blob: 1207dbf8e341e355021be5c3c326e9e198dd9f66 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16// 1. All loops are transformed to have a SINGLE canonical induction variable
17// which starts at zero and steps by one.
18// 2. The canonical induction variable is guaranteed to be the first PHI node
19// in the loop header block.
20// 3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24// 1. The exit condition for the loop is canonicalized to compare the
25// induction value against the exit value. This turns loops like:
26// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27// 2. Any use outside of the loop of an expression derived from the indvar
28// is changed to compute the derived value outside of the loop, eliminating
29// the dependence on the exit value of the induction variable. If the only
30// purpose of the loop is to compute the exit value of some derived
31// expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed. Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "indvars"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/BasicBlock.h"
43#include "llvm/Constants.h"
44#include "llvm/Instructions.h"
45#include "llvm/Type.h"
46#include "llvm/Analysis/ScalarEvolutionExpander.h"
47#include "llvm/Analysis/LoopInfo.h"
48#include "llvm/Analysis/LoopPass.h"
49#include "llvm/Support/CFG.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/GetElementPtrTypeIterator.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/ADT/SmallVector.h"
Dan Gohmancacd2012009-02-12 22:19:27 +000056#include "llvm/ADT/SetVector.h"
Chris Lattnerb25465e2008-11-16 07:17:51 +000057#include "llvm/ADT/SmallPtrSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000058#include "llvm/ADT/Statistic.h"
59using namespace llvm;
60
61STATISTIC(NumRemoved , "Number of aux indvars removed");
62STATISTIC(NumPointer , "Number of pointer indvars promoted");
63STATISTIC(NumInserted, "Number of canonical indvars added");
64STATISTIC(NumReplaced, "Number of exit values replaced");
65STATISTIC(NumLFTR , "Number of loop exit tests replaced");
66
67namespace {
68 class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
69 LoopInfo *LI;
70 ScalarEvolution *SE;
71 bool Changed;
72 public:
73
74 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000075 IndVarSimplify() : LoopPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076
Dan Gohmanf3a060a2009-02-17 20:49:49 +000077 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
78
Dan Gohmanf17a25c2007-07-18 16:29:46 +000079 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Devang Patele6a8d482007-09-10 18:08:23 +000080 AU.addRequired<ScalarEvolution>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081 AU.addRequiredID(LCSSAID);
82 AU.addRequiredID(LoopSimplifyID);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083 AU.addRequired<LoopInfo>();
Dan Gohman0d35b112009-02-23 16:29:41 +000084 AU.addPreserved<ScalarEvolution>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085 AU.addPreservedID(LoopSimplifyID);
86 AU.addPreservedID(LCSSAID);
87 AU.setPreservesCFG();
88 }
89
90 private:
91
Dan Gohmanf3a060a2009-02-17 20:49:49 +000092 void RewriteNonIntegerIVs(Loop *L);
93
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
Chris Lattnerb25465e2008-11-16 07:17:51 +000095 SmallPtrSet<Instruction*, 16> &DeadInsts);
Dan Gohman1247dc32009-02-17 15:57:39 +000096 void LinearFunctionTestReplace(Loop *L, SCEVHandle IterationCount,
97 Value *IndVar,
Dan Gohmancacd2012009-02-12 22:19:27 +000098 BasicBlock *ExitingBlock,
99 BranchInst *BI,
Dan Gohmana5d38012009-02-18 17:22:41 +0000100 SCEVExpander &Rewriter,
101 bool SignExtendTripCount);
Dan Gohmand8dc3bb2008-08-05 22:34:21 +0000102 void RewriteLoopExitValues(Loop *L, SCEV *IterationCount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103
Chris Lattnerb25465e2008-11-16 07:17:51 +0000104 void DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts);
Devang Patelbda43802008-09-09 21:41:07 +0000105
Dan Gohman963fc812009-02-17 19:13:57 +0000106 void HandleFloatingPointIV(Loop *L, PHINode *PH,
Devang Patelc8dac622008-11-17 21:32:02 +0000107 SmallPtrSet<Instruction*, 16> &DeadInsts);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109}
110
Dan Gohman089efff2008-05-13 00:00:25 +0000111char IndVarSimplify::ID = 0;
112static RegisterPass<IndVarSimplify>
113X("indvars", "Canonicalize Induction Variables");
114
Daniel Dunbar163555a2008-10-22 23:32:42 +0000115Pass *llvm::createIndVarSimplifyPass() {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 return new IndVarSimplify();
117}
118
119/// DeleteTriviallyDeadInstructions - If any of the instructions is the
120/// specified set are trivially dead, delete them and see if this makes any of
121/// their operands subsequently dead.
122void IndVarSimplify::
Chris Lattnerb25465e2008-11-16 07:17:51 +0000123DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 while (!Insts.empty()) {
125 Instruction *I = *Insts.begin();
Chris Lattnerb25465e2008-11-16 07:17:51 +0000126 Insts.erase(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 if (isInstructionTriviallyDead(I)) {
128 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
129 if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
130 Insts.insert(U);
131 SE->deleteValueFromRecords(I);
132 DOUT << "INDVARS: Deleting: " << *I;
133 I->eraseFromParent();
134 Changed = true;
135 }
136 }
137}
138
139
140/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
141/// recurrence. If so, change it into an integer recurrence, permitting
142/// analysis by the SCEV routines.
143void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
144 BasicBlock *Preheader,
Chris Lattnerb25465e2008-11-16 07:17:51 +0000145 SmallPtrSet<Instruction*, 16> &DeadInsts) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000146 assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
147 unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
148 unsigned BackedgeIdx = PreheaderIdx^1;
149 if (GetElementPtrInst *GEPI =
150 dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
151 if (GEPI->getOperand(0) == PN) {
152 assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
153 DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;
Dan Gohman963fc812009-02-17 19:13:57 +0000154
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000155 // Okay, we found a pointer recurrence. Transform this pointer
156 // recurrence into an integer recurrence. Compute the value that gets
157 // added to the pointer at every iteration.
158 Value *AddedVal = GEPI->getOperand(1);
159
160 // Insert a new integer PHI node into the top of the block.
Gabor Greifd6da1d02008-04-06 20:25:17 +0000161 PHINode *NewPhi = PHINode::Create(AddedVal->getType(),
162 PN->getName()+".rec", PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000163 NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
164
165 // Create the new add instruction.
Gabor Greifa645dd32008-05-16 19:29:10 +0000166 Value *NewAdd = BinaryOperator::CreateAdd(NewPhi, AddedVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000167 GEPI->getName()+".rec", GEPI);
168 NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
169
170 // Update the existing GEP to use the recurrence.
171 GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
172
173 // Update the GEP to use the new recurrence we just inserted.
174 GEPI->setOperand(1, NewAdd);
175
176 // If the incoming value is a constant expr GEP, try peeling out the array
177 // 0 index if possible to make things simpler.
178 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
179 if (CE->getOpcode() == Instruction::GetElementPtr) {
180 unsigned NumOps = CE->getNumOperands();
181 assert(NumOps > 1 && "CE folding didn't work!");
182 if (CE->getOperand(NumOps-1)->isNullValue()) {
183 // Check to make sure the last index really is an array index.
184 gep_type_iterator GTI = gep_type_begin(CE);
185 for (unsigned i = 1, e = CE->getNumOperands()-1;
186 i != e; ++i, ++GTI)
187 /*empty*/;
188 if (isa<SequentialType>(*GTI)) {
189 // Pull the last index out of the constant expr GEP.
190 SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
191 Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
192 &CEIdxs[0],
193 CEIdxs.size());
David Greene393be882007-09-04 15:46:09 +0000194 Value *Idx[2];
195 Idx[0] = Constant::getNullValue(Type::Int32Ty);
196 Idx[1] = NewAdd;
Gabor Greifd6da1d02008-04-06 20:25:17 +0000197 GetElementPtrInst *NGEPI = GetElementPtrInst::Create(
Dan Gohman963fc812009-02-17 19:13:57 +0000198 NCE, Idx, Idx + 2,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000199 GEPI->getName(), GEPI);
200 SE->deleteValueFromRecords(GEPI);
201 GEPI->replaceAllUsesWith(NGEPI);
202 GEPI->eraseFromParent();
203 GEPI = NGEPI;
204 }
205 }
206 }
207
208
209 // Finally, if there are any other users of the PHI node, we must
210 // insert a new GEP instruction that uses the pre-incremented version
211 // of the induction amount.
212 if (!PN->use_empty()) {
213 BasicBlock::iterator InsertPos = PN; ++InsertPos;
214 while (isa<PHINode>(InsertPos)) ++InsertPos;
215 Value *PreInc =
Gabor Greifd6da1d02008-04-06 20:25:17 +0000216 GetElementPtrInst::Create(PN->getIncomingValue(PreheaderIdx),
217 NewPhi, "", InsertPos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000218 PreInc->takeName(PN);
219 PN->replaceAllUsesWith(PreInc);
220 }
221
222 // Delete the old PHI for sure, and the GEP if its otherwise unused.
223 DeadInsts.insert(PN);
224
225 ++NumPointer;
226 Changed = true;
227 }
228}
229
230/// LinearFunctionTestReplace - This method rewrites the exit condition of the
231/// loop to be a canonical != comparison against the incremented loop induction
232/// variable. This pass is able to rewrite the exit tests of any loop where the
233/// SCEV analysis can determine a loop-invariant trip count of the loop, which
234/// is actually a much broader range than just linear tests.
Dan Gohmancacd2012009-02-12 22:19:27 +0000235void IndVarSimplify::LinearFunctionTestReplace(Loop *L,
236 SCEVHandle IterationCount,
237 Value *IndVar,
238 BasicBlock *ExitingBlock,
239 BranchInst *BI,
Dan Gohmana5d38012009-02-18 17:22:41 +0000240 SCEVExpander &Rewriter,
241 bool SignExtendTripCount) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242 // If the exiting block is not the same as the backedge block, we must compare
243 // against the preincremented value, otherwise we prefer to compare against
244 // the post-incremented value.
Dan Gohmancacd2012009-02-12 22:19:27 +0000245 Value *CmpIndVar;
246 if (ExitingBlock == L->getLoopLatch()) {
247 // What ScalarEvolution calls the "iteration count" is actually the
248 // number of times the branch is taken. Add one to get the number
249 // of times the branch is executed. If this addition may overflow,
250 // we have to be more pessimistic and cast the induction variable
251 // before doing the add.
252 SCEVHandle Zero = SE->getIntegerSCEV(0, IterationCount->getType());
253 SCEVHandle N =
254 SE->getAddExpr(IterationCount,
255 SE->getIntegerSCEV(1, IterationCount->getType()));
256 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
257 SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
258 // No overflow. Cast the sum.
Dan Gohmana5d38012009-02-18 17:22:41 +0000259 if (SignExtendTripCount)
260 IterationCount = SE->getTruncateOrSignExtend(N, IndVar->getType());
261 else
262 IterationCount = SE->getTruncateOrZeroExtend(N, IndVar->getType());
Dan Gohmancacd2012009-02-12 22:19:27 +0000263 } else {
264 // Potential overflow. Cast before doing the add.
Dan Gohmana5d38012009-02-18 17:22:41 +0000265 if (SignExtendTripCount)
266 IterationCount = SE->getTruncateOrSignExtend(IterationCount,
267 IndVar->getType());
268 else
269 IterationCount = SE->getTruncateOrZeroExtend(IterationCount,
270 IndVar->getType());
Dan Gohmancacd2012009-02-12 22:19:27 +0000271 IterationCount =
272 SE->getAddExpr(IterationCount,
273 SE->getIntegerSCEV(1, IndVar->getType()));
274 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000275
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000276 // The IterationCount expression contains the number of times that the
277 // backedge actually branches to the loop header. This is one less than the
278 // number of times the loop executes, so add one to it.
Dan Gohmancacd2012009-02-12 22:19:27 +0000279 CmpIndVar = L->getCanonicalInductionVariableIncrement();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000280 } else {
281 // We have to use the preincremented value...
Dan Gohmana5d38012009-02-18 17:22:41 +0000282 if (SignExtendTripCount)
283 IterationCount = SE->getTruncateOrSignExtend(IterationCount,
284 IndVar->getType());
285 else
286 IterationCount = SE->getTruncateOrZeroExtend(IterationCount,
287 IndVar->getType());
Dan Gohmancacd2012009-02-12 22:19:27 +0000288 CmpIndVar = IndVar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000290
291 // Expand the code for the iteration count into the preheader of the loop.
292 BasicBlock *Preheader = L->getLoopPreheader();
Dan Gohmancacd2012009-02-12 22:19:27 +0000293 Value *ExitCnt = Rewriter.expandCodeFor(IterationCount,
294 Preheader->getTerminator());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000295
296 // Insert a new icmp_ne or icmp_eq instruction before the branch.
297 ICmpInst::Predicate Opcode;
298 if (L->contains(BI->getSuccessor(0)))
299 Opcode = ICmpInst::ICMP_NE;
300 else
301 Opcode = ICmpInst::ICMP_EQ;
302
Dan Gohmancacd2012009-02-12 22:19:27 +0000303 DOUT << "INDVARS: Rewriting loop exit condition to:\n"
304 << " LHS:" << *CmpIndVar // includes a newline
305 << " op:\t"
Dan Gohman8555ff72009-02-14 02:26:50 +0000306 << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
Dan Gohmancacd2012009-02-12 22:19:27 +0000307 << " RHS:\t" << *IterationCount << "\n";
308
309 Value *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000310 BI->setCondition(Cond);
311 ++NumLFTR;
312 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000313}
314
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000315/// RewriteLoopExitValues - Check to see if this loop has a computable
316/// loop-invariant execution count. If so, this means that we can compute the
317/// final value of any expressions that are recurrent in the loop, and
318/// substitute the exit values from the loop into any instructions outside of
319/// the loop that use the final values of the current expressions.
Dan Gohmand8dc3bb2008-08-05 22:34:21 +0000320void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEV *IterationCount) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321 BasicBlock *Preheader = L->getLoopPreheader();
322
323 // Scan all of the instructions in the loop, looking at those that have
324 // extra-loop users and which are recurrences.
325 SCEVExpander Rewriter(*SE, *LI);
326
327 // We insert the code into the preheader of the loop if the loop contains
328 // multiple exit blocks, or in the exit block if there is exactly one.
329 BasicBlock *BlockToInsertInto;
Devang Patel02451fa2007-08-21 00:31:24 +0000330 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331 L->getUniqueExitBlocks(ExitBlocks);
332 if (ExitBlocks.size() == 1)
333 BlockToInsertInto = ExitBlocks[0];
334 else
335 BlockToInsertInto = Preheader;
Dan Gohman514277c2008-05-23 21:05:58 +0000336 BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337
Dan Gohmand8dc3bb2008-08-05 22:34:21 +0000338 bool HasConstantItCount = isa<SCEVConstant>(IterationCount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000339
Chris Lattnerb25465e2008-11-16 07:17:51 +0000340 SmallPtrSet<Instruction*, 16> InstructionsToDelete;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000341 std::map<Instruction*, Value*> ExitValues;
342
343 // Find all values that are computed inside the loop, but used outside of it.
344 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
345 // the exit blocks of the loop to find them.
346 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
347 BasicBlock *ExitBB = ExitBlocks[i];
Dan Gohman963fc812009-02-17 19:13:57 +0000348
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349 // If there are no PHI nodes in this exit block, then no values defined
350 // inside the loop are used on this path, skip it.
351 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
352 if (!PN) continue;
Dan Gohman963fc812009-02-17 19:13:57 +0000353
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000354 unsigned NumPreds = PN->getNumIncomingValues();
Dan Gohman963fc812009-02-17 19:13:57 +0000355
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000356 // Iterate over all of the PHI nodes.
357 BasicBlock::iterator BBI = ExitBB->begin();
358 while ((PN = dyn_cast<PHINode>(BBI++))) {
Dan Gohman963fc812009-02-17 19:13:57 +0000359
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000360 // Iterate over all of the values in all the PHI nodes.
361 for (unsigned i = 0; i != NumPreds; ++i) {
362 // If the value being merged in is not integer or is not defined
363 // in the loop, skip it.
364 Value *InVal = PN->getIncomingValue(i);
365 if (!isa<Instruction>(InVal) ||
366 // SCEV only supports integer expressions for now.
367 !isa<IntegerType>(InVal->getType()))
368 continue;
369
370 // If this pred is for a subloop, not L itself, skip it.
Dan Gohman963fc812009-02-17 19:13:57 +0000371 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000372 continue; // The Block is in a subloop, skip it.
373
374 // Check that InVal is defined in the loop.
375 Instruction *Inst = cast<Instruction>(InVal);
376 if (!L->contains(Inst->getParent()))
377 continue;
Dan Gohman963fc812009-02-17 19:13:57 +0000378
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379 // We require that this value either have a computable evolution or that
380 // the loop have a constant iteration count. In the case where the loop
381 // has a constant iteration count, we can sometimes force evaluation of
382 // the exit value through brute force.
383 SCEVHandle SH = SE->getSCEV(Inst);
384 if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
385 continue; // Cannot get exit evolution for the loop value.
Dan Gohman963fc812009-02-17 19:13:57 +0000386
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000387 // Okay, this instruction has a user outside of the current loop
388 // and varies predictably *inside* the loop. Evaluate the value it
389 // contains when the loop exits, if possible.
390 SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
391 if (isa<SCEVCouldNotCompute>(ExitValue) ||
392 !ExitValue->isLoopInvariant(L))
393 continue;
394
395 Changed = true;
396 ++NumReplaced;
Dan Gohman963fc812009-02-17 19:13:57 +0000397
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398 // See if we already computed the exit value for the instruction, if so,
399 // just reuse it.
400 Value *&ExitVal = ExitValues[Inst];
401 if (!ExitVal)
402 ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt);
Dan Gohman963fc812009-02-17 19:13:57 +0000403
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
405 << " LoopVal = " << *Inst << "\n";
406
407 PN->setIncomingValue(i, ExitVal);
Dan Gohman963fc812009-02-17 19:13:57 +0000408
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409 // If this instruction is dead now, schedule it to be removed.
410 if (Inst->use_empty())
411 InstructionsToDelete.insert(Inst);
Dan Gohman963fc812009-02-17 19:13:57 +0000412
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000413 // See if this is a single-entry LCSSA PHI node. If so, we can (and
414 // have to) remove
415 // the PHI entirely. This is safe, because the NewVal won't be variant
416 // in the loop, so we don't need an LCSSA phi node anymore.
417 if (NumPreds == 1) {
418 SE->deleteValueFromRecords(PN);
419 PN->replaceAllUsesWith(ExitVal);
420 PN->eraseFromParent();
421 break;
422 }
423 }
424 }
425 }
Dan Gohman963fc812009-02-17 19:13:57 +0000426
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000427 DeleteTriviallyDeadInstructions(InstructionsToDelete);
428}
429
Dan Gohmanf3a060a2009-02-17 20:49:49 +0000430void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000431 // First step. Check to see if there are any trivial GEP pointer recurrences.
432 // If there are, change them into integer recurrences, permitting analysis by
433 // the SCEV routines.
434 //
435 BasicBlock *Header = L->getHeader();
436 BasicBlock *Preheader = L->getLoopPreheader();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000437
Chris Lattnerb25465e2008-11-16 07:17:51 +0000438 SmallPtrSet<Instruction*, 16> DeadInsts;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000439 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
440 PHINode *PN = cast<PHINode>(I);
441 if (isa<PointerType>(PN->getType()))
442 EliminatePointerRecurrence(PN, Preheader, DeadInsts);
Devang Patelc8dac622008-11-17 21:32:02 +0000443 else
444 HandleFloatingPointIV(L, PN, DeadInsts);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 }
446
Dan Gohmanf3a060a2009-02-17 20:49:49 +0000447 // If the loop previously had a pointer or floating-point IV, ScalarEvolution
448 // may not have been able to compute a trip count. Now that we've done some
449 // re-writing, the trip count may be computable.
450 if (Changed)
451 SE->forgetLoopIterationCount(L);
452
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 if (!DeadInsts.empty())
454 DeleteTriviallyDeadInstructions(DeadInsts);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000455}
456
Dan Gohmancacd2012009-02-12 22:19:27 +0000457/// getEffectiveIndvarType - Determine the widest type that the
458/// induction-variable PHINode Phi is cast to.
459///
460static const Type *getEffectiveIndvarType(const PHINode *Phi) {
461 const Type *Ty = Phi->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000462
Dan Gohmancacd2012009-02-12 22:19:27 +0000463 for (Value::use_const_iterator UI = Phi->use_begin(), UE = Phi->use_end();
464 UI != UE; ++UI) {
465 const Type *CandidateType = NULL;
466 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(UI))
467 CandidateType = ZI->getDestTy();
468 else if (const SExtInst *SI = dyn_cast<SExtInst>(UI))
469 CandidateType = SI->getDestTy();
470 if (CandidateType &&
471 CandidateType->getPrimitiveSizeInBits() >
472 Ty->getPrimitiveSizeInBits())
473 Ty = CandidateType;
474 }
475
476 return Ty;
477}
478
Dan Gohmancecc80f2009-02-14 02:31:09 +0000479/// TestOrigIVForWrap - Analyze the original induction variable
Dan Gohmana730da32009-02-18 00:52:00 +0000480/// that controls the loop's iteration to determine whether it
Dan Gohmana5d38012009-02-18 17:22:41 +0000481/// would ever undergo signed or unsigned overflow. Also, check
482/// whether an induction variable in the same type that starts
483/// at 0 would undergo signed overflow.
Dan Gohmana730da32009-02-18 00:52:00 +0000484///
Dan Gohmana5d38012009-02-18 17:22:41 +0000485/// In addition to setting the NoSignedWrap, NoUnsignedWrap, and
486/// SignExtendTripCount variables, return the PHI for this induction
487/// variable.
Dan Gohmancacd2012009-02-12 22:19:27 +0000488///
489/// TODO: This duplicates a fair amount of ScalarEvolution logic.
Dan Gohmancecc80f2009-02-14 02:31:09 +0000490/// Perhaps this can be merged with ScalarEvolution::getIterationCount
491/// and/or ScalarEvolution::get{Sign,Zero}ExtendExpr.
Dan Gohmancacd2012009-02-12 22:19:27 +0000492///
Dan Gohmana730da32009-02-18 00:52:00 +0000493static const PHINode *TestOrigIVForWrap(const Loop *L,
494 const BranchInst *BI,
495 const Instruction *OrigCond,
496 bool &NoSignedWrap,
Dan Gohmana5d38012009-02-18 17:22:41 +0000497 bool &NoUnsignedWrap,
498 bool &SignExtendTripCount) {
Dan Gohmancacd2012009-02-12 22:19:27 +0000499 // Verify that the loop is sane and find the exit condition.
500 const ICmpInst *Cmp = dyn_cast<ICmpInst>(OrigCond);
Dan Gohmana730da32009-02-18 00:52:00 +0000501 if (!Cmp) return 0;
Dan Gohmancacd2012009-02-12 22:19:27 +0000502
Dan Gohmancecc80f2009-02-14 02:31:09 +0000503 const Value *CmpLHS = Cmp->getOperand(0);
504 const Value *CmpRHS = Cmp->getOperand(1);
505 const BasicBlock *TrueBB = BI->getSuccessor(0);
506 const BasicBlock *FalseBB = BI->getSuccessor(1);
507 ICmpInst::Predicate Pred = Cmp->getPredicate();
Dan Gohmancacd2012009-02-12 22:19:27 +0000508
Dan Gohmancecc80f2009-02-14 02:31:09 +0000509 // Canonicalize a constant to the RHS.
510 if (isa<ConstantInt>(CmpLHS)) {
511 Pred = ICmpInst::getSwappedPredicate(Pred);
512 std::swap(CmpLHS, CmpRHS);
513 }
514 // Canonicalize SLE to SLT.
515 if (Pred == ICmpInst::ICMP_SLE)
516 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
517 if (!CI->getValue().isMaxSignedValue()) {
518 CmpRHS = ConstantInt::get(CI->getValue() + 1);
519 Pred = ICmpInst::ICMP_SLT;
520 }
521 // Canonicalize SGT to SGE.
522 if (Pred == ICmpInst::ICMP_SGT)
523 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
524 if (!CI->getValue().isMaxSignedValue()) {
525 CmpRHS = ConstantInt::get(CI->getValue() + 1);
526 Pred = ICmpInst::ICMP_SGE;
527 }
528 // Canonicalize SGE to SLT.
529 if (Pred == ICmpInst::ICMP_SGE) {
530 std::swap(TrueBB, FalseBB);
531 Pred = ICmpInst::ICMP_SLT;
532 }
533 // Canonicalize ULE to ULT.
534 if (Pred == ICmpInst::ICMP_ULE)
535 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
536 if (!CI->getValue().isMaxValue()) {
537 CmpRHS = ConstantInt::get(CI->getValue() + 1);
538 Pred = ICmpInst::ICMP_ULT;
539 }
540 // Canonicalize UGT to UGE.
541 if (Pred == ICmpInst::ICMP_UGT)
542 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
543 if (!CI->getValue().isMaxValue()) {
544 CmpRHS = ConstantInt::get(CI->getValue() + 1);
545 Pred = ICmpInst::ICMP_UGE;
546 }
547 // Canonicalize UGE to ULT.
548 if (Pred == ICmpInst::ICMP_UGE) {
549 std::swap(TrueBB, FalseBB);
550 Pred = ICmpInst::ICMP_ULT;
551 }
552 // For now, analyze only LT loops for signed overflow.
553 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_ULT)
Dan Gohmana730da32009-02-18 00:52:00 +0000554 return 0;
Dan Gohmancecc80f2009-02-14 02:31:09 +0000555
556 bool isSigned = Pred == ICmpInst::ICMP_SLT;
557
558 // Get the increment instruction. Look past casts if we will
Dan Gohmancacd2012009-02-12 22:19:27 +0000559 // be able to prove that the original induction variable doesn't
Dan Gohmancecc80f2009-02-14 02:31:09 +0000560 // undergo signed or unsigned overflow, respectively.
561 const Value *IncrVal = CmpLHS;
562 if (isSigned) {
563 if (const SExtInst *SI = dyn_cast<SExtInst>(CmpLHS)) {
564 if (!isa<ConstantInt>(CmpRHS) ||
565 !cast<ConstantInt>(CmpRHS)->getValue()
566 .isSignedIntN(IncrVal->getType()->getPrimitiveSizeInBits()))
Dan Gohmana730da32009-02-18 00:52:00 +0000567 return 0;
Dan Gohmancecc80f2009-02-14 02:31:09 +0000568 IncrVal = SI->getOperand(0);
569 }
570 } else {
571 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(CmpLHS)) {
572 if (!isa<ConstantInt>(CmpRHS) ||
573 !cast<ConstantInt>(CmpRHS)->getValue()
574 .isIntN(IncrVal->getType()->getPrimitiveSizeInBits()))
Dan Gohmana730da32009-02-18 00:52:00 +0000575 return 0;
Dan Gohmancecc80f2009-02-14 02:31:09 +0000576 IncrVal = ZI->getOperand(0);
577 }
Dan Gohmancacd2012009-02-12 22:19:27 +0000578 }
579
580 // For now, only analyze induction variables that have simple increments.
581 const BinaryOperator *IncrOp = dyn_cast<BinaryOperator>(IncrVal);
582 if (!IncrOp ||
583 IncrOp->getOpcode() != Instruction::Add ||
584 !isa<ConstantInt>(IncrOp->getOperand(1)) ||
585 !cast<ConstantInt>(IncrOp->getOperand(1))->equalsInt(1))
Dan Gohmana730da32009-02-18 00:52:00 +0000586 return 0;
Dan Gohmancacd2012009-02-12 22:19:27 +0000587
588 // Make sure the PHI looks like a normal IV.
589 const PHINode *PN = dyn_cast<PHINode>(IncrOp->getOperand(0));
590 if (!PN || PN->getNumIncomingValues() != 2)
Dan Gohmana730da32009-02-18 00:52:00 +0000591 return 0;
Dan Gohmancacd2012009-02-12 22:19:27 +0000592 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
593 unsigned BackEdge = !IncomingEdge;
594 if (!L->contains(PN->getIncomingBlock(BackEdge)) ||
595 PN->getIncomingValue(BackEdge) != IncrOp)
Dan Gohmana730da32009-02-18 00:52:00 +0000596 return 0;
Dan Gohmancecc80f2009-02-14 02:31:09 +0000597 if (!L->contains(TrueBB))
Dan Gohmana730da32009-02-18 00:52:00 +0000598 return 0;
Dan Gohmancacd2012009-02-12 22:19:27 +0000599
600 // For now, only analyze loops with a constant start value, so that
Dan Gohmancecc80f2009-02-14 02:31:09 +0000601 // we can easily determine if the start value is not a maximum value
602 // which would wrap on the first iteration.
Dan Gohman6f2a83e2009-02-18 16:54:33 +0000603 const ConstantInt *InitialVal =
604 dyn_cast<ConstantInt>(PN->getIncomingValue(IncomingEdge));
605 if (!InitialVal)
Dan Gohmana730da32009-02-18 00:52:00 +0000606 return 0;
Dan Gohmancacd2012009-02-12 22:19:27 +0000607
Dan Gohmancecc80f2009-02-14 02:31:09 +0000608 // The original induction variable will start at some non-max value,
609 // it counts up by one, and the loop iterates only while it remans
610 // less than some value in the same type. As such, it will never wrap.
Dan Gohmana5d38012009-02-18 17:22:41 +0000611 if (isSigned && !InitialVal->getValue().isMaxSignedValue()) {
Dan Gohmancecc80f2009-02-14 02:31:09 +0000612 NoSignedWrap = true;
Dan Gohmana5d38012009-02-18 17:22:41 +0000613 // If the original induction variable starts at zero or greater,
614 // the trip count can be considered signed.
615 if (InitialVal->getValue().isNonNegative())
616 SignExtendTripCount = true;
617 } else if (!isSigned && !InitialVal->getValue().isMaxValue())
Dan Gohmancecc80f2009-02-14 02:31:09 +0000618 NoUnsignedWrap = true;
Dan Gohmana730da32009-02-18 00:52:00 +0000619 return PN;
Dan Gohmancacd2012009-02-12 22:19:27 +0000620}
621
622bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000623 LI = &getAnalysis<LoopInfo>();
624 SE = &getAnalysis<ScalarEvolution>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000625 Changed = false;
Dan Gohmanf3a060a2009-02-17 20:49:49 +0000626
627 // If there are any floating-point or pointer recurrences, attempt to
628 // transform them to use integer recurrences.
629 RewriteNonIntegerIVs(L);
630
Dan Gohmancacd2012009-02-12 22:19:27 +0000631 BasicBlock *Header = L->getHeader();
632 BasicBlock *ExitingBlock = L->getExitingBlock();
Chris Lattnerb25465e2008-11-16 07:17:51 +0000633 SmallPtrSet<Instruction*, 16> DeadInsts;
Dan Gohmancacd2012009-02-12 22:19:27 +0000634
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000635 // Verify the input to the pass in already in LCSSA form.
636 assert(L->isLCSSAForm());
637
638 // Check to see if this loop has a computable loop-invariant execution count.
639 // If so, this means that we can compute the final value of any expressions
640 // that are recurrent in the loop, and substitute the exit values from the
641 // loop into any instructions outside of the loop that use the final values of
642 // the current expressions.
643 //
644 SCEVHandle IterationCount = SE->getIterationCount(L);
645 if (!isa<SCEVCouldNotCompute>(IterationCount))
Dan Gohmand8dc3bb2008-08-05 22:34:21 +0000646 RewriteLoopExitValues(L, IterationCount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000647
648 // Next, analyze all of the induction variables in the loop, canonicalizing
649 // auxillary induction variables.
650 std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
651
652 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
653 PHINode *PN = cast<PHINode>(I);
654 if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
655 SCEVHandle SCEV = SE->getSCEV(PN);
Dan Gohman173d9142009-02-14 02:25:19 +0000656 // FIXME: It is an extremely bad idea to indvar substitute anything more
657 // complex than affine induction variables. Doing so will put expensive
658 // polynomial evaluations inside of the loop, and the str reduction pass
659 // currently can only reduce affine polynomials. For now just disable
660 // indvar subst on anything more complex than an affine addrec.
661 if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
662 if (AR->getLoop() == L && AR->isAffine())
663 IndVars.push_back(std::make_pair(PN, SCEV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000664 }
665 }
666
Dan Gohmancacd2012009-02-12 22:19:27 +0000667 // Compute the type of the largest recurrence expression, and collect
668 // the set of the types of the other recurrence expressions.
669 const Type *LargestType = 0;
670 SmallSetVector<const Type *, 4> SizesToInsert;
671 if (!isa<SCEVCouldNotCompute>(IterationCount)) {
672 LargestType = IterationCount->getType();
673 SizesToInsert.insert(IterationCount->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000674 }
Dan Gohmancacd2012009-02-12 22:19:27 +0000675 for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
676 const PHINode *PN = IndVars[i].first;
677 SizesToInsert.insert(PN->getType());
678 const Type *EffTy = getEffectiveIndvarType(PN);
679 SizesToInsert.insert(EffTy);
680 if (!LargestType ||
681 EffTy->getPrimitiveSizeInBits() >
682 LargestType->getPrimitiveSizeInBits())
683 LargestType = EffTy;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000684 }
685
686 // Create a rewriter object which we'll use to transform the code with.
687 SCEVExpander Rewriter(*SE, *LI);
688
689 // Now that we know the largest of of the induction variables in this loop,
690 // insert a canonical induction variable of the largest size.
Dan Gohmancacd2012009-02-12 22:19:27 +0000691 Value *IndVar = 0;
692 if (!SizesToInsert.empty()) {
693 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
694 ++NumInserted;
695 Changed = true;
696 DOUT << "INDVARS: New CanIV: " << *IndVar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000697 }
698
Dan Gohmancacd2012009-02-12 22:19:27 +0000699 // If we have a trip count expression, rewrite the loop's exit condition
700 // using it. We can currently only handle loops with a single exit.
Dan Gohmancecc80f2009-02-14 02:31:09 +0000701 bool NoSignedWrap = false;
702 bool NoUnsignedWrap = false;
Dan Gohmana5d38012009-02-18 17:22:41 +0000703 bool SignExtendTripCount = false;
Dan Gohmana730da32009-02-18 00:52:00 +0000704 const PHINode *OrigControllingPHI = 0;
Dan Gohmancacd2012009-02-12 22:19:27 +0000705 if (!isa<SCEVCouldNotCompute>(IterationCount) && ExitingBlock)
706 // Can't rewrite non-branch yet.
707 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) {
708 if (Instruction *OrigCond = dyn_cast<Instruction>(BI->getCondition())) {
Dan Gohmancecc80f2009-02-14 02:31:09 +0000709 // Determine if the OrigIV will ever undergo overflow.
Dan Gohmana730da32009-02-18 00:52:00 +0000710 OrigControllingPHI =
711 TestOrigIVForWrap(L, BI, OrigCond,
Dan Gohmana5d38012009-02-18 17:22:41 +0000712 NoSignedWrap, NoUnsignedWrap,
713 SignExtendTripCount);
Dan Gohmancacd2012009-02-12 22:19:27 +0000714
715 // We'll be replacing the original condition, so it'll be dead.
716 DeadInsts.insert(OrigCond);
717 }
718
719 LinearFunctionTestReplace(L, IterationCount, IndVar,
Dan Gohmana5d38012009-02-18 17:22:41 +0000720 ExitingBlock, BI, Rewriter,
721 SignExtendTripCount);
Dan Gohmancacd2012009-02-12 22:19:27 +0000722 }
723
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 // Now that we have a canonical induction variable, we can rewrite any
725 // recurrences in terms of the induction variable. Start with the auxillary
726 // induction variables, and recursively rewrite any of their uses.
Dan Gohman514277c2008-05-23 21:05:58 +0000727 BasicBlock::iterator InsertPt = Header->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000728
729 // If there were induction variables of other sizes, cast the primary
730 // induction variable to the right size for them, avoiding the need for the
731 // code evaluation methods to insert induction variables of different sizes.
Dan Gohmancacd2012009-02-12 22:19:27 +0000732 for (unsigned i = 0, e = SizesToInsert.size(); i != e; ++i) {
733 const Type *Ty = SizesToInsert[i];
734 if (Ty != LargestType) {
735 Instruction *New = new TruncInst(IndVar, Ty, "indvar", InsertPt);
736 Rewriter.addInsertedValue(New, SE->getSCEV(New));
737 DOUT << "INDVARS: Made trunc IV for type " << *Ty << ": "
738 << *New << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000739 }
740 }
741
742 // Rewrite all induction variables in terms of the canonical induction
743 // variable.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744 while (!IndVars.empty()) {
745 PHINode *PN = IndVars.back().first;
Dan Gohmanc71cac12009-02-17 00:10:53 +0000746 SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(IndVars.back().second);
747 Value *NewVal = Rewriter.expandCodeFor(AR, InsertPt);
748 DOUT << "INDVARS: Rewrote IV '" << *AR << "' " << *PN
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000749 << " into = " << *NewVal << "\n";
750 NewVal->takeName(PN);
751
Dan Gohmancacd2012009-02-12 22:19:27 +0000752 /// If the new canonical induction variable is wider than the original,
753 /// and the original has uses that are casts to wider types, see if the
754 /// truncate and extend can be omitted.
Dan Gohmana730da32009-02-18 00:52:00 +0000755 if (PN == OrigControllingPHI && PN->getType() != LargestType)
Dan Gohmancacd2012009-02-12 22:19:27 +0000756 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
Dan Gohmancecc80f2009-02-14 02:31:09 +0000757 UI != UE; ++UI) {
758 if (isa<SExtInst>(UI) && NoSignedWrap) {
759 SCEVHandle ExtendedStart =
Dan Gohmanc71cac12009-02-17 00:10:53 +0000760 SE->getSignExtendExpr(AR->getStart(), LargestType);
Dan Gohmancecc80f2009-02-14 02:31:09 +0000761 SCEVHandle ExtendedStep =
Dan Gohmanc71cac12009-02-17 00:10:53 +0000762 SE->getSignExtendExpr(AR->getStepRecurrence(*SE), LargestType);
Dan Gohmancecc80f2009-02-14 02:31:09 +0000763 SCEVHandle ExtendedAddRec =
764 SE->getAddRecExpr(ExtendedStart, ExtendedStep, L);
765 if (LargestType != UI->getType())
766 ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, UI->getType());
767 Value *TruncIndVar = Rewriter.expandCodeFor(ExtendedAddRec, InsertPt);
Dan Gohmancacd2012009-02-12 22:19:27 +0000768 UI->replaceAllUsesWith(TruncIndVar);
769 if (Instruction *DeadUse = dyn_cast<Instruction>(*UI))
770 DeadInsts.insert(DeadUse);
771 }
Dan Gohmancecc80f2009-02-14 02:31:09 +0000772 if (isa<ZExtInst>(UI) && NoUnsignedWrap) {
773 SCEVHandle ExtendedStart =
Dan Gohmanc71cac12009-02-17 00:10:53 +0000774 SE->getZeroExtendExpr(AR->getStart(), LargestType);
Dan Gohmancecc80f2009-02-14 02:31:09 +0000775 SCEVHandle ExtendedStep =
Dan Gohmanc71cac12009-02-17 00:10:53 +0000776 SE->getZeroExtendExpr(AR->getStepRecurrence(*SE), LargestType);
Dan Gohmancecc80f2009-02-14 02:31:09 +0000777 SCEVHandle ExtendedAddRec =
778 SE->getAddRecExpr(ExtendedStart, ExtendedStep, L);
779 if (LargestType != UI->getType())
780 ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, UI->getType());
781 Value *TruncIndVar = Rewriter.expandCodeFor(ExtendedAddRec, InsertPt);
782 UI->replaceAllUsesWith(TruncIndVar);
783 if (Instruction *DeadUse = dyn_cast<Instruction>(*UI))
784 DeadInsts.insert(DeadUse);
785 }
786 }
Dan Gohmancacd2012009-02-12 22:19:27 +0000787
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000788 // Replace the old PHI Node with the inserted computation.
789 PN->replaceAllUsesWith(NewVal);
790 DeadInsts.insert(PN);
791 IndVars.pop_back();
792 ++NumRemoved;
793 Changed = true;
794 }
795
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000796 DeleteTriviallyDeadInstructions(DeadInsts);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000797 assert(L->isLCSSAForm());
798 return Changed;
799}
Devang Patelbda43802008-09-09 21:41:07 +0000800
Devang Patelb8ccf572008-11-18 00:40:02 +0000801/// Return true if it is OK to use SIToFPInst for an inducation variable
802/// with given inital and exit values.
803static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
804 uint64_t intIV, uint64_t intEV) {
805
Dan Gohman963fc812009-02-17 19:13:57 +0000806 if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
Devang Patelb8ccf572008-11-18 00:40:02 +0000807 return true;
808
809 // If the iteration range can be handled by SIToFPInst then use it.
810 APInt Max = APInt::getSignedMaxValue(32);
Bill Wendlingb9a5a682008-11-18 10:57:27 +0000811 if (Max.getZExtValue() > static_cast<uint64_t>(abs(intEV - intIV)))
Devang Patelb8ccf572008-11-18 00:40:02 +0000812 return true;
Dan Gohman963fc812009-02-17 19:13:57 +0000813
Devang Patelb8ccf572008-11-18 00:40:02 +0000814 return false;
815}
816
817/// convertToInt - Convert APF to an integer, if possible.
Devang Patele2ba01d2008-11-17 23:27:13 +0000818static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
819
820 bool isExact = false;
Evan Cheng30e65f62008-11-26 01:11:57 +0000821 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
822 return false;
Dan Gohman963fc812009-02-17 19:13:57 +0000823 if (APF.convertToInteger(intVal, 32, APF.isNegative(),
Devang Patele2ba01d2008-11-17 23:27:13 +0000824 APFloat::rmTowardZero, &isExact)
825 != APFloat::opOK)
826 return false;
Dan Gohman963fc812009-02-17 19:13:57 +0000827 if (!isExact)
Devang Patele2ba01d2008-11-17 23:27:13 +0000828 return false;
829 return true;
830
831}
832
Devang Patel7ca23c92008-11-03 18:32:19 +0000833/// HandleFloatingPointIV - If the loop has floating induction variable
834/// then insert corresponding integer induction variable if possible.
Devang Patelc8dac622008-11-17 21:32:02 +0000835/// For example,
836/// for(double i = 0; i < 10000; ++i)
837/// bar(i)
838/// is converted into
839/// for(int i = 0; i < 10000; ++i)
840/// bar((double)i);
841///
Dan Gohman963fc812009-02-17 19:13:57 +0000842void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH,
Devang Patelc8dac622008-11-17 21:32:02 +0000843 SmallPtrSet<Instruction*, 16> &DeadInsts) {
Devang Patel7ca23c92008-11-03 18:32:19 +0000844
Devang Patelc8dac622008-11-17 21:32:02 +0000845 unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
846 unsigned BackEdge = IncomingEdge^1;
Dan Gohman963fc812009-02-17 19:13:57 +0000847
Devang Patelc8dac622008-11-17 21:32:02 +0000848 // Check incoming value.
Devang Patele2ba01d2008-11-17 23:27:13 +0000849 ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
850 if (!InitValue) return;
851 uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits();
852 if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
853 return;
854
855 // Check IV increment. Reject this PH if increement operation is not
856 // an add or increment value can not be represented by an integer.
Dan Gohman963fc812009-02-17 19:13:57 +0000857 BinaryOperator *Incr =
Devang Patelc8dac622008-11-17 21:32:02 +0000858 dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
859 if (!Incr) return;
860 if (Incr->getOpcode() != Instruction::Add) return;
861 ConstantFP *IncrValue = NULL;
862 unsigned IncrVIndex = 1;
863 if (Incr->getOperand(1) == PH)
864 IncrVIndex = 0;
865 IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
866 if (!IncrValue) return;
Devang Patele2ba01d2008-11-17 23:27:13 +0000867 uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits();
868 if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
869 return;
Dan Gohman963fc812009-02-17 19:13:57 +0000870
Devang Patele2ba01d2008-11-17 23:27:13 +0000871 // Check Incr uses. One user is PH and the other users is exit condition used
872 // by the conditional terminator.
Devang Patelc8dac622008-11-17 21:32:02 +0000873 Value::use_iterator IncrUse = Incr->use_begin();
874 Instruction *U1 = cast<Instruction>(IncrUse++);
875 if (IncrUse == Incr->use_end()) return;
876 Instruction *U2 = cast<Instruction>(IncrUse++);
877 if (IncrUse != Incr->use_end()) return;
Dan Gohman963fc812009-02-17 19:13:57 +0000878
Devang Patelc8dac622008-11-17 21:32:02 +0000879 // Find exit condition.
880 FCmpInst *EC = dyn_cast<FCmpInst>(U1);
881 if (!EC)
882 EC = dyn_cast<FCmpInst>(U2);
883 if (!EC) return;
884
885 if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
886 if (!BI->isConditional()) return;
887 if (BI->getCondition() != EC) return;
Devang Patel7ca23c92008-11-03 18:32:19 +0000888 }
Devang Patel7ca23c92008-11-03 18:32:19 +0000889
Devang Patele2ba01d2008-11-17 23:27:13 +0000890 // Find exit value. If exit value can not be represented as an interger then
891 // do not handle this floating point PH.
Devang Patelc8dac622008-11-17 21:32:02 +0000892 ConstantFP *EV = NULL;
893 unsigned EVIndex = 1;
894 if (EC->getOperand(1) == Incr)
895 EVIndex = 0;
896 EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
897 if (!EV) return;
Devang Patelc8dac622008-11-17 21:32:02 +0000898 uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits();
Devang Patele2ba01d2008-11-17 23:27:13 +0000899 if (!convertToInt(EV->getValueAPF(), &intEV))
Devang Patelc8dac622008-11-17 21:32:02 +0000900 return;
Dan Gohman963fc812009-02-17 19:13:57 +0000901
Devang Patelc8dac622008-11-17 21:32:02 +0000902 // Find new predicate for integer comparison.
903 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
904 switch (EC->getPredicate()) {
905 case CmpInst::FCMP_OEQ:
906 case CmpInst::FCMP_UEQ:
907 NewPred = CmpInst::ICMP_EQ;
908 break;
909 case CmpInst::FCMP_OGT:
910 case CmpInst::FCMP_UGT:
911 NewPred = CmpInst::ICMP_UGT;
912 break;
913 case CmpInst::FCMP_OGE:
914 case CmpInst::FCMP_UGE:
915 NewPred = CmpInst::ICMP_UGE;
916 break;
917 case CmpInst::FCMP_OLT:
918 case CmpInst::FCMP_ULT:
919 NewPred = CmpInst::ICMP_ULT;
920 break;
921 case CmpInst::FCMP_OLE:
922 case CmpInst::FCMP_ULE:
923 NewPred = CmpInst::ICMP_ULE;
924 break;
925 default:
926 break;
Devang Patel7ca23c92008-11-03 18:32:19 +0000927 }
Devang Patelc8dac622008-11-17 21:32:02 +0000928 if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
Dan Gohman963fc812009-02-17 19:13:57 +0000929
Devang Patelc8dac622008-11-17 21:32:02 +0000930 // Insert new integer induction variable.
931 PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
932 PH->getName()+".int", PH);
Devang Patele2ba01d2008-11-17 23:27:13 +0000933 NewPHI->addIncoming(ConstantInt::get(Type::Int32Ty, newInitValue),
Devang Patelc8dac622008-11-17 21:32:02 +0000934 PH->getIncomingBlock(IncomingEdge));
935
Dan Gohman963fc812009-02-17 19:13:57 +0000936 Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
937 ConstantInt::get(Type::Int32Ty,
Devang Patele2ba01d2008-11-17 23:27:13 +0000938 newIncrValue),
Devang Patelc8dac622008-11-17 21:32:02 +0000939 Incr->getName()+".int", Incr);
940 NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
941
942 ConstantInt *NewEV = ConstantInt::get(Type::Int32Ty, intEV);
943 Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(BackEdge) : NewEV);
944 Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(BackEdge));
Dan Gohman963fc812009-02-17 19:13:57 +0000945 ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(),
Devang Patelc8dac622008-11-17 21:32:02 +0000946 EC->getParent()->getTerminator());
Dan Gohman963fc812009-02-17 19:13:57 +0000947
Devang Patelc8dac622008-11-17 21:32:02 +0000948 // Delete old, floating point, exit comparision instruction.
949 EC->replaceAllUsesWith(NewEC);
950 DeadInsts.insert(EC);
Dan Gohman963fc812009-02-17 19:13:57 +0000951
Devang Patelc8dac622008-11-17 21:32:02 +0000952 // Delete old, floating point, increment instruction.
953 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
954 DeadInsts.insert(Incr);
Dan Gohman963fc812009-02-17 19:13:57 +0000955
Devang Patelb8ccf572008-11-18 00:40:02 +0000956 // Replace floating induction variable. Give SIToFPInst preference over
957 // UIToFPInst because it is faster on platforms that are widely used.
958 if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
Dan Gohman963fc812009-02-17 19:13:57 +0000959 SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
Devang Patele2ba01d2008-11-17 23:27:13 +0000960 PH->getParent()->getFirstNonPHI());
961 PH->replaceAllUsesWith(Conv);
962 } else {
Dan Gohman963fc812009-02-17 19:13:57 +0000963 UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
Devang Patele2ba01d2008-11-17 23:27:13 +0000964 PH->getParent()->getFirstNonPHI());
965 PH->replaceAllUsesWith(Conv);
966 }
Devang Patelc8dac622008-11-17 21:32:02 +0000967 DeadInsts.insert(PH);
Devang Patel7ca23c92008-11-03 18:32:19 +0000968}
969