blob: 27c9e622ca85fad5025fe40177d3f8fc1dc18580 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000031//
Chris Lattner53e677a2004-04-02 20:23:17 +000032// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
Chris Lattner53e677a2004-04-02 20:23:17 +000036// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
Chris Lattner3b27d682006-12-19 22:30:33 +000062#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000063#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000064#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000066#include "llvm/GlobalVariable.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
John Criswella1156432005-10-27 15:54:34 +000068#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
Chris Lattner95255282006-06-28 23:17:24 +000073#include "llvm/Support/CommandLine.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000074#include "llvm/Support/Compiler.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000077#include "llvm/Support/ManagedStatic.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000078#include "llvm/Support/MathExtras.h"
Bill Wendling6f81b512006-11-28 22:46:12 +000079#include "llvm/Support/Streams.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000080#include "llvm/ADT/Statistic.h"
Bill Wendling6f81b512006-11-28 22:46:12 +000081#include <ostream>
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000082#include <algorithm>
Jeff Cohen97af7512006-12-02 02:22:01 +000083#include <cmath>
Chris Lattner53e677a2004-04-02 20:23:17 +000084using namespace llvm;
85
Chris Lattner3b27d682006-12-19 22:30:33 +000086STATISTIC(NumBruteForceEvaluations,
87 "Number of brute force evaluations needed to "
88 "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90 "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92 "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94 "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96 "Number of loops with trip counts computed by force");
97
98cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100 cl::desc("Maximum number of iterations SCEV will "
101 "symbolically execute a constant derived loop"),
102 cl::init(100));
103
Chris Lattner53e677a2004-04-02 20:23:17 +0000104namespace {
Chris Lattner5d8925c2006-08-27 22:30:17 +0000105 RegisterPass<ScalarEvolution>
Chris Lattner45a1cf82004-04-19 03:42:32 +0000106 R("scalar-evolution", "Scalar Evolution Analysis");
Chris Lattner53e677a2004-04-02 20:23:17 +0000107}
108
109//===----------------------------------------------------------------------===//
110// SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
Chris Lattner53e677a2004-04-02 20:23:17 +0000116SCEV::~SCEV() {}
117void SCEV::dump() const {
Bill Wendlinge8156192006-12-07 01:30:32 +0000118 print(cerr);
Chris Lattner53e677a2004-04-02 20:23:17 +0000119}
120
121/// getValueRange - Return the tightest constant bounds that this value is
122/// known to have. This method is only valid on integer SCEV objects.
123ConstantRange SCEV::getValueRange() const {
124 const Type *Ty = getType();
125 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000126 // Default to a full range if no better information is available.
127 return ConstantRange(getType());
128}
129
130
131SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
132
133bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
134 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000135 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000136}
137
138const Type *SCEVCouldNotCompute::getType() const {
139 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000140 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000141}
142
143bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
144 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
145 return false;
146}
147
Chris Lattner4dc534c2005-02-13 04:37:18 +0000148SCEVHandle SCEVCouldNotCompute::
149replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
150 const SCEVHandle &Conc) const {
151 return this;
152}
153
Chris Lattner53e677a2004-04-02 20:23:17 +0000154void SCEVCouldNotCompute::print(std::ostream &OS) const {
155 OS << "***COULDNOTCOMPUTE***";
156}
157
158bool SCEVCouldNotCompute::classof(const SCEV *S) {
159 return S->getSCEVType() == scCouldNotCompute;
160}
161
162
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000163// SCEVConstants - Only allow the creation of one SCEVConstant for any
164// particular value. Don't use a SCEVHandle here, or else the object will
165// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000166static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000167
Chris Lattner53e677a2004-04-02 20:23:17 +0000168
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000169SCEVConstant::~SCEVConstant() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000170 SCEVConstants->erase(V);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000171}
Chris Lattner53e677a2004-04-02 20:23:17 +0000172
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000173SCEVHandle SCEVConstant::get(ConstantInt *V) {
Chris Lattnerb3364092006-10-04 21:49:37 +0000174 SCEVConstant *&R = (*SCEVConstants)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000175 if (R == 0) R = new SCEVConstant(V);
176 return R;
177}
Chris Lattner53e677a2004-04-02 20:23:17 +0000178
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000179ConstantRange SCEVConstant::getValueRange() const {
180 return ConstantRange(V);
181}
Chris Lattner53e677a2004-04-02 20:23:17 +0000182
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000185void SCEVConstant::print(std::ostream &OS) const {
186 WriteAsOperand(OS, V, false);
187}
Chris Lattner53e677a2004-04-02 20:23:17 +0000188
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000189// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
190// particular input. Don't use a SCEVHandle here, or else the object will
191// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000192static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
193 SCEVTruncateExpr*> > SCEVTruncates;
Chris Lattner53e677a2004-04-02 20:23:17 +0000194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
196 : SCEV(scTruncate), Op(op), Ty(ty) {
197 assert(Op->getType()->isInteger() && Ty->isInteger() &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 "Cannot truncate non-integer value!");
Reid Spencere7ca0422007-01-08 01:26:33 +0000199 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
200 && "This is not a truncating conversion!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000201}
Chris Lattner53e677a2004-04-02 20:23:17 +0000202
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000203SCEVTruncateExpr::~SCEVTruncateExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000204 SCEVTruncates->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000205}
Chris Lattner53e677a2004-04-02 20:23:17 +0000206
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000207ConstantRange SCEVTruncateExpr::getValueRange() const {
208 return getOperand()->getValueRange().truncate(getType());
209}
Chris Lattner53e677a2004-04-02 20:23:17 +0000210
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000211void SCEVTruncateExpr::print(std::ostream &OS) const {
212 OS << "(truncate " << *Op << " to " << *Ty << ")";
213}
214
215// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
216// particular input. Don't use a SCEVHandle here, or else the object will never
217// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000218static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
219 SCEVZeroExtendExpr*> > SCEVZeroExtends;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000220
221SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Reid Spencer48d8a702006-11-01 21:53:12 +0000222 : SCEV(scZeroExtend), Op(op), Ty(ty) {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223 assert(Op->getType()->isInteger() && Ty->isInteger() &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000224 "Cannot zero extend non-integer value!");
Reid Spencere7ca0422007-01-08 01:26:33 +0000225 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
226 && "This is not an extending conversion!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000227}
228
229SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000230 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
233ConstantRange SCEVZeroExtendExpr::getValueRange() const {
234 return getOperand()->getValueRange().zeroExtend(getType());
235}
236
237void SCEVZeroExtendExpr::print(std::ostream &OS) const {
238 OS << "(zeroextend " << *Op << " to " << *Ty << ")";
239}
240
241// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
242// particular input. Don't use a SCEVHandle here, or else the object will never
243// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000244static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
245 SCEVCommutativeExpr*> > SCEVCommExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000246
247SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000248 SCEVCommExprs->erase(std::make_pair(getSCEVType(),
249 std::vector<SCEV*>(Operands.begin(),
250 Operands.end())));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000251}
252
253void SCEVCommutativeExpr::print(std::ostream &OS) const {
254 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
255 const char *OpStr = getOperationStr();
256 OS << "(" << *Operands[0];
257 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
258 OS << OpStr << *Operands[i];
259 OS << ")";
260}
261
Chris Lattner4dc534c2005-02-13 04:37:18 +0000262SCEVHandle SCEVCommutativeExpr::
263replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
264 const SCEVHandle &Conc) const {
265 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
266 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
267 if (H != getOperand(i)) {
268 std::vector<SCEVHandle> NewOps;
269 NewOps.reserve(getNumOperands());
270 for (unsigned j = 0; j != i; ++j)
271 NewOps.push_back(getOperand(j));
272 NewOps.push_back(H);
273 for (++i; i != e; ++i)
274 NewOps.push_back(getOperand(i)->
275 replaceSymbolicValuesWithConcrete(Sym, Conc));
276
277 if (isa<SCEVAddExpr>(this))
278 return SCEVAddExpr::get(NewOps);
279 else if (isa<SCEVMulExpr>(this))
280 return SCEVMulExpr::get(NewOps);
281 else
282 assert(0 && "Unknown commutative expr!");
283 }
284 }
285 return this;
286}
287
288
Chris Lattner60a05cc2006-04-01 04:48:52 +0000289// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000290// input. Don't use a SCEVHandle here, or else the object will never be
291// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000292static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
293 SCEVSDivExpr*> > SCEVSDivs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000294
Chris Lattner60a05cc2006-04-01 04:48:52 +0000295SCEVSDivExpr::~SCEVSDivExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000296 SCEVSDivs->erase(std::make_pair(LHS, RHS));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297}
298
Chris Lattner60a05cc2006-04-01 04:48:52 +0000299void SCEVSDivExpr::print(std::ostream &OS) const {
300 OS << "(" << *LHS << " /s " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000301}
302
Chris Lattner60a05cc2006-04-01 04:48:52 +0000303const Type *SCEVSDivExpr::getType() const {
Reid Spencerc5b206b2006-12-31 05:48:39 +0000304 return LHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000305}
306
307// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
308// particular input. Don't use a SCEVHandle here, or else the object will never
309// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000310static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
311 SCEVAddRecExpr*> > SCEVAddRecExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000312
313SCEVAddRecExpr::~SCEVAddRecExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000314 SCEVAddRecExprs->erase(std::make_pair(L,
315 std::vector<SCEV*>(Operands.begin(),
316 Operands.end())));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000317}
318
Chris Lattner4dc534c2005-02-13 04:37:18 +0000319SCEVHandle SCEVAddRecExpr::
320replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
321 const SCEVHandle &Conc) const {
322 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
323 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
324 if (H != getOperand(i)) {
325 std::vector<SCEVHandle> NewOps;
326 NewOps.reserve(getNumOperands());
327 for (unsigned j = 0; j != i; ++j)
328 NewOps.push_back(getOperand(j));
329 NewOps.push_back(H);
330 for (++i; i != e; ++i)
331 NewOps.push_back(getOperand(i)->
332 replaceSymbolicValuesWithConcrete(Sym, Conc));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000333
Chris Lattner4dc534c2005-02-13 04:37:18 +0000334 return get(NewOps, L);
335 }
336 }
337 return this;
338}
339
340
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000341bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
342 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
Chris Lattnerff2006a2005-08-16 00:37:01 +0000343 // contain L and if the start is invariant.
344 return !QueryLoop->contains(L->getHeader()) &&
345 getOperand(0)->isLoopInvariant(QueryLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +0000346}
347
348
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000349void SCEVAddRecExpr::print(std::ostream &OS) const {
350 OS << "{" << *Operands[0];
351 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
352 OS << ",+," << *Operands[i];
353 OS << "}<" << L->getHeader()->getName() + ">";
354}
Chris Lattner53e677a2004-04-02 20:23:17 +0000355
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000356// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
357// value. Don't use a SCEVHandle here, or else the object will never be
358// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000359static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
Chris Lattner53e677a2004-04-02 20:23:17 +0000360
Chris Lattnerb3364092006-10-04 21:49:37 +0000361SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000362
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000363bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
364 // All non-instruction values are loop invariant. All instructions are loop
365 // invariant if they are not contained in the specified loop.
366 if (Instruction *I = dyn_cast<Instruction>(V))
367 return !L->contains(I->getParent());
368 return true;
369}
Chris Lattner53e677a2004-04-02 20:23:17 +0000370
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000371const Type *SCEVUnknown::getType() const {
372 return V->getType();
373}
Chris Lattner53e677a2004-04-02 20:23:17 +0000374
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000375void SCEVUnknown::print(std::ostream &OS) const {
376 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000377}
378
Chris Lattner8d741b82004-06-20 06:23:15 +0000379//===----------------------------------------------------------------------===//
380// SCEV Utilities
381//===----------------------------------------------------------------------===//
382
383namespace {
384 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
385 /// than the complexity of the RHS. This comparator is used to canonicalize
386 /// expressions.
Chris Lattner95255282006-06-28 23:17:24 +0000387 struct VISIBILITY_HIDDEN SCEVComplexityCompare {
Chris Lattner8d741b82004-06-20 06:23:15 +0000388 bool operator()(SCEV *LHS, SCEV *RHS) {
389 return LHS->getSCEVType() < RHS->getSCEVType();
390 }
391 };
392}
393
394/// GroupByComplexity - Given a list of SCEV objects, order them by their
395/// complexity, and group objects of the same complexity together by value.
396/// When this routine is finished, we know that any duplicates in the vector are
397/// consecutive and that complexity is monotonically increasing.
398///
399/// Note that we go take special precautions to ensure that we get determinstic
400/// results from this routine. In other words, we don't want the results of
401/// this to depend on where the addresses of various SCEV objects happened to
402/// land in memory.
403///
404static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
405 if (Ops.size() < 2) return; // Noop
406 if (Ops.size() == 2) {
407 // This is the common case, which also happens to be trivially simple.
408 // Special case it.
409 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
410 std::swap(Ops[0], Ops[1]);
411 return;
412 }
413
414 // Do the rough sort by complexity.
415 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
416
417 // Now that we are sorted by complexity, group elements of the same
418 // complexity. Note that this is, at worst, N^2, but the vector is likely to
419 // be extremely short in practice. Note that we take this approach because we
420 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000421 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000422 SCEV *S = Ops[i];
423 unsigned Complexity = S->getSCEVType();
424
425 // If there are any objects of the same complexity and same value as this
426 // one, group them.
427 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
428 if (Ops[j] == S) { // Found a duplicate.
429 // Move it to immediately after i'th element.
430 std::swap(Ops[i+1], Ops[j]);
431 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000432 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000433 }
434 }
435 }
436}
437
Chris Lattner53e677a2004-04-02 20:23:17 +0000438
Chris Lattner53e677a2004-04-02 20:23:17 +0000439
440//===----------------------------------------------------------------------===//
441// Simple SCEV method implementations
442//===----------------------------------------------------------------------===//
443
444/// getIntegerSCEV - Given an integer or FP type, create a constant for the
445/// specified signed integer value and return a SCEV for the constant.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000446SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000447 Constant *C;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000448 if (Val == 0)
Chris Lattner53e677a2004-04-02 20:23:17 +0000449 C = Constant::getNullValue(Ty);
450 else if (Ty->isFloatingPoint())
451 C = ConstantFP::get(Ty, Val);
Reid Spencere4d87aa2006-12-23 06:05:41 +0000452 else
Reid Spencerb83eb642006-10-20 07:07:24 +0000453 C = ConstantInt::get(Ty, Val);
Chris Lattner53e677a2004-04-02 20:23:17 +0000454 return SCEVUnknown::get(C);
455}
456
457/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
458/// input value to the specified type. If the type must be extended, it is zero
459/// extended.
460static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
461 const Type *SrcTy = V->getType();
462 assert(SrcTy->isInteger() && Ty->isInteger() &&
463 "Cannot truncate or zero extend with non-integer arguments!");
Reid Spencere7ca0422007-01-08 01:26:33 +0000464 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
Chris Lattner53e677a2004-04-02 20:23:17 +0000465 return V; // No conversion
Reid Spencere7ca0422007-01-08 01:26:33 +0000466 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
Chris Lattner53e677a2004-04-02 20:23:17 +0000467 return SCEVTruncateExpr::get(V, Ty);
468 return SCEVZeroExtendExpr::get(V, Ty);
469}
470
471/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
472///
Chris Lattnerbac5b462005-03-09 05:34:41 +0000473SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000474 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
475 return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000476
Chris Lattnerb06432c2004-04-23 21:29:03 +0000477 return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
Chris Lattner53e677a2004-04-02 20:23:17 +0000478}
479
480/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
481///
Chris Lattnerbac5b462005-03-09 05:34:41 +0000482SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000483 // X - Y --> X + -Y
Chris Lattnerbac5b462005-03-09 05:34:41 +0000484 return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
Chris Lattner53e677a2004-04-02 20:23:17 +0000485}
486
487
Chris Lattner53e677a2004-04-02 20:23:17 +0000488/// PartialFact - Compute V!/(V-NumSteps)!
489static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
490 // Handle this case efficiently, it is common to have constant iteration
491 // counts while computing loop exit values.
492 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
Reid Spencerb83eb642006-10-20 07:07:24 +0000493 uint64_t Val = SC->getValue()->getZExtValue();
Chris Lattner53e677a2004-04-02 20:23:17 +0000494 uint64_t Result = 1;
495 for (; NumSteps; --NumSteps)
496 Result *= Val-(NumSteps-1);
Reid Spencerc5b206b2006-12-31 05:48:39 +0000497 Constant *Res = ConstantInt::get(Type::Int64Ty, Result);
Reid Spencere4d87aa2006-12-23 06:05:41 +0000498 return SCEVUnknown::get(ConstantExpr::getTruncOrBitCast(Res, V->getType()));
Chris Lattner53e677a2004-04-02 20:23:17 +0000499 }
500
501 const Type *Ty = V->getType();
502 if (NumSteps == 0)
Chris Lattnerb06432c2004-04-23 21:29:03 +0000503 return SCEVUnknown::getIntegerSCEV(1, Ty);
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000504
Chris Lattner53e677a2004-04-02 20:23:17 +0000505 SCEVHandle Result = V;
506 for (unsigned i = 1; i != NumSteps; ++i)
Chris Lattnerbac5b462005-03-09 05:34:41 +0000507 Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
Chris Lattnerb06432c2004-04-23 21:29:03 +0000508 SCEVUnknown::getIntegerSCEV(i, Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000509 return Result;
510}
511
512
513/// evaluateAtIteration - Return the value of this chain of recurrences at
514/// the specified iteration number. We can evaluate this recurrence by
515/// multiplying each element in the chain by the binomial coefficient
516/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
517///
518/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
519///
520/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
521/// Is the binomial equation safe using modular arithmetic??
522///
523SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
524 SCEVHandle Result = getStart();
525 int Divisor = 1;
526 const Type *Ty = It->getType();
527 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
528 SCEVHandle BC = PartialFact(It, i);
529 Divisor *= i;
Chris Lattner60a05cc2006-04-01 04:48:52 +0000530 SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
Chris Lattnerb06432c2004-04-23 21:29:03 +0000531 SCEVUnknown::getIntegerSCEV(Divisor,Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000532 Result = SCEVAddExpr::get(Result, Val);
533 }
534 return Result;
535}
536
537
538//===----------------------------------------------------------------------===//
539// SCEV Expression folder implementations
540//===----------------------------------------------------------------------===//
541
542SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
543 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Reid Spencer7858b332006-12-05 19:14:13 +0000544 return SCEVUnknown::get(
Reid Spencer315d0552006-12-05 22:39:58 +0000545 ConstantExpr::getTrunc(SC->getValue(), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000546
547 // If the input value is a chrec scev made out of constants, truncate
548 // all of the constants.
549 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
550 std::vector<SCEVHandle> Operands;
551 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
552 // FIXME: This should allow truncation of other expression types!
553 if (isa<SCEVConstant>(AddRec->getOperand(i)))
554 Operands.push_back(get(AddRec->getOperand(i), Ty));
555 else
556 break;
557 if (Operands.size() == AddRec->getNumOperands())
558 return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
559 }
560
Chris Lattnerb3364092006-10-04 21:49:37 +0000561 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000562 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
563 return Result;
564}
565
566SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
567 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Reid Spencer7858b332006-12-05 19:14:13 +0000568 return SCEVUnknown::get(
Reid Spencerd977d862006-12-12 23:36:14 +0000569 ConstantExpr::getZExt(SC->getValue(), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000570
571 // FIXME: If the input value is a chrec scev, and we can prove that the value
572 // did not overflow the old, smaller, value, we can zero extend all of the
573 // operands (often constants). This would allow analysis of something like
574 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
575
Chris Lattnerb3364092006-10-04 21:49:37 +0000576 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000577 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
578 return Result;
579}
580
581// get - Get a canonical add expression, or something simpler if possible.
582SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
583 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +0000584 if (Ops.size() == 1) return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +0000585
586 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000587 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000588
589 // If there are any constants, fold them together.
590 unsigned Idx = 0;
591 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
592 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +0000593 assert(Idx < Ops.size());
Chris Lattner53e677a2004-04-02 20:23:17 +0000594 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
595 // We found two constants, fold them together!
596 Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
597 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
598 Ops[0] = SCEVConstant::get(CI);
599 Ops.erase(Ops.begin()+1); // Erase the folded element
600 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000601 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000602 } else {
603 // If we couldn't fold the expression, move to the next constant. Note
604 // that this is impossible to happen in practice because we always
605 // constant fold constant ints to constant ints.
606 ++Idx;
607 }
608 }
609
610 // If we are left with a constant zero being added, strip it off.
611 if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
612 Ops.erase(Ops.begin());
613 --Idx;
614 }
615 }
616
Chris Lattner627018b2004-04-07 16:16:11 +0000617 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000618
Chris Lattner53e677a2004-04-02 20:23:17 +0000619 // Okay, check to see if the same value occurs in the operand list twice. If
620 // so, merge them together into an multiply expression. Since we sorted the
621 // list, these values are required to be adjacent.
622 const Type *Ty = Ops[0]->getType();
623 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
624 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
625 // Found a match, merge the two values into a multiply, and add any
626 // remaining values to the result.
Chris Lattnerb06432c2004-04-23 21:29:03 +0000627 SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000628 SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
629 if (Ops.size() == 2)
630 return Mul;
631 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
632 Ops.push_back(Mul);
633 return SCEVAddExpr::get(Ops);
634 }
635
636 // Okay, now we know the first non-constant operand. If there are add
637 // operands they would be next.
638 if (Idx < Ops.size()) {
639 bool DeletedAdd = false;
640 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
641 // If we have an add, expand the add operands onto the end of the operands
642 // list.
643 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
644 Ops.erase(Ops.begin()+Idx);
645 DeletedAdd = true;
646 }
647
648 // If we deleted at least one add, we added operands to the end of the list,
649 // and they are not necessarily sorted. Recurse to resort and resimplify
650 // any operands we just aquired.
651 if (DeletedAdd)
652 return get(Ops);
653 }
654
655 // Skip over the add expression until we get to a multiply.
656 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
657 ++Idx;
658
659 // If we are adding something to a multiply expression, make sure the
660 // something is not already an operand of the multiply. If so, merge it into
661 // the multiply.
662 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
663 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
664 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
665 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
666 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000667 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000668 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
669 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
670 if (Mul->getNumOperands() != 2) {
671 // If the multiply has more than two operands, we must get the
672 // Y*Z term.
673 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
674 MulOps.erase(MulOps.begin()+MulOp);
675 InnerMul = SCEVMulExpr::get(MulOps);
676 }
Chris Lattnerb06432c2004-04-23 21:29:03 +0000677 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
Chris Lattner53e677a2004-04-02 20:23:17 +0000678 SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
679 SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
680 if (Ops.size() == 2) return OuterMul;
681 if (AddOp < Idx) {
682 Ops.erase(Ops.begin()+AddOp);
683 Ops.erase(Ops.begin()+Idx-1);
684 } else {
685 Ops.erase(Ops.begin()+Idx);
686 Ops.erase(Ops.begin()+AddOp-1);
687 }
688 Ops.push_back(OuterMul);
689 return SCEVAddExpr::get(Ops);
690 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000691
Chris Lattner53e677a2004-04-02 20:23:17 +0000692 // Check this multiply against other multiplies being added together.
693 for (unsigned OtherMulIdx = Idx+1;
694 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
695 ++OtherMulIdx) {
696 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
697 // If MulOp occurs in OtherMul, we can fold the two multiplies
698 // together.
699 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
700 OMulOp != e; ++OMulOp)
701 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
702 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
703 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
704 if (Mul->getNumOperands() != 2) {
705 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
706 MulOps.erase(MulOps.begin()+MulOp);
707 InnerMul1 = SCEVMulExpr::get(MulOps);
708 }
709 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
710 if (OtherMul->getNumOperands() != 2) {
711 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
712 OtherMul->op_end());
713 MulOps.erase(MulOps.begin()+OMulOp);
714 InnerMul2 = SCEVMulExpr::get(MulOps);
715 }
716 SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
717 SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
718 if (Ops.size() == 2) return OuterMul;
719 Ops.erase(Ops.begin()+Idx);
720 Ops.erase(Ops.begin()+OtherMulIdx-1);
721 Ops.push_back(OuterMul);
722 return SCEVAddExpr::get(Ops);
723 }
724 }
725 }
726 }
727
728 // If there are any add recurrences in the operands list, see if any other
729 // added values are loop invariant. If so, we can fold them into the
730 // recurrence.
731 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
732 ++Idx;
733
734 // Scan over all recurrences, trying to fold loop invariants into them.
735 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
736 // Scan all of the other operands to this add and add them to the vector if
737 // they are loop invariant w.r.t. the recurrence.
738 std::vector<SCEVHandle> LIOps;
739 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
740 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
741 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
742 LIOps.push_back(Ops[i]);
743 Ops.erase(Ops.begin()+i);
744 --i; --e;
745 }
746
747 // If we found some loop invariants, fold them into the recurrence.
748 if (!LIOps.empty()) {
749 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step }
750 LIOps.push_back(AddRec->getStart());
751
752 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
753 AddRecOps[0] = SCEVAddExpr::get(LIOps);
754
755 SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
756 // If all of the other operands were loop invariant, we are done.
757 if (Ops.size() == 1) return NewRec;
758
759 // Otherwise, add the folded AddRec by the non-liv parts.
760 for (unsigned i = 0;; ++i)
761 if (Ops[i] == AddRec) {
762 Ops[i] = NewRec;
763 break;
764 }
765 return SCEVAddExpr::get(Ops);
766 }
767
768 // Okay, if there weren't any loop invariants to be folded, check to see if
769 // there are multiple AddRec's with the same loop induction variable being
770 // added together. If so, we can fold them.
771 for (unsigned OtherIdx = Idx+1;
772 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
773 if (OtherIdx != Idx) {
774 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
775 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
776 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
777 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
778 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
779 if (i >= NewOps.size()) {
780 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
781 OtherAddRec->op_end());
782 break;
783 }
784 NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
785 }
786 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
787
788 if (Ops.size() == 2) return NewAddRec;
789
790 Ops.erase(Ops.begin()+Idx);
791 Ops.erase(Ops.begin()+OtherIdx-1);
792 Ops.push_back(NewAddRec);
793 return SCEVAddExpr::get(Ops);
794 }
795 }
796
797 // Otherwise couldn't fold anything into this recurrence. Move onto the
798 // next one.
799 }
800
801 // Okay, it looks like we really DO need an add expr. Check to see if we
802 // already have one, otherwise create a new one.
803 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +0000804 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
805 SCEVOps)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000806 if (Result == 0) Result = new SCEVAddExpr(Ops);
807 return Result;
808}
809
810
811SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
812 assert(!Ops.empty() && "Cannot get empty mul!");
813
814 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000815 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000816
817 // If there are any constants, fold them together.
818 unsigned Idx = 0;
819 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
820
821 // C1*(C2+V) -> C1*C2 + C1*V
822 if (Ops.size() == 2)
823 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
824 if (Add->getNumOperands() == 2 &&
825 isa<SCEVConstant>(Add->getOperand(0)))
826 return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
827 SCEVMulExpr::get(LHSC, Add->getOperand(1)));
828
829
830 ++Idx;
831 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
832 // We found two constants, fold them together!
833 Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
834 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
835 Ops[0] = SCEVConstant::get(CI);
836 Ops.erase(Ops.begin()+1); // Erase the folded element
837 if (Ops.size() == 1) return Ops[0];
Chris Lattner7ffc07d2005-02-26 18:50:19 +0000838 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000839 } else {
840 // If we couldn't fold the expression, move to the next constant. Note
841 // that this is impossible to happen in practice because we always
842 // constant fold constant ints to constant ints.
843 ++Idx;
844 }
845 }
846
847 // If we are left with a constant one being multiplied, strip it off.
848 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
849 Ops.erase(Ops.begin());
850 --Idx;
851 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
852 // If we have a multiply of zero, it will always be zero.
853 return Ops[0];
854 }
855 }
856
857 // Skip over the add expression until we get to a multiply.
858 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
859 ++Idx;
860
861 if (Ops.size() == 1)
862 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000863
Chris Lattner53e677a2004-04-02 20:23:17 +0000864 // If there are mul operands inline them all into this expression.
865 if (Idx < Ops.size()) {
866 bool DeletedMul = false;
867 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
868 // If we have an mul, expand the mul operands onto the end of the operands
869 // list.
870 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
871 Ops.erase(Ops.begin()+Idx);
872 DeletedMul = true;
873 }
874
875 // If we deleted at least one mul, we added operands to the end of the list,
876 // and they are not necessarily sorted. Recurse to resort and resimplify
877 // any operands we just aquired.
878 if (DeletedMul)
879 return get(Ops);
880 }
881
882 // If there are any add recurrences in the operands list, see if any other
883 // added values are loop invariant. If so, we can fold them into the
884 // recurrence.
885 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
886 ++Idx;
887
888 // Scan over all recurrences, trying to fold loop invariants into them.
889 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
890 // Scan all of the other operands to this mul and add them to the vector if
891 // they are loop invariant w.r.t. the recurrence.
892 std::vector<SCEVHandle> LIOps;
893 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
894 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
895 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
896 LIOps.push_back(Ops[i]);
897 Ops.erase(Ops.begin()+i);
898 --i; --e;
899 }
900
901 // If we found some loop invariants, fold them into the recurrence.
902 if (!LIOps.empty()) {
903 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step }
904 std::vector<SCEVHandle> NewOps;
905 NewOps.reserve(AddRec->getNumOperands());
906 if (LIOps.size() == 1) {
907 SCEV *Scale = LIOps[0];
908 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
909 NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
910 } else {
911 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
912 std::vector<SCEVHandle> MulOps(LIOps);
913 MulOps.push_back(AddRec->getOperand(i));
914 NewOps.push_back(SCEVMulExpr::get(MulOps));
915 }
916 }
917
918 SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
919
920 // If all of the other operands were loop invariant, we are done.
921 if (Ops.size() == 1) return NewRec;
922
923 // Otherwise, multiply the folded AddRec by the non-liv parts.
924 for (unsigned i = 0;; ++i)
925 if (Ops[i] == AddRec) {
926 Ops[i] = NewRec;
927 break;
928 }
929 return SCEVMulExpr::get(Ops);
930 }
931
932 // Okay, if there weren't any loop invariants to be folded, check to see if
933 // there are multiple AddRec's with the same loop induction variable being
934 // multiplied together. If so, we can fold them.
935 for (unsigned OtherIdx = Idx+1;
936 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
937 if (OtherIdx != Idx) {
938 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
939 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
940 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
941 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
942 SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
943 G->getStart());
944 SCEVHandle B = F->getStepRecurrence();
945 SCEVHandle D = G->getStepRecurrence();
946 SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
947 SCEVMulExpr::get(G, B),
948 SCEVMulExpr::get(B, D));
949 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
950 F->getLoop());
951 if (Ops.size() == 2) return NewAddRec;
952
953 Ops.erase(Ops.begin()+Idx);
954 Ops.erase(Ops.begin()+OtherIdx-1);
955 Ops.push_back(NewAddRec);
956 return SCEVMulExpr::get(Ops);
957 }
958 }
959
960 // Otherwise couldn't fold anything into this recurrence. Move onto the
961 // next one.
962 }
963
964 // Okay, it looks like we really DO need an mul expr. Check to see if we
965 // already have one, otherwise create a new one.
966 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +0000967 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
968 SCEVOps)];
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000969 if (Result == 0)
970 Result = new SCEVMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000971 return Result;
972}
973
Chris Lattner60a05cc2006-04-01 04:48:52 +0000974SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000975 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
976 if (RHSC->getValue()->equalsInt(1))
Reid Spencer1628cec2006-10-26 06:15:43 +0000977 return LHS; // X sdiv 1 --> x
Chris Lattner53e677a2004-04-02 20:23:17 +0000978 if (RHSC->getValue()->isAllOnesValue())
Reid Spencer1628cec2006-10-26 06:15:43 +0000979 return SCEV::getNegativeSCEV(LHS); // X sdiv -1 --> -x
Chris Lattner53e677a2004-04-02 20:23:17 +0000980
981 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
982 Constant *LHSCV = LHSC->getValue();
983 Constant *RHSCV = RHSC->getValue();
Reid Spencer1628cec2006-10-26 06:15:43 +0000984 return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
Chris Lattner53e677a2004-04-02 20:23:17 +0000985 }
986 }
987
988 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
989
Chris Lattnerb3364092006-10-04 21:49:37 +0000990 SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
Chris Lattner60a05cc2006-04-01 04:48:52 +0000991 if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +0000992 return Result;
993}
994
995
996/// SCEVAddRecExpr::get - Get a add recurrence expression for the
997/// specified loop. Simplify the expression as much as possible.
998SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
999 const SCEVHandle &Step, const Loop *L) {
1000 std::vector<SCEVHandle> Operands;
1001 Operands.push_back(Start);
1002 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1003 if (StepChrec->getLoop() == L) {
1004 Operands.insert(Operands.end(), StepChrec->op_begin(),
1005 StepChrec->op_end());
1006 return get(Operands, L);
1007 }
1008
1009 Operands.push_back(Step);
1010 return get(Operands, L);
1011}
1012
1013/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1014/// specified loop. Simplify the expression as much as possible.
1015SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1016 const Loop *L) {
1017 if (Operands.size() == 1) return Operands[0];
1018
1019 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1020 if (StepC->getValue()->isNullValue()) {
1021 Operands.pop_back();
1022 return get(Operands, L); // { X,+,0 } --> X
1023 }
1024
1025 SCEVAddRecExpr *&Result =
Chris Lattnerb3364092006-10-04 21:49:37 +00001026 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1027 Operands.end()))];
Chris Lattner53e677a2004-04-02 20:23:17 +00001028 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1029 return Result;
1030}
1031
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001032SCEVHandle SCEVUnknown::get(Value *V) {
1033 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1034 return SCEVConstant::get(CI);
Chris Lattnerb3364092006-10-04 21:49:37 +00001035 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001036 if (Result == 0) Result = new SCEVUnknown(V);
1037 return Result;
1038}
1039
Chris Lattner53e677a2004-04-02 20:23:17 +00001040
1041//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00001042// ScalarEvolutionsImpl Definition and Implementation
1043//===----------------------------------------------------------------------===//
1044//
1045/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1046/// evolution code.
1047///
1048namespace {
Chris Lattner95255282006-06-28 23:17:24 +00001049 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
Chris Lattner53e677a2004-04-02 20:23:17 +00001050 /// F - The function we are analyzing.
1051 ///
1052 Function &F;
1053
1054 /// LI - The loop information for the function we are currently analyzing.
1055 ///
1056 LoopInfo &LI;
1057
1058 /// UnknownValue - This SCEV is used to represent unknown trip counts and
1059 /// things.
1060 SCEVHandle UnknownValue;
1061
1062 /// Scalars - This is a cache of the scalars we have analyzed so far.
1063 ///
1064 std::map<Value*, SCEVHandle> Scalars;
1065
1066 /// IterationCounts - Cache the iteration count of the loops for this
1067 /// function as they are computed.
1068 std::map<const Loop*, SCEVHandle> IterationCounts;
1069
Chris Lattner3221ad02004-04-17 22:58:41 +00001070 /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1071 /// the PHI instructions that we attempt to compute constant evolutions for.
1072 /// This allows us to avoid potentially expensive recomputation of these
1073 /// properties. An instruction maps to null if we are unable to compute its
1074 /// exit value.
1075 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001076
Chris Lattner53e677a2004-04-02 20:23:17 +00001077 public:
1078 ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1079 : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1080
1081 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1082 /// expression and create a new one.
1083 SCEVHandle getSCEV(Value *V);
1084
Chris Lattnera0740fb2005-08-09 23:36:33 +00001085 /// hasSCEV - Return true if the SCEV for this value has already been
1086 /// computed.
1087 bool hasSCEV(Value *V) const {
1088 return Scalars.count(V);
1089 }
1090
1091 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1092 /// the specified value.
1093 void setSCEV(Value *V, const SCEVHandle &H) {
1094 bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1095 assert(isNew && "This entry already existed!");
1096 }
1097
1098
Chris Lattner53e677a2004-04-02 20:23:17 +00001099 /// getSCEVAtScope - Compute the value of the specified expression within
1100 /// the indicated loop (which may be null to indicate in no loop). If the
1101 /// expression cannot be evaluated, return UnknownValue itself.
1102 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1103
1104
1105 /// hasLoopInvariantIterationCount - Return true if the specified loop has
1106 /// an analyzable loop-invariant iteration count.
1107 bool hasLoopInvariantIterationCount(const Loop *L);
1108
1109 /// getIterationCount - If the specified loop has a predictable iteration
1110 /// count, return it. Note that it is not valid to call this method on a
1111 /// loop without a loop-invariant iteration count.
1112 SCEVHandle getIterationCount(const Loop *L);
1113
1114 /// deleteInstructionFromRecords - This method should be called by the
1115 /// client before it removes an instruction from the program, to make sure
1116 /// that no dangling references are left around.
1117 void deleteInstructionFromRecords(Instruction *I);
1118
1119 private:
1120 /// createSCEV - We know that there is no SCEV for the specified value.
1121 /// Analyze the expression.
1122 SCEVHandle createSCEV(Value *V);
Chris Lattner53e677a2004-04-02 20:23:17 +00001123
1124 /// createNodeForPHI - Provide the special handling we need to analyze PHI
1125 /// SCEVs.
1126 SCEVHandle createNodeForPHI(PHINode *PN);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001127
1128 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1129 /// for the specified instruction and replaces any references to the
1130 /// symbolic value SymName with the specified value. This is used during
1131 /// PHI resolution.
1132 void ReplaceSymbolicValueWithConcrete(Instruction *I,
1133 const SCEVHandle &SymName,
1134 const SCEVHandle &NewVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00001135
1136 /// ComputeIterationCount - Compute the number of times the specified loop
1137 /// will iterate.
1138 SCEVHandle ComputeIterationCount(const Loop *L);
1139
Chris Lattner673e02b2004-10-12 01:49:27 +00001140 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1141 /// 'setcc load X, cst', try to se if we can compute the trip count.
1142 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1143 Constant *RHS,
1144 const Loop *L,
Reid Spencere4d87aa2006-12-23 06:05:41 +00001145 ICmpInst::Predicate p);
Chris Lattner673e02b2004-10-12 01:49:27 +00001146
Chris Lattner7980fb92004-04-17 18:36:24 +00001147 /// ComputeIterationCountExhaustively - If the trip is known to execute a
1148 /// constant number of times (the condition evolves only from constants),
1149 /// try to evaluate a few iterations of the loop until we get the exit
1150 /// condition gets a value of ExitWhen (true or false). If we cannot
1151 /// evaluate the trip count of the loop, return UnknownValue.
1152 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1153 bool ExitWhen);
1154
Chris Lattner53e677a2004-04-02 20:23:17 +00001155 /// HowFarToZero - Return the number of times a backedge comparing the
1156 /// specified value to zero will execute. If not computable, return
Chris Lattnerdb25de42005-08-15 23:33:51 +00001157 /// UnknownValue.
Chris Lattner53e677a2004-04-02 20:23:17 +00001158 SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1159
1160 /// HowFarToNonZero - Return the number of times a backedge checking the
1161 /// specified value for nonzero will execute. If not computable, return
Chris Lattnerdb25de42005-08-15 23:33:51 +00001162 /// UnknownValue.
Chris Lattner53e677a2004-04-02 20:23:17 +00001163 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
Chris Lattner3221ad02004-04-17 22:58:41 +00001164
Chris Lattnerdb25de42005-08-15 23:33:51 +00001165 /// HowManyLessThans - Return the number of times a backedge containing the
1166 /// specified less-than comparison will execute. If not computable, return
1167 /// UnknownValue.
1168 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1169
Chris Lattner3221ad02004-04-17 22:58:41 +00001170 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1171 /// in the header of its containing loop, we know the loop executes a
1172 /// constant number of times, and the PHI node is just a recurrence
1173 /// involving constants, fold it.
1174 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1175 const Loop *L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001176 };
1177}
1178
1179//===----------------------------------------------------------------------===//
1180// Basic SCEV Analysis and PHI Idiom Recognition Code
1181//
1182
1183/// deleteInstructionFromRecords - This method should be called by the
1184/// client before it removes an instruction from the program, to make sure
1185/// that no dangling references are left around.
1186void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1187 Scalars.erase(I);
Chris Lattner3221ad02004-04-17 22:58:41 +00001188 if (PHINode *PN = dyn_cast<PHINode>(I))
1189 ConstantEvolutionLoopExitValue.erase(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00001190}
1191
1192
1193/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1194/// expression and create a new one.
1195SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1196 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1197
1198 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1199 if (I != Scalars.end()) return I->second;
1200 SCEVHandle S = createSCEV(V);
1201 Scalars.insert(std::make_pair(V, S));
1202 return S;
1203}
1204
Chris Lattner4dc534c2005-02-13 04:37:18 +00001205/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1206/// the specified instruction and replaces any references to the symbolic value
1207/// SymName with the specified value. This is used during PHI resolution.
1208void ScalarEvolutionsImpl::
1209ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1210 const SCEVHandle &NewVal) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001211 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001212 if (SI == Scalars.end()) return;
Chris Lattner53e677a2004-04-02 20:23:17 +00001213
Chris Lattner4dc534c2005-02-13 04:37:18 +00001214 SCEVHandle NV =
1215 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1216 if (NV == SI->second) return; // No change.
1217
1218 SI->second = NV; // Update the scalars map!
1219
1220 // Any instruction values that use this instruction might also need to be
1221 // updated!
1222 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1223 UI != E; ++UI)
1224 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1225}
Chris Lattner53e677a2004-04-02 20:23:17 +00001226
1227/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1228/// a loop header, making it a potential recurrence, or it doesn't.
1229///
1230SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1231 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1232 if (const Loop *L = LI.getLoopFor(PN->getParent()))
1233 if (L->getHeader() == PN->getParent()) {
1234 // If it lives in the loop header, it has two incoming values, one
1235 // from outside the loop, and one from inside.
1236 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1237 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001238
Chris Lattner53e677a2004-04-02 20:23:17 +00001239 // While we are analyzing this PHI node, handle its value symbolically.
1240 SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1241 assert(Scalars.find(PN) == Scalars.end() &&
1242 "PHI node already processed?");
1243 Scalars.insert(std::make_pair(PN, SymbolicName));
1244
1245 // Using this symbolic name for the PHI, analyze the value coming around
1246 // the back-edge.
1247 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1248
1249 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1250 // has a special value for the first iteration of the loop.
1251
1252 // If the value coming around the backedge is an add with the symbolic
1253 // value we just inserted, then we found a simple induction variable!
1254 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1255 // If there is a single occurrence of the symbolic value, replace it
1256 // with a recurrence.
1257 unsigned FoundIndex = Add->getNumOperands();
1258 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1259 if (Add->getOperand(i) == SymbolicName)
1260 if (FoundIndex == e) {
1261 FoundIndex = i;
1262 break;
1263 }
1264
1265 if (FoundIndex != Add->getNumOperands()) {
1266 // Create an add with everything but the specified operand.
1267 std::vector<SCEVHandle> Ops;
1268 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1269 if (i != FoundIndex)
1270 Ops.push_back(Add->getOperand(i));
1271 SCEVHandle Accum = SCEVAddExpr::get(Ops);
1272
1273 // This is not a valid addrec if the step amount is varying each
1274 // loop iteration, but is not itself an addrec in this loop.
1275 if (Accum->isLoopInvariant(L) ||
1276 (isa<SCEVAddRecExpr>(Accum) &&
1277 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1278 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1279 SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L);
1280
1281 // Okay, for the entire analysis of this edge we assumed the PHI
1282 // to be symbolic. We now need to go back and update all of the
1283 // entries for the scalars that use the PHI (except for the PHI
1284 // itself) to use the new analyzed value instead of the "symbolic"
1285 // value.
Chris Lattner4dc534c2005-02-13 04:37:18 +00001286 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001287 return PHISCEV;
1288 }
1289 }
Chris Lattner97156e72006-04-26 18:34:07 +00001290 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1291 // Otherwise, this could be a loop like this:
1292 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1293 // In this case, j = {1,+,1} and BEValue is j.
1294 // Because the other in-value of i (0) fits the evolution of BEValue
1295 // i really is an addrec evolution.
1296 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1297 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1298
1299 // If StartVal = j.start - j.stride, we can use StartVal as the
1300 // initial step of the addrec evolution.
1301 if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1302 AddRec->getOperand(1))) {
1303 SCEVHandle PHISCEV =
1304 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1305
1306 // Okay, for the entire analysis of this edge we assumed the PHI
1307 // to be symbolic. We now need to go back and update all of the
1308 // entries for the scalars that use the PHI (except for the PHI
1309 // itself) to use the new analyzed value instead of the "symbolic"
1310 // value.
1311 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1312 return PHISCEV;
1313 }
1314 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001315 }
1316
1317 return SymbolicName;
1318 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001319
Chris Lattner53e677a2004-04-02 20:23:17 +00001320 // If it's not a loop phi, we can't handle it yet.
1321 return SCEVUnknown::get(PN);
1322}
1323
Chris Lattnera17f0392006-12-12 02:26:09 +00001324/// GetConstantFactor - Determine the largest constant factor that S has. For
1325/// example, turn {4,+,8} -> 4. (S umod result) should always equal zero.
1326static uint64_t GetConstantFactor(SCEVHandle S) {
1327 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
1328 if (uint64_t V = C->getValue()->getZExtValue())
1329 return V;
1330 else // Zero is a multiple of everything.
1331 return 1ULL << (S->getType()->getPrimitiveSizeInBits()-1);
1332 }
1333
1334 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1335 return GetConstantFactor(T->getOperand()) &
1336 T->getType()->getIntegralTypeMask();
1337 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
1338 return GetConstantFactor(E->getOperand());
1339
1340 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1341 // The result is the min of all operands.
1342 uint64_t Res = GetConstantFactor(A->getOperand(0));
1343 for (unsigned i = 1, e = A->getNumOperands(); i != e && Res > 1; ++i)
1344 Res = std::min(Res, GetConstantFactor(A->getOperand(i)));
1345 return Res;
1346 }
1347
1348 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1349 // The result is the product of all the operands.
1350 uint64_t Res = GetConstantFactor(M->getOperand(0));
1351 for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i)
1352 Res *= GetConstantFactor(M->getOperand(i));
1353 return Res;
1354 }
1355
1356 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Chris Lattner75de5ab2006-12-19 01:16:02 +00001357 // For now, we just handle linear expressions.
1358 if (A->getNumOperands() == 2) {
1359 // We want the GCD between the start and the stride value.
1360 uint64_t Start = GetConstantFactor(A->getOperand(0));
1361 if (Start == 1) return 1;
1362 uint64_t Stride = GetConstantFactor(A->getOperand(1));
1363 return GreatestCommonDivisor64(Start, Stride);
1364 }
Chris Lattnera17f0392006-12-12 02:26:09 +00001365 }
1366
1367 // SCEVSDivExpr, SCEVUnknown.
1368 return 1;
1369}
Chris Lattner53e677a2004-04-02 20:23:17 +00001370
1371/// createSCEV - We know that there is no SCEV for the specified value.
1372/// Analyze the expression.
1373///
1374SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1375 if (Instruction *I = dyn_cast<Instruction>(V)) {
1376 switch (I->getOpcode()) {
1377 case Instruction::Add:
1378 return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1379 getSCEV(I->getOperand(1)));
1380 case Instruction::Mul:
1381 return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1382 getSCEV(I->getOperand(1)));
Reid Spencer1628cec2006-10-26 06:15:43 +00001383 case Instruction::SDiv:
1384 return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1385 getSCEV(I->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001386 break;
1387
1388 case Instruction::Sub:
Chris Lattnerbac5b462005-03-09 05:34:41 +00001389 return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1390 getSCEV(I->getOperand(1)));
Chris Lattnera17f0392006-12-12 02:26:09 +00001391 case Instruction::Or:
1392 // If the RHS of the Or is a constant, we may have something like:
1393 // X*4+1 which got turned into X*4|1. Handle this as an add so loop
1394 // optimizations will transparently handle this case.
1395 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1396 SCEVHandle LHS = getSCEV(I->getOperand(0));
1397 uint64_t CommonFact = GetConstantFactor(LHS);
1398 assert(CommonFact && "Common factor should at least be 1!");
1399 if (CommonFact > CI->getZExtValue()) {
1400 // If the LHS is a multiple that is larger than the RHS, use +.
1401 return SCEVAddExpr::get(LHS,
1402 getSCEV(I->getOperand(1)));
1403 }
1404 }
1405 break;
1406
Chris Lattner53e677a2004-04-02 20:23:17 +00001407 case Instruction::Shl:
1408 // Turn shift left of a constant amount into a multiply.
1409 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1410 Constant *X = ConstantInt::get(V->getType(), 1);
1411 X = ConstantExpr::getShl(X, SA);
1412 return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1413 }
1414 break;
1415
Reid Spencer3da59db2006-11-27 01:05:10 +00001416 case Instruction::Trunc:
Chris Lattner82e8a8f2006-12-11 00:12:31 +00001417 // We don't handle trunc to bool yet.
1418 if (I->getType()->isInteger())
Reid Spencerc5b206b2006-12-31 05:48:39 +00001419 return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType());
Reid Spencer3da59db2006-11-27 01:05:10 +00001420 break;
1421
1422 case Instruction::ZExt:
Chris Lattner82e8a8f2006-12-11 00:12:31 +00001423 // We don't handle zext from bool yet.
1424 if (I->getOperand(0)->getType()->isInteger())
Reid Spencerc5b206b2006-12-31 05:48:39 +00001425 return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
Reid Spencer3da59db2006-11-27 01:05:10 +00001426 break;
1427
1428 case Instruction::BitCast:
1429 // BitCasts are no-op casts so we just eliminate the cast.
Chris Lattner82e8a8f2006-12-11 00:12:31 +00001430 if (I->getType()->isInteger() && I->getOperand(0)->getType()->isInteger())
1431 return getSCEV(I->getOperand(0));
1432 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001433
1434 case Instruction::PHI:
1435 return createNodeForPHI(cast<PHINode>(I));
1436
1437 default: // We cannot analyze this expression.
1438 break;
1439 }
1440 }
1441
1442 return SCEVUnknown::get(V);
1443}
1444
1445
1446
1447//===----------------------------------------------------------------------===//
1448// Iteration Count Computation Code
1449//
1450
1451/// getIterationCount - If the specified loop has a predictable iteration
1452/// count, return it. Note that it is not valid to call this method on a
1453/// loop without a loop-invariant iteration count.
1454SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1455 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1456 if (I == IterationCounts.end()) {
1457 SCEVHandle ItCount = ComputeIterationCount(L);
1458 I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1459 if (ItCount != UnknownValue) {
1460 assert(ItCount->isLoopInvariant(L) &&
1461 "Computed trip count isn't loop invariant for loop!");
1462 ++NumTripCountsComputed;
1463 } else if (isa<PHINode>(L->getHeader()->begin())) {
1464 // Only count loops that have phi nodes as not being computable.
1465 ++NumTripCountsNotComputed;
1466 }
1467 }
1468 return I->second;
1469}
1470
1471/// ComputeIterationCount - Compute the number of times the specified loop
1472/// will iterate.
1473SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1474 // If the loop has a non-one exit block count, we can't analyze it.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001475 std::vector<BasicBlock*> ExitBlocks;
1476 L->getExitBlocks(ExitBlocks);
1477 if (ExitBlocks.size() != 1) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001478
1479 // Okay, there is one exit block. Try to find the condition that causes the
1480 // loop to be exited.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00001481 BasicBlock *ExitBlock = ExitBlocks[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001482
1483 BasicBlock *ExitingBlock = 0;
1484 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1485 PI != E; ++PI)
1486 if (L->contains(*PI)) {
1487 if (ExitingBlock == 0)
1488 ExitingBlock = *PI;
1489 else
1490 return UnknownValue; // More than one block exiting!
1491 }
1492 assert(ExitingBlock && "No exits from loop, something is broken!");
1493
1494 // Okay, we've computed the exiting block. See what condition causes us to
1495 // exit.
1496 //
1497 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1499 if (ExitBr == 0) return UnknownValue;
1500 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Chris Lattner8b0e3602007-01-07 02:24:26 +00001501
1502 // At this point, we know we have a conditional branch that determines whether
1503 // the loop is exited. However, we don't know if the branch is executed each
1504 // time through the loop. If not, then the execution count of the branch will
1505 // not be equal to the trip count of the loop.
1506 //
1507 // Currently we check for this by checking to see if the Exit branch goes to
1508 // the loop header. If so, we know it will always execute the same number of
1509 // times as the loop. More extensive analysis could be done to handle more
1510 // cases here.
1511 if (ExitBr->getSuccessor(0) != L->getHeader() &&
1512 ExitBr->getSuccessor(1) != L->getHeader())
1513 return UnknownValue;
1514
Reid Spencere4d87aa2006-12-23 06:05:41 +00001515 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1516
1517 // If its not an integer comparison then compute it the hard way.
1518 // Note that ICmpInst deals with pointer comparisons too so we must check
1519 // the type of the operand.
Chris Lattner8b0e3602007-01-07 02:24:26 +00001520 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
Chris Lattner7980fb92004-04-17 18:36:24 +00001521 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1522 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner53e677a2004-04-02 20:23:17 +00001523
Reid Spencere4d87aa2006-12-23 06:05:41 +00001524 // If the condition was exit on true, convert the condition to exit on false
1525 ICmpInst::Predicate Cond;
Chris Lattner673e02b2004-10-12 01:49:27 +00001526 if (ExitBr->getSuccessor(1) == ExitBlock)
Reid Spencere4d87aa2006-12-23 06:05:41 +00001527 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00001528 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00001529 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00001530
1531 // Handle common loops like: for (X = "string"; *X; ++X)
1532 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1533 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1534 SCEVHandle ItCnt =
1535 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1536 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1537 }
1538
Chris Lattner53e677a2004-04-02 20:23:17 +00001539 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1540 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1541
1542 // Try to evaluate any dependencies out of the loop.
1543 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1544 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1545 Tmp = getSCEVAtScope(RHS, L);
1546 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1547
Reid Spencere4d87aa2006-12-23 06:05:41 +00001548 // At this point, we would like to compute how many iterations of the
1549 // loop the predicate will return true for these inputs.
Chris Lattner53e677a2004-04-02 20:23:17 +00001550 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1551 // If there is a constant, force it into the RHS.
1552 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001553 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00001554 }
1555
1556 // FIXME: think about handling pointer comparisons! i.e.:
1557 // while (P != P+100) ++P;
1558
1559 // If we have a comparison of a chrec against a constant, try to use value
1560 // ranges to answer this query.
1561 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1562 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1563 if (AddRec->getLoop() == L) {
1564 // Form the comparison range using the constant of the correct type so
1565 // that the ConstantRange class knows to do a signed or unsigned
1566 // comparison.
1567 ConstantInt *CompVal = RHSC->getValue();
1568 const Type *RealTy = ExitCond->getOperand(0)->getType();
Reid Spencer4da49122006-12-12 05:05:00 +00001569 CompVal = dyn_cast<ConstantInt>(
Reid Spencerb6ba3e62006-12-12 09:17:50 +00001570 ConstantExpr::getBitCast(CompVal, RealTy));
Chris Lattner53e677a2004-04-02 20:23:17 +00001571 if (CompVal) {
1572 // Form the constant range.
1573 ConstantRange CompRange(Cond, CompVal);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001574
Reid Spencere4d87aa2006-12-23 06:05:41 +00001575 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange,
Reid Spencerc5b206b2006-12-31 05:48:39 +00001576 false /*Always treat as unsigned range*/);
Chris Lattner53e677a2004-04-02 20:23:17 +00001577 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1578 }
1579 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001580
Chris Lattner53e677a2004-04-02 20:23:17 +00001581 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00001582 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00001583 // Convert to: while (X-Y != 0)
Reid Spencere4d87aa2006-12-23 06:05:41 +00001584 SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1585 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00001586 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001587 }
1588 case ICmpInst::ICMP_EQ: {
Chris Lattner53e677a2004-04-02 20:23:17 +00001589 // Convert to: while (X-Y == 0) // while (X == Y)
Reid Spencere4d87aa2006-12-23 06:05:41 +00001590 SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1591 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00001592 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001593 }
1594 case ICmpInst::ICMP_SLT: {
1595 SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1596 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattnerdb25de42005-08-15 23:33:51 +00001597 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001598 }
1599 case ICmpInst::ICMP_SGT: {
1600 SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1601 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattnerdb25de42005-08-15 23:33:51 +00001602 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001603 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001604 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001605#if 0
Bill Wendlinge8156192006-12-07 01:30:32 +00001606 cerr << "ComputeIterationCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00001607 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Bill Wendlinge8156192006-12-07 01:30:32 +00001608 cerr << "[unsigned] ";
1609 cerr << *LHS << " "
Reid Spencere4d87aa2006-12-23 06:05:41 +00001610 << Instruction::getOpcodeName(Instruction::ICmp)
1611 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00001612#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00001613 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00001614 }
Chris Lattner7980fb92004-04-17 18:36:24 +00001615 return ComputeIterationCountExhaustively(L, ExitCond,
Reid Spencere4d87aa2006-12-23 06:05:41 +00001616 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner7980fb92004-04-17 18:36:24 +00001617}
1618
Chris Lattner673e02b2004-10-12 01:49:27 +00001619static ConstantInt *
1620EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1621 SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1622 SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1623 assert(isa<SCEVConstant>(Val) &&
1624 "Evaluation of SCEV at constant didn't fold correctly?");
1625 return cast<SCEVConstant>(Val)->getValue();
1626}
1627
1628/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1629/// and a GEP expression (missing the pointer index) indexing into it, return
1630/// the addressed element of the initializer or null if the index expression is
1631/// invalid.
1632static Constant *
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001633GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00001634 const std::vector<ConstantInt*> &Indices) {
1635 Constant *Init = GV->getInitializer();
1636 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00001637 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00001638 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1639 assert(Idx < CS->getNumOperands() && "Bad struct index!");
1640 Init = cast<Constant>(CS->getOperand(Idx));
1641 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1642 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
1643 Init = cast<Constant>(CA->getOperand(Idx));
1644 } else if (isa<ConstantAggregateZero>(Init)) {
1645 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1646 assert(Idx < STy->getNumElements() && "Bad struct index!");
1647 Init = Constant::getNullValue(STy->getElementType(Idx));
1648 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1649 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
1650 Init = Constant::getNullValue(ATy->getElementType());
1651 } else {
1652 assert(0 && "Unknown constant aggregate type!");
1653 }
1654 return 0;
1655 } else {
1656 return 0; // Unknown initializer type
1657 }
1658 }
1659 return Init;
1660}
1661
1662/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1663/// 'setcc load X, cst', try to se if we can compute the trip count.
1664SCEVHandle ScalarEvolutionsImpl::
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001665ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
Reid Spencere4d87aa2006-12-23 06:05:41 +00001666 const Loop *L,
1667 ICmpInst::Predicate predicate) {
Chris Lattner673e02b2004-10-12 01:49:27 +00001668 if (LI->isVolatile()) return UnknownValue;
1669
1670 // Check to see if the loaded pointer is a getelementptr of a global.
1671 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1672 if (!GEP) return UnknownValue;
1673
1674 // Make sure that it is really a constant global we are gepping, with an
1675 // initializer, and make sure the first IDX is really 0.
1676 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1677 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1678 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1679 !cast<Constant>(GEP->getOperand(1))->isNullValue())
1680 return UnknownValue;
1681
1682 // Okay, we allow one non-constant index into the GEP instruction.
1683 Value *VarIdx = 0;
1684 std::vector<ConstantInt*> Indexes;
1685 unsigned VarIdxNum = 0;
1686 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1687 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1688 Indexes.push_back(CI);
1689 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1690 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
1691 VarIdx = GEP->getOperand(i);
1692 VarIdxNum = i-2;
1693 Indexes.push_back(0);
1694 }
1695
1696 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1697 // Check to see if X is a loop variant variable value now.
1698 SCEVHandle Idx = getSCEV(VarIdx);
1699 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1700 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1701
1702 // We can only recognize very limited forms of loop index expressions, in
1703 // particular, only affine AddRec's like {C1,+,C2}.
1704 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1705 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1706 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1707 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1708 return UnknownValue;
1709
1710 unsigned MaxSteps = MaxBruteForceIterations;
1711 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Reid Spencerb83eb642006-10-20 07:07:24 +00001712 ConstantInt *ItCst =
Reid Spencerc5b206b2006-12-31 05:48:39 +00001713 ConstantInt::get(IdxExpr->getType(), IterationNum);
Chris Lattner673e02b2004-10-12 01:49:27 +00001714 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1715
1716 // Form the GEP offset.
1717 Indexes[VarIdxNum] = Val;
1718
1719 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1720 if (Result == 0) break; // Cannot compute!
1721
1722 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00001723 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001724 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer579dca12007-01-12 04:24:46 +00001725 if (cast<ConstantInt>(Result)->getZExtValue() == false) {
Chris Lattner673e02b2004-10-12 01:49:27 +00001726#if 0
Bill Wendlinge8156192006-12-07 01:30:32 +00001727 cerr << "\n***\n*** Computed loop count " << *ItCst
1728 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1729 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00001730#endif
1731 ++NumArrayLenItCounts;
1732 return SCEVConstant::get(ItCst); // Found terminating iteration!
1733 }
1734 }
1735 return UnknownValue;
1736}
1737
1738
Chris Lattner3221ad02004-04-17 22:58:41 +00001739/// CanConstantFold - Return true if we can constant fold an instruction of the
1740/// specified type, assuming that all operands were constants.
1741static bool CanConstantFold(const Instruction *I) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00001742 if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00001743 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1744 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001745
Chris Lattner3221ad02004-04-17 22:58:41 +00001746 if (const CallInst *CI = dyn_cast<CallInst>(I))
1747 if (const Function *F = CI->getCalledFunction())
1748 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast
1749 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00001750}
1751
Chris Lattner3221ad02004-04-17 22:58:41 +00001752/// ConstantFold - Constant fold an instruction of the specified type with the
1753/// specified constant operands. This function may modify the operands vector.
1754static Constant *ConstantFold(const Instruction *I,
1755 std::vector<Constant*> &Operands) {
Chris Lattner7980fb92004-04-17 18:36:24 +00001756 if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
1757 return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
1758
Reid Spencer3da59db2006-11-27 01:05:10 +00001759 if (isa<CastInst>(I))
1760 return ConstantExpr::getCast(I->getOpcode(), Operands[0], I->getType());
1761
Chris Lattner7980fb92004-04-17 18:36:24 +00001762 switch (I->getOpcode()) {
Chris Lattner7980fb92004-04-17 18:36:24 +00001763 case Instruction::Select:
1764 return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
1765 case Instruction::Call:
Reid Spencere8404342004-07-18 00:18:30 +00001766 if (Function *GV = dyn_cast<Function>(Operands[0])) {
Chris Lattner7980fb92004-04-17 18:36:24 +00001767 Operands.erase(Operands.begin());
Reid Spencere8404342004-07-18 00:18:30 +00001768 return ConstantFoldCall(cast<Function>(GV), Operands);
Chris Lattner7980fb92004-04-17 18:36:24 +00001769 }
Chris Lattner7980fb92004-04-17 18:36:24 +00001770 return 0;
Reid Spencere4d87aa2006-12-23 06:05:41 +00001771 case Instruction::GetElementPtr: {
Chris Lattner7980fb92004-04-17 18:36:24 +00001772 Constant *Base = Operands[0];
1773 Operands.erase(Operands.begin());
1774 return ConstantExpr::getGetElementPtr(Base, Operands);
1775 }
Reid Spencere4d87aa2006-12-23 06:05:41 +00001776 case Instruction::ICmp:
1777 return ConstantExpr::getICmp(
1778 cast<ICmpInst>(I)->getPredicate(), Operands[0], Operands[1]);
1779 case Instruction::FCmp:
1780 return ConstantExpr::getFCmp(
1781 cast<FCmpInst>(I)->getPredicate(), Operands[0], Operands[1]);
1782 }
Chris Lattner7980fb92004-04-17 18:36:24 +00001783 return 0;
1784}
1785
1786
Chris Lattner3221ad02004-04-17 22:58:41 +00001787/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1788/// in the loop that V is derived from. We allow arbitrary operations along the
1789/// way, but the operands of an operation must either be constants or a value
1790/// derived from a constant PHI. If this expression does not fit with these
1791/// constraints, return null.
1792static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1793 // If this is not an instruction, or if this is an instruction outside of the
1794 // loop, it can't be derived from a loop PHI.
1795 Instruction *I = dyn_cast<Instruction>(V);
1796 if (I == 0 || !L->contains(I->getParent())) return 0;
1797
1798 if (PHINode *PN = dyn_cast<PHINode>(I))
1799 if (L->getHeader() == I->getParent())
1800 return PN;
1801 else
1802 // We don't currently keep track of the control flow needed to evaluate
1803 // PHIs, so we cannot handle PHIs inside of loops.
1804 return 0;
1805
1806 // If we won't be able to constant fold this expression even if the operands
1807 // are constants, return early.
1808 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001809
Chris Lattner3221ad02004-04-17 22:58:41 +00001810 // Otherwise, we can evaluate this instruction if all of its operands are
1811 // constant or derived from a PHI node themselves.
1812 PHINode *PHI = 0;
1813 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1814 if (!(isa<Constant>(I->getOperand(Op)) ||
1815 isa<GlobalValue>(I->getOperand(Op)))) {
1816 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1817 if (P == 0) return 0; // Not evolving from PHI
1818 if (PHI == 0)
1819 PHI = P;
1820 else if (PHI != P)
1821 return 0; // Evolving from multiple different PHIs.
1822 }
1823
1824 // This is a expression evolving from a constant PHI!
1825 return PHI;
1826}
1827
1828/// EvaluateExpression - Given an expression that passes the
1829/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1830/// in the loop has the value PHIVal. If we can't fold this expression for some
1831/// reason, return null.
1832static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1833 if (isa<PHINode>(V)) return PHIVal;
Chris Lattner3221ad02004-04-17 22:58:41 +00001834 if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
Reid Spencere8404342004-07-18 00:18:30 +00001835 return GV;
1836 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00001837 Instruction *I = cast<Instruction>(V);
1838
1839 std::vector<Constant*> Operands;
1840 Operands.resize(I->getNumOperands());
1841
1842 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1843 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1844 if (Operands[i] == 0) return 0;
1845 }
1846
1847 return ConstantFold(I, Operands);
1848}
1849
1850/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1851/// in the header of its containing loop, we know the loop executes a
1852/// constant number of times, and the PHI node is just a recurrence
1853/// involving constants, fold it.
1854Constant *ScalarEvolutionsImpl::
1855getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1856 std::map<PHINode*, Constant*>::iterator I =
1857 ConstantEvolutionLoopExitValue.find(PN);
1858 if (I != ConstantEvolutionLoopExitValue.end())
1859 return I->second;
1860
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001861 if (Its > MaxBruteForceIterations)
Chris Lattner3221ad02004-04-17 22:58:41 +00001862 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
1863
1864 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1865
1866 // Since the loop is canonicalized, the PHI node must have two entries. One
1867 // entry must be a constant (coming in from outside of the loop), and the
1868 // second must be derived from the same PHI.
1869 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1870 Constant *StartCST =
1871 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1872 if (StartCST == 0)
1873 return RetVal = 0; // Must be a constant.
1874
1875 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1876 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1877 if (PN2 != PN)
1878 return RetVal = 0; // Not derived from same PHI.
1879
1880 // Execute the loop symbolically to determine the exit value.
1881 unsigned IterationNum = 0;
1882 unsigned NumIterations = Its;
1883 if (NumIterations != Its)
1884 return RetVal = 0; // More than 2^32 iterations??
1885
1886 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1887 if (IterationNum == NumIterations)
1888 return RetVal = PHIVal; // Got exit value!
1889
1890 // Compute the value of the PHI node for the next iteration.
1891 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1892 if (NextPHI == PHIVal)
1893 return RetVal = NextPHI; // Stopped evolving!
1894 if (NextPHI == 0)
1895 return 0; // Couldn't evaluate!
1896 PHIVal = NextPHI;
1897 }
1898}
1899
Chris Lattner7980fb92004-04-17 18:36:24 +00001900/// ComputeIterationCountExhaustively - If the trip is known to execute a
1901/// constant number of times (the condition evolves only from constants),
1902/// try to evaluate a few iterations of the loop until we get the exit
1903/// condition gets a value of ExitWhen (true or false). If we cannot
1904/// evaluate the trip count of the loop, return UnknownValue.
1905SCEVHandle ScalarEvolutionsImpl::
1906ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1907 PHINode *PN = getConstantEvolvingPHI(Cond, L);
1908 if (PN == 0) return UnknownValue;
1909
1910 // Since the loop is canonicalized, the PHI node must have two entries. One
1911 // entry must be a constant (coming in from outside of the loop), and the
1912 // second must be derived from the same PHI.
1913 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1914 Constant *StartCST =
1915 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1916 if (StartCST == 0) return UnknownValue; // Must be a constant.
1917
1918 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1919 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1920 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
1921
1922 // Okay, we find a PHI node that defines the trip count of this loop. Execute
1923 // the loop symbolically to determine when the condition gets a value of
1924 // "ExitWhen".
1925 unsigned IterationNum = 0;
1926 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
1927 for (Constant *PHIVal = StartCST;
1928 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001929 ConstantInt *CondVal =
1930 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
Chris Lattner3221ad02004-04-17 22:58:41 +00001931
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001932 // Couldn't symbolically evaluate.
Reid Spencer4fe16d62007-01-11 18:21:29 +00001933 if (!CondVal || CondVal->getType() != Type::Int1Ty) return UnknownValue;
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001934
Reid Spencer579dca12007-01-12 04:24:46 +00001935 if (CondVal->getZExtValue() == ExitWhen) {
Chris Lattner3221ad02004-04-17 22:58:41 +00001936 ConstantEvolutionLoopExitValue[PN] = PHIVal;
Chris Lattner7980fb92004-04-17 18:36:24 +00001937 ++NumBruteForceTripCountsComputed;
Reid Spencerc5b206b2006-12-31 05:48:39 +00001938 return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
Chris Lattner7980fb92004-04-17 18:36:24 +00001939 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001940
Chris Lattner3221ad02004-04-17 22:58:41 +00001941 // Compute the value of the PHI node for the next iteration.
1942 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1943 if (NextPHI == 0 || NextPHI == PHIVal)
Chris Lattner7980fb92004-04-17 18:36:24 +00001944 return UnknownValue; // Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00001945 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00001946 }
1947
1948 // Too many iterations were needed to evaluate.
Chris Lattner53e677a2004-04-02 20:23:17 +00001949 return UnknownValue;
1950}
1951
1952/// getSCEVAtScope - Compute the value of the specified expression within the
1953/// indicated loop (which may be null to indicate in no loop). If the
1954/// expression cannot be evaluated, return UnknownValue.
1955SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1956 // FIXME: this should be turned into a virtual method on SCEV!
1957
Chris Lattner3221ad02004-04-17 22:58:41 +00001958 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001959
Chris Lattner3221ad02004-04-17 22:58:41 +00001960 // If this instruction is evolves from a constant-evolving PHI, compute the
1961 // exit value from the loop without using SCEVs.
1962 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1963 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1964 const Loop *LI = this->LI[I->getParent()];
1965 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
1966 if (PHINode *PN = dyn_cast<PHINode>(I))
1967 if (PN->getParent() == LI->getHeader()) {
1968 // Okay, there is no closed form solution for the PHI node. Check
1969 // to see if the loop that contains it has a known iteration count.
1970 // If so, we may be able to force computation of the exit value.
1971 SCEVHandle IterationCount = getIterationCount(LI);
1972 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1973 // Okay, we know how many times the containing loop executes. If
1974 // this is a constant evolving PHI node, get the final value at
1975 // the specified iteration number.
1976 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Reid Spencerb83eb642006-10-20 07:07:24 +00001977 ICC->getValue()->getZExtValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00001978 LI);
1979 if (RV) return SCEVUnknown::get(RV);
1980 }
1981 }
1982
Reid Spencer09906f32006-12-04 21:33:23 +00001983 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00001984 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00001985 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00001986 // result. This is particularly useful for computing loop exit values.
1987 if (CanConstantFold(I)) {
1988 std::vector<Constant*> Operands;
1989 Operands.reserve(I->getNumOperands());
1990 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1991 Value *Op = I->getOperand(i);
1992 if (Constant *C = dyn_cast<Constant>(Op)) {
1993 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00001994 } else {
1995 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1996 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
Reid Spencerd977d862006-12-12 23:36:14 +00001997 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
1998 Op->getType(),
1999 false));
Chris Lattner3221ad02004-04-17 22:58:41 +00002000 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2001 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
Reid Spencerd977d862006-12-12 23:36:14 +00002002 Operands.push_back(ConstantExpr::getIntegerCast(C,
2003 Op->getType(),
2004 false));
Chris Lattner3221ad02004-04-17 22:58:41 +00002005 else
2006 return V;
2007 } else {
2008 return V;
2009 }
2010 }
2011 }
2012 return SCEVUnknown::get(ConstantFold(I, Operands));
2013 }
2014 }
2015
2016 // This is some other type of SCEVUnknown, just return it.
2017 return V;
2018 }
2019
Chris Lattner53e677a2004-04-02 20:23:17 +00002020 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2021 // Avoid performing the look-up in the common case where the specified
2022 // expression has no loop-variant portions.
2023 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2024 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2025 if (OpAtScope != Comm->getOperand(i)) {
2026 if (OpAtScope == UnknownValue) return UnknownValue;
2027 // Okay, at least one of these operands is loop variant but might be
2028 // foldable. Build a new instance of the folded commutative expression.
Chris Lattner3221ad02004-04-17 22:58:41 +00002029 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00002030 NewOps.push_back(OpAtScope);
2031
2032 for (++i; i != e; ++i) {
2033 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2034 if (OpAtScope == UnknownValue) return UnknownValue;
2035 NewOps.push_back(OpAtScope);
2036 }
2037 if (isa<SCEVAddExpr>(Comm))
2038 return SCEVAddExpr::get(NewOps);
2039 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
2040 return SCEVMulExpr::get(NewOps);
2041 }
2042 }
2043 // If we got here, all operands are loop invariant.
2044 return Comm;
2045 }
2046
Chris Lattner60a05cc2006-04-01 04:48:52 +00002047 if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2048 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002049 if (LHS == UnknownValue) return LHS;
Chris Lattner60a05cc2006-04-01 04:48:52 +00002050 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002051 if (RHS == UnknownValue) return RHS;
Chris Lattner60a05cc2006-04-01 04:48:52 +00002052 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2053 return Div; // must be loop invariant
2054 return SCEVSDivExpr::get(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00002055 }
2056
2057 // If this is a loop recurrence for a loop that does not contain L, then we
2058 // are dealing with the final value computed by the loop.
2059 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2060 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2061 // To evaluate this recurrence, we need to know how many times the AddRec
2062 // loop iterates. Compute this now.
2063 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2064 if (IterationCount == UnknownValue) return UnknownValue;
2065 IterationCount = getTruncateOrZeroExtend(IterationCount,
2066 AddRec->getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002067
Chris Lattner53e677a2004-04-02 20:23:17 +00002068 // If the value is affine, simplify the expression evaluation to just
2069 // Start + Step*IterationCount.
2070 if (AddRec->isAffine())
2071 return SCEVAddExpr::get(AddRec->getStart(),
2072 SCEVMulExpr::get(IterationCount,
2073 AddRec->getOperand(1)));
2074
2075 // Otherwise, evaluate it the hard way.
2076 return AddRec->evaluateAtIteration(IterationCount);
2077 }
2078 return UnknownValue;
2079 }
2080
2081 //assert(0 && "Unknown SCEV type!");
2082 return UnknownValue;
2083}
2084
2085
2086/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2087/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2088/// might be the same) or two SCEVCouldNotCompute objects.
2089///
2090static std::pair<SCEVHandle,SCEVHandle>
2091SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2092 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2093 SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2094 SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2095 SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002096
Chris Lattner53e677a2004-04-02 20:23:17 +00002097 // We currently can only solve this if the coefficients are constants.
2098 if (!L || !M || !N) {
2099 SCEV *CNC = new SCEVCouldNotCompute();
2100 return std::make_pair(CNC, CNC);
2101 }
2102
Reid Spencer1628cec2006-10-26 06:15:43 +00002103 Constant *C = L->getValue();
2104 Constant *Two = ConstantInt::get(C->getType(), 2);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002105
Chris Lattner53e677a2004-04-02 20:23:17 +00002106 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
Chris Lattner53e677a2004-04-02 20:23:17 +00002107 // The B coefficient is M-N/2
2108 Constant *B = ConstantExpr::getSub(M->getValue(),
Reid Spencer1628cec2006-10-26 06:15:43 +00002109 ConstantExpr::getSDiv(N->getValue(),
Chris Lattner53e677a2004-04-02 20:23:17 +00002110 Two));
2111 // The A coefficient is N/2
Reid Spencer1628cec2006-10-26 06:15:43 +00002112 Constant *A = ConstantExpr::getSDiv(N->getValue(), Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002113
Chris Lattner53e677a2004-04-02 20:23:17 +00002114 // Compute the B^2-4ac term.
2115 Constant *SqrtTerm =
2116 ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2117 ConstantExpr::getMul(A, C));
2118 SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2119
2120 // Compute floor(sqrt(B^2-4ac))
Reid Spencerc5b206b2006-12-31 05:48:39 +00002121 uint64_t SqrtValV = cast<ConstantInt>(SqrtTerm)->getZExtValue();
Chris Lattner219c1412004-10-25 18:40:08 +00002122 uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002123 // The square root might not be precise for arbitrary 64-bit integer
2124 // values. Do some sanity checks to ensure it's correct.
2125 if (SqrtValV2*SqrtValV2 > SqrtValV ||
2126 (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2127 SCEV *CNC = new SCEVCouldNotCompute();
2128 return std::make_pair(CNC, CNC);
2129 }
2130
Reid Spencerc5b206b2006-12-31 05:48:39 +00002131 ConstantInt *SqrtVal = ConstantInt::get(Type::Int64Ty, SqrtValV2);
Reid Spencerd977d862006-12-12 23:36:14 +00002132 SqrtTerm = ConstantExpr::getTruncOrBitCast(SqrtVal, SqrtTerm->getType());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002133
Chris Lattner53e677a2004-04-02 20:23:17 +00002134 Constant *NegB = ConstantExpr::getNeg(B);
2135 Constant *TwoA = ConstantExpr::getMul(A, Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002136
Chris Lattner53e677a2004-04-02 20:23:17 +00002137 // The divisions must be performed as signed divisions.
Chris Lattner53e677a2004-04-02 20:23:17 +00002138 Constant *Solution1 =
Reid Spencer1628cec2006-10-26 06:15:43 +00002139 ConstantExpr::getSDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
Chris Lattner53e677a2004-04-02 20:23:17 +00002140 Constant *Solution2 =
Reid Spencer1628cec2006-10-26 06:15:43 +00002141 ConstantExpr::getSDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
Chris Lattner53e677a2004-04-02 20:23:17 +00002142 return std::make_pair(SCEVUnknown::get(Solution1),
2143 SCEVUnknown::get(Solution2));
2144}
2145
2146/// HowFarToZero - Return the number of times a backedge comparing the specified
2147/// value to zero will execute. If not computable, return UnknownValue
2148SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2149 // If the value is a constant
2150 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2151 // If the value is already zero, the branch will execute zero times.
2152 if (C->getValue()->isNullValue()) return C;
2153 return UnknownValue; // Otherwise it will loop infinitely.
2154 }
2155
2156 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2157 if (!AddRec || AddRec->getLoop() != L)
2158 return UnknownValue;
2159
2160 if (AddRec->isAffine()) {
2161 // If this is an affine expression the execution count of this branch is
2162 // equal to:
2163 //
2164 // (0 - Start/Step) iff Start % Step == 0
2165 //
2166 // Get the initial value for the loop.
2167 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Chris Lattner4a2b23e2004-10-11 04:07:27 +00002168 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00002169 SCEVHandle Step = AddRec->getOperand(1);
2170
2171 Step = getSCEVAtScope(Step, L->getParentLoop());
2172
2173 // Figure out if Start % Step == 0.
2174 // FIXME: We should add DivExpr and RemExpr operations to our AST.
2175 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2176 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0
Chris Lattnerbac5b462005-03-09 05:34:41 +00002177 return SCEV::getNegativeSCEV(Start); // 0 - Start/1 == -Start
Chris Lattner53e677a2004-04-02 20:23:17 +00002178 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0
2179 return Start; // 0 - Start/-1 == Start
2180
2181 // Check to see if Start is divisible by SC with no remainder.
2182 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2183 ConstantInt *StartCC = StartC->getValue();
2184 Constant *StartNegC = ConstantExpr::getNeg(StartCC);
Reid Spencer0a783f72006-11-02 01:53:59 +00002185 Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
Chris Lattner53e677a2004-04-02 20:23:17 +00002186 if (Rem->isNullValue()) {
Reid Spencer1628cec2006-10-26 06:15:43 +00002187 Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
Chris Lattner53e677a2004-04-02 20:23:17 +00002188 return SCEVUnknown::get(Result);
2189 }
2190 }
2191 }
2192 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2193 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2194 // the quadratic equation to solve it.
2195 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2196 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2197 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2198 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002199#if 0
Bill Wendlinge8156192006-12-07 01:30:32 +00002200 cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2201 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002202#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002203 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002204 if (ConstantInt *CB =
2205 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00002206 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00002207 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00002208 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002209
Chris Lattner53e677a2004-04-02 20:23:17 +00002210 // We can only use this value if the chrec ends up with an exact zero
2211 // value at this index. When solving for "X*X != 5", for example, we
2212 // should not accept a root of 2.
2213 SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2214 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2215 if (EvalVal->getValue()->isNullValue())
2216 return R1; // We found a quadratic root!
2217 }
2218 }
2219 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002220
Chris Lattner53e677a2004-04-02 20:23:17 +00002221 return UnknownValue;
2222}
2223
2224/// HowFarToNonZero - Return the number of times a backedge checking the
2225/// specified value for nonzero will execute. If not computable, return
2226/// UnknownValue
2227SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2228 // Loops that look like: while (X == 0) are very strange indeed. We don't
2229 // handle them yet except for the trivial case. This could be expanded in the
2230 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002231
Chris Lattner53e677a2004-04-02 20:23:17 +00002232 // If the value is a constant, check to see if it is known to be non-zero
2233 // already. If so, the backedge will execute zero times.
2234 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2235 Constant *Zero = Constant::getNullValue(C->getValue()->getType());
Reid Spencere4d87aa2006-12-23 06:05:41 +00002236 Constant *NonZero =
2237 ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002238 if (NonZero == ConstantInt::getTrue())
Chris Lattner53e677a2004-04-02 20:23:17 +00002239 return getSCEV(Zero);
2240 return UnknownValue; // Otherwise it will loop infinitely.
2241 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002242
Chris Lattner53e677a2004-04-02 20:23:17 +00002243 // We could implement others, but I really doubt anyone writes loops like
2244 // this, and if they did, they would already be constant folded.
2245 return UnknownValue;
2246}
2247
Chris Lattnerdb25de42005-08-15 23:33:51 +00002248/// HowManyLessThans - Return the number of times a backedge containing the
2249/// specified less-than comparison will execute. If not computable, return
2250/// UnknownValue.
2251SCEVHandle ScalarEvolutionsImpl::
2252HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2253 // Only handle: "ADDREC < LoopInvariant".
2254 if (!RHS->isLoopInvariant(L)) return UnknownValue;
2255
2256 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2257 if (!AddRec || AddRec->getLoop() != L)
2258 return UnknownValue;
2259
2260 if (AddRec->isAffine()) {
2261 // FORNOW: We only support unit strides.
2262 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2263 if (AddRec->getOperand(1) != One)
2264 return UnknownValue;
2265
2266 // The number of iterations for "[n,+,1] < m", is m-n. However, we don't
2267 // know that m is >= n on input to the loop. If it is, the condition return
2268 // true zero times. What we really should return, for full generality, is
2269 // SMAX(0, m-n). Since we cannot check this, we will instead check for a
2270 // canonical loop form: most do-loops will have a check that dominates the
2271 // loop, that only enters the loop if [n-1]<m. If we can find this check,
2272 // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2273
2274 // Search for the check.
2275 BasicBlock *Preheader = L->getLoopPreheader();
2276 BasicBlock *PreheaderDest = L->getHeader();
2277 if (Preheader == 0) return UnknownValue;
2278
2279 BranchInst *LoopEntryPredicate =
2280 dyn_cast<BranchInst>(Preheader->getTerminator());
2281 if (!LoopEntryPredicate) return UnknownValue;
2282
2283 // This might be a critical edge broken out. If the loop preheader ends in
2284 // an unconditional branch to the loop, check to see if the preheader has a
2285 // single predecessor, and if so, look for its terminator.
2286 while (LoopEntryPredicate->isUnconditional()) {
2287 PreheaderDest = Preheader;
2288 Preheader = Preheader->getSinglePredecessor();
2289 if (!Preheader) return UnknownValue; // Multiple preds.
2290
2291 LoopEntryPredicate =
2292 dyn_cast<BranchInst>(Preheader->getTerminator());
2293 if (!LoopEntryPredicate) return UnknownValue;
2294 }
2295
2296 // Now that we found a conditional branch that dominates the loop, check to
2297 // see if it is the comparison we are looking for.
Reid Spencere4d87aa2006-12-23 06:05:41 +00002298 if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
2299 Value *PreCondLHS = ICI->getOperand(0);
2300 Value *PreCondRHS = ICI->getOperand(1);
2301 ICmpInst::Predicate Cond;
2302 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2303 Cond = ICI->getPredicate();
2304 else
2305 Cond = ICI->getInversePredicate();
Chris Lattnerdb25de42005-08-15 23:33:51 +00002306
Reid Spencere4d87aa2006-12-23 06:05:41 +00002307 switch (Cond) {
2308 case ICmpInst::ICMP_UGT:
2309 std::swap(PreCondLHS, PreCondRHS);
2310 Cond = ICmpInst::ICMP_ULT;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002311 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00002312 case ICmpInst::ICMP_SGT:
2313 std::swap(PreCondLHS, PreCondRHS);
2314 Cond = ICmpInst::ICMP_SLT;
2315 break;
2316 default: break;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002317 }
Chris Lattnerdb25de42005-08-15 23:33:51 +00002318
Reid Spencere4d87aa2006-12-23 06:05:41 +00002319 if (Cond == ICmpInst::ICMP_SLT) {
2320 if (PreCondLHS->getType()->isInteger()) {
2321 if (RHS != getSCEV(PreCondRHS))
2322 return UnknownValue; // Not a comparison against 'm'.
2323
2324 if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2325 != getSCEV(PreCondLHS))
2326 return UnknownValue; // Not a comparison against 'n-1'.
2327 }
2328 else return UnknownValue;
2329 } else if (Cond == ICmpInst::ICMP_ULT)
2330 return UnknownValue;
2331
2332 // cerr << "Computed Loop Trip Count as: "
2333 // << // *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2334 return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2335 }
2336 else
2337 return UnknownValue;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002338 }
2339
2340 return UnknownValue;
2341}
2342
Chris Lattner53e677a2004-04-02 20:23:17 +00002343/// getNumIterationsInRange - Return the number of iterations of this loop that
2344/// produce values in the specified constant range. Another way of looking at
2345/// this is that it returns the first iteration number where the value is not in
2346/// the condition, thus computing the exit count. If the iteration count can't
2347/// be computed, an instance of SCEVCouldNotCompute is returned.
Reid Spencere4d87aa2006-12-23 06:05:41 +00002348SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2349 bool isSigned) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00002350 if (Range.isFullSet()) // Infinite loop.
2351 return new SCEVCouldNotCompute();
2352
2353 // If the start is a non-zero constant, shift the range to simplify things.
2354 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2355 if (!SC->getValue()->isNullValue()) {
2356 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Chris Lattnerb06432c2004-04-23 21:29:03 +00002357 Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
Chris Lattner53e677a2004-04-02 20:23:17 +00002358 SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2359 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2360 return ShiftedAddRec->getNumIterationsInRange(
Reid Spencere4d87aa2006-12-23 06:05:41 +00002361 Range.subtract(SC->getValue()),isSigned);
Chris Lattner53e677a2004-04-02 20:23:17 +00002362 // This is strange and shouldn't happen.
2363 return new SCEVCouldNotCompute();
2364 }
2365
2366 // The only time we can solve this is when we have all constant indices.
2367 // Otherwise, we cannot determine the overflow conditions.
2368 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2369 if (!isa<SCEVConstant>(getOperand(i)))
2370 return new SCEVCouldNotCompute();
2371
2372
2373 // Okay at this point we know that all elements of the chrec are constants and
2374 // that the start element is zero.
2375
2376 // First check to see if the range contains zero. If not, the first
2377 // iteration exits.
2378 ConstantInt *Zero = ConstantInt::get(getType(), 0);
Reid Spencere4d87aa2006-12-23 06:05:41 +00002379 if (!Range.contains(Zero, isSigned)) return SCEVConstant::get(Zero);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002380
Chris Lattner53e677a2004-04-02 20:23:17 +00002381 if (isAffine()) {
2382 // If this is an affine expression then we have this situation:
2383 // Solve {0,+,A} in Range === Ax in Range
2384
2385 // Since we know that zero is in the range, we know that the upper value of
2386 // the range must be the first possible exit value. Also note that we
2387 // already checked for a full range.
2388 ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2389 ConstantInt *A = cast<SCEVConstant>(getOperand(1))->getValue();
2390 ConstantInt *One = ConstantInt::get(getType(), 1);
2391
2392 // The exit value should be (Upper+A-1)/A.
2393 Constant *ExitValue = Upper;
2394 if (A != One) {
2395 ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
Reid Spencer1628cec2006-10-26 06:15:43 +00002396 ExitValue = ConstantExpr::getSDiv(ExitValue, A);
Chris Lattner53e677a2004-04-02 20:23:17 +00002397 }
2398 assert(isa<ConstantInt>(ExitValue) &&
2399 "Constant folding of integers not implemented?");
2400
2401 // Evaluate at the exit value. If we really did fall out of the valid
2402 // range, then we computed our trip count, otherwise wrap around or other
2403 // things must have happened.
2404 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
Reid Spencere4d87aa2006-12-23 06:05:41 +00002405 if (Range.contains(Val, isSigned))
Chris Lattner53e677a2004-04-02 20:23:17 +00002406 return new SCEVCouldNotCompute(); // Something strange happened
2407
2408 // Ensure that the previous value is in the range. This is a sanity check.
2409 assert(Range.contains(EvaluateConstantChrecAtConstant(this,
Reid Spencere4d87aa2006-12-23 06:05:41 +00002410 ConstantExpr::getSub(ExitValue, One)), isSigned) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002411 "Linear scev computation is off in a bad way!");
2412 return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2413 } else if (isQuadratic()) {
2414 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2415 // quadratic equation to solve it. To do this, we must frame our problem in
2416 // terms of figuring out when zero is crossed, instead of when
2417 // Range.getUpper() is crossed.
2418 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Chris Lattnerbac5b462005-03-09 05:34:41 +00002419 NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
Chris Lattner53e677a2004-04-02 20:23:17 +00002420 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2421
2422 // Next, solve the constructed addrec
2423 std::pair<SCEVHandle,SCEVHandle> Roots =
2424 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2425 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2426 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2427 if (R1) {
2428 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002429 if (ConstantInt *CB =
2430 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00002431 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00002432 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00002433 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002434
Chris Lattner53e677a2004-04-02 20:23:17 +00002435 // Make sure the root is not off by one. The returned iteration should
2436 // not be in the range, but the previous one should be. When solving
2437 // for "X*X < 5", for example, we should not return a root of 2.
2438 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2439 R1->getValue());
Reid Spencere4d87aa2006-12-23 06:05:41 +00002440 if (Range.contains(R1Val, isSigned)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002441 // The next iteration must be out of the range...
2442 Constant *NextVal =
2443 ConstantExpr::getAdd(R1->getValue(),
2444 ConstantInt::get(R1->getType(), 1));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002445
Chris Lattner53e677a2004-04-02 20:23:17 +00002446 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
Reid Spencere4d87aa2006-12-23 06:05:41 +00002447 if (!Range.contains(R1Val, isSigned))
Chris Lattner53e677a2004-04-02 20:23:17 +00002448 return SCEVUnknown::get(NextVal);
2449 return new SCEVCouldNotCompute(); // Something strange happened
2450 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002451
Chris Lattner53e677a2004-04-02 20:23:17 +00002452 // If R1 was not in the range, then it is a good return value. Make
2453 // sure that R1-1 WAS in the range though, just in case.
2454 Constant *NextVal =
2455 ConstantExpr::getSub(R1->getValue(),
2456 ConstantInt::get(R1->getType(), 1));
2457 R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
Reid Spencere4d87aa2006-12-23 06:05:41 +00002458 if (Range.contains(R1Val, isSigned))
Chris Lattner53e677a2004-04-02 20:23:17 +00002459 return R1;
2460 return new SCEVCouldNotCompute(); // Something strange happened
2461 }
2462 }
2463 }
2464
2465 // Fallback, if this is a general polynomial, figure out the progression
2466 // through brute force: evaluate until we find an iteration that fails the
2467 // test. This is likely to be slow, but getting an accurate trip count is
2468 // incredibly important, we will be able to simplify the exit test a lot, and
2469 // we are almost guaranteed to get a trip count in this case.
2470 ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2471 ConstantInt *One = ConstantInt::get(getType(), 1);
2472 ConstantInt *EndVal = TestVal; // Stop when we wrap around.
2473 do {
2474 ++NumBruteForceEvaluations;
2475 SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2476 if (!isa<SCEVConstant>(Val)) // This shouldn't happen.
2477 return new SCEVCouldNotCompute();
2478
2479 // Check to see if we found the value!
Reid Spencere4d87aa2006-12-23 06:05:41 +00002480 if (!Range.contains(cast<SCEVConstant>(Val)->getValue(), isSigned))
Chris Lattner53e677a2004-04-02 20:23:17 +00002481 return SCEVConstant::get(TestVal);
2482
2483 // Increment to test the next index.
2484 TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2485 } while (TestVal != EndVal);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002486
Chris Lattner53e677a2004-04-02 20:23:17 +00002487 return new SCEVCouldNotCompute();
2488}
2489
2490
2491
2492//===----------------------------------------------------------------------===//
2493// ScalarEvolution Class Implementation
2494//===----------------------------------------------------------------------===//
2495
2496bool ScalarEvolution::runOnFunction(Function &F) {
2497 Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2498 return false;
2499}
2500
2501void ScalarEvolution::releaseMemory() {
2502 delete (ScalarEvolutionsImpl*)Impl;
2503 Impl = 0;
2504}
2505
2506void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2507 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00002508 AU.addRequiredTransitive<LoopInfo>();
2509}
2510
2511SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2512 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2513}
2514
Chris Lattnera0740fb2005-08-09 23:36:33 +00002515/// hasSCEV - Return true if the SCEV for this value has already been
2516/// computed.
2517bool ScalarEvolution::hasSCEV(Value *V) const {
Chris Lattner05bd3742005-08-10 00:59:40 +00002518 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
Chris Lattnera0740fb2005-08-09 23:36:33 +00002519}
2520
2521
2522/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2523/// the specified value.
2524void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2525 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2526}
2527
2528
Chris Lattner53e677a2004-04-02 20:23:17 +00002529SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2530 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2531}
2532
2533bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2534 return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2535}
2536
2537SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2538 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2539}
2540
2541void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2542 return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2543}
2544
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002545static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00002546 const Loop *L) {
2547 // Print all inner loops first
2548 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2549 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002550
Bill Wendlinge8156192006-12-07 01:30:32 +00002551 cerr << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00002552
2553 std::vector<BasicBlock*> ExitBlocks;
2554 L->getExitBlocks(ExitBlocks);
2555 if (ExitBlocks.size() != 1)
Bill Wendlinge8156192006-12-07 01:30:32 +00002556 cerr << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002557
2558 if (SE->hasLoopInvariantIterationCount(L)) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002559 cerr << *SE->getIterationCount(L) << " iterations! ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002560 } else {
Bill Wendlinge8156192006-12-07 01:30:32 +00002561 cerr << "Unpredictable iteration count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002562 }
2563
Bill Wendlinge8156192006-12-07 01:30:32 +00002564 cerr << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00002565}
2566
Reid Spencerce9653c2004-12-07 04:03:45 +00002567void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00002568 Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2569 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2570
2571 OS << "Classifying expressions for: " << F.getName() << "\n";
2572 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Chris Lattner6ffe5512004-04-27 15:13:33 +00002573 if (I->getType()->isInteger()) {
2574 OS << *I;
Chris Lattner53e677a2004-04-02 20:23:17 +00002575 OS << " --> ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002576 SCEVHandle SV = getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00002577 SV->print(OS);
2578 OS << "\t\t";
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002579
Chris Lattner6ffe5512004-04-27 15:13:33 +00002580 if ((*I).getType()->isIntegral()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002581 ConstantRange Bounds = SV->getValueRange();
2582 if (!Bounds.isFullSet())
2583 OS << "Bounds: " << Bounds << " ";
2584 }
2585
Chris Lattner6ffe5512004-04-27 15:13:33 +00002586 if (const Loop *L = LI.getLoopFor((*I).getParent())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002587 OS << "Exits: ";
Chris Lattner6ffe5512004-04-27 15:13:33 +00002588 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00002589 if (isa<SCEVCouldNotCompute>(ExitValue)) {
2590 OS << "<<Unknown>>";
2591 } else {
2592 OS << *ExitValue;
2593 }
2594 }
2595
2596
2597 OS << "\n";
2598 }
2599
2600 OS << "Determining loop execution counts for: " << F.getName() << "\n";
2601 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2602 PrintLoopInfo(OS, this, *I);
2603}
2604