blob: d9f5f3ae169b20b0960de5c50a47fd9a1ad65a79 [file] [log] [blame]
Chris Lattnerd80e9732002-04-28 00:47:11 +00001//===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===//
2//
3// This pass is designed to be a very quick global transformation that
4// eliminates global common subexpressions from a function. It does this by
5// examining the SSA value graph of the function, instead of doing slow, dense,
6// bit-vector computations.
7//
8// This pass works best if it is proceeded with a simple constant propogation
9// pass and an instruction combination pass because this pass does not do any
10// value numbering (in order to be speedy).
11//
12// This pass does not attempt to CSE load instructions, because it does not use
13// pointer analysis to determine when it is safe.
14//
15//===----------------------------------------------------------------------===//
16
Chris Lattner022103b2002-05-07 20:03:00 +000017#include "llvm/Transforms/Scalar.h"
Chris Lattnerd80e9732002-04-28 00:47:11 +000018#include "llvm/InstrTypes.h"
19#include "llvm/iMemory.h"
20#include "llvm/Analysis/Dominators.h"
21#include "llvm/Support/InstVisitor.h"
22#include "llvm/Support/InstIterator.h"
Chris Lattner18fb2a62002-05-14 05:02:40 +000023#include "llvm/Support/CFG.h"
Chris Lattner3dec1f22002-05-10 15:38:35 +000024#include "Support/StatisticReporter.h"
Chris Lattnerd80e9732002-04-28 00:47:11 +000025#include <algorithm>
Chris Lattnerd80e9732002-04-28 00:47:11 +000026
Chris Lattner3dec1f22002-05-10 15:38:35 +000027static Statistic<> NumInstRemoved("gcse\t\t- Number of instructions removed");
Chris Lattner18fb2a62002-05-14 05:02:40 +000028static Statistic<> NumLoadRemoved("gcse\t\t- Number of loads removed");
Chris Lattner3dec1f22002-05-10 15:38:35 +000029
Chris Lattnerd80e9732002-04-28 00:47:11 +000030namespace {
31 class GCSE : public FunctionPass, public InstVisitor<GCSE, bool> {
Chris Lattner18fb2a62002-05-14 05:02:40 +000032 set<Instruction*> WorkList;
33 DominatorSet *DomSetInfo;
34 ImmediateDominators *ImmDominator;
35
36 // BBContainsStore - Contains a value that indicates whether a basic block
37 // has a store or call instruction in it. This map is demand populated, so
38 // not having an entry means that the basic block has not been scanned yet.
39 //
40 map<BasicBlock*, bool> BBContainsStore;
Chris Lattnerd80e9732002-04-28 00:47:11 +000041 public:
Chris Lattner96c466b2002-04-29 14:57:45 +000042 const char *getPassName() const {
43 return "Global Common Subexpression Elimination";
44 }
45
Chris Lattnerd80e9732002-04-28 00:47:11 +000046 virtual bool runOnFunction(Function *F);
47
48 // Visitation methods, these are invoked depending on the type of
49 // instruction being checked. They should return true if a common
50 // subexpression was folded.
51 //
52 bool visitUnaryOperator(Instruction *I);
53 bool visitBinaryOperator(Instruction *I);
54 bool visitGetElementPtrInst(GetElementPtrInst *I);
55 bool visitCastInst(CastInst *I){return visitUnaryOperator((Instruction*)I);}
56 bool visitShiftInst(ShiftInst *I) {
57 return visitBinaryOperator((Instruction*)I);
58 }
Chris Lattner18fb2a62002-05-14 05:02:40 +000059 bool visitLoadInst(LoadInst *LI);
Chris Lattnerd80e9732002-04-28 00:47:11 +000060 bool visitInstruction(Instruction *) { return false; }
61
62 private:
63 void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI);
64 void CommonSubExpressionFound(Instruction *I, Instruction *Other);
65
Chris Lattner18fb2a62002-05-14 05:02:40 +000066 // TryToRemoveALoad - Try to remove one of L1 or L2. The problem with
67 // removing loads is that intervening stores might make otherwise identical
68 // load's yield different values. To ensure that this is not the case, we
69 // check that there are no intervening stores or calls between the
70 // instructions.
71 //
72 bool TryToRemoveALoad(LoadInst *L1, LoadInst *L2);
73
74 // CheckForInvalidatingInst - Return true if BB or any of the predecessors
75 // of BB (until DestBB) contain a store (or other invalidating) instruction.
76 //
77 bool CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB,
78 set<BasicBlock*> &VisitedSet);
79
Chris Lattnerd80e9732002-04-28 00:47:11 +000080 // This transformation requires dominator and immediate dominator info
81 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattner97e52e42002-04-28 21:27:06 +000082 AU.preservesCFG();
Chris Lattnerd80e9732002-04-28 00:47:11 +000083 AU.addRequired(DominatorSet::ID);
84 AU.addRequired(ImmediateDominators::ID);
85 }
86 };
87}
88
89// createGCSEPass - The public interface to this file...
90Pass *createGCSEPass() { return new GCSE(); }
91
92
93// GCSE::runOnFunction - This is the main transformation entry point for a
94// function.
95//
96bool GCSE::runOnFunction(Function *F) {
97 bool Changed = false;
98
99 DomSetInfo = &getAnalysis<DominatorSet>();
100 ImmDominator = &getAnalysis<ImmediateDominators>();
101
102 // Step #1: Add all instructions in the function to the worklist for
103 // processing. All of the instructions are considered to be our
104 // subexpressions to eliminate if possible.
105 //
106 WorkList.insert(inst_begin(F), inst_end(F));
107
108 // Step #2: WorkList processing. Iterate through all of the instructions,
109 // checking to see if there are any additionally defined subexpressions in the
110 // program. If so, eliminate them!
111 //
112 while (!WorkList.empty()) {
113 Instruction *I = *WorkList.begin(); // Get an instruction from the worklist
114 WorkList.erase(WorkList.begin());
115
116 // Visit the instruction, dispatching to the correct visit function based on
117 // the instruction type. This does the checking.
118 //
119 Changed |= visit(I);
120 }
Chris Lattner18fb2a62002-05-14 05:02:40 +0000121
122 // Clear out data structure so that next function starts fresh
123 BBContainsStore.clear();
Chris Lattnerd80e9732002-04-28 00:47:11 +0000124
125 // When the worklist is empty, return whether or not we changed anything...
126 return Changed;
127}
128
129
130// ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all
131// uses of the instruction use First now instead.
132//
133void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) {
134 Instruction *Second = *SI;
Chris Lattner8b054c02002-04-29 16:20:25 +0000135
136 //cerr << "DEL " << (void*)Second << Second;
Chris Lattnerd80e9732002-04-28 00:47:11 +0000137
138 // Add the first instruction back to the worklist
139 WorkList.insert(First);
140
141 // Add all uses of the second instruction to the worklist
142 for (Value::use_iterator UI = Second->use_begin(), UE = Second->use_end();
143 UI != UE; ++UI)
144 WorkList.insert(cast<Instruction>(*UI));
145
146 // Make all users of 'Second' now use 'First'
147 Second->replaceAllUsesWith(First);
148
149 // Erase the second instruction from the program
150 delete Second->getParent()->getInstList().remove(SI);
151}
152
153// CommonSubExpressionFound - The two instruction I & Other have been found to
154// be common subexpressions. This function is responsible for eliminating one
155// of them, and for fixing the worklist to be correct.
156//
157void GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) {
Chris Lattner18fb2a62002-05-14 05:02:40 +0000158 assert(I != Other);
Chris Lattner8b054c02002-04-29 16:20:25 +0000159
Chris Lattner18fb2a62002-05-14 05:02:40 +0000160 WorkList.erase(I);
Chris Lattner8b054c02002-04-29 16:20:25 +0000161 WorkList.erase(Other); // Other may not actually be on the worklist anymore...
Chris Lattnerd80e9732002-04-28 00:47:11 +0000162
Chris Lattner3dec1f22002-05-10 15:38:35 +0000163 ++NumInstRemoved; // Keep track of number of instructions eliminated
164
Chris Lattnerd80e9732002-04-28 00:47:11 +0000165 // Handle the easy case, where both instructions are in the same basic block
166 BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent();
167 if (BB1 == BB2) {
168 // Eliminate the second occuring instruction. Add all uses of the second
169 // instruction to the worklist.
170 //
171 // Scan the basic block looking for the "first" instruction
172 BasicBlock::iterator BI = BB1->begin();
173 while (*BI != I && *BI != Other) {
174 ++BI;
175 assert(BI != BB1->end() && "Instructions not found in parent BB!");
176 }
177
178 // Keep track of which instructions occurred first & second
179 Instruction *First = *BI;
180 Instruction *Second = I != First ? I : Other; // Get iterator to second inst
181 BI = find(BI, BB1->end(), Second);
182 assert(BI != BB1->end() && "Second instruction not found in parent block!");
183
184 // Destroy Second, using First instead.
185 ReplaceInstWithInst(First, BI);
186
187 // Otherwise, the two instructions are in different basic blocks. If one
188 // dominates the other instruction, we can simply use it
189 //
190 } else if (DomSetInfo->dominates(BB1, BB2)) { // I dom Other?
191 BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other);
192 assert(BI != BB2->end() && "Other not in parent basic block!");
193 ReplaceInstWithInst(I, BI);
194 } else if (DomSetInfo->dominates(BB2, BB1)) { // Other dom I?
195 BasicBlock::iterator BI = find(BB1->begin(), BB1->end(), I);
196 assert(BI != BB1->end() && "I not in parent basic block!");
197 ReplaceInstWithInst(Other, BI);
198 } else {
199 // Handle the most general case now. In this case, neither I dom Other nor
200 // Other dom I. Because we are in SSA form, we are guaranteed that the
201 // operands of the two instructions both dominate the uses, so we _know_
202 // that there must exist a block that dominates both instructions (if the
203 // operands of the instructions are globals or constants, worst case we
204 // would get the entry node of the function). Search for this block now.
205 //
206
207 // Search up the immediate dominator chain of BB1 for the shared dominator
208 BasicBlock *SharedDom = (*ImmDominator)[BB1];
209 while (!DomSetInfo->dominates(SharedDom, BB2))
210 SharedDom = (*ImmDominator)[SharedDom];
211
212 // At this point, shared dom must dominate BOTH BB1 and BB2...
213 assert(SharedDom && DomSetInfo->dominates(SharedDom, BB1) &&
214 DomSetInfo->dominates(SharedDom, BB2) && "Dominators broken!");
215
216 // Rip 'I' out of BB1, and move it to the end of SharedDom.
217 BB1->getInstList().remove(I);
218 SharedDom->getInstList().insert(SharedDom->end()-1, I);
219
220 // Eliminate 'Other' now.
221 BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other);
222 assert(BI != BB2->end() && "I not in parent basic block!");
223 ReplaceInstWithInst(I, BI);
224 }
225}
226
227//===----------------------------------------------------------------------===//
228//
229// Visitation methods, these are invoked depending on the type of instruction
230// being checked. They should return true if a common subexpression was folded.
231//
232//===----------------------------------------------------------------------===//
233
234bool GCSE::visitUnaryOperator(Instruction *I) {
235 Value *Op = I->getOperand(0);
236 Function *F = I->getParent()->getParent();
237
238 for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
239 UI != UE; ++UI)
240 if (Instruction *Other = dyn_cast<Instruction>(*UI))
241 // Check to see if this new binary operator is not I, but same operand...
242 if (Other != I && Other->getOpcode() == I->getOpcode() &&
243 Other->getOperand(0) == Op && // Is the operand the same?
244 // Is it embeded in the same function? (This could be false if LHS
245 // is a constant or global!)
246 Other->getParent()->getParent() == F &&
247
248 // Check that the types are the same, since this code handles casts...
249 Other->getType() == I->getType()) {
250
251 // These instructions are identical. Handle the situation.
252 CommonSubExpressionFound(I, Other);
253 return true; // One instruction eliminated!
254 }
255
256 return false;
257}
258
259bool GCSE::visitBinaryOperator(Instruction *I) {
260 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
261 Function *F = I->getParent()->getParent();
262
263 for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end();
264 UI != UE; ++UI)
265 if (Instruction *Other = dyn_cast<Instruction>(*UI))
266 // Check to see if this new binary operator is not I, but same operand...
267 if (Other != I && Other->getOpcode() == I->getOpcode() &&
268 // Are the LHS and RHS the same?
269 Other->getOperand(0) == LHS && Other->getOperand(1) == RHS &&
270 // Is it embeded in the same function? (This could be false if LHS
271 // is a constant or global!)
272 Other->getParent()->getParent() == F) {
273
274 // These instructions are identical. Handle the situation.
275 CommonSubExpressionFound(I, Other);
276 return true; // One instruction eliminated!
277 }
278
279 return false;
280}
281
Chris Lattner18fb2a62002-05-14 05:02:40 +0000282// IdenticalComplexInst - Return true if the two instructions are the same, by
283// using a brute force comparison.
284//
285static bool IdenticalComplexInst(const Instruction *I1, const Instruction *I2) {
286 assert(I1->getOpcode() == I2->getOpcode());
287 // Equal if they are in the same function...
288 return I1->getParent()->getParent() == I2->getParent()->getParent() &&
289 // And return the same type...
290 I1->getType() == I2->getType() &&
291 // And have the same number of operands...
292 I1->getNumOperands() == I2->getNumOperands() &&
293 // And all of the operands are equal.
294 std::equal(I1->op_begin(), I1->op_end(), I2->op_begin());
295}
296
Chris Lattnerd80e9732002-04-28 00:47:11 +0000297bool GCSE::visitGetElementPtrInst(GetElementPtrInst *I) {
298 Value *Op = I->getOperand(0);
299 Function *F = I->getParent()->getParent();
300
301 for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
302 UI != UE; ++UI)
303 if (GetElementPtrInst *Other = dyn_cast<GetElementPtrInst>(*UI))
Chris Lattner18fb2a62002-05-14 05:02:40 +0000304 // Check to see if this new getelementptr is not I, but same operand...
305 if (Other != I && IdenticalComplexInst(I, Other)) {
306 // These instructions are identical. Handle the situation.
307 CommonSubExpressionFound(I, Other);
308 return true; // One instruction eliminated!
Chris Lattnerd80e9732002-04-28 00:47:11 +0000309 }
310
311 return false;
312}
Chris Lattner18fb2a62002-05-14 05:02:40 +0000313
314bool GCSE::visitLoadInst(LoadInst *LI) {
315 Value *Op = LI->getOperand(0);
316 Function *F = LI->getParent()->getParent();
317
318 for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
319 UI != UE; ++UI)
320 if (LoadInst *Other = dyn_cast<LoadInst>(*UI))
321 // Check to see if this new load is not LI, but has the same operands...
322 if (Other != LI && IdenticalComplexInst(LI, Other) &&
323 TryToRemoveALoad(LI, Other))
324 return true; // An instruction was eliminated!
325
326 return false;
327}
328
329static inline bool isInvalidatingInst(const Instruction *I) {
330 return I->getOpcode() == Instruction::Store ||
331 I->getOpcode() == Instruction::Call ||
332 I->getOpcode() == Instruction::Invoke;
333}
334
335// TryToRemoveALoad - Try to remove one of L1 or L2. The problem with removing
336// loads is that intervening stores might make otherwise identical load's yield
337// different values. To ensure that this is not the case, we check that there
338// are no intervening stores or calls between the instructions.
339//
340bool GCSE::TryToRemoveALoad(LoadInst *L1, LoadInst *L2) {
341 // Figure out which load dominates the other one. If neither dominates the
342 // other we cannot eliminate one...
343 //
344 if (DomSetInfo->dominates(L2, L1))
345 std::swap(L1, L2); // Make L1 dominate L2
346 else if (!DomSetInfo->dominates(L1, L2))
347 return false; // Neither instruction dominates the other one...
348
349 BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent();
350
351 // FIXME: This is incredibly painful with broken rep
352 BasicBlock::iterator L1I = std::find(BB1->begin(), BB1->end(), L1);
353 assert(L1I != BB1->end() && "Inst not in own parent?");
354
355 // L1 now dominates L2. Check to see if the intervening instructions between
356 // the two loads include a store or call...
357 //
358 if (BB1 == BB2) { // In same basic block?
359 // In this degenerate case, no checking of global basic blocks has to occur
360 // just check the instructions BETWEEN L1 & L2...
361 //
362 for (++L1I; *L1I != L2; ++L1I)
363 if (isInvalidatingInst(*L1I))
364 return false; // Cannot eliminate load
365
366 ++NumLoadRemoved;
367 CommonSubExpressionFound(L1, L2);
368 return true;
369 } else {
370 // Make sure that there are no store instructions between L1 and the end of
371 // it's basic block...
372 //
373 for (++L1I; L1I != BB1->end(); ++L1I)
374 if (isInvalidatingInst(*L1I)) {
375 BBContainsStore[BB1] = true;
376 return false; // Cannot eliminate load
377 }
378
379 // Make sure that there are no store instructions between the start of BB2
380 // and the second load instruction...
381 //
382 for (BasicBlock::iterator II = BB2->begin(); *II != L2; ++II)
383 if (isInvalidatingInst(*II)) {
384 BBContainsStore[BB2] = true;
385 return false; // Cannot eliminate load
386 }
387
388 // Do a depth first traversal of the inverse CFG starting at L2's block,
389 // looking for L1's block. The inverse CFG is made up of the predecessor
390 // nodes of a block... so all of the edges in the graph are "backward".
391 //
392 set<BasicBlock*> VisitedSet;
393 for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI)
394 if (CheckForInvalidatingInst(*PI, BB1, VisitedSet))
395 return false;
396
397 ++NumLoadRemoved;
398 CommonSubExpressionFound(L1, L2);
399 return true;
400 }
401 return false;
402}
403
404// CheckForInvalidatingInst - Return true if BB or any of the predecessors of BB
405// (until DestBB) contain a store (or other invalidating) instruction.
406//
407bool GCSE::CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB,
408 set<BasicBlock*> &VisitedSet) {
409 // Found the termination point!
410 if (BB == DestBB || VisitedSet.count(BB)) return false;
411
412 // Avoid infinite recursion!
413 VisitedSet.insert(BB);
414
415 // Have we already checked this block?
416 map<BasicBlock*, bool>::iterator MI = BBContainsStore.find(BB);
417
418 if (MI != BBContainsStore.end()) {
419 // If this block is known to contain a store, exit the recursion early...
420 if (MI->second) return true;
421 // Otherwise continue checking predecessors...
422 } else {
423 // We don't know if this basic block contains an invalidating instruction.
424 // Check now:
425 bool HasStore = std::find_if(BB->begin(), BB->end(),
426 isInvalidatingInst) != BB->end();
427 if ((BBContainsStore[BB] = HasStore)) // Update map
428 return true; // Exit recursion early...
429 }
430
431 // Check all of our predecessor blocks...
432 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
433 if (CheckForInvalidatingInst(*PI, DestBB, VisitedSet))
434 return true;
435
436 // None of our predecessor blocks contain a store, and we don't either!
437 return false;
438}