return true;
399 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
400 KnownOne2, TLO, Depth+1))
401 return true;
402 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
403 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
404
405 // If the operands are constants, see if we can simplify them.
406 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
407 return true;
408
409 // Only known if known in both the LHS and RHS.
410 KnownOne &= KnownOne2;
411 KnownZero &= KnownZero2;
412 break;
Chris Lattnerec665152006-02-26 23:36:02 +0000413 case ISD::SELECT_CC:
414 if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
415 KnownOne, TLO, Depth+1))
416 return true;
417 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
418 KnownOne2, TLO, Depth+1))
419 return true;
420 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
421 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
422
423 // If the operands are constants, see if we can simplify them.
424 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
425 return true;
426
427 // Only known if known in both the LHS and RHS.
428 KnownOne &= KnownOne2;
429 KnownZero &= KnownZero2;
430 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000431 case ISD::SHL:
Nate Begeman368e18d2006-02-16 21:11:51 +0000432 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
433 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
434 KnownZero, KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000435 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000436 KnownZero <<= SA->getValue();
437 KnownOne <<= SA->getValue();
438 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000439 }
440 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000441 case ISD::SRL:
442 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
443 MVT::ValueType VT = Op.getValueType();
444 unsigned ShAmt = SA->getValue();
445
446 // Compute the new bits that are at the top now.
Nate Begeman368e18d2006-02-16 21:11:51 +0000447 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
Nate Begeman368e18d2006-02-16 21:11:51 +0000448 if (SimplifyDemandedBits(Op.getOperand(0),
449 (DemandedMask << ShAmt) & TypeMask,
450 KnownZero, KnownOne, TLO, Depth+1))
451 return true;
452 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
453 KnownZero &= TypeMask;
454 KnownOne &= TypeMask;
455 KnownZero >>= ShAmt;
456 KnownOne >>= ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000457
458 uint64_t HighBits = (1ULL << ShAmt)-1;
459 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
460 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000461 }
462 break;
463 case ISD::SRA:
464 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
465 MVT::ValueType VT = Op.getValueType();
466 unsigned ShAmt = SA->getValue();
467
468 // Compute the new bits that are at the top now.
Nate Begeman368e18d2006-02-16 21:11:51 +0000469 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
470
Chris Lattner1b737132006-05-08 17:22:53 +0000471 uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
472
473 // If any of the demanded bits are produced by the sign extension, we also
474 // demand the input sign bit.
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000475 uint64_t HighBits = (1ULL << ShAmt)-1;
476 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
Chris Lattner1b737132006-05-08 17:22:53 +0000477 if (HighBits & DemandedMask)
478 InDemandedMask |= MVT::getIntVTSignBit(VT);
479
480 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000481 KnownZero, KnownOne, TLO, Depth+1))
482 return true;
483 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
484 KnownZero &= TypeMask;
485 KnownOne &= TypeMask;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000486 KnownZero >>= ShAmt;
487 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +0000488
489 // Handle the sign bits.
490 uint64_t SignBit = MVT::getIntVTSignBit(VT);
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000491 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +0000492
493 // If the input sign bit is known to be zero, or if none of the top bits
494 // are demanded, turn this into an unsigned shift right.
495 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
496 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
497 Op.getOperand(1)));
498 } else if (KnownOne & SignBit) { // New bits are known one.
499 KnownOne |= HighBits;
500 }
501 }
502 break;
503 case ISD::SIGN_EXTEND_INREG: {
504 MVT::ValueType VT = Op.getValueType();
505 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
506
Chris Lattnerec665152006-02-26 23:36:02 +0000507 // Sign extension. Compute the demanded bits in the result that are not
Nate Begeman368e18d2006-02-16 21:11:51 +0000508 // present in the input.
Chris Lattnerec665152006-02-26 23:36:02 +0000509 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000510
Chris Lattnerec665152006-02-26 23:36:02 +0000511 // If none of the extended bits are demanded, eliminate the sextinreg.
512 if (NewBits == 0)
513 return TLO.CombineTo(Op, Op.getOperand(0));
514
Nate Begeman368e18d2006-02-16 21:11:51 +0000515 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
516 int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
517
Chris Lattnerec665152006-02-26 23:36:02 +0000518 // Since the sign extended bits are demanded, we know that the sign
Nate Begeman368e18d2006-02-16 21:11:51 +0000519 // bit is demanded.
Chris Lattnerec665152006-02-26 23:36:02 +0000520 InputDemandedBits |= InSignBit;
Nate Begeman368e18d2006-02-16 21:11:51 +0000521
522 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
523 KnownZero, KnownOne, TLO, Depth+1))
524 return true;
525 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
526
527 // If the sign bit of the input is known set or clear, then we know the
528 // top bits of the result.
529
Chris Lattnerec665152006-02-26 23:36:02 +0000530 // If the input sign bit is known zero, convert this into a zero extension.
531 if (KnownZero & InSignBit)
532 return TLO.CombineTo(Op,
533 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
534
535 if (KnownOne & InSignBit) { // Input sign bit known set
Nate Begeman368e18d2006-02-16 21:11:51 +0000536 KnownOne |= NewBits;
537 KnownZero &= ~NewBits;
Chris Lattnerec665152006-02-26 23:36:02 +0000538 } else { // Input sign bit unknown
Nate Begeman368e18d2006-02-16 21:11:51 +0000539 KnownZero &= ~NewBits;
540 KnownOne &= ~NewBits;
541 }
542 break;
543 }
Chris Lattnerec665152006-02-26 23:36:02 +0000544 case ISD::CTTZ:
545 case ISD::CTLZ:
546 case ISD::CTPOP: {
547 MVT::ValueType VT = Op.getValueType();
548 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
549 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
550 KnownOne = 0;
551 break;
552 }
553 case ISD::ZEXTLOAD: {
554 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
555 KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
556 break;
557 }
558 case ISD::ZERO_EXTEND: {
559 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
560
561 // If none of the top bits are demanded, convert this into an any_extend.
562 uint64_t NewBits = (~InMask) & DemandedMask;
563 if (NewBits == 0)
564 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
565 Op.getValueType(),
566 Op.getOperand(0)));
567
568 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
569 KnownZero, KnownOne, TLO, Depth+1))
570 return true;
571 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
572 KnownZero |= NewBits;
573 break;
574 }
575 case ISD::SIGN_EXTEND: {
576 MVT::ValueType InVT = Op.getOperand(0).getValueType();
577 uint64_t InMask = MVT::getIntVTBitMask(InVT);
578 uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
579 uint64_t NewBits = (~InMask) & DemandedMask;
580
581 // If none of the top bits are demanded, convert this into an any_extend.
582 if (NewBits == 0)
583 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
584 Op.getOperand(0)));
585
586 // Since some of the sign extended bits are demanded, we know that the sign
587 // bit is demanded.
588 uint64_t InDemandedBits = DemandedMask & InMask;
589 InDemandedBits |= InSignBit;
590
591 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
592 KnownOne, TLO, Depth+1))
593 return true;
594
595 // If the sign bit is known zero, convert this to a zero extend.
596 if (KnownZero & InSignBit)
597 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
598 Op.getValueType(),
599 Op.getOperand(0)));
600
601 // If the sign bit is known one, the top bits match.
602 if (KnownOne & InSignBit) {
603 KnownOne |= NewBits;
604 KnownZero &= ~NewBits;
605 } else { // Otherwise, top bits aren't known.
606 KnownOne &= ~NewBits;
607 KnownZero &= ~NewBits;
608 }
609 break;
610 }
611 case ISD::ANY_EXTEND: {
612 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
613 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
614 KnownZero, KnownOne, TLO, Depth+1))
615 return true;
616 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
617 break;
618 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000619 case ISD::TRUNCATE: {
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000620 // Simplify the input, using demanded bit information, and compute the known
621 // zero/one bits live out.
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000622 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
623 KnownZero, KnownOne, TLO, Depth+1))
624 return true;
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000625
626 // If the input is only used by this truncate, see if we can shrink it based
627 // on the known demanded bits.
628 if (Op.getOperand(0).Val->hasOneUse()) {
629 SDOperand In = Op.getOperand(0);
630 switch (In.getOpcode()) {
631 default: break;
632 case ISD::SRL:
633 // Shrink SRL by a constant if none of the high bits shifted in are
634 // demanded.
635 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
636 uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
637 HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
638 HighBits >>= ShAmt->getValue();
639
640 if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
641 (DemandedMask & HighBits) == 0) {
642 // None of the shifted in bits are needed. Add a truncate of the
643 // shift input, then shift it.
644 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
645 Op.getValueType(),
646 In.getOperand(0));
647 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
648 NewTrunc, In.getOperand(1)));
649 }
650 }
651 break;
652 }
653 }
654
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000655 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
656 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
657 KnownZero &= OutMask;
658 KnownOne &= OutMask;
659 break;
660 }
Chris Lattnerec665152006-02-26 23:36:02 +0000661 case ISD::AssertZext: {
662 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
663 uint64_t InMask = MVT::getIntVTBitMask(VT);
664 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
665 KnownZero, KnownOne, TLO, Depth+1))
666 return true;
667 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
668 KnownZero |= ~InMask & DemandedMask;
669 break;
670 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000671 case ISD::ADD:
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000672 case ISD::SUB:
Chris Lattner1482b5f2006-04-02 06:15:09 +0000673 case ISD::INTRINSIC_WO_CHAIN:
674 case ISD::INTRINSIC_W_CHAIN:
675 case ISD::INTRINSIC_VOID:
676 // Just use ComputeMaskedBits to compute output bits.
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000677 ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
678 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000679 }
Chris Lattnerec665152006-02-26 23:36:02 +0000680
681 // If we know the value of all of the demanded bits, return this as a
682 // constant.
683 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
684 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
685
Nate Begeman368e18d2006-02-16 21:11:51 +0000686 return false;
687}
688
689/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
690/// this predicate to simplify operations downstream. Mask is known to be zero
691/// for bits that V cannot have.
692bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
693 unsigned Depth) const {
694 uint64_t KnownZero, KnownOne;
695 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
696 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
697 return (KnownZero & Mask) == Mask;
698}
699
700/// ComputeMaskedBits - Determine which of the bits specified in Mask are
701/// known to be either zero or one and return them in the KnownZero/KnownOne
702/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
703/// processing.
704void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
705 uint64_t &KnownZero, uint64_t &KnownOne,
706 unsigned Depth) const {
707 KnownZero = KnownOne = 0; // Don't know anything.
708 if (Depth == 6 || Mask == 0)
709 return; // Limit search depth.
710
711 uint64_t KnownZero2, KnownOne2;
712
713 switch (Op.getOpcode()) {
714 case ISD::Constant:
715 // We know all of the bits for a constant!
716 KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
717 KnownZero = ~KnownOne & Mask;
718 return;
719 case ISD::AND:
720 // If either the LHS or the RHS are Zero, the result is zero.
721 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
722 Mask &= ~KnownZero;
723 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
724 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
725 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
726
727 // Output known-1 bits are only known if set in both the LHS & RHS.
728 KnownOne &= KnownOne2;
729 // Output known-0 are known to be clear if zero in either the LHS | RHS.
730 KnownZero |= KnownZero2;
731 return;
732 case ISD::OR:
733 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
734 Mask &= ~KnownOne;
735 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
736 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
737 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
738
739 // Output known-0 bits are only known if clear in both the LHS & RHS.
740 KnownZero &= KnownZero2;
741 // Output known-1 are known to be set if set in either the LHS | RHS.
742 KnownOne |= KnownOne2;
743 return;
744 case ISD::XOR: {
745 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
746 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
747 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
748 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
749
750 // Output known-0 bits are known if clear or set in both the LHS & RHS.
751 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
752 // Output known-1 are known to be set if set in only one of the LHS, RHS.
753 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
754 KnownZero = KnownZeroOut;
755 return;
756 }
757 case ISD::SELECT:
758 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
759 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
760 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
761 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
762
763 // Only known if known in both the LHS and RHS.
764 KnownOne &= KnownOne2;
765 KnownZero &= KnownZero2;
766 return;
767 case ISD::SELECT_CC:
768 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
769 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
770 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
771 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
772
773 // Only known if known in both the LHS and RHS.
774 KnownOne &= KnownOne2;
775 KnownZero &= KnownZero2;
776 return;
777 case ISD::SETCC:
778 // If we know the result of a setcc has the top bits zero, use this info.
779 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
780 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
781 return;
782 case ISD::SHL:
783 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
784 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000785 ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
786 KnownZero, KnownOne, Depth+1);
Nate Begeman368e18d2006-02-16 21:11:51 +0000787 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
788 KnownZero <<= SA->getValue();
789 KnownOne <<= SA->getValue();
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000790 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000791 }
Nate Begeman003a2722006-02-18 02:43:25 +0000792 return;
Nate Begeman368e18d2006-02-16 21:11:51 +0000793 case ISD::SRL:
794 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
795 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000796 MVT::ValueType VT = Op.getValueType();
797 unsigned ShAmt = SA->getValue();
798
799 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
800 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
801 KnownZero, KnownOne, Depth+1);
Nate Begeman003a2722006-02-18 02:43:25 +0000802 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000803 KnownZero &= TypeMask;
804 KnownOne &= TypeMask;
805 KnownZero >>= ShAmt;
806 KnownOne >>= ShAmt;
807
808 uint64_t HighBits = (1ULL << ShAmt)-1;
809 HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
810 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000811 }
Nate Begeman003a2722006-02-18 02:43:25 +0000812 return;
Nate Begeman368e18d2006-02-16 21:11:51 +0000813 case ISD::SRA:
814 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000815 MVT::ValueType VT = Op.getValueType();
816 unsigned ShAmt = SA->getValue();
817
818 // Compute the new bits that are at the top now.
819 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
820
821 uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
822 // If any of the demanded bits are produced by the sign extension, we also
823 // demand the input sign bit.
824 uint64_t HighBits = (1ULL << ShAmt)-1;
825 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
826 if (HighBits & Mask)
827 InDemandedMask |= MVT::getIntVTSignBit(VT);
828
829 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
830 Depth+1);
831 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
832 KnownZero &= TypeMask;
833 KnownOne &= TypeMask;
834 KnownZero >>= ShAmt;
835 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +0000836
837 // Handle the sign bits.
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000838 uint64_t SignBit = MVT::getIntVTSignBit(VT);
839 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +0000840
Jim Laskey9bfa2dc2006-06-13 13:08:58 +0000841 if (KnownZero & SignBit) {
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000842 KnownZero |= HighBits; // New bits are known zero.
Jim Laskey9bfa2dc2006-06-13 13:08:58 +0000843 } else if (KnownOne & SignBit) {
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000844 KnownOne |= HighBits; // New bits are known one.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000845 }
846 }
Nate Begeman003a2722006-02-18 02:43:25 +0000847 return;
Chris Lattnerec665152006-02-26 23:36:02 +0000848 case ISD::SIGN_EXTEND_INREG: {
849 MVT::ValueType VT = Op.getValueType();
850 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
851
852 // Sign extension. Compute the demanded bits in the result that are not
853 // present in the input.
854 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
855
856 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
857 int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
858
859 // If the sign extended bits are demanded, we know that the sign
860 // bit is demanded.
861 if (NewBits)
862 InputDemandedBits |= InSignBit;
863
864 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
865 KnownZero, KnownOne, Depth+1);
866 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
867
868 // If the sign bit of the input is known set or clear, then we know the
869 // top bits of the result.
870 if (KnownZero & InSignBit) { // Input sign bit known clear
871 KnownZero |= NewBits;
872 KnownOne &= ~NewBits;
873 } else if (KnownOne & InSignBit) { // Input sign bit known set
874 KnownOne |= NewBits;
875 KnownZero &= ~NewBits;
876 } else { // Input sign bit unknown
877 KnownZero &= ~NewBits;
878 KnownOne &= ~NewBits;
879 }
880 return;
881 }
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000882 case ISD::CTTZ:
883 case ISD::CTLZ:
Nate Begeman368e18d2006-02-16 21:11:51 +0000884 case ISD::CTPOP: {
885 MVT::ValueType VT = Op.getValueType();
886 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
887 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
888 KnownOne = 0;
889 return;
890 }
891 case ISD::ZEXTLOAD: {
Chris Lattnerec665152006-02-26 23:36:02 +0000892 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
893 KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000894 return;
895 }
896 case ISD::ZERO_EXTEND: {
Chris Lattnerec665152006-02-26 23:36:02 +0000897 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
898 uint64_t NewBits = (~InMask) & Mask;
899 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
900 KnownOne, Depth+1);
901 KnownZero |= NewBits & Mask;
902 KnownOne &= ~NewBits;
903 return;
904 }
905 case ISD::SIGN_EXTEND: {
906 MVT::ValueType InVT = Op.getOperand(0).getValueType();
907 unsigned InBits = MVT::getSizeInBits(InVT);
908 uint64_t InMask = MVT::getIntVTBitMask(InVT);
909 uint64_t InSignBit = 1ULL << (InBits-1);
910 uint64_t NewBits = (~InMask) & Mask;
911 uint64_t InDemandedBits = Mask & InMask;
912
913 // If any of the sign extended bits are demanded, we know that the sign
914 // bit is demanded.
915 if (NewBits & Mask)
916 InDemandedBits |= InSignBit;
917
918 ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
919 KnownOne, Depth+1);
920 // If the sign bit is known zero or one, the top bits match.
921 if (KnownZero & InSignBit) {
922 KnownZero |= NewBits;
923 KnownOne &= ~NewBits;
924 } else if (KnownOne & InSignBit) {
925 KnownOne |= NewBits;
926 KnownZero &= ~NewBits;
927 } else { // Otherwise, top bits aren't known.
928 KnownOne &= ~NewBits;
929 KnownZero &= ~NewBits;
930 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000931 return;
932 }
933 case ISD::ANY_EXTEND: {
Chris Lattnerec665152006-02-26 23:36:02 +0000934 MVT::ValueType VT = Op.getOperand(0).getValueType();
935 ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
936 KnownZero, KnownOne, Depth+1);
Nate Begeman368e18d2006-02-16 21:11:51 +0000937 return;
938 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000939 case ISD::TRUNCATE: {
940 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
941 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
942 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
943 KnownZero &= OutMask;
944 KnownOne &= OutMask;
945 break;
946 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000947 case ISD::AssertZext: {
Chris Lattnerec665152006-02-26 23:36:02 +0000948 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
949 uint64_t InMask = MVT::getIntVTBitMask(VT);
950 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
951 KnownOne, Depth+1);
952 KnownZero |= (~InMask) & Mask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000953 return;
954 }
955 case ISD::ADD: {
956 // If either the LHS or the RHS are Zero, the result is zero.
957 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
958 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
959 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
960 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
961
962 // Output known-0 bits are known if clear or set in both the low clear bits
Chris Lattnerb6b17ff2006-03-13 06:42:16 +0000963 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
964 // low 3 bits clear.
Nate Begeman368e18d2006-02-16 21:11:51 +0000965 uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
966 CountTrailingZeros_64(~KnownZero2));
967
968 KnownZero = (1ULL << KnownZeroOut) - 1;
969 KnownOne = 0;
970 return;
971 }
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000972 case ISD::SUB: {
973 ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
974 if (!CLHS) return;
975
Nate Begeman368e18d2006-02-16 21:11:51 +0000976 // We know that the top bits of C-X are clear if X contains less bits
977 // than C (i.e. no wrap-around can happen). For example, 20-X is
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000978 // positive if we can prove that X is >= 0 and < 16.
979 MVT::ValueType VT = CLHS->getValueType(0);
980 if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
981 unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
982 uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
983 MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
984 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
985
986 // If all of the MaskV bits are known to be zero, then we know the output
987 // top bits are zero, because we now know that the output is from [0-C].
988 if ((KnownZero & MaskV) == MaskV) {
989 unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
990 KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
991 KnownOne = 0; // No one bits known.
992 } else {
Evan Cheng42f75a92006-07-07 21:37:21 +0000993 KnownZero = KnownOne = 0; // Otherwise, nothing known.
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000994 }
995 }
Nate Begeman003a2722006-02-18 02:43:25 +0000996 return;
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000997 }
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000998 default:
999 // Allow the target to implement this method for its nodes.
Chris Lattner1482b5f2006-04-02 06:15:09 +00001000 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1001 case ISD::INTRINSIC_WO_CHAIN:
1002 case ISD::INTRINSIC_W_CHAIN:
1003 case ISD::INTRINSIC_VOID:
Nate Begeman368e18d2006-02-16 21:11:51 +00001004 computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
Chris Lattner1482b5f2006-04-02 06:15:09 +00001005 }
Nate Begeman003a2722006-02-18 02:43:25 +00001006 return;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +00001007 }
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +00001008}
1009
Nate Begeman368e18d2006-02-16 21:11:51 +00001010/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1011/// in Mask are known to be either zero or one and return them in the
1012/// KnownZero/KnownOne bitsets.
1013void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1014 uint64_t Mask,
1015 uint64_t &KnownZero,
1016 uint64_t &KnownOne,
1017 unsigned Depth) const {
Chris Lattner1b5232a2006-04-02 06:19:46 +00001018 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1019 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1020 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1021 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +00001022 "Should use MaskedValueIsZero if you don't know whether Op"
1023 " is a target node!");
Nate Begeman368e18d2006-02-16 21:11:51 +00001024 KnownZero = 0;
1025 KnownOne = 0;
Evan Cheng3a03ebb2005-12-21 23:05:39 +00001026}
Chris Lattner4ccb0702006-01-26 20:37:03 +00001027
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001028/// ComputeNumSignBits - Return the number of times the sign bit of the
1029/// register is replicated into the other bits. We know that at least 1 bit
1030/// is always equal to the sign bit (itself), but other cases can give us
1031/// information. For example, immediately after an "SRA X, 2", we know that
1032/// the top 3 bits are all equal to each other, so we return 3.
1033unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1034 MVT::ValueType VT = Op.getValueType();
1035 assert(MVT::isInteger(VT) && "Invalid VT!");
1036 unsigned VTBits = MVT::getSizeInBits(VT);
1037 unsigned Tmp, Tmp2;
1038
1039 if (Depth == 6)
1040 return 1; // Limit search depth.
1041
1042 switch (Op.getOpcode()) {
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001043 default: break;
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001044 case ISD::AssertSext:
1045 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1046 return VTBits-Tmp+1;
1047 case ISD::AssertZext:
1048 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1049 return VTBits-Tmp;
1050
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001051 case ISD::SEXTLOAD: // '17' bits known
1052 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
1053 return VTBits-Tmp+1;
1054 case ISD::ZEXTLOAD: // '16' bits known
1055 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
1056 return VTBits-Tmp;
1057
1058 case ISD::Constant: {
1059 uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1060 // If negative, invert the bits, then look at it.
1061 if (Val & MVT::getIntVTSignBit(VT))
1062 Val = ~Val;
1063
1064 // Shift the bits so they are the leading bits in the int64_t.
1065 Val <<= 64-VTBits;
1066
1067 // Return # leading zeros. We use 'min' here in case Val was zero before
1068 // shifting. We don't want to return '64' as for an i32 "0".
1069 return std::min(VTBits, CountLeadingZeros_64(Val));
1070 }
1071
1072 case ISD::SIGN_EXTEND:
1073 Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1074 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1075
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001076 case ISD::SIGN_EXTEND_INREG:
1077 // Max of the input and what this extends.
1078 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1079 Tmp = VTBits-Tmp+1;
1080
1081 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1082 return std::max(Tmp, Tmp2);
1083
1084 case ISD::SRA:
1085 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1086 // SRA X, C -> adds C sign bits.
1087 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1088 Tmp += C->getValue();
1089 if (Tmp > VTBits) Tmp = VTBits;
1090 }
1091 return Tmp;
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001092 case ISD::SHL:
1093 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1094 // shl destroys sign bits.
1095 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1096 if (C->getValue() >= VTBits || // Bad shift.
1097 C->getValue() >= Tmp) break; // Shifted all sign bits out.
1098 return Tmp - C->getValue();
1099 }
1100 break;
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001101 case ISD::AND:
1102 case ISD::OR:
1103 case ISD::XOR: // NOT is handled here.
1104 // Logical binary ops preserve the number of sign bits.
1105 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1106 if (Tmp == 1) return 1; // Early out.
1107 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1108 return std::min(Tmp, Tmp2);
1109
1110 case ISD::SELECT:
1111 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1112 if (Tmp == 1) return 1; // Early out.
1113 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1114 return std::min(Tmp, Tmp2);
1115
1116 case ISD::SETCC:
1117 // If setcc returns 0/-1, all bits are sign bits.
1118 if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult)
1119 return VTBits;
1120 break;
Chris Lattnere60351b2006-05-06 23:40:29 +00001121 case ISD::ROTL:
1122 case ISD::ROTR:
1123 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1124 unsigned RotAmt = C->getValue() & (VTBits-1);
1125
1126 // Handle rotate right by N like a rotate left by 32-N.
1127 if (Op.getOpcode() == ISD::ROTR)
1128 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1129
1130 // If we aren't rotating out all of the known-in sign bits, return the
1131 // number that are left. This handles rotl(sext(x), 1) for example.
1132 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1133 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1134 }
1135 break;
1136 case ISD::ADD:
1137 // Add can have at most one carry bit. Thus we know that the output
1138 // is, at worst, one more bit than the inputs.
1139 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1140 if (Tmp == 1) return 1; // Early out.
1141
1142 // Special case decrementing a value (ADD X, -1):
1143 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1144 if (CRHS->isAllOnesValue()) {
1145 uint64_t KnownZero, KnownOne;
1146 uint64_t Mask = MVT::getIntVTBitMask(VT);
1147 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1148
1149 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1150 // sign bits set.
1151 if ((KnownZero|1) == Mask)
1152 return VTBits;
1153
1154 // If we are subtracting one from a positive number, there is no carry
1155 // out of the result.
1156 if (KnownZero & MVT::getIntVTSignBit(VT))
1157 return Tmp;
1158 }
1159
1160 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1161 if (Tmp2 == 1) return 1;
1162 return std::min(Tmp, Tmp2)-1;
1163 break;
1164
1165 case ISD::SUB:
1166 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1167 if (Tmp2 == 1) return 1;
1168
1169 // Handle NEG.
1170 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1171 if (CLHS->getValue() == 0) {
1172 uint64_t KnownZero, KnownOne;
1173 uint64_t Mask = MVT::getIntVTBitMask(VT);
1174 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1175 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1176 // sign bits set.
1177 if ((KnownZero|1) == Mask)
1178 return VTBits;
1179
1180 // If the input is known to be positive (the sign bit is known clear),
1181 // the output of the NEG has the same number of sign bits as the input.
1182 if (KnownZero & MVT::getIntVTSignBit(VT))
1183 return Tmp2;
1184
1185 // Otherwise, we treat this like a SUB.
1186 }
1187
1188 // Sub can have at most one carry bit. Thus we know that the output
1189 // is, at worst, one more bit than the inputs.
1190 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1191 if (Tmp == 1) return 1; // Early out.
1192 return std::min(Tmp, Tmp2)-1;
1193 break;
1194 case ISD::TRUNCATE:
1195 // FIXME: it's tricky to do anything useful for this, but it is an important
1196 // case for targets like X86.
1197 break;
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001198 }
1199
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001200 // Allow the target to implement this method for its nodes.
1201 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1202 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1203 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1204 Op.getOpcode() == ISD::INTRINSIC_VOID) {
1205 unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth);
1206 if (NumBits > 1) return NumBits;
1207 }
1208
Chris Lattner822db932006-05-06 23:48:13 +00001209 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1210 // use this information.
1211 uint64_t KnownZero, KnownOne;
1212 uint64_t Mask = MVT::getIntVTBitMask(VT);
1213 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1214
1215 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1216 if (KnownZero & SignBit) { // SignBit is 0
1217 Mask = KnownZero;
1218 } else if (KnownOne & SignBit) { // SignBit is 1;
1219 Mask = KnownOne;
1220 } else {
1221 // Nothing known.
1222 return 1;
1223 }
1224
1225 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1226 // the number of identical bits in the top of the input value.
1227 Mask ^= ~0ULL;
1228 Mask <<= 64-VTBits;
1229 // Return # leading zeros. We use 'min' here in case Val was zero before
1230 // shifting. We don't want to return '64' as for an i32 "0".
1231 return std::min(VTBits, CountLeadingZeros_64(Mask));
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001232}
1233
1234
1235
1236/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1237/// targets that want to expose additional information about sign bits to the
1238/// DAG Combiner.
1239unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1240 unsigned Depth) const {
1241 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1242 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1243 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1244 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1245 "Should use ComputeNumSignBits if you don't know whether Op"
1246 " is a target node!");
1247 return 1;
1248}
1249
1250
Chris Lattner00ffed02006-03-01 04:52:55 +00001251SDOperand TargetLowering::
1252PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1253 // Default implementation: no optimization.
1254 return SDOperand();
1255}
1256
Chris Lattnereb8146b2006-02-04 02:13:02 +00001257//===----------------------------------------------------------------------===//
1258// Inline Assembler Implementation Methods
1259//===----------------------------------------------------------------------===//
1260
1261TargetLowering::ConstraintType
1262TargetLowering::getConstraintType(char ConstraintLetter) const {
1263 // FIXME: lots more standard ones to handle.
1264 switch (ConstraintLetter) {
1265 default: return C_Unknown;
1266 case 'r': return C_RegisterClass;
Chris Lattner2b7401e2006-02-24 01:10:46 +00001267 case 'm': // memory
1268 case 'o': // offsetable
1269 case 'V': // not offsetable
1270 return C_Memory;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001271 case 'i': // Simple Integer or Relocatable Constant
1272 case 'n': // Simple Integer
1273 case 's': // Relocatable Constant
1274 case 'I': // Target registers.
1275 case 'J':
1276 case 'K':
1277 case 'L':
1278 case 'M':
1279 case 'N':
1280 case 'O':
Chris Lattner2b7401e2006-02-24 01:10:46 +00001281 case 'P':
1282 return C_Other;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001283 }
1284}
1285
1286bool TargetLowering::isOperandValidForConstraint(SDOperand Op,
1287 char ConstraintLetter) {
1288 switch (ConstraintLetter) {
1289 default: return false;
1290 case 'i': // Simple Integer or Relocatable Constant
1291 case 'n': // Simple Integer
1292 case 's': // Relocatable Constant
1293 return true; // FIXME: not right.
1294 }
1295}
1296
1297
Chris Lattner4ccb0702006-01-26 20:37:03 +00001298std::vector<unsigned> TargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00001299getRegClassForInlineAsmConstraint(const std::string &Constraint,
1300 MVT::ValueType VT) const {
1301 return std::vector<unsigned>();
1302}
1303
1304
1305std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
Chris Lattner4217ca8dc2006-02-21 23:11:00 +00001306getRegForInlineAsmConstraint(const std::string &Constraint,
1307 MVT::ValueType VT) const {
Chris Lattner1efa40f2006-02-22 00:56:39 +00001308 if (Constraint[0] != '{')
1309 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattnera55079a2006-02-01 01:29:47 +00001310 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1311
1312 // Remove the braces from around the name.
1313 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001314
1315 // Figure out which register class contains this reg.
Chris Lattner4ccb0702006-01-26 20:37:03 +00001316 const MRegisterInfo *RI = TM.getRegisterInfo();
Chris Lattner1efa40f2006-02-22 00:56:39 +00001317 for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1318 E = RI->regclass_end(); RCI != E; ++RCI) {
1319 const TargetRegisterClass *RC = *RCI;
Chris Lattnerb3befd42006-02-22 23:00:51 +00001320
1321 // If none of the the value types for this register class are valid, we
1322 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1323 bool isLegal = false;
1324 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1325 I != E; ++I) {
1326 if (isTypeLegal(*I)) {
1327 isLegal = true;
1328 break;
1329 }
1330 }
1331
1332 if (!isLegal) continue;
1333
Chris Lattner1efa40f2006-02-22 00:56:39 +00001334 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1335 I != E; ++I) {
Chris Lattnerb3befd42006-02-22 23:00:51 +00001336 if (StringsEqualNoCase(RegName, RI->get(*I).Name))
Chris Lattner1efa40f2006-02-22 00:56:39 +00001337 return std::make_pair(*I, RC);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001338 }
Chris Lattner4ccb0702006-01-26 20:37:03 +00001339 }
Chris Lattnera55079a2006-02-01 01:29:47 +00001340
Chris Lattner1efa40f2006-02-22 00:56:39 +00001341 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattner4ccb0702006-01-26 20:37:03 +00001342}
Evan Cheng30b37b52006-03-13 23:18:16 +00001343
1344//===----------------------------------------------------------------------===//
1345// Loop Strength Reduction hooks
1346//===----------------------------------------------------------------------===//
1347
1348/// isLegalAddressImmediate - Return true if the integer value or
1349/// GlobalValue can be used as the offset of the target addressing mode.
1350bool TargetLowering::isLegalAddressImmediate(int64_t V) const {
1351 return false;
1352}
1353bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
1354 return false;
1355}
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001356
1357
1358// Magic for divide replacement
1359
1360struct ms {
1361 int64_t m; // magic number
1362 int64_t s; // shift amount
1363};
1364
1365struct mu {
1366 uint64_t m; // magic number
1367 int64_t a; // add indicator
1368 int64_t s; // shift amount
1369};
1370
1371/// magic - calculate the magic numbers required to codegen an integer sdiv as
1372/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1373/// or -1.
1374static ms magic32(int32_t d) {
1375 int32_t p;
1376 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1377 const uint32_t two31 = 0x80000000U;
1378 struct ms mag;
1379
1380 ad = abs(d);
1381 t = two31 + ((uint32_t)d >> 31);
1382 anc = t - 1 - t%ad; // absolute value of nc
1383 p = 31; // initialize p
1384 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
1385 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1386 q2 = two31/ad; // initialize q2 = 2p/abs(d)
1387 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
1388 do {
1389 p = p + 1;
1390 q1 = 2*q1; // update q1 = 2p/abs(nc)
1391 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1392 if (r1 >= anc) { // must be unsigned comparison
1393 q1 = q1 + 1;
1394 r1 = r1 - anc;
1395 }
1396 q2 = 2*q2; // update q2 = 2p/abs(d)
1397 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1398 if (r2 >= ad) { // must be unsigned comparison
1399 q2 = q2 + 1;
1400 r2 = r2 - ad;
1401 }
1402 delta = ad - r2;
1403 } while (q1 < delta || (q1 == delta && r1 == 0));
1404
1405 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1406 if (d < 0) mag.m = -mag.m; // resulting magic number
1407 mag.s = p - 32; // resulting shift
1408 return mag;
1409}
1410
1411/// magicu - calculate the magic numbers required to codegen an integer udiv as
1412/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1413static mu magicu32(uint32_t d) {
1414 int32_t p;
1415 uint32_t nc, delta, q1, r1, q2, r2;
1416 struct mu magu;
1417 magu.a = 0; // initialize "add" indicator
1418 nc = - 1 - (-d)%d;
1419 p = 31; // initialize p
1420 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
1421 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
1422 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
1423 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
1424 do {
1425 p = p + 1;
1426 if (r1 >= nc - r1 ) {
1427 q1 = 2*q1 + 1; // update q1
1428 r1 = 2*r1 - nc; // update r1
1429 }
1430 else {
1431 q1 = 2*q1; // update q1
1432 r1 = 2*r1; // update r1
1433 }
1434 if (r2 + 1 >= d - r2) {
1435 if (q2 >= 0x7FFFFFFF) magu.a = 1;
1436 q2 = 2*q2 + 1; // update q2
1437 r2 = 2*r2 + 1 - d; // update r2
1438 }
1439 else {
1440 if (q2 >= 0x80000000) magu.a = 1;
1441 q2 = 2*q2; // update q2
1442 r2 = 2*r2 + 1; // update r2
1443 }
1444 delta = d - 1 - r2;
1445 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1446 magu.m = q2 + 1; // resulting magic number
1447 magu.s = p - 32; // resulting shift
1448 return magu;
1449}
1450
1451/// magic - calculate the magic numbers required to codegen an integer sdiv as
1452/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1453/// or -1.
1454static ms magic64(int64_t d) {
1455 int64_t p;
1456 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1457 const uint64_t two63 = 9223372036854775808ULL; // 2^63
1458 struct ms mag;
1459
1460 ad = d >= 0 ? d : -d;
1461 t = two63 + ((uint64_t)d >> 63);
1462 anc = t - 1 - t%ad; // absolute value of nc
1463 p = 63; // initialize p
1464 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
1465 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1466 q2 = two63/ad; // initialize q2 = 2p/abs(d)
1467 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
1468 do {
1469 p = p + 1;
1470 q1 = 2*q1; // update q1 = 2p/abs(nc)
1471 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1472 if (r1 >= anc) { // must be unsigned comparison
1473 q1 = q1 + 1;
1474 r1 = r1 - anc;
1475 }
1476 q2 = 2*q2; // update q2 = 2p/abs(d)
1477 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1478 if (r2 >= ad) { // must be unsigned comparison
1479 q2 = q2 + 1;
1480 r2 = r2 - ad;
1481 }
1482 delta = ad - r2;
1483 } while (q1 < delta || (q1 == delta && r1 == 0));
1484
1485 mag.m = q2 + 1;
1486 if (d < 0) mag.m = -mag.m; // resulting magic number
1487 mag.s = p - 64; // resulting shift
1488 return mag;
1489}
1490
1491/// magicu - calculate the magic numbers required to codegen an integer udiv as
1492/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1493static mu magicu64(uint64_t d)
1494{
1495 int64_t p;
1496 uint64_t nc, delta, q1, r1, q2, r2;
1497 struct mu magu;
1498 magu.a = 0; // initialize "add" indicator
1499 nc = - 1 - (-d)%d;
1500 p = 63; // initialize p
1501 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
1502 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
1503 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
1504 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
1505 do {
1506 p = p + 1;
1507 if (r1 >= nc - r1 ) {
1508 q1 = 2*q1 + 1; // update q1
1509 r1 = 2*r1 - nc; // update r1
1510 }
1511 else {
1512 q1 = 2*q1; // update q1
1513 r1 = 2*r1; // update r1
1514 }
1515 if (r2 + 1 >= d - r2) {
1516 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1517 q2 = 2*q2 + 1; // update q2
1518 r2 = 2*r2 + 1 - d; // update r2
1519 }
1520 else {
1521 if (q2 >= 0x8000000000000000ull) magu.a = 1;
1522 q2 = 2*q2; // update q2
1523 r2 = 2*r2 + 1; // update r2
1524 }
1525 delta = d - 1 - r2;
Andrew Lenharth3e348492006-05-16 17:45:23 +00001526 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001527 magu.m = q2 + 1; // resulting magic number
1528 magu.s = p - 64; // resulting shift
1529 return magu;
1530}
1531
1532/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1533/// return a DAG expression to select that will generate the same value by
1534/// multiplying by a magic number. See:
1535/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1536SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
Andrew Lenharth232c9102006-06-12 16:07:18 +00001537 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001538 MVT::ValueType VT = N->getValueType(0);
1539
1540 // Check to see if we can do this.
1541 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1542 return SDOperand(); // BuildSDIV only operates on i32 or i64
1543 if (!isOperationLegal(ISD::MULHS, VT))
1544 return SDOperand(); // Make sure the target supports MULHS.
1545
1546 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1547 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1548
1549 // Multiply the numerator (operand 0) by the magic value
1550 SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1551 DAG.getConstant(magics.m, VT));
1552 // If d > 0 and m < 0, add the numerator
1553 if (d > 0 && magics.m < 0) {
1554 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1555 if (Created)
1556 Created->push_back(Q.Val);
1557 }
1558 // If d < 0 and m > 0, subtract the numerator.
1559 if (d < 0 && magics.m > 0) {
1560 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1561 if (Created)
1562 Created->push_back(Q.Val);
1563 }
1564 // Shift right algebraic if shift value is nonzero
1565 if (magics.s > 0) {
1566 Q = DAG.getNode(ISD::SRA, VT, Q,
1567 DAG.getConstant(magics.s, getShiftAmountTy()));
1568 if (Created)
1569 Created->push_back(Q.Val);
1570 }
1571 // Extract the sign bit and add it to the quotient
1572 SDOperand T =
1573 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1574 getShiftAmountTy()));
1575 if (Created)
1576 Created->push_back(T.Val);
1577 return DAG.getNode(ISD::ADD, VT, Q, T);
1578}
1579
1580/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1581/// return a DAG expression to select that will generate the same value by
1582/// multiplying by a magic number. See:
1583/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1584SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
Andrew Lenharth232c9102006-06-12 16:07:18 +00001585 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001586 MVT::ValueType VT = N->getValueType(0);
1587
1588 // Check to see if we can do this.
1589 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1590 return SDOperand(); // BuildUDIV only operates on i32 or i64
1591 if (!isOperationLegal(ISD::MULHU, VT))
1592 return SDOperand(); // Make sure the target supports MULHU.
1593
1594 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1595 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1596
1597 // Multiply the numerator (operand 0) by the magic value
1598 SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1599 DAG.getConstant(magics.m, VT));
1600 if (Created)
1601 Created->push_back(Q.Val);
1602
1603 if (magics.a == 0) {
1604 return DAG.getNode(ISD::SRL, VT, Q,
1605 DAG.getConstant(magics.s, getShiftAmountTy()));
1606 } else {
1607 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1608 if (Created)
1609 Created->push_back(NPQ.Val);
1610 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1611 DAG.getConstant(1, getShiftAmountTy()));
1612 if (Created)
1613 Created->push_back(NPQ.Val);
1614 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1615 if (Created)
1616 Created->push_back(NPQ.Val);
1617 return DAG.getNode(ISD::SRL, VT, NPQ,
1618 DAG.getConstant(magics.s-1, getShiftAmountTy()));
1619 }
1620}