blob: b0e70bb89ad360cafef8b04bd2868e151aefbdfd [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
Chris Lattner124993a2008-01-11 06:09:30 +000021#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Analysis/CallGraph.h"
Chris Lattner124993a2008-01-11 06:09:30 +000023#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000024#include "llvm/ADT/SmallVector.h"
Devang Patel859ff0f2008-03-10 18:22:16 +000025#include "llvm/ADT/StringExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000026#include "llvm/Support/CallSite.h"
27using namespace llvm;
28
29bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
30 return InlineFunction(CallSite(CI), CG, TD);
31}
32bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
33 return InlineFunction(CallSite(II), CG, TD);
34}
35
36/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
37/// in the body of the inlined function into invokes and turn unwind
38/// instructions into branches to the invoke unwind dest.
39///
40/// II is the invoke instruction begin inlined. FirstNewBlock is the first
41/// block of the inlined code (the last block is the end of the function),
42/// and InlineCodeInfo is information about the code that got inlined.
43static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
44 ClonedCodeInfo &InlinedCodeInfo) {
45 BasicBlock *InvokeDest = II->getUnwindDest();
46 std::vector<Value*> InvokeDestPHIValues;
47
48 // If there are PHI nodes in the unwind destination block, we need to
49 // keep track of which values came into them from this invoke, then remove
50 // the entry for this block.
51 BasicBlock *InvokeBlock = II->getParent();
52 for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
53 PHINode *PN = cast<PHINode>(I);
54 // Save the value to use for this edge.
55 InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
56 }
57
58 Function *Caller = FirstNewBlock->getParent();
Duncan Sandse4267052008-09-05 12:37:12 +000059
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060 // The inlined code is currently at the end of the function, scan from the
61 // start of the inlined code to its end, checking for stuff we need to
62 // rewrite.
63 if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
64 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
65 BB != E; ++BB) {
66 if (InlinedCodeInfo.ContainsCalls) {
67 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
68 Instruction *I = BBI++;
Duncan Sandse4267052008-09-05 12:37:12 +000069
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070 // We only need to check for function calls: inlined invoke
71 // instructions require no special handling.
72 if (!isa<CallInst>(I)) continue;
73 CallInst *CI = cast<CallInst>(I);
74
Duncan Sands1c5526c2007-12-17 18:08:19 +000075 // If this call cannot unwind, don't convert it to an invoke.
Duncan Sands7dc19d42007-12-18 09:59:50 +000076 if (CI->doesNotThrow())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000077 continue;
Duncan Sands79d28872007-12-03 20:06:50 +000078
Dan Gohmanf17a25c2007-07-18 16:29:46 +000079 // Convert this function call into an invoke instruction.
80 // First, split the basic block.
81 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
Duncan Sandse4267052008-09-05 12:37:12 +000082
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083 // Next, create the new invoke instruction, inserting it at the end
84 // of the old basic block.
85 SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
86 InvokeInst *II =
Gabor Greifd6da1d02008-04-06 20:25:17 +000087 InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
88 InvokeArgs.begin(), InvokeArgs.end(),
89 CI->getName(), BB->getTerminator());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090 II->setCallingConv(CI->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +000091 II->setParamAttrs(CI->getParamAttrs());
Duncan Sandse4267052008-09-05 12:37:12 +000092
Dan Gohmanf17a25c2007-07-18 16:29:46 +000093 // Make sure that anything using the call now uses the invoke!
94 CI->replaceAllUsesWith(II);
Duncan Sandse4267052008-09-05 12:37:12 +000095
Dan Gohmanf17a25c2007-07-18 16:29:46 +000096 // Delete the unconditional branch inserted by splitBasicBlock
97 BB->getInstList().pop_back();
98 Split->getInstList().pop_front(); // Delete the original call
Duncan Sandse4267052008-09-05 12:37:12 +000099
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000100 // Update any PHI nodes in the exceptional block to indicate that
101 // there is now a new entry in them.
102 unsigned i = 0;
103 for (BasicBlock::iterator I = InvokeDest->begin();
104 isa<PHINode>(I); ++I, ++i) {
105 PHINode *PN = cast<PHINode>(I);
106 PN->addIncoming(InvokeDestPHIValues[i], BB);
107 }
Duncan Sandse4267052008-09-05 12:37:12 +0000108
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109 // This basic block is now complete, start scanning the next one.
110 break;
111 }
112 }
Duncan Sandse4267052008-09-05 12:37:12 +0000113
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000114 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
115 // An UnwindInst requires special handling when it gets inlined into an
116 // invoke site. Once this happens, we know that the unwind would cause
117 // a control transfer to the invoke exception destination, so we can
118 // transform it into a direct branch to the exception destination.
Gabor Greifd6da1d02008-04-06 20:25:17 +0000119 BranchInst::Create(InvokeDest, UI);
Duncan Sandse4267052008-09-05 12:37:12 +0000120
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121 // Delete the unwind instruction!
Dan Gohmande087372008-06-21 22:08:46 +0000122 UI->eraseFromParent();
Duncan Sandse4267052008-09-05 12:37:12 +0000123
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 // Update any PHI nodes in the exceptional block to indicate that
125 // there is now a new entry in them.
126 unsigned i = 0;
127 for (BasicBlock::iterator I = InvokeDest->begin();
128 isa<PHINode>(I); ++I, ++i) {
129 PHINode *PN = cast<PHINode>(I);
130 PN->addIncoming(InvokeDestPHIValues[i], BB);
131 }
132 }
133 }
134 }
135
136 // Now that everything is happy, we have one final detail. The PHI nodes in
137 // the exception destination block still have entries due to the original
138 // invoke instruction. Eliminate these entries (which might even delete the
139 // PHI node) now.
140 InvokeDest->removePredecessor(II->getParent());
141}
142
143/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
144/// into the caller, update the specified callgraph to reflect the changes we
145/// made. Note that it's possible that not all code was copied over, so only
Duncan Sands104431b2008-09-08 11:05:51 +0000146/// some edges of the callgraph may remain.
147static void UpdateCallGraphAfterInlining(CallSite CS,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000148 Function::iterator FirstNewBlock,
149 DenseMap<const Value*, Value*> &ValueMap,
150 CallGraph &CG) {
Duncan Sands104431b2008-09-08 11:05:51 +0000151 const Function *Caller = CS.getInstruction()->getParent()->getParent();
152 const Function *Callee = CS.getCalledFunction();
153
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000154 // Update the call graph by deleting the edge from Callee to Caller
155 CallGraphNode *CalleeNode = CG[Callee];
156 CallGraphNode *CallerNode = CG[Caller];
Duncan Sands104431b2008-09-08 11:05:51 +0000157 CallerNode->removeCallEdgeFor(CS);
Duncan Sandse4267052008-09-05 12:37:12 +0000158
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000159 // Since we inlined some uninlined call sites in the callee into the caller,
160 // add edges from the caller to all of the callees of the callee.
161 for (CallGraphNode::iterator I = CalleeNode->begin(),
162 E = CalleeNode->end(); I != E; ++I) {
163 const Instruction *OrigCall = I->first.getInstruction();
Duncan Sandse4267052008-09-05 12:37:12 +0000164
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000165 DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
166 // Only copy the edge if the call was inlined!
167 if (VMI != ValueMap.end() && VMI->second) {
168 // If the call was inlined, but then constant folded, there is no edge to
169 // add. Check for this case.
170 if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
171 CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
172 }
173 }
174}
175
176
177// InlineFunction - This function inlines the called function into the basic
178// block of the caller. This returns false if it is not possible to inline this
179// call. The program is still in a well defined state if this occurs though.
180//
181// Note that this only does one level of inlining. For example, if the
182// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
183// exists in the instruction stream. Similiarly this will inline a recursive
184// function by one level.
185//
186bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
187 Instruction *TheCall = CS.getInstruction();
188 assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
189 "Instruction not in function!");
190
191 const Function *CalledFunc = CS.getCalledFunction();
192 if (CalledFunc == 0 || // Can't inline external function or indirect
193 CalledFunc->isDeclaration() || // call, or call to a vararg function!
194 CalledFunc->getFunctionType()->isVarArg()) return false;
195
196
197 // If the call to the callee is a non-tail call, we must clear the 'tail'
198 // flags on any calls that we inline.
199 bool MustClearTailCallFlags =
200 isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
201
Duncan Sands2937e352007-12-19 21:13:37 +0000202 // If the call to the callee cannot throw, set the 'nounwind' flag on any
203 // calls that we inline.
204 bool MarkNoUnwind = CS.doesNotThrow();
205
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206 BasicBlock *OrigBB = TheCall->getParent();
207 Function *Caller = OrigBB->getParent();
208
Gordon Henriksena86e9192007-12-25 03:10:07 +0000209 // GC poses two hazards to inlining, which only occur when the callee has GC:
210 // 1. If the caller has no GC, then the callee's GC must be propagated to the
211 // caller.
212 // 2. If the caller has a differing GC, it is invalid to inline.
Gordon Henriksen1aed5992008-08-17 18:44:35 +0000213 if (CalledFunc->hasGC()) {
214 if (!Caller->hasGC())
215 Caller->setGC(CalledFunc->getGC());
216 else if (CalledFunc->getGC() != Caller->getGC())
Gordon Henriksena86e9192007-12-25 03:10:07 +0000217 return false;
218 }
Duncan Sandse4267052008-09-05 12:37:12 +0000219
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000220 // Get an iterator to the last basic block in the function, which will have
221 // the new function inlined after it.
222 //
223 Function::iterator LastBlock = &Caller->back();
224
225 // Make sure to capture all of the return instructions from the cloned
226 // function.
227 std::vector<ReturnInst*> Returns;
228 ClonedCodeInfo InlinedFunctionInfo;
229 Function::iterator FirstNewBlock;
Duncan Sands2937e352007-12-19 21:13:37 +0000230
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000231 { // Scope to destroy ValueMap after cloning.
232 DenseMap<const Value*, Value*> ValueMap;
233
Dan Gohman2e251372008-06-20 17:11:32 +0000234 assert(CalledFunc->arg_size() == CS.arg_size() &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 "No varargs calls can be inlined!");
Duncan Sandse4267052008-09-05 12:37:12 +0000236
Chris Lattner124993a2008-01-11 06:09:30 +0000237 // Calculate the vector of arguments to pass into the function cloner, which
238 // matches up the formal to the actual argument values.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000239 CallSite::arg_iterator AI = CS.arg_begin();
Chris Lattner124993a2008-01-11 06:09:30 +0000240 unsigned ArgNo = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000241 for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
Chris Lattner124993a2008-01-11 06:09:30 +0000242 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
243 Value *ActualArg = *AI;
Duncan Sandse4267052008-09-05 12:37:12 +0000244
Duncan Sands96ad1262008-01-27 18:12:58 +0000245 // When byval arguments actually inlined, we need to make the copy implied
246 // by them explicit. However, we don't do this if the callee is readonly
247 // or readnone, because the copy would be unneeded: the callee doesn't
248 // modify the struct.
249 if (CalledFunc->paramHasAttr(ArgNo+1, ParamAttr::ByVal) &&
250 !CalledFunc->onlyReadsMemory()) {
Chris Lattner124993a2008-01-11 06:09:30 +0000251 const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
252 const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
Duncan Sandse4267052008-09-05 12:37:12 +0000253
Chris Lattner124993a2008-01-11 06:09:30 +0000254 // Create the alloca. If we have TargetData, use nice alignment.
255 unsigned Align = 1;
256 if (TD) Align = TD->getPrefTypeAlignment(AggTy);
Duncan Sandse4267052008-09-05 12:37:12 +0000257 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
Chris Lattner124993a2008-01-11 06:09:30 +0000258 Caller->begin()->begin());
259 // Emit a memcpy.
260 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
261 Intrinsic::memcpy_i64);
262 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
263 Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
Duncan Sandse4267052008-09-05 12:37:12 +0000264
Chris Lattner124993a2008-01-11 06:09:30 +0000265 Value *Size;
266 if (TD == 0)
267 Size = ConstantExpr::getSizeOf(AggTy);
268 else
269 Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));
Duncan Sandse4267052008-09-05 12:37:12 +0000270
Chris Lattner124993a2008-01-11 06:09:30 +0000271 // Always generate a memcpy of alignment 1 here because we don't know
272 // the alignment of the src pointer. Other optimizations can infer
273 // better alignment.
274 Value *CallArgs[] = {
275 DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
276 };
277 CallInst *TheMemCpy =
Gabor Greifd6da1d02008-04-06 20:25:17 +0000278 CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
Duncan Sandse4267052008-09-05 12:37:12 +0000279
Chris Lattner124993a2008-01-11 06:09:30 +0000280 // If we have a call graph, update it.
281 if (CG) {
282 CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
283 CallGraphNode *CallerNode = (*CG)[Caller];
284 CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
285 }
Duncan Sandse4267052008-09-05 12:37:12 +0000286
Chris Lattner124993a2008-01-11 06:09:30 +0000287 // Uses of the argument in the function should use our new alloca
288 // instead.
289 ActualArg = NewAlloca;
290 }
Duncan Sandse4267052008-09-05 12:37:12 +0000291
Chris Lattner124993a2008-01-11 06:09:30 +0000292 ValueMap[I] = ActualArg;
293 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000294
295 // We want the inliner to prune the code as it copies. We would LOVE to
296 // have no dead or constant instructions leftover after inlining occurs
297 // (which can happen, e.g., because an argument was constant), but we'll be
298 // happy with whatever the cloner can do.
299 CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
300 &InlinedFunctionInfo, TD);
Duncan Sandse4267052008-09-05 12:37:12 +0000301
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000302 // Remember the first block that is newly cloned over.
303 FirstNewBlock = LastBlock; ++FirstNewBlock;
Duncan Sandse4267052008-09-05 12:37:12 +0000304
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305 // Update the callgraph if requested.
306 if (CG)
Duncan Sands104431b2008-09-08 11:05:51 +0000307 UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308 }
Duncan Sandse4267052008-09-05 12:37:12 +0000309
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000310 // If there are any alloca instructions in the block that used to be the entry
311 // block for the callee, move them to the entry block of the caller. First
312 // calculate which instruction they should be inserted before. We insert the
313 // instructions at the end of the current alloca list.
314 //
315 {
316 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
317 for (BasicBlock::iterator I = FirstNewBlock->begin(),
318 E = FirstNewBlock->end(); I != E; )
319 if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
320 // If the alloca is now dead, remove it. This often occurs due to code
321 // specialization.
322 if (AI->use_empty()) {
323 AI->eraseFromParent();
324 continue;
325 }
Duncan Sandse4267052008-09-05 12:37:12 +0000326
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000327 if (isa<Constant>(AI->getArraySize())) {
328 // Scan for the block of allocas that we can move over, and move them
329 // all at once.
330 while (isa<AllocaInst>(I) &&
331 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
332 ++I;
333
334 // Transfer all of the allocas over in a block. Using splice means
335 // that the instructions aren't removed from the symbol table, then
336 // reinserted.
337 Caller->getEntryBlock().getInstList().splice(
338 InsertPoint,
339 FirstNewBlock->getInstList(),
340 AI, I);
341 }
342 }
343 }
344
345 // If the inlined code contained dynamic alloca instructions, wrap the inlined
346 // code with llvm.stacksave/llvm.stackrestore intrinsics.
347 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
348 Module *M = Caller->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349 // Get the two intrinsics we care about.
350 Constant *StackSave, *StackRestore;
Duncan Sands17836442008-04-07 13:43:58 +0000351 StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
352 StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000353
354 // If we are preserving the callgraph, add edges to the stacksave/restore
355 // functions for the calls we insert.
356 CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
357 if (CG) {
358 // We know that StackSave/StackRestore are Function*'s, because they are
359 // intrinsics which must have the right types.
360 StackSaveCGN = CG->getOrInsertFunction(cast<Function>(StackSave));
361 StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
362 CallerNode = (*CG)[Caller];
363 }
Duncan Sandse4267052008-09-05 12:37:12 +0000364
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000365 // Insert the llvm.stacksave.
Duncan Sandse4267052008-09-05 12:37:12 +0000366 CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
Gabor Greifd6da1d02008-04-06 20:25:17 +0000367 FirstNewBlock->begin());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368 if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
Duncan Sandse4267052008-09-05 12:37:12 +0000369
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000370 // Insert a call to llvm.stackrestore before any return instructions in the
371 // inlined function.
372 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
Gabor Greifd6da1d02008-04-06 20:25:17 +0000373 CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000374 if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
375 }
376
377 // Count the number of StackRestore calls we insert.
378 unsigned NumStackRestores = Returns.size();
Duncan Sandse4267052008-09-05 12:37:12 +0000379
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000380 // If we are inlining an invoke instruction, insert restores before each
381 // unwind. These unwinds will be rewritten into branches later.
382 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
383 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
384 BB != E; ++BB)
385 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
Duncan Sands17836442008-04-07 13:43:58 +0000386 CallInst::Create(StackRestore, SavedPtr, "", UI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000387 ++NumStackRestores;
388 }
389 }
390 }
391
Duncan Sandse4267052008-09-05 12:37:12 +0000392 // If we are inlining tail call instruction through a call site that isn't
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000393 // marked 'tail', we must remove the tail marker for any calls in the inlined
Duncan Sands2937e352007-12-19 21:13:37 +0000394 // code. Also, calls inlined through a 'nounwind' call site should be marked
395 // 'nounwind'.
396 if (InlinedFunctionInfo.ContainsCalls &&
397 (MustClearTailCallFlags || MarkNoUnwind)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
399 BB != E; ++BB)
400 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
Duncan Sands2937e352007-12-19 21:13:37 +0000401 if (CallInst *CI = dyn_cast<CallInst>(I)) {
402 if (MustClearTailCallFlags)
403 CI->setTailCall(false);
404 if (MarkNoUnwind)
405 CI->setDoesNotThrow();
406 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000407 }
408
Duncan Sands2937e352007-12-19 21:13:37 +0000409 // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
410 // instructions are unreachable.
411 if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
412 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
413 BB != E; ++BB) {
414 TerminatorInst *Term = BB->getTerminator();
415 if (isa<UnwindInst>(Term)) {
416 new UnreachableInst(Term);
417 BB->getInstList().erase(Term);
418 }
419 }
420
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000421 // If we are inlining for an invoke instruction, we must make sure to rewrite
422 // any inlined 'unwind' instructions into branches to the invoke exception
423 // destination, and call instructions into invoke instructions.
424 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
425 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
426
427 // If we cloned in _exactly one_ basic block, and if that block ends in a
428 // return instruction, we splice the body of the inlined callee directly into
429 // the calling basic block.
430 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
431 // Move all of the instructions right before the call.
432 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
433 FirstNewBlock->begin(), FirstNewBlock->end());
434 // Remove the cloned basic block.
435 Caller->getBasicBlockList().pop_back();
436
437 // If the call site was an invoke instruction, add a branch to the normal
438 // destination.
439 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
Gabor Greifd6da1d02008-04-06 20:25:17 +0000440 BranchInst::Create(II->getNormalDest(), TheCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000441
442 // If the return instruction returned a value, replace uses of the call with
443 // uses of the returned value.
Devang Patelbd4e13d2008-03-04 21:15:15 +0000444 if (!TheCall->use_empty()) {
445 ReturnInst *R = Returns[0];
Dan Gohman29474e92008-07-23 00:34:11 +0000446 TheCall->replaceAllUsesWith(R->getReturnValue());
Devang Patelbd4e13d2008-03-04 21:15:15 +0000447 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000448 // Since we are now done with the Call/Invoke, we can delete it.
Dan Gohmande087372008-06-21 22:08:46 +0000449 TheCall->eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000450
451 // Since we are now done with the return instruction, delete it also.
Dan Gohmande087372008-06-21 22:08:46 +0000452 Returns[0]->eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453
454 // We are now done with the inlining.
455 return true;
456 }
457
458 // Otherwise, we have the normal case, of more than one block to inline or
459 // multiple return sites.
460
461 // We want to clone the entire callee function into the hole between the
462 // "starter" and "ender" blocks. How we accomplish this depends on whether
463 // this is an invoke instruction or a call instruction.
464 BasicBlock *AfterCallBB;
465 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
466
467 // Add an unconditional branch to make this look like the CallInst case...
Gabor Greifd6da1d02008-04-06 20:25:17 +0000468 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000469
470 // Split the basic block. This guarantees that no PHI nodes will have to be
471 // updated due to new incoming edges, and make the invoke case more
472 // symmetric to the call case.
473 AfterCallBB = OrigBB->splitBasicBlock(NewBr,
474 CalledFunc->getName()+".exit");
475
476 } else { // It's a call
477 // If this is a call instruction, we need to split the basic block that
478 // the call lives in.
479 //
480 AfterCallBB = OrigBB->splitBasicBlock(TheCall,
481 CalledFunc->getName()+".exit");
482 }
483
484 // Change the branch that used to go to AfterCallBB to branch to the first
485 // basic block of the inlined function.
486 //
487 TerminatorInst *Br = OrigBB->getTerminator();
488 assert(Br && Br->getOpcode() == Instruction::Br &&
489 "splitBasicBlock broken!");
490 Br->setOperand(0, FirstNewBlock);
491
492
493 // Now that the function is correct, make it a little bit nicer. In
494 // particular, move the basic blocks inserted from the end of the function
495 // into the space made by splitting the source basic block.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000496 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
497 FirstNewBlock, Caller->end());
498
499 // Handle all of the return instructions that we just cloned in, and eliminate
500 // any users of the original call/invoke instruction.
Devang Patel59b4bc32008-03-10 18:34:00 +0000501 const Type *RTy = CalledFunc->getReturnType();
Dan Gohmanadf79782008-06-20 01:03:44 +0000502
Dan Gohman29474e92008-07-23 00:34:11 +0000503 if (Returns.size() > 1) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 // The PHI node should go at the front of the new basic block to merge all
505 // possible incoming values.
Dan Gohman29474e92008-07-23 00:34:11 +0000506 PHINode *PHI = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000507 if (!TheCall->use_empty()) {
Dan Gohman29474e92008-07-23 00:34:11 +0000508 PHI = PHINode::Create(RTy, TheCall->getName(),
509 AfterCallBB->begin());
510 // Anything that used the result of the function call should now use the
511 // PHI node as their operand.
Duncan Sandse4267052008-09-05 12:37:12 +0000512 TheCall->replaceAllUsesWith(PHI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000513 }
514
Devang Patelfed04412008-03-07 20:06:16 +0000515 // Loop over all of the return instructions adding entries to the PHI node as
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000516 // appropriate.
Dan Gohman29474e92008-07-23 00:34:11 +0000517 if (PHI) {
518 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
519 ReturnInst *RI = Returns[i];
520 assert(RI->getReturnValue()->getType() == PHI->getType() &&
521 "Ret value not consistent in function!");
522 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
Devang Patelfed04412008-03-07 20:06:16 +0000523 }
524 }
525
526 // Add a branch to the merge points and remove retrun instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000527 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
528 ReturnInst *RI = Returns[i];
Gabor Greifd6da1d02008-04-06 20:25:17 +0000529 BranchInst::Create(AfterCallBB, RI);
Devang Patel59b4bc32008-03-10 18:34:00 +0000530 RI->eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000531 }
Devang Patel59b4bc32008-03-10 18:34:00 +0000532 } else if (!Returns.empty()) {
533 // Otherwise, if there is exactly one return value, just replace anything
534 // using the return value of the call with the computed value.
535 if (!TheCall->use_empty())
536 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
Duncan Sandse4267052008-09-05 12:37:12 +0000537
Devang Patel59b4bc32008-03-10 18:34:00 +0000538 // Splice the code from the return block into the block that it will return
539 // to, which contains the code that was after the call.
540 BasicBlock *ReturnBB = Returns[0]->getParent();
541 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
542 ReturnBB->getInstList());
Duncan Sandse4267052008-09-05 12:37:12 +0000543
Devang Patel59b4bc32008-03-10 18:34:00 +0000544 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
545 ReturnBB->replaceAllUsesWith(AfterCallBB);
Duncan Sandse4267052008-09-05 12:37:12 +0000546
Devang Patel59b4bc32008-03-10 18:34:00 +0000547 // Delete the return instruction now and empty ReturnBB now.
548 Returns[0]->eraseFromParent();
549 ReturnBB->eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000550 } else if (!TheCall->use_empty()) {
551 // No returns, but something is using the return value of the call. Just
552 // nuke the result.
553 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
554 }
555
556 // Since we are now done with the Call/Invoke, we can delete it.
557 TheCall->eraseFromParent();
558
559 // We should always be able to fold the entry block of the function into the
560 // single predecessor of the block...
561 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
562 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
563
564 // Splice the code entry block into calling block, right before the
565 // unconditional branch.
566 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
567 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
568
569 // Remove the unconditional branch.
570 OrigBB->getInstList().erase(Br);
571
572 // Now we can remove the CalleeEntry block, which is now empty.
573 Caller->getBasicBlockList().erase(CalleeEntry);
Duncan Sandse4267052008-09-05 12:37:12 +0000574
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000575 return true;
576}