blob: a4cde1744fb5502ac67901189282605166d9d30a [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Owen Andersond13db2c2010-07-21 22:09:45 +0000106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107 "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohman3bf63762010-06-18 19:54:20 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohman3bf63762010-06-18 19:54:20 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohman3bf63762010-06-18 19:54:20 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohman3bf63762010-06-18 19:54:20 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
Oscar Fuentesee56c422010-08-02 06:00:15 +0000254 if (llvm::next(I) != E)
Dan Gohmana5145c82010-04-16 15:03:25 +0000255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000261 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
262 if (!(*I)->dominates(BB, DT))
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000263 return false;
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000264 return true;
265}
266
Dan Gohman6e70e312009-09-27 15:26:03 +0000267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000268 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
269 if (!(*I)->properlyDominates(BB, DT))
Dan Gohman6e70e312009-09-27 15:26:03 +0000270 return false;
Dan Gohman6e70e312009-09-27 15:26:03 +0000271 return true;
272}
273
Dan Gohman2f199f92010-08-16 16:21:27 +0000274bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
275 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
276 if (!(*I)->isLoopInvariant(L))
277 return false;
278 return true;
279}
280
281// hasComputableLoopEvolution - N-ary expressions have computable loop
282// evolutions iff they have at least one operand that varies with the loop,
283// but that all varying operands are computable.
284bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
285 bool HasVarying = false;
286 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
287 const SCEV *S = *I;
288 if (!S->isLoopInvariant(L)) {
289 if (S->hasComputableLoopEvolution(L))
290 HasVarying = true;
291 else
292 return false;
293 }
294 }
295 return HasVarying;
296}
297
298bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
299 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
300 const SCEV *S = *I;
301 if (O == S || S->hasOperand(O))
302 return true;
303 }
304 return false;
305}
306
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000307bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
308 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
309}
310
Dan Gohman6e70e312009-09-27 15:26:03 +0000311bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
312 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
313}
314
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000315void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000316 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000317}
318
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000319const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000320 // In most cases the types of LHS and RHS will be the same, but in some
321 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
322 // depend on the type for correctness, but handling types carefully can
323 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
324 // a pointer type than the RHS, so use the RHS' type here.
325 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000326}
327
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000328bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000329 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000330 if (!QueryLoop)
331 return false;
332
333 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000334 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000335 return false;
336
Dan Gohman71c41442010-08-13 20:11:39 +0000337 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
338 if (L->contains(QueryLoop))
339 return true;
340
Dan Gohmane890eea2009-06-26 22:17:21 +0000341 // This recurrence is variant w.r.t. QueryLoop if any of its operands
342 // are variant.
Dan Gohman7e1fee72010-08-29 14:52:02 +0000343 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
344 if (!(*I)->isLoopInvariant(QueryLoop))
Dan Gohmane890eea2009-06-26 22:17:21 +0000345 return false;
346
347 // Otherwise it's loop-invariant.
348 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000349}
350
Dan Gohman39125d82010-02-13 00:19:39 +0000351bool
352SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
353 return DT->dominates(L->getHeader(), BB) &&
354 SCEVNAryExpr::dominates(BB, DT);
355}
356
357bool
358SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
359 // This uses a "dominates" query instead of "properly dominates" query because
360 // the instruction which produces the addrec's value is a PHI, and a PHI
361 // effectively properly dominates its entire containing block.
362 return DT->dominates(L->getHeader(), BB) &&
363 SCEVNAryExpr::properlyDominates(BB, DT);
364}
365
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000366void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000367 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000368 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000369 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000370 OS << "}<";
371 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
372 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000373}
Chris Lattner53e677a2004-04-02 20:23:17 +0000374
Dan Gohmanab37f502010-08-02 23:49:30 +0000375void SCEVUnknown::deleted() {
376 // Clear this SCEVUnknown from ValuesAtScopes.
377 SE->ValuesAtScopes.erase(this);
378
379 // Remove this SCEVUnknown from the uniquing map.
380 SE->UniqueSCEVs.RemoveNode(this);
381
382 // Release the value.
383 setValPtr(0);
384}
385
386void SCEVUnknown::allUsesReplacedWith(Value *New) {
387 // Clear this SCEVUnknown from ValuesAtScopes.
388 SE->ValuesAtScopes.erase(this);
389
390 // Remove this SCEVUnknown from the uniquing map.
391 SE->UniqueSCEVs.RemoveNode(this);
392
393 // Update this SCEVUnknown to point to the new value. This is needed
394 // because there may still be outstanding SCEVs which still point to
395 // this SCEVUnknown.
396 setValPtr(New);
397}
398
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000399bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
400 // All non-instruction values are loop invariant. All instructions are loop
401 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000402 // Instructions are never considered invariant in the function body
403 // (null loop) because they are defined within the "loop".
Dan Gohmanab37f502010-08-02 23:49:30 +0000404 if (Instruction *I = dyn_cast<Instruction>(getValue()))
Dan Gohman92329c72009-12-18 01:24:09 +0000405 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000406 return true;
407}
Chris Lattner53e677a2004-04-02 20:23:17 +0000408
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000409bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
410 if (Instruction *I = dyn_cast<Instruction>(getValue()))
411 return DT->dominates(I->getParent(), BB);
412 return true;
413}
414
Dan Gohman6e70e312009-09-27 15:26:03 +0000415bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
416 if (Instruction *I = dyn_cast<Instruction>(getValue()))
417 return DT->properlyDominates(I->getParent(), BB);
418 return true;
419}
420
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000421const Type *SCEVUnknown::getType() const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000422 return getValue()->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000423}
Chris Lattner53e677a2004-04-02 20:23:17 +0000424
Dan Gohman0f5efe52010-01-28 02:15:55 +0000425bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000426 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000427 if (VCE->getOpcode() == Instruction::PtrToInt)
428 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000429 if (CE->getOpcode() == Instruction::GetElementPtr &&
430 CE->getOperand(0)->isNullValue() &&
431 CE->getNumOperands() == 2)
432 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
433 if (CI->isOne()) {
434 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
435 ->getElementType();
436 return true;
437 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000438
439 return false;
440}
441
442bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000443 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000444 if (VCE->getOpcode() == Instruction::PtrToInt)
445 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000446 if (CE->getOpcode() == Instruction::GetElementPtr &&
447 CE->getOperand(0)->isNullValue()) {
448 const Type *Ty =
449 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
450 if (const StructType *STy = dyn_cast<StructType>(Ty))
451 if (!STy->isPacked() &&
452 CE->getNumOperands() == 3 &&
453 CE->getOperand(1)->isNullValue()) {
454 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
455 if (CI->isOne() &&
456 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000457 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000458 AllocTy = STy->getElementType(1);
459 return true;
460 }
461 }
462 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000463
464 return false;
465}
466
Dan Gohman4f8eea82010-02-01 18:27:38 +0000467bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000468 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000469 if (VCE->getOpcode() == Instruction::PtrToInt)
470 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
471 if (CE->getOpcode() == Instruction::GetElementPtr &&
472 CE->getNumOperands() == 3 &&
473 CE->getOperand(0)->isNullValue() &&
474 CE->getOperand(1)->isNullValue()) {
475 const Type *Ty =
476 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
477 // Ignore vector types here so that ScalarEvolutionExpander doesn't
478 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000479 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000480 CTy = Ty;
481 FieldNo = CE->getOperand(2);
482 return true;
483 }
484 }
485
486 return false;
487}
488
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000489void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000490 const Type *AllocTy;
491 if (isSizeOf(AllocTy)) {
492 OS << "sizeof(" << *AllocTy << ")";
493 return;
494 }
495 if (isAlignOf(AllocTy)) {
496 OS << "alignof(" << *AllocTy << ")";
497 return;
498 }
499
Dan Gohman4f8eea82010-02-01 18:27:38 +0000500 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000501 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000502 if (isOffsetOf(CTy, FieldNo)) {
503 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000504 WriteAsOperand(OS, FieldNo, false);
505 OS << ")";
506 return;
507 }
508
509 // Otherwise just print it normally.
Dan Gohmanab37f502010-08-02 23:49:30 +0000510 WriteAsOperand(OS, getValue(), false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000511}
512
Chris Lattner8d741b82004-06-20 06:23:15 +0000513//===----------------------------------------------------------------------===//
514// SCEV Utilities
515//===----------------------------------------------------------------------===//
516
517namespace {
518 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
519 /// than the complexity of the RHS. This comparator is used to canonicalize
520 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000521 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000522 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000523 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000524 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000525
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000527 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return compare(LHS, RHS) < 0;
529 }
530
531 // Return negative, zero, or positive, if LHS is less than, equal to, or
532 // greater than RHS, respectively. A three-way result allows recursive
533 // comparisons to be more efficient.
534 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000535 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
536 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000537 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000538
Dan Gohman72861302009-05-07 14:39:04 +0000539 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000540 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
541 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000542 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000543
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 // Aside from the getSCEVType() ordering, the particular ordering
545 // isn't very important except that it's beneficial to be consistent,
546 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000547 switch (LType) {
548 case scUnknown: {
549 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000550 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551
552 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
553 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000554 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000555
556 // Order pointer values after integer values. This helps SCEVExpander
557 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000558 bool LIsPointer = LV->getType()->isPointerTy(),
559 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000560 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000561 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000562
563 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000564 unsigned LID = LV->getValueID(),
565 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000566 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000567 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000568
569 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000570 if (const Argument *LA = dyn_cast<Argument>(LV)) {
571 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000572 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
573 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 // For instructions, compare their loop depth, and their operand
577 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000578 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
579 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580
581 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000582 const BasicBlock *LParent = LInst->getParent(),
583 *RParent = RInst->getParent();
584 if (LParent != RParent) {
585 unsigned LDepth = LI->getLoopDepth(LParent),
586 RDepth = LI->getLoopDepth(RParent);
587 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000588 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000589 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000590
591 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000592 unsigned LNumOps = LInst->getNumOperands(),
593 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000594 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000595 }
596
Dan Gohman67ef74e2010-08-27 15:26:01 +0000597 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000598 }
599
Dan Gohman67ef74e2010-08-27 15:26:01 +0000600 case scConstant: {
601 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000602 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000603
604 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000605 const APInt &LA = LC->getValue()->getValue();
606 const APInt &RA = RC->getValue()->getValue();
607 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000608 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000609 return (int)LBitWidth - (int)RBitWidth;
610 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000611 }
612
Dan Gohman67ef74e2010-08-27 15:26:01 +0000613 case scAddRecExpr: {
614 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000615 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000616
617 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000618 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
619 if (LLoop != RLoop) {
620 unsigned LDepth = LLoop->getLoopDepth(),
621 RDepth = RLoop->getLoopDepth();
622 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000623 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000624 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000625
626 // Addrec complexity grows with operand count.
627 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
628 if (LNumOps != RNumOps)
629 return (int)LNumOps - (int)RNumOps;
630
631 // Lexicographically compare.
632 for (unsigned i = 0; i != LNumOps; ++i) {
633 long X = compare(LA->getOperand(i), RA->getOperand(i));
634 if (X != 0)
635 return X;
636 }
637
638 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000639 }
640
Dan Gohman67ef74e2010-08-27 15:26:01 +0000641 case scAddExpr:
642 case scMulExpr:
643 case scSMaxExpr:
644 case scUMaxExpr: {
645 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000646 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000647
648 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000649 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
650 for (unsigned i = 0; i != LNumOps; ++i) {
651 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000652 return 1;
653 long X = compare(LC->getOperand(i), RC->getOperand(i));
654 if (X != 0)
655 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000656 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000657 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000658 }
659
Dan Gohman67ef74e2010-08-27 15:26:01 +0000660 case scUDivExpr: {
661 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000662 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000663
664 // Lexicographically compare udiv expressions.
665 long X = compare(LC->getLHS(), RC->getLHS());
666 if (X != 0)
667 return X;
668 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000669 }
670
Dan Gohman67ef74e2010-08-27 15:26:01 +0000671 case scTruncate:
672 case scZeroExtend:
673 case scSignExtend: {
674 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000675 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000676
677 // Compare cast expressions by operand.
678 return compare(LC->getOperand(), RC->getOperand());
679 }
680
681 default:
682 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000683 }
684
685 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000686 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000687 }
688 };
689}
690
691/// GroupByComplexity - Given a list of SCEV objects, order them by their
692/// complexity, and group objects of the same complexity together by value.
693/// When this routine is finished, we know that any duplicates in the vector are
694/// consecutive and that complexity is monotonically increasing.
695///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000696/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000697/// results from this routine. In other words, we don't want the results of
698/// this to depend on where the addresses of various SCEV objects happened to
699/// land in memory.
700///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000701static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000702 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000703 if (Ops.size() < 2) return; // Noop
704 if (Ops.size() == 2) {
705 // This is the common case, which also happens to be trivially simple.
706 // Special case it.
Dan Gohman3bf63762010-06-18 19:54:20 +0000707 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000708 std::swap(Ops[0], Ops[1]);
709 return;
710 }
711
Dan Gohman3bf63762010-06-18 19:54:20 +0000712 // Do the rough sort by complexity.
713 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
714
715 // Now that we are sorted by complexity, group elements of the same
716 // complexity. Note that this is, at worst, N^2, but the vector is likely to
717 // be extremely short in practice. Note that we take this approach because we
718 // do not want to depend on the addresses of the objects we are grouping.
719 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
720 const SCEV *S = Ops[i];
721 unsigned Complexity = S->getSCEVType();
722
723 // If there are any objects of the same complexity and same value as this
724 // one, group them.
725 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
726 if (Ops[j] == S) { // Found a duplicate.
727 // Move it to immediately after i'th element.
728 std::swap(Ops[i+1], Ops[j]);
729 ++i; // no need to rescan it.
730 if (i == e-2) return; // Done!
731 }
732 }
733 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000734}
735
Chris Lattner53e677a2004-04-02 20:23:17 +0000736
Chris Lattner53e677a2004-04-02 20:23:17 +0000737
738//===----------------------------------------------------------------------===//
739// Simple SCEV method implementations
740//===----------------------------------------------------------------------===//
741
Eli Friedmanb42a6262008-08-04 23:49:06 +0000742/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000743/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000744static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000745 ScalarEvolution &SE,
746 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 // Handle the simplest case efficiently.
748 if (K == 1)
749 return SE.getTruncateOrZeroExtend(It, ResultTy);
750
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000751 // We are using the following formula for BC(It, K):
752 //
753 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
754 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000755 // Suppose, W is the bitwidth of the return value. We must be prepared for
756 // overflow. Hence, we must assure that the result of our computation is
757 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
758 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000759 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000760 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000761 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000762 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
763 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000764 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000766 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000767 // This formula is trivially equivalent to the previous formula. However,
768 // this formula can be implemented much more efficiently. The trick is that
769 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
770 // arithmetic. To do exact division in modular arithmetic, all we have
771 // to do is multiply by the inverse. Therefore, this step can be done at
772 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000773 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000774 // The next issue is how to safely do the division by 2^T. The way this
775 // is done is by doing the multiplication step at a width of at least W + T
776 // bits. This way, the bottom W+T bits of the product are accurate. Then,
777 // when we perform the division by 2^T (which is equivalent to a right shift
778 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
779 // truncated out after the division by 2^T.
780 //
781 // In comparison to just directly using the first formula, this technique
782 // is much more efficient; using the first formula requires W * K bits,
783 // but this formula less than W + K bits. Also, the first formula requires
784 // a division step, whereas this formula only requires multiplies and shifts.
785 //
786 // It doesn't matter whether the subtraction step is done in the calculation
787 // width or the input iteration count's width; if the subtraction overflows,
788 // the result must be zero anyway. We prefer here to do it in the width of
789 // the induction variable because it helps a lot for certain cases; CodeGen
790 // isn't smart enough to ignore the overflow, which leads to much less
791 // efficient code if the width of the subtraction is wider than the native
792 // register width.
793 //
794 // (It's possible to not widen at all by pulling out factors of 2 before
795 // the multiplication; for example, K=2 can be calculated as
796 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
797 // extra arithmetic, so it's not an obvious win, and it gets
798 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000799
Eli Friedmanb42a6262008-08-04 23:49:06 +0000800 // Protection from insane SCEVs; this bound is conservative,
801 // but it probably doesn't matter.
802 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000803 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000804
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000805 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000806
Eli Friedmanb42a6262008-08-04 23:49:06 +0000807 // Calculate K! / 2^T and T; we divide out the factors of two before
808 // multiplying for calculating K! / 2^T to avoid overflow.
809 // Other overflow doesn't matter because we only care about the bottom
810 // W bits of the result.
811 APInt OddFactorial(W, 1);
812 unsigned T = 1;
813 for (unsigned i = 3; i <= K; ++i) {
814 APInt Mult(W, i);
815 unsigned TwoFactors = Mult.countTrailingZeros();
816 T += TwoFactors;
817 Mult = Mult.lshr(TwoFactors);
818 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000819 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000820
Eli Friedmanb42a6262008-08-04 23:49:06 +0000821 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000822 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000823
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000824 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000825 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
826
827 // Calculate the multiplicative inverse of K! / 2^T;
828 // this multiplication factor will perform the exact division by
829 // K! / 2^T.
830 APInt Mod = APInt::getSignedMinValue(W+1);
831 APInt MultiplyFactor = OddFactorial.zext(W+1);
832 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
833 MultiplyFactor = MultiplyFactor.trunc(W);
834
835 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000836 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
837 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000838 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000839 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000840 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000841 Dividend = SE.getMulExpr(Dividend,
842 SE.getTruncateOrZeroExtend(S, CalculationTy));
843 }
844
845 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000846 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000847
848 // Truncate the result, and divide by K! / 2^T.
849
850 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
851 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000852}
853
Chris Lattner53e677a2004-04-02 20:23:17 +0000854/// evaluateAtIteration - Return the value of this chain of recurrences at
855/// the specified iteration number. We can evaluate this recurrence by
856/// multiplying each element in the chain by the binomial coefficient
857/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
858///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000859/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000860///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000861/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000862///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000863const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000864 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000865 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000866 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000867 // The computation is correct in the face of overflow provided that the
868 // multiplication is performed _after_ the evaluation of the binomial
869 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000870 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000871 if (isa<SCEVCouldNotCompute>(Coeff))
872 return Coeff;
873
874 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000875 }
876 return Result;
877}
878
Chris Lattner53e677a2004-04-02 20:23:17 +0000879//===----------------------------------------------------------------------===//
880// SCEV Expression folder implementations
881//===----------------------------------------------------------------------===//
882
Dan Gohman0bba49c2009-07-07 17:06:11 +0000883const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000884 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000885 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000886 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000887 assert(isSCEVable(Ty) &&
888 "This is not a conversion to a SCEVable type!");
889 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000890
Dan Gohmanc050fd92009-07-13 20:50:19 +0000891 FoldingSetNodeID ID;
892 ID.AddInteger(scTruncate);
893 ID.AddPointer(Op);
894 ID.AddPointer(Ty);
895 void *IP = 0;
896 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
897
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000898 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000899 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000900 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000901 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
902 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000903
Dan Gohman20900ca2009-04-22 16:20:48 +0000904 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000905 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000906 return getTruncateExpr(ST->getOperand(), Ty);
907
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000908 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000909 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000910 return getTruncateOrSignExtend(SS->getOperand(), Ty);
911
912 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000913 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000914 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
915
Dan Gohman6864db62009-06-18 16:24:47 +0000916 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000917 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000918 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000919 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000920 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
921 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000922 }
923
Dan Gohmanf53462d2010-07-15 20:02:11 +0000924 // As a special case, fold trunc(undef) to undef. We don't want to
925 // know too much about SCEVUnknowns, but this special case is handy
926 // and harmless.
927 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
928 if (isa<UndefValue>(U->getValue()))
929 return getSCEV(UndefValue::get(Ty));
930
Dan Gohman420ab912010-06-25 18:47:08 +0000931 // The cast wasn't folded; create an explicit cast node. We can reuse
932 // the existing insert position since if we get here, we won't have
933 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000934 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
935 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000936 UniqueSCEVs.InsertNode(S, IP);
937 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000938}
939
Dan Gohman0bba49c2009-07-07 17:06:11 +0000940const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000941 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000942 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000943 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000944 assert(isSCEVable(Ty) &&
945 "This is not a conversion to a SCEVable type!");
946 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000947
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000948 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000949 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
950 return getConstant(
951 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
952 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000953
Dan Gohman20900ca2009-04-22 16:20:48 +0000954 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000955 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000956 return getZeroExtendExpr(SZ->getOperand(), Ty);
957
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000958 // Before doing any expensive analysis, check to see if we've already
959 // computed a SCEV for this Op and Ty.
960 FoldingSetNodeID ID;
961 ID.AddInteger(scZeroExtend);
962 ID.AddPointer(Op);
963 ID.AddPointer(Ty);
964 void *IP = 0;
965 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
966
Dan Gohman01ecca22009-04-27 20:16:15 +0000967 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000968 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000969 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000970 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000971 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000972 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000973 const SCEV *Start = AR->getStart();
974 const SCEV *Step = AR->getStepRecurrence(*this);
975 unsigned BitWidth = getTypeSizeInBits(AR->getType());
976 const Loop *L = AR->getLoop();
977
Dan Gohmaneb490a72009-07-25 01:22:26 +0000978 // If we have special knowledge that this addrec won't overflow,
979 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000980 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000981 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
982 getZeroExtendExpr(Step, Ty),
983 L);
984
Dan Gohman01ecca22009-04-27 20:16:15 +0000985 // Check whether the backedge-taken count is SCEVCouldNotCompute.
986 // Note that this serves two purposes: It filters out loops that are
987 // simply not analyzable, and it covers the case where this code is
988 // being called from within backedge-taken count analysis, such that
989 // attempting to ask for the backedge-taken count would likely result
990 // in infinite recursion. In the later case, the analysis code will
991 // cope with a conservative value, and it will take care to purge
992 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000993 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000994 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000995 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000996 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000997
998 // Check whether the backedge-taken count can be losslessly casted to
999 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001000 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001001 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001002 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001003 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1004 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001005 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001006 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001007 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001008 const SCEV *Add = getAddExpr(Start, ZMul);
1009 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001010 getAddExpr(getZeroExtendExpr(Start, WideTy),
1011 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1012 getZeroExtendExpr(Step, WideTy)));
1013 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001014 // Return the expression with the addrec on the outside.
1015 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1016 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001017 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001018
1019 // Similar to above, only this time treat the step value as signed.
1020 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +00001021 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001022 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +00001023 OperandExtendedAdd =
1024 getAddExpr(getZeroExtendExpr(Start, WideTy),
1025 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1026 getSignExtendExpr(Step, WideTy)));
1027 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001028 // Return the expression with the addrec on the outside.
1029 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1030 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001031 L);
1032 }
1033
1034 // If the backedge is guarded by a comparison with the pre-inc value
1035 // the addrec is safe. Also, if the entry is guarded by a comparison
1036 // with the start value and the backedge is guarded by a comparison
1037 // with the post-inc value, the addrec is safe.
1038 if (isKnownPositive(Step)) {
1039 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1040 getUnsignedRange(Step).getUnsignedMax());
1041 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001042 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001043 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1044 AR->getPostIncExpr(*this), N)))
1045 // Return the expression with the addrec on the outside.
1046 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1047 getZeroExtendExpr(Step, Ty),
1048 L);
1049 } else if (isKnownNegative(Step)) {
1050 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1051 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001052 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1053 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001054 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1055 AR->getPostIncExpr(*this), N)))
1056 // Return the expression with the addrec on the outside.
1057 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1058 getSignExtendExpr(Step, Ty),
1059 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001060 }
1061 }
1062 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001063
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001064 // The cast wasn't folded; create an explicit cast node.
1065 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001066 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001067 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1068 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001069 UniqueSCEVs.InsertNode(S, IP);
1070 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001071}
1072
Dan Gohman0bba49c2009-07-07 17:06:11 +00001073const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001074 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001075 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001076 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001077 assert(isSCEVable(Ty) &&
1078 "This is not a conversion to a SCEVable type!");
1079 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001080
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001081 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001082 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1083 return getConstant(
1084 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1085 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001086
Dan Gohman20900ca2009-04-22 16:20:48 +00001087 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001088 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001089 return getSignExtendExpr(SS->getOperand(), Ty);
1090
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001091 // Before doing any expensive analysis, check to see if we've already
1092 // computed a SCEV for this Op and Ty.
1093 FoldingSetNodeID ID;
1094 ID.AddInteger(scSignExtend);
1095 ID.AddPointer(Op);
1096 ID.AddPointer(Ty);
1097 void *IP = 0;
1098 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1099
Dan Gohman01ecca22009-04-27 20:16:15 +00001100 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001101 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001102 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001103 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001104 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001105 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001106 const SCEV *Start = AR->getStart();
1107 const SCEV *Step = AR->getStepRecurrence(*this);
1108 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1109 const Loop *L = AR->getLoop();
1110
Dan Gohmaneb490a72009-07-25 01:22:26 +00001111 // If we have special knowledge that this addrec won't overflow,
1112 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001113 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001114 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1115 getSignExtendExpr(Step, Ty),
1116 L);
1117
Dan Gohman01ecca22009-04-27 20:16:15 +00001118 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1119 // Note that this serves two purposes: It filters out loops that are
1120 // simply not analyzable, and it covers the case where this code is
1121 // being called from within backedge-taken count analysis, such that
1122 // attempting to ask for the backedge-taken count would likely result
1123 // in infinite recursion. In the later case, the analysis code will
1124 // cope with a conservative value, and it will take care to purge
1125 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001126 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001127 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001128 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001129 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001130
1131 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001132 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001133 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001134 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001135 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001136 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1137 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001138 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001139 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001140 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001141 const SCEV *Add = getAddExpr(Start, SMul);
1142 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001143 getAddExpr(getSignExtendExpr(Start, WideTy),
1144 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1145 getSignExtendExpr(Step, WideTy)));
1146 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001147 // Return the expression with the addrec on the outside.
1148 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1149 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001150 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001151
1152 // Similar to above, only this time treat the step value as unsigned.
1153 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001154 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001155 Add = getAddExpr(Start, UMul);
1156 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001157 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001158 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1159 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001160 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001161 // Return the expression with the addrec on the outside.
1162 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1163 getZeroExtendExpr(Step, Ty),
1164 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001165 }
1166
1167 // If the backedge is guarded by a comparison with the pre-inc value
1168 // the addrec is safe. Also, if the entry is guarded by a comparison
1169 // with the start value and the backedge is guarded by a comparison
1170 // with the post-inc value, the addrec is safe.
1171 if (isKnownPositive(Step)) {
1172 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1173 getSignedRange(Step).getSignedMax());
1174 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001175 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001176 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1177 AR->getPostIncExpr(*this), N)))
1178 // Return the expression with the addrec on the outside.
1179 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1180 getSignExtendExpr(Step, Ty),
1181 L);
1182 } else if (isKnownNegative(Step)) {
1183 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1184 getSignedRange(Step).getSignedMin());
1185 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001186 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001187 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1188 AR->getPostIncExpr(*this), N)))
1189 // Return the expression with the addrec on the outside.
1190 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1191 getSignExtendExpr(Step, Ty),
1192 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001193 }
1194 }
1195 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001196
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001197 // The cast wasn't folded; create an explicit cast node.
1198 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001199 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001200 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1201 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001202 UniqueSCEVs.InsertNode(S, IP);
1203 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001204}
1205
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001206/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1207/// unspecified bits out to the given type.
1208///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001209const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001210 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001211 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1212 "This is not an extending conversion!");
1213 assert(isSCEVable(Ty) &&
1214 "This is not a conversion to a SCEVable type!");
1215 Ty = getEffectiveSCEVType(Ty);
1216
1217 // Sign-extend negative constants.
1218 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1219 if (SC->getValue()->getValue().isNegative())
1220 return getSignExtendExpr(Op, Ty);
1221
1222 // Peel off a truncate cast.
1223 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001224 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001225 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1226 return getAnyExtendExpr(NewOp, Ty);
1227 return getTruncateOrNoop(NewOp, Ty);
1228 }
1229
1230 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001231 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001232 if (!isa<SCEVZeroExtendExpr>(ZExt))
1233 return ZExt;
1234
1235 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001236 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001237 if (!isa<SCEVSignExtendExpr>(SExt))
1238 return SExt;
1239
Dan Gohmana10756e2010-01-21 02:09:26 +00001240 // Force the cast to be folded into the operands of an addrec.
1241 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1242 SmallVector<const SCEV *, 4> Ops;
1243 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1244 I != E; ++I)
1245 Ops.push_back(getAnyExtendExpr(*I, Ty));
1246 return getAddRecExpr(Ops, AR->getLoop());
1247 }
1248
Dan Gohmanf53462d2010-07-15 20:02:11 +00001249 // As a special case, fold anyext(undef) to undef. We don't want to
1250 // know too much about SCEVUnknowns, but this special case is handy
1251 // and harmless.
1252 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1253 if (isa<UndefValue>(U->getValue()))
1254 return getSCEV(UndefValue::get(Ty));
1255
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001256 // If the expression is obviously signed, use the sext cast value.
1257 if (isa<SCEVSMaxExpr>(Op))
1258 return SExt;
1259
1260 // Absent any other information, use the zext cast value.
1261 return ZExt;
1262}
1263
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001264/// CollectAddOperandsWithScales - Process the given Ops list, which is
1265/// a list of operands to be added under the given scale, update the given
1266/// map. This is a helper function for getAddRecExpr. As an example of
1267/// what it does, given a sequence of operands that would form an add
1268/// expression like this:
1269///
1270/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1271///
1272/// where A and B are constants, update the map with these values:
1273///
1274/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1275///
1276/// and add 13 + A*B*29 to AccumulatedConstant.
1277/// This will allow getAddRecExpr to produce this:
1278///
1279/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1280///
1281/// This form often exposes folding opportunities that are hidden in
1282/// the original operand list.
1283///
1284/// Return true iff it appears that any interesting folding opportunities
1285/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1286/// the common case where no interesting opportunities are present, and
1287/// is also used as a check to avoid infinite recursion.
1288///
1289static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001290CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1291 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001292 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001293 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001294 const APInt &Scale,
1295 ScalarEvolution &SE) {
1296 bool Interesting = false;
1297
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001298 // Iterate over the add operands. They are sorted, with constants first.
1299 unsigned i = 0;
1300 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1301 ++i;
1302 // Pull a buried constant out to the outside.
1303 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1304 Interesting = true;
1305 AccumulatedConstant += Scale * C->getValue()->getValue();
1306 }
1307
1308 // Next comes everything else. We're especially interested in multiplies
1309 // here, but they're in the middle, so just visit the rest with one loop.
1310 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001311 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1312 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1313 APInt NewScale =
1314 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1315 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1316 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001317 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001318 Interesting |=
1319 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001320 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001321 NewScale, SE);
1322 } else {
1323 // A multiplication of a constant with some other value. Update
1324 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001325 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1326 const SCEV *Key = SE.getMulExpr(MulOps);
1327 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001328 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001329 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001330 NewOps.push_back(Pair.first->first);
1331 } else {
1332 Pair.first->second += NewScale;
1333 // The map already had an entry for this value, which may indicate
1334 // a folding opportunity.
1335 Interesting = true;
1336 }
1337 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001338 } else {
1339 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001340 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001341 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001342 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001343 NewOps.push_back(Pair.first->first);
1344 } else {
1345 Pair.first->second += Scale;
1346 // The map already had an entry for this value, which may indicate
1347 // a folding opportunity.
1348 Interesting = true;
1349 }
1350 }
1351 }
1352
1353 return Interesting;
1354}
1355
1356namespace {
1357 struct APIntCompare {
1358 bool operator()(const APInt &LHS, const APInt &RHS) const {
1359 return LHS.ult(RHS);
1360 }
1361 };
1362}
1363
Dan Gohman6c0866c2009-05-24 23:45:28 +00001364/// getAddExpr - Get a canonical add expression, or something simpler if
1365/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001366const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1367 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001368 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001369 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001370#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001371 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001372 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001373 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001374 "SCEVAddExpr operand types don't match!");
1375#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001376
Dan Gohmana10756e2010-01-21 02:09:26 +00001377 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1378 if (!HasNUW && HasNSW) {
1379 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001380 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1381 E = Ops.end(); I != E; ++I)
1382 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001383 All = false;
1384 break;
1385 }
1386 if (All) HasNUW = true;
1387 }
1388
Chris Lattner53e677a2004-04-02 20:23:17 +00001389 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001390 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001391
1392 // If there are any constants, fold them together.
1393 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001394 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001395 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001396 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001397 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001398 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001399 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1400 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001401 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001402 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001403 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001404 }
1405
1406 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001407 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001408 Ops.erase(Ops.begin());
1409 --Idx;
1410 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001411
Dan Gohmanbca091d2010-04-12 23:08:18 +00001412 if (Ops.size() == 1) return Ops[0];
1413 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001414
Dan Gohman68ff7762010-08-27 21:39:59 +00001415 // Okay, check to see if the same value occurs in the operand list more than
1416 // once. If so, merge them together into an multiply expression. Since we
1417 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001418 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001419 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001420 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001421 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001422 // Scan ahead to count how many equal operands there are.
1423 unsigned Count = 2;
1424 while (i+Count != e && Ops[i+Count] == Ops[i])
1425 ++Count;
1426 // Merge the values into a multiply.
1427 const SCEV *Scale = getConstant(Ty, Count);
1428 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1429 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001430 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001431 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001432 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001433 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001434 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001435 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001436 if (FoundMatch)
1437 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001438
Dan Gohman728c7f32009-05-08 21:03:19 +00001439 // Check for truncates. If all the operands are truncated from the same
1440 // type, see if factoring out the truncate would permit the result to be
1441 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1442 // if the contents of the resulting outer trunc fold to something simple.
1443 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1444 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1445 const Type *DstType = Trunc->getType();
1446 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001447 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001448 bool Ok = true;
1449 // Check all the operands to see if they can be represented in the
1450 // source type of the truncate.
1451 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1452 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1453 if (T->getOperand()->getType() != SrcType) {
1454 Ok = false;
1455 break;
1456 }
1457 LargeOps.push_back(T->getOperand());
1458 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001459 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001460 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001461 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001462 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1463 if (const SCEVTruncateExpr *T =
1464 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1465 if (T->getOperand()->getType() != SrcType) {
1466 Ok = false;
1467 break;
1468 }
1469 LargeMulOps.push_back(T->getOperand());
1470 } else if (const SCEVConstant *C =
1471 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001472 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001473 } else {
1474 Ok = false;
1475 break;
1476 }
1477 }
1478 if (Ok)
1479 LargeOps.push_back(getMulExpr(LargeMulOps));
1480 } else {
1481 Ok = false;
1482 break;
1483 }
1484 }
1485 if (Ok) {
1486 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001487 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001488 // If it folds to something simple, use it. Otherwise, don't.
1489 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1490 return getTruncateExpr(Fold, DstType);
1491 }
1492 }
1493
1494 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001495 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1496 ++Idx;
1497
1498 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001499 if (Idx < Ops.size()) {
1500 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001501 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001502 // If we have an add, expand the add operands onto the end of the operands
1503 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001505 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001506 DeletedAdd = true;
1507 }
1508
1509 // If we deleted at least one add, we added operands to the end of the list,
1510 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001511 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001513 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001514 }
1515
1516 // Skip over the add expression until we get to a multiply.
1517 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1518 ++Idx;
1519
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001520 // Check to see if there are any folding opportunities present with
1521 // operands multiplied by constant values.
1522 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1523 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001524 DenseMap<const SCEV *, APInt> M;
1525 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001526 APInt AccumulatedConstant(BitWidth, 0);
1527 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001528 Ops.data(), Ops.size(),
1529 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001530 // Some interesting folding opportunity is present, so its worthwhile to
1531 // re-generate the operands list. Group the operands by constant scale,
1532 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001533 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001534 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001535 E = NewOps.end(); I != E; ++I)
1536 MulOpLists[M.find(*I)->second].push_back(*I);
1537 // Re-generate the operands list.
1538 Ops.clear();
1539 if (AccumulatedConstant != 0)
1540 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001541 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1542 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001543 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001544 Ops.push_back(getMulExpr(getConstant(I->first),
1545 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001546 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001547 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001548 if (Ops.size() == 1)
1549 return Ops[0];
1550 return getAddExpr(Ops);
1551 }
1552 }
1553
Chris Lattner53e677a2004-04-02 20:23:17 +00001554 // If we are adding something to a multiply expression, make sure the
1555 // something is not already an operand of the multiply. If so, merge it into
1556 // the multiply.
1557 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001558 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001559 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001560 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001561 if (isa<SCEVConstant>(MulOpSCEV))
1562 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001563 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001564 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001565 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001566 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001567 if (Mul->getNumOperands() != 2) {
1568 // If the multiply has more than two operands, we must get the
1569 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001570 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1571 Mul->op_begin()+MulOp);
1572 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001573 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001574 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001575 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001576 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001577 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001578 if (Ops.size() == 2) return OuterMul;
1579 if (AddOp < Idx) {
1580 Ops.erase(Ops.begin()+AddOp);
1581 Ops.erase(Ops.begin()+Idx-1);
1582 } else {
1583 Ops.erase(Ops.begin()+Idx);
1584 Ops.erase(Ops.begin()+AddOp-1);
1585 }
1586 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001587 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001588 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001589
Chris Lattner53e677a2004-04-02 20:23:17 +00001590 // Check this multiply against other multiplies being added together.
Dan Gohman727356f2010-08-12 15:00:23 +00001591 bool AnyFold = false;
Chris Lattner53e677a2004-04-02 20:23:17 +00001592 for (unsigned OtherMulIdx = Idx+1;
1593 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1594 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001595 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001596 // If MulOp occurs in OtherMul, we can fold the two multiplies
1597 // together.
1598 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1599 OMulOp != e; ++OMulOp)
1600 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1601 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001602 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001603 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001604 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001605 Mul->op_begin()+MulOp);
1606 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001607 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001608 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001609 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001610 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001611 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001612 OtherMul->op_begin()+OMulOp);
1613 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001614 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001615 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001616 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1617 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001618 if (Ops.size() == 2) return OuterMul;
Dan Gohman727356f2010-08-12 15:00:23 +00001619 Ops[Idx] = OuterMul;
1620 Ops.erase(Ops.begin()+OtherMulIdx);
1621 OtherMulIdx = Idx;
1622 AnyFold = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001623 }
1624 }
Dan Gohman727356f2010-08-12 15:00:23 +00001625 if (AnyFold)
1626 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001627 }
1628 }
1629
1630 // If there are any add recurrences in the operands list, see if any other
1631 // added values are loop invariant. If so, we can fold them into the
1632 // recurrence.
1633 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1634 ++Idx;
1635
1636 // Scan over all recurrences, trying to fold loop invariants into them.
1637 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1638 // Scan all of the other operands to this add and add them to the vector if
1639 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001640 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001641 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001642 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001643 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001644 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001645 LIOps.push_back(Ops[i]);
1646 Ops.erase(Ops.begin()+i);
1647 --i; --e;
1648 }
1649
1650 // If we found some loop invariants, fold them into the recurrence.
1651 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001652 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001653 LIOps.push_back(AddRec->getStart());
1654
Dan Gohman0bba49c2009-07-07 17:06:11 +00001655 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001656 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001657 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001658
Dan Gohmanb9f96512010-06-30 07:16:37 +00001659 // Build the new addrec. Propagate the NUW and NSW flags if both the
1660 // outer add and the inner addrec are guaranteed to have no overflow.
1661 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1662 HasNUW && AddRec->hasNoUnsignedWrap(),
1663 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001664
Chris Lattner53e677a2004-04-02 20:23:17 +00001665 // If all of the other operands were loop invariant, we are done.
1666 if (Ops.size() == 1) return NewRec;
1667
1668 // Otherwise, add the folded AddRec by the non-liv parts.
1669 for (unsigned i = 0;; ++i)
1670 if (Ops[i] == AddRec) {
1671 Ops[i] = NewRec;
1672 break;
1673 }
Dan Gohman246b2562007-10-22 18:31:58 +00001674 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 }
1676
1677 // Okay, if there weren't any loop invariants to be folded, check to see if
1678 // there are multiple AddRec's with the same loop induction variable being
1679 // added together. If so, we can fold them.
1680 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001681 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1682 ++OtherIdx)
1683 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1684 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1685 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1686 AddRec->op_end());
1687 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1688 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001689 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001690 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001691 if (OtherAddRec->getLoop() == AddRecLoop) {
1692 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1693 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001694 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001695 AddRecOps.append(OtherAddRec->op_begin()+i,
1696 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001697 break;
1698 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001699 AddRecOps[i] = getAddExpr(AddRecOps[i],
1700 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001701 }
1702 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001703 }
Dan Gohman32527152010-08-27 20:45:56 +00001704 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1705 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001706 }
1707
1708 // Otherwise couldn't fold anything into this recurrence. Move onto the
1709 // next one.
1710 }
1711
1712 // Okay, it looks like we really DO need an add expr. Check to see if we
1713 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001714 FoldingSetNodeID ID;
1715 ID.AddInteger(scAddExpr);
1716 ID.AddInteger(Ops.size());
1717 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1718 ID.AddPointer(Ops[i]);
1719 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001720 SCEVAddExpr *S =
1721 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1722 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001723 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1724 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001725 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1726 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001727 UniqueSCEVs.InsertNode(S, IP);
1728 }
Dan Gohman3645b012009-10-09 00:10:36 +00001729 if (HasNUW) S->setHasNoUnsignedWrap(true);
1730 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001731 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001732}
1733
Dan Gohman6c0866c2009-05-24 23:45:28 +00001734/// getMulExpr - Get a canonical multiply expression, or something simpler if
1735/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001736const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1737 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001738 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001739 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001740#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001741 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001742 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001743 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001744 "SCEVMulExpr operand types don't match!");
1745#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001746
Dan Gohmana10756e2010-01-21 02:09:26 +00001747 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1748 if (!HasNUW && HasNSW) {
1749 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001750 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1751 E = Ops.end(); I != E; ++I)
1752 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001753 All = false;
1754 break;
1755 }
1756 if (All) HasNUW = true;
1757 }
1758
Chris Lattner53e677a2004-04-02 20:23:17 +00001759 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001760 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001761
1762 // If there are any constants, fold them together.
1763 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001764 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001765
1766 // C1*(C2+V) -> C1*C2 + C1*V
1767 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001768 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001769 if (Add->getNumOperands() == 2 &&
1770 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001771 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1772 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001773
Chris Lattner53e677a2004-04-02 20:23:17 +00001774 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001775 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001776 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001777 ConstantInt *Fold = ConstantInt::get(getContext(),
1778 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001779 RHSC->getValue()->getValue());
1780 Ops[0] = getConstant(Fold);
1781 Ops.erase(Ops.begin()+1); // Erase the folded element
1782 if (Ops.size() == 1) return Ops[0];
1783 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001784 }
1785
1786 // If we are left with a constant one being multiplied, strip it off.
1787 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1788 Ops.erase(Ops.begin());
1789 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001790 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001791 // If we have a multiply of zero, it will always be zero.
1792 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001793 } else if (Ops[0]->isAllOnesValue()) {
1794 // If we have a mul by -1 of an add, try distributing the -1 among the
1795 // add operands.
1796 if (Ops.size() == 2)
1797 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1798 SmallVector<const SCEV *, 4> NewOps;
1799 bool AnyFolded = false;
1800 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1801 I != E; ++I) {
1802 const SCEV *Mul = getMulExpr(Ops[0], *I);
1803 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1804 NewOps.push_back(Mul);
1805 }
1806 if (AnyFolded)
1807 return getAddExpr(NewOps);
1808 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001809 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001810
1811 if (Ops.size() == 1)
1812 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001813 }
1814
1815 // Skip over the add expression until we get to a multiply.
1816 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1817 ++Idx;
1818
Chris Lattner53e677a2004-04-02 20:23:17 +00001819 // If there are mul operands inline them all into this expression.
1820 if (Idx < Ops.size()) {
1821 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001822 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001823 // If we have an mul, expand the mul operands onto the end of the operands
1824 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001825 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001826 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001827 DeletedMul = true;
1828 }
1829
1830 // If we deleted at least one mul, we added operands to the end of the list,
1831 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001832 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001833 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001834 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001835 }
1836
1837 // If there are any add recurrences in the operands list, see if any other
1838 // added values are loop invariant. If so, we can fold them into the
1839 // recurrence.
1840 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1841 ++Idx;
1842
1843 // Scan over all recurrences, trying to fold loop invariants into them.
1844 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1845 // Scan all of the other operands to this mul and add them to the vector if
1846 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001847 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001848 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001849 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1850 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1851 LIOps.push_back(Ops[i]);
1852 Ops.erase(Ops.begin()+i);
1853 --i; --e;
1854 }
1855
1856 // If we found some loop invariants, fold them into the recurrence.
1857 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001858 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001859 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001860 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001861 const SCEV *Scale = getMulExpr(LIOps);
1862 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1863 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001864
Dan Gohmanb9f96512010-06-30 07:16:37 +00001865 // Build the new addrec. Propagate the NUW and NSW flags if both the
1866 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohmana10756e2010-01-21 02:09:26 +00001867 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1868 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001869 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001870
1871 // If all of the other operands were loop invariant, we are done.
1872 if (Ops.size() == 1) return NewRec;
1873
1874 // Otherwise, multiply the folded AddRec by the non-liv parts.
1875 for (unsigned i = 0;; ++i)
1876 if (Ops[i] == AddRec) {
1877 Ops[i] = NewRec;
1878 break;
1879 }
Dan Gohman246b2562007-10-22 18:31:58 +00001880 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001881 }
1882
1883 // Okay, if there weren't any loop invariants to be folded, check to see if
1884 // there are multiple AddRec's with the same loop induction variable being
1885 // multiplied together. If so, we can fold them.
1886 for (unsigned OtherIdx = Idx+1;
1887 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1888 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001889 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001890 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1891 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001892 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0c5e95d2010-08-16 16:34:09 +00001893 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001894 const SCEV *B = F->getStepRecurrence(*this);
1895 const SCEV *D = G->getStepRecurrence(*this);
1896 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman0c5e95d2010-08-16 16:34:09 +00001897 getMulExpr(G, B),
1898 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001899 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman0c5e95d2010-08-16 16:34:09 +00001900 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001901 if (Ops.size() == 2) return NewAddRec;
1902
1903 Ops.erase(Ops.begin()+Idx);
1904 Ops.erase(Ops.begin()+OtherIdx-1);
1905 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001906 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001907 }
1908 }
1909
1910 // Otherwise couldn't fold anything into this recurrence. Move onto the
1911 // next one.
1912 }
1913
1914 // Okay, it looks like we really DO need an mul expr. Check to see if we
1915 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001916 FoldingSetNodeID ID;
1917 ID.AddInteger(scMulExpr);
1918 ID.AddInteger(Ops.size());
1919 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1920 ID.AddPointer(Ops[i]);
1921 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001922 SCEVMulExpr *S =
1923 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1924 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001925 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1926 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001927 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1928 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001929 UniqueSCEVs.InsertNode(S, IP);
1930 }
Dan Gohman3645b012009-10-09 00:10:36 +00001931 if (HasNUW) S->setHasNoUnsignedWrap(true);
1932 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001933 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001934}
1935
Andreas Bolka8a11c982009-08-07 22:55:26 +00001936/// getUDivExpr - Get a canonical unsigned division expression, or something
1937/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001938const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1939 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001940 assert(getEffectiveSCEVType(LHS->getType()) ==
1941 getEffectiveSCEVType(RHS->getType()) &&
1942 "SCEVUDivExpr operand types don't match!");
1943
Dan Gohman622ed672009-05-04 22:02:23 +00001944 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001945 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001946 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001947 // If the denominator is zero, the result of the udiv is undefined. Don't
1948 // try to analyze it, because the resolution chosen here may differ from
1949 // the resolution chosen in other parts of the compiler.
1950 if (!RHSC->getValue()->isZero()) {
1951 // Determine if the division can be folded into the operands of
1952 // its operands.
1953 // TODO: Generalize this to non-constants by using known-bits information.
1954 const Type *Ty = LHS->getType();
1955 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001956 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001957 // For non-power-of-two values, effectively round the value up to the
1958 // nearest power of two.
1959 if (!RHSC->getValue()->getValue().isPowerOf2())
1960 ++MaxShiftAmt;
1961 const IntegerType *ExtTy =
1962 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1963 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1964 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1965 if (const SCEVConstant *Step =
1966 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1967 if (!Step->getValue()->getValue()
1968 .urem(RHSC->getValue()->getValue()) &&
1969 getZeroExtendExpr(AR, ExtTy) ==
1970 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1971 getZeroExtendExpr(Step, ExtTy),
1972 AR->getLoop())) {
1973 SmallVector<const SCEV *, 4> Operands;
1974 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1975 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1976 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001977 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001978 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1979 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1980 SmallVector<const SCEV *, 4> Operands;
1981 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1982 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1983 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1984 // Find an operand that's safely divisible.
1985 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1986 const SCEV *Op = M->getOperand(i);
1987 const SCEV *Div = getUDivExpr(Op, RHSC);
1988 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1989 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1990 M->op_end());
1991 Operands[i] = Div;
1992 return getMulExpr(Operands);
1993 }
1994 }
Dan Gohman185cf032009-05-08 20:18:49 +00001995 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001996 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1997 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1998 SmallVector<const SCEV *, 4> Operands;
1999 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2000 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2001 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2002 Operands.clear();
2003 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2004 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2005 if (isa<SCEVUDivExpr>(Op) ||
2006 getMulExpr(Op, RHS) != A->getOperand(i))
2007 break;
2008 Operands.push_back(Op);
2009 }
2010 if (Operands.size() == A->getNumOperands())
2011 return getAddExpr(Operands);
2012 }
2013 }
Dan Gohman185cf032009-05-08 20:18:49 +00002014
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002015 // Fold if both operands are constant.
2016 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2017 Constant *LHSCV = LHSC->getValue();
2018 Constant *RHSCV = RHSC->getValue();
2019 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2020 RHSCV)));
2021 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002022 }
2023 }
2024
Dan Gohman1c343752009-06-27 21:21:31 +00002025 FoldingSetNodeID ID;
2026 ID.AddInteger(scUDivExpr);
2027 ID.AddPointer(LHS);
2028 ID.AddPointer(RHS);
2029 void *IP = 0;
2030 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002031 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2032 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002033 UniqueSCEVs.InsertNode(S, IP);
2034 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002035}
2036
2037
Dan Gohman6c0866c2009-05-24 23:45:28 +00002038/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2039/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002040const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00002041 const SCEV *Step, const Loop *L,
2042 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002043 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002044 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002045 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002046 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002047 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002048 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002049 }
2050
2051 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00002052 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002053}
2054
Dan Gohman6c0866c2009-05-24 23:45:28 +00002055/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2056/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002057const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002058ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002059 const Loop *L,
2060 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002061 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002062#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002063 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002064 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002065 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002066 "SCEVAddRecExpr operand types don't match!");
2067#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002068
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002069 if (Operands.back()->isZero()) {
2070 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002071 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002072 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002073
Dan Gohmanbc028532010-02-19 18:49:22 +00002074 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2075 // use that information to infer NUW and NSW flags. However, computing a
2076 // BE count requires calling getAddRecExpr, so we may not yet have a
2077 // meaningful BE count at this point (and if we don't, we'd be stuck
2078 // with a SCEVCouldNotCompute as the cached BE count).
2079
Dan Gohmana10756e2010-01-21 02:09:26 +00002080 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2081 if (!HasNUW && HasNSW) {
2082 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002083 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2084 E = Operands.end(); I != E; ++I)
2085 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002086 All = false;
2087 break;
2088 }
2089 if (All) HasNUW = true;
2090 }
2091
Dan Gohmand9cc7492008-08-08 18:33:12 +00002092 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002093 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002094 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002095 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002096 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002097 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002098 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002099 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002100 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002101 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002102 // AddRecs require their operands be loop-invariant with respect to their
2103 // loops. Don't perform this transformation if it would break this
2104 // requirement.
2105 bool AllInvariant = true;
2106 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2107 if (!Operands[i]->isLoopInvariant(L)) {
2108 AllInvariant = false;
2109 break;
2110 }
2111 if (AllInvariant) {
2112 NestedOperands[0] = getAddRecExpr(Operands, L);
2113 AllInvariant = true;
2114 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2115 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2116 AllInvariant = false;
2117 break;
2118 }
2119 if (AllInvariant)
2120 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002121 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002122 }
2123 // Reset Operands to its original state.
2124 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002125 }
2126 }
2127
Dan Gohman67847532010-01-19 22:27:22 +00002128 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2129 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002130 FoldingSetNodeID ID;
2131 ID.AddInteger(scAddRecExpr);
2132 ID.AddInteger(Operands.size());
2133 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2134 ID.AddPointer(Operands[i]);
2135 ID.AddPointer(L);
2136 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002137 SCEVAddRecExpr *S =
2138 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2139 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002140 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2141 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002142 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2143 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002144 UniqueSCEVs.InsertNode(S, IP);
2145 }
Dan Gohman3645b012009-10-09 00:10:36 +00002146 if (HasNUW) S->setHasNoUnsignedWrap(true);
2147 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002148 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002149}
2150
Dan Gohman9311ef62009-06-24 14:49:00 +00002151const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2152 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002153 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002154 Ops.push_back(LHS);
2155 Ops.push_back(RHS);
2156 return getSMaxExpr(Ops);
2157}
2158
Dan Gohman0bba49c2009-07-07 17:06:11 +00002159const SCEV *
2160ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002161 assert(!Ops.empty() && "Cannot get empty smax!");
2162 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002163#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002164 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002165 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002166 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002167 "SCEVSMaxExpr operand types don't match!");
2168#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002169
2170 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002171 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002172
2173 // If there are any constants, fold them together.
2174 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002175 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002176 ++Idx;
2177 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002178 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002179 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002180 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002181 APIntOps::smax(LHSC->getValue()->getValue(),
2182 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002183 Ops[0] = getConstant(Fold);
2184 Ops.erase(Ops.begin()+1); // Erase the folded element
2185 if (Ops.size() == 1) return Ops[0];
2186 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002187 }
2188
Dan Gohmane5aceed2009-06-24 14:46:22 +00002189 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002190 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2191 Ops.erase(Ops.begin());
2192 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002193 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2194 // If we have an smax with a constant maximum-int, it will always be
2195 // maximum-int.
2196 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002197 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002198
Dan Gohman3ab13122010-04-13 16:49:23 +00002199 if (Ops.size() == 1) return Ops[0];
2200 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002201
2202 // Find the first SMax
2203 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2204 ++Idx;
2205
2206 // Check to see if one of the operands is an SMax. If so, expand its operands
2207 // onto our operand list, and recurse to simplify.
2208 if (Idx < Ops.size()) {
2209 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002210 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002211 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002212 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002213 DeletedSMax = true;
2214 }
2215
2216 if (DeletedSMax)
2217 return getSMaxExpr(Ops);
2218 }
2219
2220 // Okay, check to see if the same value occurs in the operand list twice. If
2221 // so, delete one. Since we sorted the list, these values are required to
2222 // be adjacent.
2223 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002224 // X smax Y smax Y --> X smax Y
2225 // X smax Y --> X, if X is always greater than Y
2226 if (Ops[i] == Ops[i+1] ||
2227 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2228 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2229 --i; --e;
2230 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002231 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2232 --i; --e;
2233 }
2234
2235 if (Ops.size() == 1) return Ops[0];
2236
2237 assert(!Ops.empty() && "Reduced smax down to nothing!");
2238
Nick Lewycky3e630762008-02-20 06:48:22 +00002239 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002240 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002241 FoldingSetNodeID ID;
2242 ID.AddInteger(scSMaxExpr);
2243 ID.AddInteger(Ops.size());
2244 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2245 ID.AddPointer(Ops[i]);
2246 void *IP = 0;
2247 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002248 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2249 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002250 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2251 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002252 UniqueSCEVs.InsertNode(S, IP);
2253 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002254}
2255
Dan Gohman9311ef62009-06-24 14:49:00 +00002256const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2257 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002258 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002259 Ops.push_back(LHS);
2260 Ops.push_back(RHS);
2261 return getUMaxExpr(Ops);
2262}
2263
Dan Gohman0bba49c2009-07-07 17:06:11 +00002264const SCEV *
2265ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002266 assert(!Ops.empty() && "Cannot get empty umax!");
2267 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002268#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002269 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002270 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002271 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002272 "SCEVUMaxExpr operand types don't match!");
2273#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002274
2275 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002276 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002277
2278 // If there are any constants, fold them together.
2279 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002280 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002281 ++Idx;
2282 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002283 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002284 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002285 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002286 APIntOps::umax(LHSC->getValue()->getValue(),
2287 RHSC->getValue()->getValue()));
2288 Ops[0] = getConstant(Fold);
2289 Ops.erase(Ops.begin()+1); // Erase the folded element
2290 if (Ops.size() == 1) return Ops[0];
2291 LHSC = cast<SCEVConstant>(Ops[0]);
2292 }
2293
Dan Gohmane5aceed2009-06-24 14:46:22 +00002294 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002295 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2296 Ops.erase(Ops.begin());
2297 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002298 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2299 // If we have an umax with a constant maximum-int, it will always be
2300 // maximum-int.
2301 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002302 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002303
Dan Gohman3ab13122010-04-13 16:49:23 +00002304 if (Ops.size() == 1) return Ops[0];
2305 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002306
2307 // Find the first UMax
2308 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2309 ++Idx;
2310
2311 // Check to see if one of the operands is a UMax. If so, expand its operands
2312 // onto our operand list, and recurse to simplify.
2313 if (Idx < Ops.size()) {
2314 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002315 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002316 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002317 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002318 DeletedUMax = true;
2319 }
2320
2321 if (DeletedUMax)
2322 return getUMaxExpr(Ops);
2323 }
2324
2325 // Okay, check to see if the same value occurs in the operand list twice. If
2326 // so, delete one. Since we sorted the list, these values are required to
2327 // be adjacent.
2328 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002329 // X umax Y umax Y --> X umax Y
2330 // X umax Y --> X, if X is always greater than Y
2331 if (Ops[i] == Ops[i+1] ||
2332 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2333 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2334 --i; --e;
2335 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002336 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2337 --i; --e;
2338 }
2339
2340 if (Ops.size() == 1) return Ops[0];
2341
2342 assert(!Ops.empty() && "Reduced umax down to nothing!");
2343
2344 // Okay, it looks like we really DO need a umax expr. Check to see if we
2345 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002346 FoldingSetNodeID ID;
2347 ID.AddInteger(scUMaxExpr);
2348 ID.AddInteger(Ops.size());
2349 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2350 ID.AddPointer(Ops[i]);
2351 void *IP = 0;
2352 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002353 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2354 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002355 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2356 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002357 UniqueSCEVs.InsertNode(S, IP);
2358 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002359}
2360
Dan Gohman9311ef62009-06-24 14:49:00 +00002361const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2362 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002363 // ~smax(~x, ~y) == smin(x, y).
2364 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2365}
2366
Dan Gohman9311ef62009-06-24 14:49:00 +00002367const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2368 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002369 // ~umax(~x, ~y) == umin(x, y)
2370 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2371}
2372
Dan Gohman4f8eea82010-02-01 18:27:38 +00002373const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002374 // If we have TargetData, we can bypass creating a target-independent
2375 // constant expression and then folding it back into a ConstantInt.
2376 // This is just a compile-time optimization.
2377 if (TD)
2378 return getConstant(TD->getIntPtrType(getContext()),
2379 TD->getTypeAllocSize(AllocTy));
2380
Dan Gohman4f8eea82010-02-01 18:27:38 +00002381 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002383 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2384 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002385 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2386 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2387}
2388
2389const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2390 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2391 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002392 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2393 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002394 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2395 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2396}
2397
2398const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2399 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002400 // If we have TargetData, we can bypass creating a target-independent
2401 // constant expression and then folding it back into a ConstantInt.
2402 // This is just a compile-time optimization.
2403 if (TD)
2404 return getConstant(TD->getIntPtrType(getContext()),
2405 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2406
Dan Gohman0f5efe52010-01-28 02:15:55 +00002407 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2408 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002409 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2410 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002411 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002412 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002413}
2414
Dan Gohman4f8eea82010-02-01 18:27:38 +00002415const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2416 Constant *FieldNo) {
2417 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002418 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002419 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2420 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002421 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002422 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002423}
2424
Dan Gohman0bba49c2009-07-07 17:06:11 +00002425const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002426 // Don't attempt to do anything other than create a SCEVUnknown object
2427 // here. createSCEV only calls getUnknown after checking for all other
2428 // interesting possibilities, and any other code that calls getUnknown
2429 // is doing so in order to hide a value from SCEV canonicalization.
2430
Dan Gohman1c343752009-06-27 21:21:31 +00002431 FoldingSetNodeID ID;
2432 ID.AddInteger(scUnknown);
2433 ID.AddPointer(V);
2434 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002435 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2436 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2437 "Stale SCEVUnknown in uniquing map!");
2438 return S;
2439 }
2440 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2441 FirstUnknown);
2442 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002443 UniqueSCEVs.InsertNode(S, IP);
2444 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002445}
2446
Chris Lattner53e677a2004-04-02 20:23:17 +00002447//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002448// Basic SCEV Analysis and PHI Idiom Recognition Code
2449//
2450
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002451/// isSCEVable - Test if values of the given type are analyzable within
2452/// the SCEV framework. This primarily includes integer types, and it
2453/// can optionally include pointer types if the ScalarEvolution class
2454/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002455bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002456 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002457 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002458}
2459
2460/// getTypeSizeInBits - Return the size in bits of the specified type,
2461/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002462uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002463 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2464
2465 // If we have a TargetData, use it!
2466 if (TD)
2467 return TD->getTypeSizeInBits(Ty);
2468
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002469 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002470 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002471 return Ty->getPrimitiveSizeInBits();
2472
2473 // The only other support type is pointer. Without TargetData, conservatively
2474 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002475 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002476 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002477}
2478
2479/// getEffectiveSCEVType - Return a type with the same bitwidth as
2480/// the given type and which represents how SCEV will treat the given
2481/// type, for which isSCEVable must return true. For pointer types,
2482/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002483const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002484 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2485
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002486 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002487 return Ty;
2488
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002489 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002490 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002491 if (TD) return TD->getIntPtrType(getContext());
2492
2493 // Without TargetData, conservatively assume pointers are 64-bit.
2494 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002495}
Chris Lattner53e677a2004-04-02 20:23:17 +00002496
Dan Gohman0bba49c2009-07-07 17:06:11 +00002497const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002498 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002499}
2500
Chris Lattner53e677a2004-04-02 20:23:17 +00002501/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2502/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002503const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002504 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002505
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002506 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2507 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002508 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002509
2510 // The process of creating a SCEV for V may have caused other SCEVs
2511 // to have been created, so it's necessary to insert the new entry
2512 // from scratch, rather than trying to remember the insert position
2513 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002514 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002515 return S;
2516}
2517
Dan Gohman2d1be872009-04-16 03:18:22 +00002518/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2519///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002520const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002521 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002522 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002523 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002524
2525 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002526 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002527 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002528 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002529}
2530
2531/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002532const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002533 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002534 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002535 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002536
2537 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002538 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002539 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002540 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002541 return getMinusSCEV(AllOnes, V);
2542}
2543
2544/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2545///
Dan Gohman9311ef62009-06-24 14:49:00 +00002546const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2547 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002548 // Fast path: X - X --> 0.
2549 if (LHS == RHS)
2550 return getConstant(LHS->getType(), 0);
2551
Dan Gohman2d1be872009-04-16 03:18:22 +00002552 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002553 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002554}
2555
2556/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2557/// input value to the specified type. If the type must be extended, it is zero
2558/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002559const SCEV *
2560ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002561 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002562 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002563 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2564 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002565 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002566 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002567 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002568 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002569 return getTruncateExpr(V, Ty);
2570 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002571}
2572
2573/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2574/// input value to the specified type. If the type must be extended, it is sign
2575/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002576const SCEV *
2577ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002578 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002579 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002580 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2581 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002582 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002583 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002584 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002585 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002586 return getTruncateExpr(V, Ty);
2587 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002588}
2589
Dan Gohman467c4302009-05-13 03:46:30 +00002590/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2591/// input value to the specified type. If the type must be extended, it is zero
2592/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002593const SCEV *
2594ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002595 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002596 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2597 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002598 "Cannot noop or zero extend with non-integer arguments!");
2599 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2600 "getNoopOrZeroExtend cannot truncate!");
2601 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2602 return V; // No conversion
2603 return getZeroExtendExpr(V, Ty);
2604}
2605
2606/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2607/// input value to the specified type. If the type must be extended, it is sign
2608/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002609const SCEV *
2610ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002611 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002612 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2613 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002614 "Cannot noop or sign extend with non-integer arguments!");
2615 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2616 "getNoopOrSignExtend cannot truncate!");
2617 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2618 return V; // No conversion
2619 return getSignExtendExpr(V, Ty);
2620}
2621
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002622/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2623/// the input value to the specified type. If the type must be extended,
2624/// it is extended with unspecified bits. The conversion must not be
2625/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002626const SCEV *
2627ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002628 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002629 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2630 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002631 "Cannot noop or any extend with non-integer arguments!");
2632 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2633 "getNoopOrAnyExtend cannot truncate!");
2634 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2635 return V; // No conversion
2636 return getAnyExtendExpr(V, Ty);
2637}
2638
Dan Gohman467c4302009-05-13 03:46:30 +00002639/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2640/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002641const SCEV *
2642ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002643 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002644 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2645 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002646 "Cannot truncate or noop with non-integer arguments!");
2647 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2648 "getTruncateOrNoop cannot extend!");
2649 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2650 return V; // No conversion
2651 return getTruncateExpr(V, Ty);
2652}
2653
Dan Gohmana334aa72009-06-22 00:31:57 +00002654/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2655/// the types using zero-extension, and then perform a umax operation
2656/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002657const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2658 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002659 const SCEV *PromotedLHS = LHS;
2660 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002661
2662 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2663 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2664 else
2665 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2666
2667 return getUMaxExpr(PromotedLHS, PromotedRHS);
2668}
2669
Dan Gohmanc9759e82009-06-22 15:03:27 +00002670/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2671/// the types using zero-extension, and then perform a umin operation
2672/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002673const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2674 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002675 const SCEV *PromotedLHS = LHS;
2676 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002677
2678 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2679 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2680 else
2681 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2682
2683 return getUMinExpr(PromotedLHS, PromotedRHS);
2684}
2685
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002686/// PushDefUseChildren - Push users of the given Instruction
2687/// onto the given Worklist.
2688static void
2689PushDefUseChildren(Instruction *I,
2690 SmallVectorImpl<Instruction *> &Worklist) {
2691 // Push the def-use children onto the Worklist stack.
2692 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2693 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002694 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002695}
2696
2697/// ForgetSymbolicValue - This looks up computed SCEV values for all
2698/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002699/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002700/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002701void
Dan Gohman85669632010-02-25 06:57:05 +00002702ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002703 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002704 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002705
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002706 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002707 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002708 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002709 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002710 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002711
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002712 ValueExprMapType::iterator It =
2713 ValueExprMap.find(static_cast<Value *>(I));
2714 if (It != ValueExprMap.end()) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002715 // Short-circuit the def-use traversal if the symbolic name
2716 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002717 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002718 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002719
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002720 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002721 // structure, it's a PHI that's in the progress of being computed
2722 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2723 // additional loop trip count information isn't going to change anything.
2724 // In the second case, createNodeForPHI will perform the necessary
2725 // updates on its own when it gets to that point. In the third, we do
2726 // want to forget the SCEVUnknown.
2727 if (!isa<PHINode>(I) ||
2728 !isa<SCEVUnknown>(It->second) ||
2729 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002730 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002731 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002732 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002733 }
2734
2735 PushDefUseChildren(I, Worklist);
2736 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002737}
Chris Lattner53e677a2004-04-02 20:23:17 +00002738
2739/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2740/// a loop header, making it a potential recurrence, or it doesn't.
2741///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002742const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002743 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2744 if (L->getHeader() == PN->getParent()) {
2745 // The loop may have multiple entrances or multiple exits; we can analyze
2746 // this phi as an addrec if it has a unique entry value and a unique
2747 // backedge value.
2748 Value *BEValueV = 0, *StartValueV = 0;
2749 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2750 Value *V = PN->getIncomingValue(i);
2751 if (L->contains(PN->getIncomingBlock(i))) {
2752 if (!BEValueV) {
2753 BEValueV = V;
2754 } else if (BEValueV != V) {
2755 BEValueV = 0;
2756 break;
2757 }
2758 } else if (!StartValueV) {
2759 StartValueV = V;
2760 } else if (StartValueV != V) {
2761 StartValueV = 0;
2762 break;
2763 }
2764 }
2765 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002766 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002767 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002768 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002769 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002770 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002771
2772 // Using this symbolic name for the PHI, analyze the value coming around
2773 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002774 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002775
2776 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2777 // has a special value for the first iteration of the loop.
2778
2779 // If the value coming around the backedge is an add with the symbolic
2780 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002781 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002782 // If there is a single occurrence of the symbolic value, replace it
2783 // with a recurrence.
2784 unsigned FoundIndex = Add->getNumOperands();
2785 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2786 if (Add->getOperand(i) == SymbolicName)
2787 if (FoundIndex == e) {
2788 FoundIndex = i;
2789 break;
2790 }
2791
2792 if (FoundIndex != Add->getNumOperands()) {
2793 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002794 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002795 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2796 if (i != FoundIndex)
2797 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002798 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002799
2800 // This is not a valid addrec if the step amount is varying each
2801 // loop iteration, but is not itself an addrec in this loop.
2802 if (Accum->isLoopInvariant(L) ||
2803 (isa<SCEVAddRecExpr>(Accum) &&
2804 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002805 bool HasNUW = false;
2806 bool HasNSW = false;
2807
2808 // If the increment doesn't overflow, then neither the addrec nor
2809 // the post-increment will overflow.
2810 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2811 if (OBO->hasNoUnsignedWrap())
2812 HasNUW = true;
2813 if (OBO->hasNoSignedWrap())
2814 HasNSW = true;
2815 }
2816
Dan Gohman27dead42010-04-12 07:49:36 +00002817 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002818 const SCEV *PHISCEV =
2819 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002820
Dan Gohmana10756e2010-01-21 02:09:26 +00002821 // Since the no-wrap flags are on the increment, they apply to the
2822 // post-incremented value as well.
2823 if (Accum->isLoopInvariant(L))
2824 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2825 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002826
2827 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002828 // to be symbolic. We now need to go back and purge all of the
2829 // entries for the scalars that use the symbolic expression.
2830 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002831 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002832 return PHISCEV;
2833 }
2834 }
Dan Gohman622ed672009-05-04 22:02:23 +00002835 } else if (const SCEVAddRecExpr *AddRec =
2836 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002837 // Otherwise, this could be a loop like this:
2838 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2839 // In this case, j = {1,+,1} and BEValue is j.
2840 // Because the other in-value of i (0) fits the evolution of BEValue
2841 // i really is an addrec evolution.
2842 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002843 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002844
2845 // If StartVal = j.start - j.stride, we can use StartVal as the
2846 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002847 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002848 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002849 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002850 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002851
2852 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002853 // to be symbolic. We now need to go back and purge all of the
2854 // entries for the scalars that use the symbolic expression.
2855 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002856 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002857 return PHISCEV;
2858 }
2859 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002860 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002861 }
Dan Gohman27dead42010-04-12 07:49:36 +00002862 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002863
Dan Gohman85669632010-02-25 06:57:05 +00002864 // If the PHI has a single incoming value, follow that value, unless the
2865 // PHI's incoming blocks are in a different loop, in which case doing so
2866 // risks breaking LCSSA form. Instcombine would normally zap these, but
2867 // it doesn't have DominatorTree information, so it may miss cases.
2868 if (Value *V = PN->hasConstantValue(DT)) {
2869 bool AllSameLoop = true;
2870 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2871 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2872 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2873 AllSameLoop = false;
2874 break;
2875 }
2876 if (AllSameLoop)
2877 return getSCEV(V);
2878 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002879
Chris Lattner53e677a2004-04-02 20:23:17 +00002880 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002881 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002882}
2883
Dan Gohman26466c02009-05-08 20:26:55 +00002884/// createNodeForGEP - Expand GEP instructions into add and multiply
2885/// operations. This allows them to be analyzed by regular SCEV code.
2886///
Dan Gohmand281ed22009-12-18 02:09:29 +00002887const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002888
Dan Gohmanb9f96512010-06-30 07:16:37 +00002889 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2890 // Add expression, because the Instruction may be guarded by control flow
2891 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002892 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002893
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002894 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002895 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002896 // Don't attempt to analyze GEPs over unsized objects.
2897 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2898 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002899 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002900 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002901 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002902 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002903 I != E; ++I) {
2904 Value *Index = *I;
2905 // Compute the (potentially symbolic) offset in bytes for this index.
2906 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2907 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002908 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002909 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2910
Dan Gohmanb9f96512010-06-30 07:16:37 +00002911 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002912 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002913 } else {
2914 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002915 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2916 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002917 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002918 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2919
Dan Gohmanb9f96512010-06-30 07:16:37 +00002920 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002921 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002922
2923 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002924 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002925 }
2926 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002927
2928 // Get the SCEV for the GEP base.
2929 const SCEV *BaseS = getSCEV(Base);
2930
Dan Gohmanb9f96512010-06-30 07:16:37 +00002931 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002932 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002933}
2934
Nick Lewycky83bb0052007-11-22 07:59:40 +00002935/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2936/// guaranteed to end in (at every loop iteration). It is, at the same time,
2937/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2938/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002939uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002940ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002941 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002942 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002943
Dan Gohman622ed672009-05-04 22:02:23 +00002944 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002945 return std::min(GetMinTrailingZeros(T->getOperand()),
2946 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002947
Dan Gohman622ed672009-05-04 22:02:23 +00002948 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002949 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2950 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2951 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002952 }
2953
Dan Gohman622ed672009-05-04 22:02:23 +00002954 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002955 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2956 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2957 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002958 }
2959
Dan Gohman622ed672009-05-04 22:02:23 +00002960 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002961 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002962 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002963 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002964 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002965 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002966 }
2967
Dan Gohman622ed672009-05-04 22:02:23 +00002968 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002969 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002970 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2971 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002972 for (unsigned i = 1, e = M->getNumOperands();
2973 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002974 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002975 BitWidth);
2976 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002977 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002978
Dan Gohman622ed672009-05-04 22:02:23 +00002979 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002980 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002981 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002982 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002983 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002984 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002985 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002986
Dan Gohman622ed672009-05-04 22:02:23 +00002987 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002988 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002989 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002990 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002991 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002992 return MinOpRes;
2993 }
2994
Dan Gohman622ed672009-05-04 22:02:23 +00002995 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002996 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002997 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002998 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002999 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003000 return MinOpRes;
3001 }
3002
Dan Gohman2c364ad2009-06-19 23:29:04 +00003003 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3004 // For a SCEVUnknown, ask ValueTracking.
3005 unsigned BitWidth = getTypeSizeInBits(U->getType());
3006 APInt Mask = APInt::getAllOnesValue(BitWidth);
3007 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3008 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3009 return Zeros.countTrailingOnes();
3010 }
3011
3012 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003013 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003014}
Chris Lattner53e677a2004-04-02 20:23:17 +00003015
Dan Gohman85b05a22009-07-13 21:35:55 +00003016/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3017///
3018ConstantRange
3019ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003020
3021 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00003022 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003023
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003024 unsigned BitWidth = getTypeSizeInBits(S->getType());
3025 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3026
3027 // If the value has known zeros, the maximum unsigned value will have those
3028 // known zeros as well.
3029 uint32_t TZ = GetMinTrailingZeros(S);
3030 if (TZ != 0)
3031 ConservativeResult =
3032 ConstantRange(APInt::getMinValue(BitWidth),
3033 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3034
Dan Gohman85b05a22009-07-13 21:35:55 +00003035 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3036 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3037 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3038 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003039 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003040 }
3041
3042 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3043 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3044 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3045 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003046 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003047 }
3048
3049 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3050 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3051 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3052 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003053 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003054 }
3055
3056 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3057 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3058 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3059 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003060 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003061 }
3062
3063 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3064 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3065 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003066 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003067 }
3068
3069 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3070 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003071 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003072 }
3073
3074 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3075 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003076 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003077 }
3078
3079 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3080 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003081 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003082 }
3083
Dan Gohman85b05a22009-07-13 21:35:55 +00003084 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003085 // If there's no unsigned wrap, the value will never be less than its
3086 // initial value.
3087 if (AddRec->hasNoUnsignedWrap())
3088 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003089 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003090 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003091 ConservativeResult.intersectWith(
3092 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003093
3094 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003095 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003096 const Type *Ty = AddRec->getType();
3097 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003098 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3099 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003100 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3101
3102 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003103 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003104
3105 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003106 ConstantRange StepRange = getSignedRange(Step);
3107 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3108 ConstantRange EndRange =
3109 StartRange.add(MaxBECountRange.multiply(StepRange));
3110
3111 // Check for overflow. This must be done with ConstantRange arithmetic
3112 // because we could be called from within the ScalarEvolution overflow
3113 // checking code.
3114 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3115 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3116 ConstantRange ExtMaxBECountRange =
3117 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3118 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3119 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3120 ExtEndRange)
3121 return ConservativeResult;
3122
Dan Gohman85b05a22009-07-13 21:35:55 +00003123 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3124 EndRange.getUnsignedMin());
3125 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3126 EndRange.getUnsignedMax());
3127 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003128 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003129 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003130 }
3131 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003132
3133 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003134 }
3135
3136 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3137 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003138 APInt Mask = APInt::getAllOnesValue(BitWidth);
3139 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3140 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003141 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003142 return ConservativeResult;
3143 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003144 }
3145
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003146 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003147}
3148
Dan Gohman85b05a22009-07-13 21:35:55 +00003149/// getSignedRange - Determine the signed range for a particular SCEV.
3150///
3151ConstantRange
3152ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003153
Dan Gohman85b05a22009-07-13 21:35:55 +00003154 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3155 return ConstantRange(C->getValue()->getValue());
3156
Dan Gohman52fddd32010-01-26 04:40:18 +00003157 unsigned BitWidth = getTypeSizeInBits(S->getType());
3158 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3159
3160 // If the value has known zeros, the maximum signed value will have those
3161 // known zeros as well.
3162 uint32_t TZ = GetMinTrailingZeros(S);
3163 if (TZ != 0)
3164 ConservativeResult =
3165 ConstantRange(APInt::getSignedMinValue(BitWidth),
3166 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3167
Dan Gohman85b05a22009-07-13 21:35:55 +00003168 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3169 ConstantRange X = getSignedRange(Add->getOperand(0));
3170 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3171 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003172 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003173 }
3174
Dan Gohman85b05a22009-07-13 21:35:55 +00003175 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3176 ConstantRange X = getSignedRange(Mul->getOperand(0));
3177 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3178 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003179 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003180 }
3181
Dan Gohman85b05a22009-07-13 21:35:55 +00003182 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3183 ConstantRange X = getSignedRange(SMax->getOperand(0));
3184 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3185 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003186 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003187 }
Dan Gohman62849c02009-06-24 01:05:09 +00003188
Dan Gohman85b05a22009-07-13 21:35:55 +00003189 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3190 ConstantRange X = getSignedRange(UMax->getOperand(0));
3191 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3192 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003193 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003194 }
Dan Gohman62849c02009-06-24 01:05:09 +00003195
Dan Gohman85b05a22009-07-13 21:35:55 +00003196 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3197 ConstantRange X = getSignedRange(UDiv->getLHS());
3198 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003199 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003200 }
Dan Gohman62849c02009-06-24 01:05:09 +00003201
Dan Gohman85b05a22009-07-13 21:35:55 +00003202 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3203 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003204 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003205 }
3206
3207 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3208 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003209 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003210 }
3211
3212 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3213 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003214 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003215 }
3216
Dan Gohman85b05a22009-07-13 21:35:55 +00003217 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003218 // If there's no signed wrap, and all the operands have the same sign or
3219 // zero, the value won't ever change sign.
3220 if (AddRec->hasNoSignedWrap()) {
3221 bool AllNonNeg = true;
3222 bool AllNonPos = true;
3223 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3224 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3225 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3226 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003227 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003228 ConservativeResult = ConservativeResult.intersectWith(
3229 ConstantRange(APInt(BitWidth, 0),
3230 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003231 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003232 ConservativeResult = ConservativeResult.intersectWith(
3233 ConstantRange(APInt::getSignedMinValue(BitWidth),
3234 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003235 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003236
3237 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003238 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003239 const Type *Ty = AddRec->getType();
3240 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003241 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3242 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003243 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3244
3245 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003246 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003247
3248 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003249 ConstantRange StepRange = getSignedRange(Step);
3250 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3251 ConstantRange EndRange =
3252 StartRange.add(MaxBECountRange.multiply(StepRange));
3253
3254 // Check for overflow. This must be done with ConstantRange arithmetic
3255 // because we could be called from within the ScalarEvolution overflow
3256 // checking code.
3257 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3258 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3259 ConstantRange ExtMaxBECountRange =
3260 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3261 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3262 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3263 ExtEndRange)
3264 return ConservativeResult;
3265
Dan Gohman85b05a22009-07-13 21:35:55 +00003266 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3267 EndRange.getSignedMin());
3268 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3269 EndRange.getSignedMax());
3270 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003271 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003272 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003273 }
Dan Gohman62849c02009-06-24 01:05:09 +00003274 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003275
3276 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003277 }
3278
Dan Gohman2c364ad2009-06-19 23:29:04 +00003279 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3280 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003281 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003282 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003283 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3284 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003285 return ConservativeResult;
3286 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003287 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003288 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003289 }
3290
Dan Gohman52fddd32010-01-26 04:40:18 +00003291 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003292}
3293
Chris Lattner53e677a2004-04-02 20:23:17 +00003294/// createSCEV - We know that there is no SCEV for the specified value.
3295/// Analyze the expression.
3296///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003297const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003298 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003299 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003300
Dan Gohman6c459a22008-06-22 19:56:46 +00003301 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003302 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003303 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003304
3305 // Don't attempt to analyze instructions in blocks that aren't
3306 // reachable. Such instructions don't matter, and they aren't required
3307 // to obey basic rules for definitions dominating uses which this
3308 // analysis depends on.
3309 if (!DT->isReachableFromEntry(I->getParent()))
3310 return getUnknown(V);
3311 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003312 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003313 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3314 return getConstant(CI);
3315 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003316 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003317 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3318 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003319 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003320 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003321
Dan Gohmanca178902009-07-17 20:47:02 +00003322 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003323 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003324 case Instruction::Add: {
3325 // The simple thing to do would be to just call getSCEV on both operands
3326 // and call getAddExpr with the result. However if we're looking at a
3327 // bunch of things all added together, this can be quite inefficient,
3328 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3329 // Instead, gather up all the operands and make a single getAddExpr call.
3330 // LLVM IR canonical form means we need only traverse the left operands.
3331 SmallVector<const SCEV *, 4> AddOps;
3332 AddOps.push_back(getSCEV(U->getOperand(1)));
3333 for (Value *Op = U->getOperand(0);
3334 Op->getValueID() == Instruction::Add + Value::InstructionVal;
3335 Op = U->getOperand(0)) {
3336 U = cast<Operator>(Op);
3337 AddOps.push_back(getSCEV(U->getOperand(1)));
3338 }
3339 AddOps.push_back(getSCEV(U->getOperand(0)));
3340 return getAddExpr(AddOps);
3341 }
3342 case Instruction::Mul: {
3343 // See the Add code above.
3344 SmallVector<const SCEV *, 4> MulOps;
3345 MulOps.push_back(getSCEV(U->getOperand(1)));
3346 for (Value *Op = U->getOperand(0);
3347 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3348 Op = U->getOperand(0)) {
3349 U = cast<Operator>(Op);
3350 MulOps.push_back(getSCEV(U->getOperand(1)));
3351 }
3352 MulOps.push_back(getSCEV(U->getOperand(0)));
3353 return getMulExpr(MulOps);
3354 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003355 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003356 return getUDivExpr(getSCEV(U->getOperand(0)),
3357 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003358 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003359 return getMinusSCEV(getSCEV(U->getOperand(0)),
3360 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003361 case Instruction::And:
3362 // For an expression like x&255 that merely masks off the high bits,
3363 // use zext(trunc(x)) as the SCEV expression.
3364 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003365 if (CI->isNullValue())
3366 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003367 if (CI->isAllOnesValue())
3368 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003369 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003370
3371 // Instcombine's ShrinkDemandedConstant may strip bits out of
3372 // constants, obscuring what would otherwise be a low-bits mask.
3373 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3374 // knew about to reconstruct a low-bits mask value.
3375 unsigned LZ = A.countLeadingZeros();
3376 unsigned BitWidth = A.getBitWidth();
3377 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3378 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3379 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3380
3381 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3382
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003383 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003384 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003385 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003386 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003387 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003388 }
3389 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003390
Dan Gohman6c459a22008-06-22 19:56:46 +00003391 case Instruction::Or:
3392 // If the RHS of the Or is a constant, we may have something like:
3393 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3394 // optimizations will transparently handle this case.
3395 //
3396 // In order for this transformation to be safe, the LHS must be of the
3397 // form X*(2^n) and the Or constant must be less than 2^n.
3398 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003399 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003400 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003401 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003402 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3403 // Build a plain add SCEV.
3404 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3405 // If the LHS of the add was an addrec and it has no-wrap flags,
3406 // transfer the no-wrap flags, since an or won't introduce a wrap.
3407 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3408 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3409 if (OldAR->hasNoUnsignedWrap())
3410 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3411 if (OldAR->hasNoSignedWrap())
3412 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3413 }
3414 return S;
3415 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003416 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003417 break;
3418 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003419 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003420 // If the RHS of the xor is a signbit, then this is just an add.
3421 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003422 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003423 return getAddExpr(getSCEV(U->getOperand(0)),
3424 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003425
3426 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003427 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003428 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003429
3430 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3431 // This is a variant of the check for xor with -1, and it handles
3432 // the case where instcombine has trimmed non-demanded bits out
3433 // of an xor with -1.
3434 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3435 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3436 if (BO->getOpcode() == Instruction::And &&
3437 LCI->getValue() == CI->getValue())
3438 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003439 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003440 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003441 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003442 const Type *Z0Ty = Z0->getType();
3443 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3444
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003445 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003446 // mask off the high bits. Complement the operand and
3447 // re-apply the zext.
3448 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3449 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3450
3451 // If C is a single bit, it may be in the sign-bit position
3452 // before the zero-extend. In this case, represent the xor
3453 // using an add, which is equivalent, and re-apply the zext.
3454 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3455 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3456 Trunc.isSignBit())
3457 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3458 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003459 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003460 }
3461 break;
3462
3463 case Instruction::Shl:
3464 // Turn shift left of a constant amount into a multiply.
3465 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003466 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003467
3468 // If the shift count is not less than the bitwidth, the result of
3469 // the shift is undefined. Don't try to analyze it, because the
3470 // resolution chosen here may differ from the resolution chosen in
3471 // other parts of the compiler.
3472 if (SA->getValue().uge(BitWidth))
3473 break;
3474
Owen Andersoneed707b2009-07-24 23:12:02 +00003475 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003476 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003477 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003478 }
3479 break;
3480
Nick Lewycky01eaf802008-07-07 06:15:49 +00003481 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003482 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003483 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003484 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003485
3486 // If the shift count is not less than the bitwidth, the result of
3487 // the shift is undefined. Don't try to analyze it, because the
3488 // resolution chosen here may differ from the resolution chosen in
3489 // other parts of the compiler.
3490 if (SA->getValue().uge(BitWidth))
3491 break;
3492
Owen Andersoneed707b2009-07-24 23:12:02 +00003493 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003494 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003495 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003496 }
3497 break;
3498
Dan Gohman4ee29af2009-04-21 02:26:00 +00003499 case Instruction::AShr:
3500 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3501 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003502 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003503 if (L->getOpcode() == Instruction::Shl &&
3504 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003505 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3506
3507 // If the shift count is not less than the bitwidth, the result of
3508 // the shift is undefined. Don't try to analyze it, because the
3509 // resolution chosen here may differ from the resolution chosen in
3510 // other parts of the compiler.
3511 if (CI->getValue().uge(BitWidth))
3512 break;
3513
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003514 uint64_t Amt = BitWidth - CI->getZExtValue();
3515 if (Amt == BitWidth)
3516 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003517 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003518 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003519 IntegerType::get(getContext(),
3520 Amt)),
3521 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003522 }
3523 break;
3524
Dan Gohman6c459a22008-06-22 19:56:46 +00003525 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003526 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003527
3528 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003529 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003530
3531 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003532 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003533
3534 case Instruction::BitCast:
3535 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003536 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003537 return getSCEV(U->getOperand(0));
3538 break;
3539
Dan Gohman4f8eea82010-02-01 18:27:38 +00003540 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3541 // lead to pointer expressions which cannot safely be expanded to GEPs,
3542 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3543 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003544
Dan Gohman26466c02009-05-08 20:26:55 +00003545 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003546 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003547
Dan Gohman6c459a22008-06-22 19:56:46 +00003548 case Instruction::PHI:
3549 return createNodeForPHI(cast<PHINode>(U));
3550
3551 case Instruction::Select:
3552 // This could be a smax or umax that was lowered earlier.
3553 // Try to recover it.
3554 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3555 Value *LHS = ICI->getOperand(0);
3556 Value *RHS = ICI->getOperand(1);
3557 switch (ICI->getPredicate()) {
3558 case ICmpInst::ICMP_SLT:
3559 case ICmpInst::ICMP_SLE:
3560 std::swap(LHS, RHS);
3561 // fall through
3562 case ICmpInst::ICMP_SGT:
3563 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003564 // a >s b ? a+x : b+x -> smax(a, b)+x
3565 // a >s b ? b+x : a+x -> smin(a, b)+x
3566 if (LHS->getType() == U->getType()) {
3567 const SCEV *LS = getSCEV(LHS);
3568 const SCEV *RS = getSCEV(RHS);
3569 const SCEV *LA = getSCEV(U->getOperand(1));
3570 const SCEV *RA = getSCEV(U->getOperand(2));
3571 const SCEV *LDiff = getMinusSCEV(LA, LS);
3572 const SCEV *RDiff = getMinusSCEV(RA, RS);
3573 if (LDiff == RDiff)
3574 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3575 LDiff = getMinusSCEV(LA, RS);
3576 RDiff = getMinusSCEV(RA, LS);
3577 if (LDiff == RDiff)
3578 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3579 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003580 break;
3581 case ICmpInst::ICMP_ULT:
3582 case ICmpInst::ICMP_ULE:
3583 std::swap(LHS, RHS);
3584 // fall through
3585 case ICmpInst::ICMP_UGT:
3586 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003587 // a >u b ? a+x : b+x -> umax(a, b)+x
3588 // a >u b ? b+x : a+x -> umin(a, b)+x
3589 if (LHS->getType() == U->getType()) {
3590 const SCEV *LS = getSCEV(LHS);
3591 const SCEV *RS = getSCEV(RHS);
3592 const SCEV *LA = getSCEV(U->getOperand(1));
3593 const SCEV *RA = getSCEV(U->getOperand(2));
3594 const SCEV *LDiff = getMinusSCEV(LA, LS);
3595 const SCEV *RDiff = getMinusSCEV(RA, RS);
3596 if (LDiff == RDiff)
3597 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3598 LDiff = getMinusSCEV(LA, RS);
3599 RDiff = getMinusSCEV(RA, LS);
3600 if (LDiff == RDiff)
3601 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3602 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003603 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003604 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003605 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3606 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003607 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003608 cast<ConstantInt>(RHS)->isZero()) {
3609 const SCEV *One = getConstant(LHS->getType(), 1);
3610 const SCEV *LS = getSCEV(LHS);
3611 const SCEV *LA = getSCEV(U->getOperand(1));
3612 const SCEV *RA = getSCEV(U->getOperand(2));
3613 const SCEV *LDiff = getMinusSCEV(LA, LS);
3614 const SCEV *RDiff = getMinusSCEV(RA, One);
3615 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003616 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003617 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003618 break;
3619 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003620 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3621 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003622 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003623 cast<ConstantInt>(RHS)->isZero()) {
3624 const SCEV *One = getConstant(LHS->getType(), 1);
3625 const SCEV *LS = getSCEV(LHS);
3626 const SCEV *LA = getSCEV(U->getOperand(1));
3627 const SCEV *RA = getSCEV(U->getOperand(2));
3628 const SCEV *LDiff = getMinusSCEV(LA, One);
3629 const SCEV *RDiff = getMinusSCEV(RA, LS);
3630 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003631 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003632 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003633 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003634 default:
3635 break;
3636 }
3637 }
3638
3639 default: // We cannot analyze this expression.
3640 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003641 }
3642
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003643 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003644}
3645
3646
3647
3648//===----------------------------------------------------------------------===//
3649// Iteration Count Computation Code
3650//
3651
Dan Gohman46bdfb02009-02-24 18:55:53 +00003652/// getBackedgeTakenCount - If the specified loop has a predictable
3653/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3654/// object. The backedge-taken count is the number of times the loop header
3655/// will be branched to from within the loop. This is one less than the
3656/// trip count of the loop, since it doesn't count the first iteration,
3657/// when the header is branched to from outside the loop.
3658///
3659/// Note that it is not valid to call this method on a loop without a
3660/// loop-invariant backedge-taken count (see
3661/// hasLoopInvariantBackedgeTakenCount).
3662///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003663const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003664 return getBackedgeTakenInfo(L).Exact;
3665}
3666
3667/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3668/// return the least SCEV value that is known never to be less than the
3669/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003670const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003671 return getBackedgeTakenInfo(L).Max;
3672}
3673
Dan Gohman59ae6b92009-07-08 19:23:34 +00003674/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3675/// onto the given Worklist.
3676static void
3677PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3678 BasicBlock *Header = L->getHeader();
3679
3680 // Push all Loop-header PHIs onto the Worklist stack.
3681 for (BasicBlock::iterator I = Header->begin();
3682 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3683 Worklist.push_back(PN);
3684}
3685
Dan Gohmana1af7572009-04-30 20:47:05 +00003686const ScalarEvolution::BackedgeTakenInfo &
3687ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003688 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003689 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003690 // update the value. The temporary CouldNotCompute value tells SCEV
3691 // code elsewhere that it shouldn't attempt to request a new
3692 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003693 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003694 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3695 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003696 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3697 if (BECount.Exact != getCouldNotCompute()) {
3698 assert(BECount.Exact->isLoopInvariant(L) &&
3699 BECount.Max->isLoopInvariant(L) &&
3700 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003701 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003702
Dan Gohman01ecca22009-04-27 20:16:15 +00003703 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003704 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003705 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003706 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003707 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003708 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003709 if (isa<PHINode>(L->getHeader()->begin()))
3710 // Only count loops that have phi nodes as not being computable.
3711 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003712 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003713
3714 // Now that we know more about the trip count for this loop, forget any
3715 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003716 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003717 // information. This is similar to the code in forgetLoop, except that
3718 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003719 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003720 SmallVector<Instruction *, 16> Worklist;
3721 PushLoopPHIs(L, Worklist);
3722
3723 SmallPtrSet<Instruction *, 8> Visited;
3724 while (!Worklist.empty()) {
3725 Instruction *I = Worklist.pop_back_val();
3726 if (!Visited.insert(I)) continue;
3727
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003728 ValueExprMapType::iterator It =
3729 ValueExprMap.find(static_cast<Value *>(I));
3730 if (It != ValueExprMap.end()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003731 // SCEVUnknown for a PHI either means that it has an unrecognized
3732 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003733 // by createNodeForPHI. In the former case, additional loop trip
3734 // count information isn't going to change anything. In the later
3735 // case, createNodeForPHI will perform the necessary updates on its
3736 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003737 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3738 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003739 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003740 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003741 if (PHINode *PN = dyn_cast<PHINode>(I))
3742 ConstantEvolutionLoopExitValue.erase(PN);
3743 }
3744
3745 PushDefUseChildren(I, Worklist);
3746 }
3747 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003748 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003749 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003750}
3751
Dan Gohman4c7279a2009-10-31 15:04:55 +00003752/// forgetLoop - This method should be called by the client when it has
3753/// changed a loop in a way that may effect ScalarEvolution's ability to
3754/// compute a trip count, or if the loop is deleted.
3755void ScalarEvolution::forgetLoop(const Loop *L) {
3756 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003757 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003758
Dan Gohman4c7279a2009-10-31 15:04:55 +00003759 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003760 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003761 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003762
Dan Gohman59ae6b92009-07-08 19:23:34 +00003763 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003764 while (!Worklist.empty()) {
3765 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003766 if (!Visited.insert(I)) continue;
3767
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003768 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3769 if (It != ValueExprMap.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003770 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003771 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003772 if (PHINode *PN = dyn_cast<PHINode>(I))
3773 ConstantEvolutionLoopExitValue.erase(PN);
3774 }
3775
3776 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003777 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003778}
3779
Eric Christophere6cbfa62010-07-29 01:25:38 +00003780/// forgetValue - This method should be called by the client when it has
3781/// changed a value in a way that may effect its value, or which may
3782/// disconnect it from a def-use chain linking it to a loop.
3783void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003784 Instruction *I = dyn_cast<Instruction>(V);
3785 if (!I) return;
3786
3787 // Drop information about expressions based on loop-header PHIs.
3788 SmallVector<Instruction *, 16> Worklist;
3789 Worklist.push_back(I);
3790
3791 SmallPtrSet<Instruction *, 8> Visited;
3792 while (!Worklist.empty()) {
3793 I = Worklist.pop_back_val();
3794 if (!Visited.insert(I)) continue;
3795
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003796 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3797 if (It != ValueExprMap.end()) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003798 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003799 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003800 if (PHINode *PN = dyn_cast<PHINode>(I))
3801 ConstantEvolutionLoopExitValue.erase(PN);
3802 }
3803
3804 PushDefUseChildren(I, Worklist);
3805 }
3806}
3807
Dan Gohman46bdfb02009-02-24 18:55:53 +00003808/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3809/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003810ScalarEvolution::BackedgeTakenInfo
3811ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003812 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003813 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003814
Dan Gohmana334aa72009-06-22 00:31:57 +00003815 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003816 const SCEV *BECount = getCouldNotCompute();
3817 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003818 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003819 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3820 BackedgeTakenInfo NewBTI =
3821 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003822
Dan Gohman1c343752009-06-27 21:21:31 +00003823 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003824 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003825 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003826 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003827 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003828 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003829 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003830 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003831 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003832 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003833 }
Dan Gohman1c343752009-06-27 21:21:31 +00003834 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003835 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003836 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003837 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003838 }
3839
3840 return BackedgeTakenInfo(BECount, MaxBECount);
3841}
3842
3843/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3844/// of the specified loop will execute if it exits via the specified block.
3845ScalarEvolution::BackedgeTakenInfo
3846ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3847 BasicBlock *ExitingBlock) {
3848
3849 // Okay, we've chosen an exiting block. See what condition causes us to
3850 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003851 //
3852 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003853 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003854 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003855 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003856
Chris Lattner8b0e3602007-01-07 02:24:26 +00003857 // At this point, we know we have a conditional branch that determines whether
3858 // the loop is exited. However, we don't know if the branch is executed each
3859 // time through the loop. If not, then the execution count of the branch will
3860 // not be equal to the trip count of the loop.
3861 //
3862 // Currently we check for this by checking to see if the Exit branch goes to
3863 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003864 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003865 // loop header. This is common for un-rotated loops.
3866 //
3867 // If both of those tests fail, walk up the unique predecessor chain to the
3868 // header, stopping if there is an edge that doesn't exit the loop. If the
3869 // header is reached, the execution count of the branch will be equal to the
3870 // trip count of the loop.
3871 //
3872 // More extensive analysis could be done to handle more cases here.
3873 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003874 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003875 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003876 ExitBr->getParent() != L->getHeader()) {
3877 // The simple checks failed, try climbing the unique predecessor chain
3878 // up to the header.
3879 bool Ok = false;
3880 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3881 BasicBlock *Pred = BB->getUniquePredecessor();
3882 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003883 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003884 TerminatorInst *PredTerm = Pred->getTerminator();
3885 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3886 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3887 if (PredSucc == BB)
3888 continue;
3889 // If the predecessor has a successor that isn't BB and isn't
3890 // outside the loop, assume the worst.
3891 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003892 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003893 }
3894 if (Pred == L->getHeader()) {
3895 Ok = true;
3896 break;
3897 }
3898 BB = Pred;
3899 }
3900 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003901 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003902 }
3903
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003904 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003905 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3906 ExitBr->getSuccessor(0),
3907 ExitBr->getSuccessor(1));
3908}
3909
3910/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3911/// backedge of the specified loop will execute if its exit condition
3912/// were a conditional branch of ExitCond, TBB, and FBB.
3913ScalarEvolution::BackedgeTakenInfo
3914ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3915 Value *ExitCond,
3916 BasicBlock *TBB,
3917 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003918 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003919 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3920 if (BO->getOpcode() == Instruction::And) {
3921 // Recurse on the operands of the and.
3922 BackedgeTakenInfo BTI0 =
3923 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3924 BackedgeTakenInfo BTI1 =
3925 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003926 const SCEV *BECount = getCouldNotCompute();
3927 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003928 if (L->contains(TBB)) {
3929 // Both conditions must be true for the loop to continue executing.
3930 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003931 if (BTI0.Exact == getCouldNotCompute() ||
3932 BTI1.Exact == getCouldNotCompute())
3933 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003934 else
3935 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003936 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003937 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003938 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003939 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003940 else
3941 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003942 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003943 // Both conditions must be true at the same time for the loop to exit.
3944 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003945 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003946 if (BTI0.Max == BTI1.Max)
3947 MaxBECount = BTI0.Max;
3948 if (BTI0.Exact == BTI1.Exact)
3949 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003950 }
3951
3952 return BackedgeTakenInfo(BECount, MaxBECount);
3953 }
3954 if (BO->getOpcode() == Instruction::Or) {
3955 // Recurse on the operands of the or.
3956 BackedgeTakenInfo BTI0 =
3957 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3958 BackedgeTakenInfo BTI1 =
3959 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003960 const SCEV *BECount = getCouldNotCompute();
3961 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003962 if (L->contains(FBB)) {
3963 // Both conditions must be false for the loop to continue executing.
3964 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003965 if (BTI0.Exact == getCouldNotCompute() ||
3966 BTI1.Exact == getCouldNotCompute())
3967 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003968 else
3969 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003970 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003971 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003972 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003973 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003974 else
3975 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003976 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003977 // Both conditions must be false at the same time for the loop to exit.
3978 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003979 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003980 if (BTI0.Max == BTI1.Max)
3981 MaxBECount = BTI0.Max;
3982 if (BTI0.Exact == BTI1.Exact)
3983 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003984 }
3985
3986 return BackedgeTakenInfo(BECount, MaxBECount);
3987 }
3988 }
3989
3990 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003991 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003992 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3993 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003994
Dan Gohman00cb5b72010-02-19 18:12:07 +00003995 // Check for a constant condition. These are normally stripped out by
3996 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3997 // preserve the CFG and is temporarily leaving constant conditions
3998 // in place.
3999 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4000 if (L->contains(FBB) == !CI->getZExtValue())
4001 // The backedge is always taken.
4002 return getCouldNotCompute();
4003 else
4004 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004005 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004006 }
4007
Eli Friedman361e54d2009-05-09 12:32:42 +00004008 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00004009 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4010}
4011
4012/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4013/// backedge of the specified loop will execute if its exit condition
4014/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4015ScalarEvolution::BackedgeTakenInfo
4016ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4017 ICmpInst *ExitCond,
4018 BasicBlock *TBB,
4019 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004020
Reid Spencere4d87aa2006-12-23 06:05:41 +00004021 // If the condition was exit on true, convert the condition to exit on false
4022 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004023 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004024 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004025 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004026 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004027
4028 // Handle common loops like: for (X = "string"; *X; ++X)
4029 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4030 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004031 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004032 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004033 if (ItCnt.hasAnyInfo())
4034 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004035 }
4036
Dan Gohman0bba49c2009-07-07 17:06:11 +00004037 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4038 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004039
4040 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004041 LHS = getSCEVAtScope(LHS, L);
4042 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004043
Dan Gohman64a845e2009-06-24 04:48:43 +00004044 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004045 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004046 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4047 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004048 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004049 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004050 }
4051
Dan Gohman03557dc2010-05-03 16:35:17 +00004052 // Simplify the operands before analyzing them.
4053 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4054
Chris Lattner53e677a2004-04-02 20:23:17 +00004055 // If we have a comparison of a chrec against a constant, try to use value
4056 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004057 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4058 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004059 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004060 // Form the constant range.
4061 ConstantRange CompRange(
4062 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004063
Dan Gohman0bba49c2009-07-07 17:06:11 +00004064 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004065 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004066 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004067
Chris Lattner53e677a2004-04-02 20:23:17 +00004068 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004069 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004070 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004071 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4072 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004073 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004074 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004075 case ICmpInst::ICMP_EQ: { // while (X == Y)
4076 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004077 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4078 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004079 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004080 }
4081 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004082 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4083 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004084 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004085 }
4086 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004087 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4088 getNotSCEV(RHS), L, true);
4089 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004090 break;
4091 }
4092 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004093 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4094 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004095 break;
4096 }
4097 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004098 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4099 getNotSCEV(RHS), L, false);
4100 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004101 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004102 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004103 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004104#if 0
David Greene25e0e872009-12-23 22:18:14 +00004105 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004106 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004107 dbgs() << "[unsigned] ";
4108 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004109 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004110 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004111#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004112 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004113 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004114 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004115 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004116}
4117
Chris Lattner673e02b2004-10-12 01:49:27 +00004118static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004119EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4120 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004121 const SCEV *InVal = SE.getConstant(C);
4122 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004123 assert(isa<SCEVConstant>(Val) &&
4124 "Evaluation of SCEV at constant didn't fold correctly?");
4125 return cast<SCEVConstant>(Val)->getValue();
4126}
4127
4128/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4129/// and a GEP expression (missing the pointer index) indexing into it, return
4130/// the addressed element of the initializer or null if the index expression is
4131/// invalid.
4132static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004133GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004134 const std::vector<ConstantInt*> &Indices) {
4135 Constant *Init = GV->getInitializer();
4136 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004137 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004138 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4139 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4140 Init = cast<Constant>(CS->getOperand(Idx));
4141 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4142 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4143 Init = cast<Constant>(CA->getOperand(Idx));
4144 } else if (isa<ConstantAggregateZero>(Init)) {
4145 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4146 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004147 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004148 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4149 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004150 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004151 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004152 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004153 }
4154 return 0;
4155 } else {
4156 return 0; // Unknown initializer type
4157 }
4158 }
4159 return Init;
4160}
4161
Dan Gohman46bdfb02009-02-24 18:55:53 +00004162/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4163/// 'icmp op load X, cst', try to see if we can compute the backedge
4164/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004165ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004166ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4167 LoadInst *LI,
4168 Constant *RHS,
4169 const Loop *L,
4170 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004171 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004172
4173 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004174 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004175 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004176 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004177
4178 // Make sure that it is really a constant global we are gepping, with an
4179 // initializer, and make sure the first IDX is really 0.
4180 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004181 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004182 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4183 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004184 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004185
4186 // Okay, we allow one non-constant index into the GEP instruction.
4187 Value *VarIdx = 0;
4188 std::vector<ConstantInt*> Indexes;
4189 unsigned VarIdxNum = 0;
4190 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4191 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4192 Indexes.push_back(CI);
4193 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004194 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004195 VarIdx = GEP->getOperand(i);
4196 VarIdxNum = i-2;
4197 Indexes.push_back(0);
4198 }
4199
4200 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4201 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004202 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004203 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004204
4205 // We can only recognize very limited forms of loop index expressions, in
4206 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004207 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004208 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4209 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4210 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004211 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004212
4213 unsigned MaxSteps = MaxBruteForceIterations;
4214 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004215 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004216 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004217 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004218
4219 // Form the GEP offset.
4220 Indexes[VarIdxNum] = Val;
4221
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004222 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004223 if (Result == 0) break; // Cannot compute!
4224
4225 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004226 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004227 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004228 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004229#if 0
David Greene25e0e872009-12-23 22:18:14 +00004230 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004231 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4232 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004233#endif
4234 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004235 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004236 }
4237 }
Dan Gohman1c343752009-06-27 21:21:31 +00004238 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004239}
4240
4241
Chris Lattner3221ad02004-04-17 22:58:41 +00004242/// CanConstantFold - Return true if we can constant fold an instruction of the
4243/// specified type, assuming that all operands were constants.
4244static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004245 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004246 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4247 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004248
Chris Lattner3221ad02004-04-17 22:58:41 +00004249 if (const CallInst *CI = dyn_cast<CallInst>(I))
4250 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004251 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004252 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004253}
4254
Chris Lattner3221ad02004-04-17 22:58:41 +00004255/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4256/// in the loop that V is derived from. We allow arbitrary operations along the
4257/// way, but the operands of an operation must either be constants or a value
4258/// derived from a constant PHI. If this expression does not fit with these
4259/// constraints, return null.
4260static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4261 // If this is not an instruction, or if this is an instruction outside of the
4262 // loop, it can't be derived from a loop PHI.
4263 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004264 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004265
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004266 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004267 if (L->getHeader() == I->getParent())
4268 return PN;
4269 else
4270 // We don't currently keep track of the control flow needed to evaluate
4271 // PHIs, so we cannot handle PHIs inside of loops.
4272 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004273 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004274
4275 // If we won't be able to constant fold this expression even if the operands
4276 // are constants, return early.
4277 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004278
Chris Lattner3221ad02004-04-17 22:58:41 +00004279 // Otherwise, we can evaluate this instruction if all of its operands are
4280 // constant or derived from a PHI node themselves.
4281 PHINode *PHI = 0;
4282 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004283 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004284 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4285 if (P == 0) return 0; // Not evolving from PHI
4286 if (PHI == 0)
4287 PHI = P;
4288 else if (PHI != P)
4289 return 0; // Evolving from multiple different PHIs.
4290 }
4291
4292 // This is a expression evolving from a constant PHI!
4293 return PHI;
4294}
4295
4296/// EvaluateExpression - Given an expression that passes the
4297/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4298/// in the loop has the value PHIVal. If we can't fold this expression for some
4299/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004300static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4301 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004302 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004303 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004304 Instruction *I = cast<Instruction>(V);
4305
Dan Gohman9d4588f2010-06-22 13:15:46 +00004306 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004307
4308 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004309 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004310 if (Operands[i] == 0) return 0;
4311 }
4312
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004313 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004314 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004315 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004316 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004317 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004318}
4319
4320/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4321/// in the header of its containing loop, we know the loop executes a
4322/// constant number of times, and the PHI node is just a recurrence
4323/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004324Constant *
4325ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004326 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004327 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004328 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004329 ConstantEvolutionLoopExitValue.find(PN);
4330 if (I != ConstantEvolutionLoopExitValue.end())
4331 return I->second;
4332
Dan Gohmane0567812010-04-08 23:03:40 +00004333 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004334 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4335
4336 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4337
4338 // Since the loop is canonicalized, the PHI node must have two entries. One
4339 // entry must be a constant (coming in from outside of the loop), and the
4340 // second must be derived from the same PHI.
4341 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4342 Constant *StartCST =
4343 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4344 if (StartCST == 0)
4345 return RetVal = 0; // Must be a constant.
4346
4347 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004348 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4349 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004350 return RetVal = 0; // Not derived from same PHI.
4351
4352 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004353 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004354 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004355
Dan Gohman46bdfb02009-02-24 18:55:53 +00004356 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004357 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004358 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4359 if (IterationNum == NumIterations)
4360 return RetVal = PHIVal; // Got exit value!
4361
4362 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004363 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004364 if (NextPHI == PHIVal)
4365 return RetVal = NextPHI; // Stopped evolving!
4366 if (NextPHI == 0)
4367 return 0; // Couldn't evaluate!
4368 PHIVal = NextPHI;
4369 }
4370}
4371
Dan Gohman07ad19b2009-07-27 16:09:48 +00004372/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004373/// constant number of times (the condition evolves only from constants),
4374/// try to evaluate a few iterations of the loop until we get the exit
4375/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004376/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004377const SCEV *
4378ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4379 Value *Cond,
4380 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004381 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004382 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004383
Dan Gohmanb92654d2010-06-19 14:17:24 +00004384 // If the loop is canonicalized, the PHI will have exactly two entries.
4385 // That's the only form we support here.
4386 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4387
4388 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004389 // second must be derived from the same PHI.
4390 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4391 Constant *StartCST =
4392 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004393 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004394
4395 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004396 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4397 !isa<Constant>(BEValue))
4398 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004399
4400 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4401 // the loop symbolically to determine when the condition gets a value of
4402 // "ExitWhen".
4403 unsigned IterationNum = 0;
4404 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4405 for (Constant *PHIVal = StartCST;
4406 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004407 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004408 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004409
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004410 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004411 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004412
Reid Spencere8019bb2007-03-01 07:25:48 +00004413 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004414 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004415 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004416 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004417
Chris Lattner3221ad02004-04-17 22:58:41 +00004418 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004419 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004420 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004421 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004422 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004423 }
4424
4425 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004426 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004427}
4428
Dan Gohmane7125f42009-09-03 15:00:26 +00004429/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004430/// at the specified scope in the program. The L value specifies a loop
4431/// nest to evaluate the expression at, where null is the top-level or a
4432/// specified loop is immediately inside of the loop.
4433///
4434/// This method can be used to compute the exit value for a variable defined
4435/// in a loop by querying what the value will hold in the parent loop.
4436///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004437/// In the case that a relevant loop exit value cannot be computed, the
4438/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004439const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004440 // Check to see if we've folded this expression at this loop before.
4441 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4442 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4443 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4444 if (!Pair.second)
4445 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004446
Dan Gohman42214892009-08-31 21:15:23 +00004447 // Otherwise compute it.
4448 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004449 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004450 return C;
4451}
4452
4453const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004454 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004455
Nick Lewycky3e630762008-02-20 06:48:22 +00004456 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004457 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004458 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004459 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004460 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004461 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4462 if (PHINode *PN = dyn_cast<PHINode>(I))
4463 if (PN->getParent() == LI->getHeader()) {
4464 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004465 // to see if the loop that contains it has a known backedge-taken
4466 // count. If so, we may be able to force computation of the exit
4467 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004468 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004469 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004470 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004471 // Okay, we know how many times the containing loop executes. If
4472 // this is a constant evolving PHI node, get the final value at
4473 // the specified iteration number.
4474 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004475 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004476 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004477 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004478 }
4479 }
4480
Reid Spencer09906f32006-12-04 21:33:23 +00004481 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004482 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004483 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004484 // result. This is particularly useful for computing loop exit values.
4485 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004486 SmallVector<Constant *, 4> Operands;
4487 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004488 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4489 Value *Op = I->getOperand(i);
4490 if (Constant *C = dyn_cast<Constant>(Op)) {
4491 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004492 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004493 }
Dan Gohman11046452010-06-29 23:43:06 +00004494
4495 // If any of the operands is non-constant and if they are
4496 // non-integer and non-pointer, don't even try to analyze them
4497 // with scev techniques.
4498 if (!isSCEVable(Op->getType()))
4499 return V;
4500
4501 const SCEV *OrigV = getSCEV(Op);
4502 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4503 MadeImprovement |= OrigV != OpV;
4504
4505 Constant *C = 0;
4506 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4507 C = SC->getValue();
4508 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4509 C = dyn_cast<Constant>(SU->getValue());
4510 if (!C) return V;
4511 if (C->getType() != Op->getType())
4512 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4513 Op->getType(),
4514 false),
4515 C, Op->getType());
4516 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004517 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004518
Dan Gohman11046452010-06-29 23:43:06 +00004519 // Check to see if getSCEVAtScope actually made an improvement.
4520 if (MadeImprovement) {
4521 Constant *C = 0;
4522 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4523 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4524 Operands[0], Operands[1], TD);
4525 else
4526 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4527 &Operands[0], Operands.size(), TD);
4528 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004529 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004530 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004531 }
4532 }
4533
4534 // This is some other type of SCEVUnknown, just return it.
4535 return V;
4536 }
4537
Dan Gohman622ed672009-05-04 22:02:23 +00004538 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004539 // Avoid performing the look-up in the common case where the specified
4540 // expression has no loop-variant portions.
4541 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004542 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004543 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004544 // Okay, at least one of these operands is loop variant but might be
4545 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004546 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4547 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004548 NewOps.push_back(OpAtScope);
4549
4550 for (++i; i != e; ++i) {
4551 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004552 NewOps.push_back(OpAtScope);
4553 }
4554 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004555 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004556 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004557 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004558 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004559 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004560 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004561 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004562 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004563 }
4564 }
4565 // If we got here, all operands are loop invariant.
4566 return Comm;
4567 }
4568
Dan Gohman622ed672009-05-04 22:02:23 +00004569 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004570 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4571 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004572 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4573 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004574 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004575 }
4576
4577 // If this is a loop recurrence for a loop that does not contain L, then we
4578 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004579 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004580 // First, attempt to evaluate each operand.
4581 // Avoid performing the look-up in the common case where the specified
4582 // expression has no loop-variant portions.
4583 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4584 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4585 if (OpAtScope == AddRec->getOperand(i))
4586 continue;
4587
4588 // Okay, at least one of these operands is loop variant but might be
4589 // foldable. Build a new instance of the folded commutative expression.
4590 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4591 AddRec->op_begin()+i);
4592 NewOps.push_back(OpAtScope);
4593 for (++i; i != e; ++i)
4594 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4595
4596 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4597 break;
4598 }
4599
4600 // If the scope is outside the addrec's loop, evaluate it by using the
4601 // loop exit value of the addrec.
4602 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004603 // To evaluate this recurrence, we need to know how many times the AddRec
4604 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004605 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004606 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004607
Eli Friedmanb42a6262008-08-04 23:49:06 +00004608 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004609 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004610 }
Dan Gohman11046452010-06-29 23:43:06 +00004611
Dan Gohmand594e6f2009-05-24 23:25:42 +00004612 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004613 }
4614
Dan Gohman622ed672009-05-04 22:02:23 +00004615 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004616 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004617 if (Op == Cast->getOperand())
4618 return Cast; // must be loop invariant
4619 return getZeroExtendExpr(Op, Cast->getType());
4620 }
4621
Dan Gohman622ed672009-05-04 22:02:23 +00004622 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004623 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004624 if (Op == Cast->getOperand())
4625 return Cast; // must be loop invariant
4626 return getSignExtendExpr(Op, Cast->getType());
4627 }
4628
Dan Gohman622ed672009-05-04 22:02:23 +00004629 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004630 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004631 if (Op == Cast->getOperand())
4632 return Cast; // must be loop invariant
4633 return getTruncateExpr(Op, Cast->getType());
4634 }
4635
Torok Edwinc23197a2009-07-14 16:55:14 +00004636 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004637 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004638}
4639
Dan Gohman66a7e852009-05-08 20:38:54 +00004640/// getSCEVAtScope - This is a convenience function which does
4641/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004642const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004643 return getSCEVAtScope(getSCEV(V), L);
4644}
4645
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004646/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4647/// following equation:
4648///
4649/// A * X = B (mod N)
4650///
4651/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4652/// A and B isn't important.
4653///
4654/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004655static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004656 ScalarEvolution &SE) {
4657 uint32_t BW = A.getBitWidth();
4658 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4659 assert(A != 0 && "A must be non-zero.");
4660
4661 // 1. D = gcd(A, N)
4662 //
4663 // The gcd of A and N may have only one prime factor: 2. The number of
4664 // trailing zeros in A is its multiplicity
4665 uint32_t Mult2 = A.countTrailingZeros();
4666 // D = 2^Mult2
4667
4668 // 2. Check if B is divisible by D.
4669 //
4670 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4671 // is not less than multiplicity of this prime factor for D.
4672 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004673 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004674
4675 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4676 // modulo (N / D).
4677 //
4678 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4679 // bit width during computations.
4680 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4681 APInt Mod(BW + 1, 0);
4682 Mod.set(BW - Mult2); // Mod = N / D
4683 APInt I = AD.multiplicativeInverse(Mod);
4684
4685 // 4. Compute the minimum unsigned root of the equation:
4686 // I * (B / D) mod (N / D)
4687 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4688
4689 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4690 // bits.
4691 return SE.getConstant(Result.trunc(BW));
4692}
Chris Lattner53e677a2004-04-02 20:23:17 +00004693
4694/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4695/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4696/// might be the same) or two SCEVCouldNotCompute objects.
4697///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004698static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004699SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004700 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004701 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4702 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4703 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004704
Chris Lattner53e677a2004-04-02 20:23:17 +00004705 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004706 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004707 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004708 return std::make_pair(CNC, CNC);
4709 }
4710
Reid Spencere8019bb2007-03-01 07:25:48 +00004711 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004712 const APInt &L = LC->getValue()->getValue();
4713 const APInt &M = MC->getValue()->getValue();
4714 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004715 APInt Two(BitWidth, 2);
4716 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004717
Dan Gohman64a845e2009-06-24 04:48:43 +00004718 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004719 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004720 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004721 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4722 // The B coefficient is M-N/2
4723 APInt B(M);
4724 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004725
Reid Spencere8019bb2007-03-01 07:25:48 +00004726 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004727 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004728
Reid Spencere8019bb2007-03-01 07:25:48 +00004729 // Compute the B^2-4ac term.
4730 APInt SqrtTerm(B);
4731 SqrtTerm *= B;
4732 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004733
Reid Spencere8019bb2007-03-01 07:25:48 +00004734 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4735 // integer value or else APInt::sqrt() will assert.
4736 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004737
Dan Gohman64a845e2009-06-24 04:48:43 +00004738 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004739 // The divisions must be performed as signed divisions.
4740 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004741 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004742 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004743 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004744 return std::make_pair(CNC, CNC);
4745 }
4746
Owen Andersone922c022009-07-22 00:24:57 +00004747 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004748
4749 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004750 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004751 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004752 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004753
Dan Gohman64a845e2009-06-24 04:48:43 +00004754 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004755 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004756 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004757}
4758
4759/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004760/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004761ScalarEvolution::BackedgeTakenInfo
4762ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004763 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004764 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004765 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004766 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004767 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004768 }
4769
Dan Gohman35738ac2009-05-04 22:30:44 +00004770 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004771 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004772 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004773
4774 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004775 // If this is an affine expression, the execution count of this branch is
4776 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004777 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004778 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004779 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004780 // equivalent to:
4781 //
4782 // Step*N = -Start (mod 2^BW)
4783 //
4784 // where BW is the common bit width of Start and Step.
4785
Chris Lattner53e677a2004-04-02 20:23:17 +00004786 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004787 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4788 L->getParentLoop());
4789 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4790 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004791
Dan Gohman622ed672009-05-04 22:02:23 +00004792 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004793 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004794
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004795 // First, handle unitary steps.
4796 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004797 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004798 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4799 return Start; // N = Start (as unsigned)
4800
4801 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004802 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004803 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004804 -StartC->getValue()->getValue(),
4805 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004806 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004807 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004808 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4809 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004810 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004811 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004812 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4813 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004814 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004815#if 0
David Greene25e0e872009-12-23 22:18:14 +00004816 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004817 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004818#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004819 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004820 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004821 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004822 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004823 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004824 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004825
Chris Lattner53e677a2004-04-02 20:23:17 +00004826 // We can only use this value if the chrec ends up with an exact zero
4827 // value at this index. When solving for "X*X != 5", for example, we
4828 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004829 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004830 if (Val->isZero())
4831 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004832 }
4833 }
4834 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004835
Dan Gohman1c343752009-06-27 21:21:31 +00004836 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004837}
4838
4839/// HowFarToNonZero - Return the number of times a backedge checking the
4840/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004841/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004842ScalarEvolution::BackedgeTakenInfo
4843ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004844 // Loops that look like: while (X == 0) are very strange indeed. We don't
4845 // handle them yet except for the trivial case. This could be expanded in the
4846 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004847
Chris Lattner53e677a2004-04-02 20:23:17 +00004848 // If the value is a constant, check to see if it is known to be non-zero
4849 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004850 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004851 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004852 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004853 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004854 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004855
Chris Lattner53e677a2004-04-02 20:23:17 +00004856 // We could implement others, but I really doubt anyone writes loops like
4857 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004858 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004859}
4860
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004861/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4862/// (which may not be an immediate predecessor) which has exactly one
4863/// successor from which BB is reachable, or null if no such block is
4864/// found.
4865///
Dan Gohman005752b2010-04-15 16:19:08 +00004866std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004867ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004868 // If the block has a unique predecessor, then there is no path from the
4869 // predecessor to the block that does not go through the direct edge
4870 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004871 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004872 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004873
4874 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004875 // If the header has a unique predecessor outside the loop, it must be
4876 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004877 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004878 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004879
Dan Gohman005752b2010-04-15 16:19:08 +00004880 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004881}
4882
Dan Gohman763bad12009-06-20 00:35:32 +00004883/// HasSameValue - SCEV structural equivalence is usually sufficient for
4884/// testing whether two expressions are equal, however for the purposes of
4885/// looking for a condition guarding a loop, it can be useful to be a little
4886/// more general, since a front-end may have replicated the controlling
4887/// expression.
4888///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004889static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004890 // Quick check to see if they are the same SCEV.
4891 if (A == B) return true;
4892
4893 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4894 // two different instructions with the same value. Check for this case.
4895 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4896 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4897 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4898 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004899 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004900 return true;
4901
4902 // Otherwise assume they may have a different value.
4903 return false;
4904}
4905
Dan Gohmane9796502010-04-24 01:28:42 +00004906/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4907/// predicate Pred. Return true iff any changes were made.
4908///
4909bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4910 const SCEV *&LHS, const SCEV *&RHS) {
4911 bool Changed = false;
4912
4913 // Canonicalize a constant to the right side.
4914 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4915 // Check for both operands constant.
4916 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4917 if (ConstantExpr::getICmp(Pred,
4918 LHSC->getValue(),
4919 RHSC->getValue())->isNullValue())
4920 goto trivially_false;
4921 else
4922 goto trivially_true;
4923 }
4924 // Otherwise swap the operands to put the constant on the right.
4925 std::swap(LHS, RHS);
4926 Pred = ICmpInst::getSwappedPredicate(Pred);
4927 Changed = true;
4928 }
4929
4930 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004931 // addrec's loop, put the addrec on the left. Also make a dominance check,
4932 // as both operands could be addrecs loop-invariant in each other's loop.
4933 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4934 const Loop *L = AR->getLoop();
4935 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004936 std::swap(LHS, RHS);
4937 Pred = ICmpInst::getSwappedPredicate(Pred);
4938 Changed = true;
4939 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004940 }
Dan Gohmane9796502010-04-24 01:28:42 +00004941
4942 // If there's a constant operand, canonicalize comparisons with boundary
4943 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4944 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4945 const APInt &RA = RC->getValue()->getValue();
4946 switch (Pred) {
4947 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4948 case ICmpInst::ICMP_EQ:
4949 case ICmpInst::ICMP_NE:
4950 break;
4951 case ICmpInst::ICMP_UGE:
4952 if ((RA - 1).isMinValue()) {
4953 Pred = ICmpInst::ICMP_NE;
4954 RHS = getConstant(RA - 1);
4955 Changed = true;
4956 break;
4957 }
4958 if (RA.isMaxValue()) {
4959 Pred = ICmpInst::ICMP_EQ;
4960 Changed = true;
4961 break;
4962 }
4963 if (RA.isMinValue()) goto trivially_true;
4964
4965 Pred = ICmpInst::ICMP_UGT;
4966 RHS = getConstant(RA - 1);
4967 Changed = true;
4968 break;
4969 case ICmpInst::ICMP_ULE:
4970 if ((RA + 1).isMaxValue()) {
4971 Pred = ICmpInst::ICMP_NE;
4972 RHS = getConstant(RA + 1);
4973 Changed = true;
4974 break;
4975 }
4976 if (RA.isMinValue()) {
4977 Pred = ICmpInst::ICMP_EQ;
4978 Changed = true;
4979 break;
4980 }
4981 if (RA.isMaxValue()) goto trivially_true;
4982
4983 Pred = ICmpInst::ICMP_ULT;
4984 RHS = getConstant(RA + 1);
4985 Changed = true;
4986 break;
4987 case ICmpInst::ICMP_SGE:
4988 if ((RA - 1).isMinSignedValue()) {
4989 Pred = ICmpInst::ICMP_NE;
4990 RHS = getConstant(RA - 1);
4991 Changed = true;
4992 break;
4993 }
4994 if (RA.isMaxSignedValue()) {
4995 Pred = ICmpInst::ICMP_EQ;
4996 Changed = true;
4997 break;
4998 }
4999 if (RA.isMinSignedValue()) goto trivially_true;
5000
5001 Pred = ICmpInst::ICMP_SGT;
5002 RHS = getConstant(RA - 1);
5003 Changed = true;
5004 break;
5005 case ICmpInst::ICMP_SLE:
5006 if ((RA + 1).isMaxSignedValue()) {
5007 Pred = ICmpInst::ICMP_NE;
5008 RHS = getConstant(RA + 1);
5009 Changed = true;
5010 break;
5011 }
5012 if (RA.isMinSignedValue()) {
5013 Pred = ICmpInst::ICMP_EQ;
5014 Changed = true;
5015 break;
5016 }
5017 if (RA.isMaxSignedValue()) goto trivially_true;
5018
5019 Pred = ICmpInst::ICMP_SLT;
5020 RHS = getConstant(RA + 1);
5021 Changed = true;
5022 break;
5023 case ICmpInst::ICMP_UGT:
5024 if (RA.isMinValue()) {
5025 Pred = ICmpInst::ICMP_NE;
5026 Changed = true;
5027 break;
5028 }
5029 if ((RA + 1).isMaxValue()) {
5030 Pred = ICmpInst::ICMP_EQ;
5031 RHS = getConstant(RA + 1);
5032 Changed = true;
5033 break;
5034 }
5035 if (RA.isMaxValue()) goto trivially_false;
5036 break;
5037 case ICmpInst::ICMP_ULT:
5038 if (RA.isMaxValue()) {
5039 Pred = ICmpInst::ICMP_NE;
5040 Changed = true;
5041 break;
5042 }
5043 if ((RA - 1).isMinValue()) {
5044 Pred = ICmpInst::ICMP_EQ;
5045 RHS = getConstant(RA - 1);
5046 Changed = true;
5047 break;
5048 }
5049 if (RA.isMinValue()) goto trivially_false;
5050 break;
5051 case ICmpInst::ICMP_SGT:
5052 if (RA.isMinSignedValue()) {
5053 Pred = ICmpInst::ICMP_NE;
5054 Changed = true;
5055 break;
5056 }
5057 if ((RA + 1).isMaxSignedValue()) {
5058 Pred = ICmpInst::ICMP_EQ;
5059 RHS = getConstant(RA + 1);
5060 Changed = true;
5061 break;
5062 }
5063 if (RA.isMaxSignedValue()) goto trivially_false;
5064 break;
5065 case ICmpInst::ICMP_SLT:
5066 if (RA.isMaxSignedValue()) {
5067 Pred = ICmpInst::ICMP_NE;
5068 Changed = true;
5069 break;
5070 }
5071 if ((RA - 1).isMinSignedValue()) {
5072 Pred = ICmpInst::ICMP_EQ;
5073 RHS = getConstant(RA - 1);
5074 Changed = true;
5075 break;
5076 }
5077 if (RA.isMinSignedValue()) goto trivially_false;
5078 break;
5079 }
5080 }
5081
5082 // Check for obvious equality.
5083 if (HasSameValue(LHS, RHS)) {
5084 if (ICmpInst::isTrueWhenEqual(Pred))
5085 goto trivially_true;
5086 if (ICmpInst::isFalseWhenEqual(Pred))
5087 goto trivially_false;
5088 }
5089
Dan Gohman03557dc2010-05-03 16:35:17 +00005090 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5091 // adding or subtracting 1 from one of the operands.
5092 switch (Pred) {
5093 case ICmpInst::ICMP_SLE:
5094 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5095 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5096 /*HasNUW=*/false, /*HasNSW=*/true);
5097 Pred = ICmpInst::ICMP_SLT;
5098 Changed = true;
5099 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005100 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005101 /*HasNUW=*/false, /*HasNSW=*/true);
5102 Pred = ICmpInst::ICMP_SLT;
5103 Changed = true;
5104 }
5105 break;
5106 case ICmpInst::ICMP_SGE:
5107 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005108 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005109 /*HasNUW=*/false, /*HasNSW=*/true);
5110 Pred = ICmpInst::ICMP_SGT;
5111 Changed = true;
5112 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5113 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5114 /*HasNUW=*/false, /*HasNSW=*/true);
5115 Pred = ICmpInst::ICMP_SGT;
5116 Changed = true;
5117 }
5118 break;
5119 case ICmpInst::ICMP_ULE:
5120 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005121 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005122 /*HasNUW=*/true, /*HasNSW=*/false);
5123 Pred = ICmpInst::ICMP_ULT;
5124 Changed = true;
5125 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005126 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005127 /*HasNUW=*/true, /*HasNSW=*/false);
5128 Pred = ICmpInst::ICMP_ULT;
5129 Changed = true;
5130 }
5131 break;
5132 case ICmpInst::ICMP_UGE:
5133 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005134 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005135 /*HasNUW=*/true, /*HasNSW=*/false);
5136 Pred = ICmpInst::ICMP_UGT;
5137 Changed = true;
5138 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005139 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005140 /*HasNUW=*/true, /*HasNSW=*/false);
5141 Pred = ICmpInst::ICMP_UGT;
5142 Changed = true;
5143 }
5144 break;
5145 default:
5146 break;
5147 }
5148
Dan Gohmane9796502010-04-24 01:28:42 +00005149 // TODO: More simplifications are possible here.
5150
5151 return Changed;
5152
5153trivially_true:
5154 // Return 0 == 0.
5155 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5156 Pred = ICmpInst::ICMP_EQ;
5157 return true;
5158
5159trivially_false:
5160 // Return 0 != 0.
5161 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5162 Pred = ICmpInst::ICMP_NE;
5163 return true;
5164}
5165
Dan Gohman85b05a22009-07-13 21:35:55 +00005166bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5167 return getSignedRange(S).getSignedMax().isNegative();
5168}
5169
5170bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5171 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5172}
5173
5174bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5175 return !getSignedRange(S).getSignedMin().isNegative();
5176}
5177
5178bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5179 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5180}
5181
5182bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5183 return isKnownNegative(S) || isKnownPositive(S);
5184}
5185
5186bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5187 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005188 // Canonicalize the inputs first.
5189 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5190
Dan Gohman53c66ea2010-04-11 22:16:48 +00005191 // If LHS or RHS is an addrec, check to see if the condition is true in
5192 // every iteration of the loop.
5193 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5194 if (isLoopEntryGuardedByCond(
5195 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5196 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005197 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005198 return true;
5199 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5200 if (isLoopEntryGuardedByCond(
5201 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5202 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005203 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005204 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005205
Dan Gohman53c66ea2010-04-11 22:16:48 +00005206 // Otherwise see what can be done with known constant ranges.
5207 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5208}
5209
5210bool
5211ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5212 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005213 if (HasSameValue(LHS, RHS))
5214 return ICmpInst::isTrueWhenEqual(Pred);
5215
Dan Gohman53c66ea2010-04-11 22:16:48 +00005216 // This code is split out from isKnownPredicate because it is called from
5217 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005218 switch (Pred) {
5219 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005220 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005221 break;
5222 case ICmpInst::ICMP_SGT:
5223 Pred = ICmpInst::ICMP_SLT;
5224 std::swap(LHS, RHS);
5225 case ICmpInst::ICMP_SLT: {
5226 ConstantRange LHSRange = getSignedRange(LHS);
5227 ConstantRange RHSRange = getSignedRange(RHS);
5228 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5229 return true;
5230 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5231 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005232 break;
5233 }
5234 case ICmpInst::ICMP_SGE:
5235 Pred = ICmpInst::ICMP_SLE;
5236 std::swap(LHS, RHS);
5237 case ICmpInst::ICMP_SLE: {
5238 ConstantRange LHSRange = getSignedRange(LHS);
5239 ConstantRange RHSRange = getSignedRange(RHS);
5240 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5241 return true;
5242 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5243 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005244 break;
5245 }
5246 case ICmpInst::ICMP_UGT:
5247 Pred = ICmpInst::ICMP_ULT;
5248 std::swap(LHS, RHS);
5249 case ICmpInst::ICMP_ULT: {
5250 ConstantRange LHSRange = getUnsignedRange(LHS);
5251 ConstantRange RHSRange = getUnsignedRange(RHS);
5252 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5253 return true;
5254 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5255 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005256 break;
5257 }
5258 case ICmpInst::ICMP_UGE:
5259 Pred = ICmpInst::ICMP_ULE;
5260 std::swap(LHS, RHS);
5261 case ICmpInst::ICMP_ULE: {
5262 ConstantRange LHSRange = getUnsignedRange(LHS);
5263 ConstantRange RHSRange = getUnsignedRange(RHS);
5264 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5265 return true;
5266 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5267 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005268 break;
5269 }
5270 case ICmpInst::ICMP_NE: {
5271 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5272 return true;
5273 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5274 return true;
5275
5276 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5277 if (isKnownNonZero(Diff))
5278 return true;
5279 break;
5280 }
5281 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005282 // The check at the top of the function catches the case where
5283 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005284 break;
5285 }
5286 return false;
5287}
5288
5289/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5290/// protected by a conditional between LHS and RHS. This is used to
5291/// to eliminate casts.
5292bool
5293ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5294 ICmpInst::Predicate Pred,
5295 const SCEV *LHS, const SCEV *RHS) {
5296 // Interpret a null as meaning no loop, where there is obviously no guard
5297 // (interprocedural conditions notwithstanding).
5298 if (!L) return true;
5299
5300 BasicBlock *Latch = L->getLoopLatch();
5301 if (!Latch)
5302 return false;
5303
5304 BranchInst *LoopContinuePredicate =
5305 dyn_cast<BranchInst>(Latch->getTerminator());
5306 if (!LoopContinuePredicate ||
5307 LoopContinuePredicate->isUnconditional())
5308 return false;
5309
Dan Gohmanaf08a362010-08-10 23:46:30 +00005310 return isImpliedCond(Pred, LHS, RHS,
5311 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005312 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005313}
5314
Dan Gohman3948d0b2010-04-11 19:27:13 +00005315/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005316/// by a conditional between LHS and RHS. This is used to help avoid max
5317/// expressions in loop trip counts, and to eliminate casts.
5318bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005319ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5320 ICmpInst::Predicate Pred,
5321 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005322 // Interpret a null as meaning no loop, where there is obviously no guard
5323 // (interprocedural conditions notwithstanding).
5324 if (!L) return false;
5325
Dan Gohman859b4822009-05-18 15:36:09 +00005326 // Starting at the loop predecessor, climb up the predecessor chain, as long
5327 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005328 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005329 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005330 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005331 Pair.first;
5332 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005333
5334 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005335 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005336 if (!LoopEntryPredicate ||
5337 LoopEntryPredicate->isUnconditional())
5338 continue;
5339
Dan Gohmanaf08a362010-08-10 23:46:30 +00005340 if (isImpliedCond(Pred, LHS, RHS,
5341 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005342 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005343 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005344 }
5345
Dan Gohman38372182008-08-12 20:17:31 +00005346 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005347}
5348
Dan Gohman0f4b2852009-07-21 23:03:19 +00005349/// isImpliedCond - Test whether the condition described by Pred, LHS,
5350/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005351bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005352 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005353 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005354 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005355 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005356 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005357 if (BO->getOpcode() == Instruction::And) {
5358 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005359 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5360 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005361 } else if (BO->getOpcode() == Instruction::Or) {
5362 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005363 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5364 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005365 }
5366 }
5367
Dan Gohmanaf08a362010-08-10 23:46:30 +00005368 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005369 if (!ICI) return false;
5370
Dan Gohman85b05a22009-07-13 21:35:55 +00005371 // Bail if the ICmp's operands' types are wider than the needed type
5372 // before attempting to call getSCEV on them. This avoids infinite
5373 // recursion, since the analysis of widening casts can require loop
5374 // exit condition information for overflow checking, which would
5375 // lead back here.
5376 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005377 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005378 return false;
5379
Dan Gohman0f4b2852009-07-21 23:03:19 +00005380 // Now that we found a conditional branch that dominates the loop, check to
5381 // see if it is the comparison we are looking for.
5382 ICmpInst::Predicate FoundPred;
5383 if (Inverse)
5384 FoundPred = ICI->getInversePredicate();
5385 else
5386 FoundPred = ICI->getPredicate();
5387
5388 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5389 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005390
5391 // Balance the types. The case where FoundLHS' type is wider than
5392 // LHS' type is checked for above.
5393 if (getTypeSizeInBits(LHS->getType()) >
5394 getTypeSizeInBits(FoundLHS->getType())) {
5395 if (CmpInst::isSigned(Pred)) {
5396 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5397 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5398 } else {
5399 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5400 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5401 }
5402 }
5403
Dan Gohman0f4b2852009-07-21 23:03:19 +00005404 // Canonicalize the query to match the way instcombine will have
5405 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005406 if (SimplifyICmpOperands(Pred, LHS, RHS))
5407 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005408 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005409 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5410 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005411 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005412
5413 // Check to see if we can make the LHS or RHS match.
5414 if (LHS == FoundRHS || RHS == FoundLHS) {
5415 if (isa<SCEVConstant>(RHS)) {
5416 std::swap(FoundLHS, FoundRHS);
5417 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5418 } else {
5419 std::swap(LHS, RHS);
5420 Pred = ICmpInst::getSwappedPredicate(Pred);
5421 }
5422 }
5423
5424 // Check whether the found predicate is the same as the desired predicate.
5425 if (FoundPred == Pred)
5426 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5427
5428 // Check whether swapping the found predicate makes it the same as the
5429 // desired predicate.
5430 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5431 if (isa<SCEVConstant>(RHS))
5432 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5433 else
5434 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5435 RHS, LHS, FoundLHS, FoundRHS);
5436 }
5437
5438 // Check whether the actual condition is beyond sufficient.
5439 if (FoundPred == ICmpInst::ICMP_EQ)
5440 if (ICmpInst::isTrueWhenEqual(Pred))
5441 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5442 return true;
5443 if (Pred == ICmpInst::ICMP_NE)
5444 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5445 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5446 return true;
5447
5448 // Otherwise assume the worst.
5449 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005450}
5451
Dan Gohman0f4b2852009-07-21 23:03:19 +00005452/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005453/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005454/// and FoundRHS is true.
5455bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5456 const SCEV *LHS, const SCEV *RHS,
5457 const SCEV *FoundLHS,
5458 const SCEV *FoundRHS) {
5459 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5460 FoundLHS, FoundRHS) ||
5461 // ~x < ~y --> x > y
5462 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5463 getNotSCEV(FoundRHS),
5464 getNotSCEV(FoundLHS));
5465}
5466
5467/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005468/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005469/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005470bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005471ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5472 const SCEV *LHS, const SCEV *RHS,
5473 const SCEV *FoundLHS,
5474 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005475 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005476 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5477 case ICmpInst::ICMP_EQ:
5478 case ICmpInst::ICMP_NE:
5479 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5480 return true;
5481 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005482 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005483 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005484 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5485 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005486 return true;
5487 break;
5488 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005489 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005490 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5491 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005492 return true;
5493 break;
5494 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005495 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005496 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5497 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005498 return true;
5499 break;
5500 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005501 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005502 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5503 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005504 return true;
5505 break;
5506 }
5507
5508 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005509}
5510
Dan Gohman51f53b72009-06-21 23:46:38 +00005511/// getBECount - Subtract the end and start values and divide by the step,
5512/// rounding up, to get the number of times the backedge is executed. Return
5513/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005514const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005515 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005516 const SCEV *Step,
5517 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005518 assert(!isKnownNegative(Step) &&
5519 "This code doesn't handle negative strides yet!");
5520
Dan Gohman51f53b72009-06-21 23:46:38 +00005521 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005522 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005523 const SCEV *Diff = getMinusSCEV(End, Start);
5524 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005525
5526 // Add an adjustment to the difference between End and Start so that
5527 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005528 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005529
Dan Gohman1f96e672009-09-17 18:05:20 +00005530 if (!NoWrap) {
5531 // Check Add for unsigned overflow.
5532 // TODO: More sophisticated things could be done here.
5533 const Type *WideTy = IntegerType::get(getContext(),
5534 getTypeSizeInBits(Ty) + 1);
5535 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5536 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5537 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5538 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5539 return getCouldNotCompute();
5540 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005541
5542 return getUDivExpr(Add, Step);
5543}
5544
Chris Lattnerdb25de42005-08-15 23:33:51 +00005545/// HowManyLessThans - Return the number of times a backedge containing the
5546/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005547/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005548ScalarEvolution::BackedgeTakenInfo
5549ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5550 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005551 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005552 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005553
Dan Gohman35738ac2009-05-04 22:30:44 +00005554 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005555 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005556 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005557
Dan Gohman1f96e672009-09-17 18:05:20 +00005558 // Check to see if we have a flag which makes analysis easy.
5559 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5560 AddRec->hasNoUnsignedWrap();
5561
Chris Lattnerdb25de42005-08-15 23:33:51 +00005562 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005563 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005564 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005565
Dan Gohman52fddd32010-01-26 04:40:18 +00005566 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005567 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005568 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005569 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005570 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005571 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005572 // value and past the maximum value for its type in a single step.
5573 // Note that it's not sufficient to check NoWrap here, because even
5574 // though the value after a wrap is undefined, it's not undefined
5575 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005576 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005577 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005578 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005579 if (isSigned) {
5580 APInt Max = APInt::getSignedMaxValue(BitWidth);
5581 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5582 .slt(getSignedRange(RHS).getSignedMax()))
5583 return getCouldNotCompute();
5584 } else {
5585 APInt Max = APInt::getMaxValue(BitWidth);
5586 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5587 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5588 return getCouldNotCompute();
5589 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005590 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005591 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005592 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005593
Dan Gohmana1af7572009-04-30 20:47:05 +00005594 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5595 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5596 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005597 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005598
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005599 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005600 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005601
Dan Gohmana1af7572009-04-30 20:47:05 +00005602 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005603 const SCEV *MinStart = getConstant(isSigned ?
5604 getSignedRange(Start).getSignedMin() :
5605 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005606
Dan Gohmana1af7572009-04-30 20:47:05 +00005607 // If we know that the condition is true in order to enter the loop,
5608 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005609 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5610 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005611 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005612 if (!isLoopEntryGuardedByCond(L,
5613 isSigned ? ICmpInst::ICMP_SLT :
5614 ICmpInst::ICMP_ULT,
5615 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005616 End = isSigned ? getSMaxExpr(RHS, Start)
5617 : getUMaxExpr(RHS, Start);
5618
5619 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005620 const SCEV *MaxEnd = getConstant(isSigned ?
5621 getSignedRange(End).getSignedMax() :
5622 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005623
Dan Gohman52fddd32010-01-26 04:40:18 +00005624 // If MaxEnd is within a step of the maximum integer value in its type,
5625 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005626 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005627 // compute the correct value.
5628 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005629 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005630 MaxEnd = isSigned ?
5631 getSMinExpr(MaxEnd,
5632 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5633 StepMinusOne)) :
5634 getUMinExpr(MaxEnd,
5635 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5636 StepMinusOne));
5637
Dan Gohmana1af7572009-04-30 20:47:05 +00005638 // Finally, we subtract these two values and divide, rounding up, to get
5639 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005640 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005641
5642 // The maximum backedge count is similar, except using the minimum start
5643 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005644 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005645
5646 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005647 }
5648
Dan Gohman1c343752009-06-27 21:21:31 +00005649 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005650}
5651
Chris Lattner53e677a2004-04-02 20:23:17 +00005652/// getNumIterationsInRange - Return the number of iterations of this loop that
5653/// produce values in the specified constant range. Another way of looking at
5654/// this is that it returns the first iteration number where the value is not in
5655/// the condition, thus computing the exit count. If the iteration count can't
5656/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005657const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005658 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005659 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005660 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005661
5662 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005663 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005664 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005665 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005666 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005667 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005668 if (const SCEVAddRecExpr *ShiftedAddRec =
5669 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005670 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005671 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005672 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005673 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005674 }
5675
5676 // The only time we can solve this is when we have all constant indices.
5677 // Otherwise, we cannot determine the overflow conditions.
5678 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5679 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005680 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005681
5682
5683 // Okay at this point we know that all elements of the chrec are constants and
5684 // that the start element is zero.
5685
5686 // First check to see if the range contains zero. If not, the first
5687 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005688 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005689 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005690 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005691
Chris Lattner53e677a2004-04-02 20:23:17 +00005692 if (isAffine()) {
5693 // If this is an affine expression then we have this situation:
5694 // Solve {0,+,A} in Range === Ax in Range
5695
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005696 // We know that zero is in the range. If A is positive then we know that
5697 // the upper value of the range must be the first possible exit value.
5698 // If A is negative then the lower of the range is the last possible loop
5699 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005700 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005701 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5702 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005703
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005704 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005705 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005706 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005707
5708 // Evaluate at the exit value. If we really did fall out of the valid
5709 // range, then we computed our trip count, otherwise wrap around or other
5710 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005711 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005712 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005713 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005714
5715 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005716 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005717 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005718 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005719 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005720 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005721 } else if (isQuadratic()) {
5722 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5723 // quadratic equation to solve it. To do this, we must frame our problem in
5724 // terms of figuring out when zero is crossed, instead of when
5725 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005726 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005727 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005728 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005729
5730 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005731 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005732 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005733 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5734 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005735 if (R1) {
5736 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005737 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005738 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005739 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005740 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005741 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005742
Chris Lattner53e677a2004-04-02 20:23:17 +00005743 // Make sure the root is not off by one. The returned iteration should
5744 // not be in the range, but the previous one should be. When solving
5745 // for "X*X < 5", for example, we should not return a root of 2.
5746 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005747 R1->getValue(),
5748 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005749 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005750 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005751 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005752 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005753
Dan Gohman246b2562007-10-22 18:31:58 +00005754 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005755 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005756 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005757 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005758 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005759
Chris Lattner53e677a2004-04-02 20:23:17 +00005760 // If R1 was not in the range, then it is a good return value. Make
5761 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005762 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005763 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005764 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005765 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005766 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005767 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005768 }
5769 }
5770 }
5771
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005772 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005773}
5774
5775
5776
5777//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005778// SCEVCallbackVH Class Implementation
5779//===----------------------------------------------------------------------===//
5780
Dan Gohman1959b752009-05-19 19:22:47 +00005781void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005782 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005783 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5784 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005785 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005786 // this now dangles!
5787}
5788
Dan Gohman81f91212010-07-28 01:09:07 +00005789void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005790 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005791
Dan Gohman35738ac2009-05-04 22:30:44 +00005792 // Forget all the expressions associated with users of the old value,
5793 // so that future queries will recompute the expressions using the new
5794 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005795 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005796 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005797 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005798 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5799 UI != UE; ++UI)
5800 Worklist.push_back(*UI);
5801 while (!Worklist.empty()) {
5802 User *U = Worklist.pop_back_val();
5803 // Deleting the Old value will cause this to dangle. Postpone
5804 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005805 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005806 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005807 if (!Visited.insert(U))
5808 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005809 if (PHINode *PN = dyn_cast<PHINode>(U))
5810 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005811 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005812 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5813 UI != UE; ++UI)
5814 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005815 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005816 // Delete the Old value.
5817 if (PHINode *PN = dyn_cast<PHINode>(Old))
5818 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005819 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005820 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005821}
5822
Dan Gohman1959b752009-05-19 19:22:47 +00005823ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005824 : CallbackVH(V), SE(se) {}
5825
5826//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005827// ScalarEvolution Class Implementation
5828//===----------------------------------------------------------------------===//
5829
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005830ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005831 : FunctionPass(ID), FirstUnknown(0) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005832}
5833
Chris Lattner53e677a2004-04-02 20:23:17 +00005834bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005835 this->F = &F;
5836 LI = &getAnalysis<LoopInfo>();
5837 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005838 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005839 return false;
5840}
5841
5842void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005843 // Iterate through all the SCEVUnknown instances and call their
5844 // destructors, so that they release their references to their values.
5845 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5846 U->~SCEVUnknown();
5847 FirstUnknown = 0;
5848
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005849 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005850 BackedgeTakenCounts.clear();
5851 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005852 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005853 UniqueSCEVs.clear();
5854 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005855}
5856
5857void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5858 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005859 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005860 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005861}
5862
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005863bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005864 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005865}
5866
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005867static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005868 const Loop *L) {
5869 // Print all inner loops first
5870 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5871 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005872
Dan Gohman30733292010-01-09 18:17:45 +00005873 OS << "Loop ";
5874 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5875 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005876
Dan Gohman5d984912009-12-18 01:14:11 +00005877 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005878 L->getExitBlocks(ExitBlocks);
5879 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005880 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005881
Dan Gohman46bdfb02009-02-24 18:55:53 +00005882 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5883 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005884 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005885 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005886 }
5887
Dan Gohman30733292010-01-09 18:17:45 +00005888 OS << "\n"
5889 "Loop ";
5890 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5891 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005892
5893 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5894 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5895 } else {
5896 OS << "Unpredictable max backedge-taken count. ";
5897 }
5898
5899 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005900}
5901
Dan Gohman5d984912009-12-18 01:14:11 +00005902void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005903 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005904 // out SCEV values of all instructions that are interesting. Doing
5905 // this potentially causes it to create new SCEV objects though,
5906 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005907 // observable from outside the class though, so casting away the
5908 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005909 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005910
Dan Gohman30733292010-01-09 18:17:45 +00005911 OS << "Classifying expressions for: ";
5912 WriteAsOperand(OS, F, /*PrintType=*/false);
5913 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005914 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005915 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005916 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005917 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005918 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005919 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005920
Dan Gohman0c689c52009-06-19 17:49:54 +00005921 const Loop *L = LI->getLoopFor((*I).getParent());
5922
Dan Gohman0bba49c2009-07-07 17:06:11 +00005923 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005924 if (AtUse != SV) {
5925 OS << " --> ";
5926 AtUse->print(OS);
5927 }
5928
5929 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005930 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005931 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005932 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005933 OS << "<<Unknown>>";
5934 } else {
5935 OS << *ExitValue;
5936 }
5937 }
5938
Chris Lattner53e677a2004-04-02 20:23:17 +00005939 OS << "\n";
5940 }
5941
Dan Gohman30733292010-01-09 18:17:45 +00005942 OS << "Determining loop execution counts for: ";
5943 WriteAsOperand(OS, F, /*PrintType=*/false);
5944 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005945 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5946 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005947}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005948