blob: 88f32810d6751a5061a1dd3b5f1925ddc892e148 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
Ted Kremenek109de0d2008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000018#include "llvm/Support/Debug.h"
19#include "llvm/Support/MathExtras.h"
20#include <math.h>
21#include <limits>
22#include <cstring>
23#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000024#include <iomanip>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025
26using namespace llvm;
27
Reid Spencera15c5012007-12-11 06:53:58 +000028/// This enumeration just provides for internal constants used in this
29/// translation unit.
30enum {
31 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
32 ///< Note that this must remain synchronized with IntegerType::MIN_INT_BITS
33 MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
34 ///< Note that this must remain synchronized with IntegerType::MAX_INT_BITS
35};
36
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037/// A utility function for allocating memory, checking for allocation failures,
38/// and ensuring the contents are zeroed.
39inline static uint64_t* getClearedMemory(uint32_t numWords) {
40 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 memset(result, 0, numWords * sizeof(uint64_t));
43 return result;
44}
45
46/// A utility function for allocating memory and checking for allocation
47/// failure. The content is not zeroed.
48inline static uint64_t* getMemory(uint32_t numWords) {
49 uint64_t * result = new uint64_t[numWords];
50 assert(result && "APInt memory allocation fails!");
51 return result;
52}
53
54APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned)
55 : BitWidth(numBits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000056 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
57 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000058 if (isSingleWord())
59 VAL = val;
60 else {
61 pVal = getClearedMemory(getNumWords());
62 pVal[0] = val;
63 if (isSigned && int64_t(val) < 0)
64 for (unsigned i = 1; i < getNumWords(); ++i)
65 pVal[i] = -1ULL;
66 }
67 clearUnusedBits();
68}
69
Dale Johannesena6f79742007-09-21 22:09:37 +000070APInt::APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[])
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071 : BitWidth(numBits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000072 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
73 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074 assert(bigVal && "Null pointer detected!");
75 if (isSingleWord())
76 VAL = bigVal[0];
77 else {
78 // Get memory, cleared to 0
79 pVal = getClearedMemory(getNumWords());
80 // Calculate the number of words to copy
81 uint32_t words = std::min<uint32_t>(numWords, getNumWords());
82 // Copy the words from bigVal to pVal
83 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
84 }
85 // Make sure unused high bits are cleared
86 clearUnusedBits();
87}
88
89APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
90 uint8_t radix)
91 : BitWidth(numbits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000092 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
93 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 fromString(numbits, StrStart, slen, radix);
95}
96
97APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
98 : BitWidth(numbits), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +000099 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
100 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000101 assert(!Val.empty() && "String empty?");
102 fromString(numbits, Val.c_str(), Val.size(), radix);
103}
104
105APInt::APInt(const APInt& that)
106 : BitWidth(that.BitWidth), VAL(0) {
Reid Spencera15c5012007-12-11 06:53:58 +0000107 assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
108 assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109 if (isSingleWord())
110 VAL = that.VAL;
111 else {
112 pVal = getMemory(getNumWords());
113 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
114 }
115}
116
117APInt::~APInt() {
118 if (!isSingleWord() && pVal)
119 delete [] pVal;
120}
121
122APInt& APInt::operator=(const APInt& RHS) {
123 // Don't do anything for X = X
124 if (this == &RHS)
125 return *this;
126
127 // If the bitwidths are the same, we can avoid mucking with memory
128 if (BitWidth == RHS.getBitWidth()) {
129 if (isSingleWord())
130 VAL = RHS.VAL;
131 else
132 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
133 return *this;
134 }
135
136 if (isSingleWord())
137 if (RHS.isSingleWord())
138 VAL = RHS.VAL;
139 else {
140 VAL = 0;
141 pVal = getMemory(RHS.getNumWords());
142 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
143 }
144 else if (getNumWords() == RHS.getNumWords())
145 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
146 else if (RHS.isSingleWord()) {
147 delete [] pVal;
148 VAL = RHS.VAL;
149 } else {
150 delete [] pVal;
151 pVal = getMemory(RHS.getNumWords());
152 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
153 }
154 BitWidth = RHS.BitWidth;
155 return clearUnusedBits();
156}
157
158APInt& APInt::operator=(uint64_t RHS) {
159 if (isSingleWord())
160 VAL = RHS;
161 else {
162 pVal[0] = RHS;
163 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
164 }
165 return clearUnusedBits();
166}
167
Ted Kremenek109de0d2008-01-19 04:23:33 +0000168/// Profile - This method 'profiles' an APInt for use with FoldingSet.
169void APInt::Profile(FoldingSetNodeID& ID) const {
170 if (isSingleWord()) {
171 ID.AddInteger(VAL);
172 return;
173 }
174
175 uint32_t NumWords = getNumWords();
176 for (unsigned i = 0; i < NumWords; ++i)
177 ID.AddInteger(pVal[i]);
178}
179
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000180/// add_1 - This function adds a single "digit" integer, y, to the multiple
181/// "digit" integer array, x[]. x[] is modified to reflect the addition and
182/// 1 is returned if there is a carry out, otherwise 0 is returned.
183/// @returns the carry of the addition.
184static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
185 for (uint32_t i = 0; i < len; ++i) {
186 dest[i] = y + x[i];
187 if (dest[i] < y)
188 y = 1; // Carry one to next digit.
189 else {
190 y = 0; // No need to carry so exit early
191 break;
192 }
193 }
194 return y;
195}
196
197/// @brief Prefix increment operator. Increments the APInt by one.
198APInt& APInt::operator++() {
199 if (isSingleWord())
200 ++VAL;
201 else
202 add_1(pVal, pVal, getNumWords(), 1);
203 return clearUnusedBits();
204}
205
206/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
207/// the multi-digit integer array, x[], propagating the borrowed 1 value until
208/// no further borrowing is neeeded or it runs out of "digits" in x. The result
209/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
210/// In other words, if y > x then this function returns 1, otherwise 0.
211/// @returns the borrow out of the subtraction
212static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
213 for (uint32_t i = 0; i < len; ++i) {
214 uint64_t X = x[i];
215 x[i] -= y;
216 if (y > X)
217 y = 1; // We have to "borrow 1" from next "digit"
218 else {
219 y = 0; // No need to borrow
220 break; // Remaining digits are unchanged so exit early
221 }
222 }
223 return bool(y);
224}
225
226/// @brief Prefix decrement operator. Decrements the APInt by one.
227APInt& APInt::operator--() {
228 if (isSingleWord())
229 --VAL;
230 else
231 sub_1(pVal, getNumWords(), 1);
232 return clearUnusedBits();
233}
234
235/// add - This function adds the integer array x to the integer array Y and
236/// places the result in dest.
237/// @returns the carry out from the addition
238/// @brief General addition of 64-bit integer arrays
239static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
240 uint32_t len) {
241 bool carry = false;
242 for (uint32_t i = 0; i< len; ++i) {
243 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
244 dest[i] = x[i] + y[i] + carry;
245 carry = dest[i] < limit || (carry && dest[i] == limit);
246 }
247 return carry;
248}
249
250/// Adds the RHS APint to this APInt.
251/// @returns this, after addition of RHS.
252/// @brief Addition assignment operator.
253APInt& APInt::operator+=(const APInt& RHS) {
254 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
255 if (isSingleWord())
256 VAL += RHS.VAL;
257 else {
258 add(pVal, pVal, RHS.pVal, getNumWords());
259 }
260 return clearUnusedBits();
261}
262
263/// Subtracts the integer array y from the integer array x
264/// @returns returns the borrow out.
265/// @brief Generalized subtraction of 64-bit integer arrays.
266static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
267 uint32_t len) {
268 bool borrow = false;
269 for (uint32_t i = 0; i < len; ++i) {
270 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
271 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
272 dest[i] = x_tmp - y[i];
273 }
274 return borrow;
275}
276
277/// Subtracts the RHS APInt from this APInt
278/// @returns this, after subtraction
279/// @brief Subtraction assignment operator.
280APInt& APInt::operator-=(const APInt& RHS) {
281 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
282 if (isSingleWord())
283 VAL -= RHS.VAL;
284 else
285 sub(pVal, pVal, RHS.pVal, getNumWords());
286 return clearUnusedBits();
287}
288
289/// Multiplies an integer array, x by a a uint64_t integer and places the result
290/// into dest.
291/// @returns the carry out of the multiplication.
292/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
293static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
294 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
295 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
296 uint64_t carry = 0;
297
298 // For each digit of x.
299 for (uint32_t i = 0; i < len; ++i) {
300 // Split x into high and low words
301 uint64_t lx = x[i] & 0xffffffffULL;
302 uint64_t hx = x[i] >> 32;
303 // hasCarry - A flag to indicate if there is a carry to the next digit.
304 // hasCarry == 0, no carry
305 // hasCarry == 1, has carry
306 // hasCarry == 2, no carry and the calculation result == 0.
307 uint8_t hasCarry = 0;
308 dest[i] = carry + lx * ly;
309 // Determine if the add above introduces carry.
310 hasCarry = (dest[i] < carry) ? 1 : 0;
311 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
312 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
313 // (2^32 - 1) + 2^32 = 2^64.
314 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
315
316 carry += (lx * hy) & 0xffffffffULL;
317 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
318 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
319 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
320 }
321 return carry;
322}
323
324/// Multiplies integer array x by integer array y and stores the result into
325/// the integer array dest. Note that dest's size must be >= xlen + ylen.
326/// @brief Generalized multiplicate of integer arrays.
327static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
328 uint32_t ylen) {
329 dest[xlen] = mul_1(dest, x, xlen, y[0]);
330 for (uint32_t i = 1; i < ylen; ++i) {
331 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
332 uint64_t carry = 0, lx = 0, hx = 0;
333 for (uint32_t j = 0; j < xlen; ++j) {
334 lx = x[j] & 0xffffffffULL;
335 hx = x[j] >> 32;
336 // hasCarry - A flag to indicate if has carry.
337 // hasCarry == 0, no carry
338 // hasCarry == 1, has carry
339 // hasCarry == 2, no carry and the calculation result == 0.
340 uint8_t hasCarry = 0;
341 uint64_t resul = carry + lx * ly;
342 hasCarry = (resul < carry) ? 1 : 0;
343 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
344 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
345
346 carry += (lx * hy) & 0xffffffffULL;
347 resul = (carry << 32) | (resul & 0xffffffffULL);
348 dest[i+j] += resul;
349 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
350 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
351 ((lx * hy) >> 32) + hx * hy;
352 }
353 dest[i+xlen] = carry;
354 }
355}
356
357APInt& APInt::operator*=(const APInt& RHS) {
358 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
359 if (isSingleWord()) {
360 VAL *= RHS.VAL;
361 clearUnusedBits();
362 return *this;
363 }
364
365 // Get some bit facts about LHS and check for zero
366 uint32_t lhsBits = getActiveBits();
367 uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
368 if (!lhsWords)
369 // 0 * X ===> 0
370 return *this;
371
372 // Get some bit facts about RHS and check for zero
373 uint32_t rhsBits = RHS.getActiveBits();
374 uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
375 if (!rhsWords) {
376 // X * 0 ===> 0
377 clear();
378 return *this;
379 }
380
381 // Allocate space for the result
382 uint32_t destWords = rhsWords + lhsWords;
383 uint64_t *dest = getMemory(destWords);
384
385 // Perform the long multiply
386 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
387
388 // Copy result back into *this
389 clear();
390 uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
391 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
392
393 // delete dest array and return
394 delete[] dest;
395 return *this;
396}
397
398APInt& APInt::operator&=(const APInt& RHS) {
399 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
400 if (isSingleWord()) {
401 VAL &= RHS.VAL;
402 return *this;
403 }
404 uint32_t numWords = getNumWords();
405 for (uint32_t i = 0; i < numWords; ++i)
406 pVal[i] &= RHS.pVal[i];
407 return *this;
408}
409
410APInt& APInt::operator|=(const APInt& RHS) {
411 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
412 if (isSingleWord()) {
413 VAL |= RHS.VAL;
414 return *this;
415 }
416 uint32_t numWords = getNumWords();
417 for (uint32_t i = 0; i < numWords; ++i)
418 pVal[i] |= RHS.pVal[i];
419 return *this;
420}
421
422APInt& APInt::operator^=(const APInt& RHS) {
423 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
424 if (isSingleWord()) {
425 VAL ^= RHS.VAL;
426 this->clearUnusedBits();
427 return *this;
428 }
429 uint32_t numWords = getNumWords();
430 for (uint32_t i = 0; i < numWords; ++i)
431 pVal[i] ^= RHS.pVal[i];
432 return clearUnusedBits();
433}
434
435APInt APInt::operator&(const APInt& RHS) const {
436 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
437 if (isSingleWord())
438 return APInt(getBitWidth(), VAL & RHS.VAL);
439
440 uint32_t numWords = getNumWords();
441 uint64_t* val = getMemory(numWords);
442 for (uint32_t i = 0; i < numWords; ++i)
443 val[i] = pVal[i] & RHS.pVal[i];
444 return APInt(val, getBitWidth());
445}
446
447APInt APInt::operator|(const APInt& RHS) const {
448 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
449 if (isSingleWord())
450 return APInt(getBitWidth(), VAL | RHS.VAL);
451
452 uint32_t numWords = getNumWords();
453 uint64_t *val = getMemory(numWords);
454 for (uint32_t i = 0; i < numWords; ++i)
455 val[i] = pVal[i] | RHS.pVal[i];
456 return APInt(val, getBitWidth());
457}
458
459APInt APInt::operator^(const APInt& RHS) const {
460 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
461 if (isSingleWord())
462 return APInt(BitWidth, VAL ^ RHS.VAL);
463
464 uint32_t numWords = getNumWords();
465 uint64_t *val = getMemory(numWords);
466 for (uint32_t i = 0; i < numWords; ++i)
467 val[i] = pVal[i] ^ RHS.pVal[i];
468
469 // 0^0==1 so clear the high bits in case they got set.
470 return APInt(val, getBitWidth()).clearUnusedBits();
471}
472
473bool APInt::operator !() const {
474 if (isSingleWord())
475 return !VAL;
476
477 for (uint32_t i = 0; i < getNumWords(); ++i)
478 if (pVal[i])
479 return false;
480 return true;
481}
482
483APInt APInt::operator*(const APInt& RHS) const {
484 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
485 if (isSingleWord())
486 return APInt(BitWidth, VAL * RHS.VAL);
487 APInt Result(*this);
488 Result *= RHS;
489 return Result.clearUnusedBits();
490}
491
492APInt APInt::operator+(const APInt& RHS) const {
493 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
494 if (isSingleWord())
495 return APInt(BitWidth, VAL + RHS.VAL);
496 APInt Result(BitWidth, 0);
497 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
498 return Result.clearUnusedBits();
499}
500
501APInt APInt::operator-(const APInt& RHS) const {
502 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
503 if (isSingleWord())
504 return APInt(BitWidth, VAL - RHS.VAL);
505 APInt Result(BitWidth, 0);
506 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
507 return Result.clearUnusedBits();
508}
509
510bool APInt::operator[](uint32_t bitPosition) const {
511 return (maskBit(bitPosition) &
512 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
513}
514
515bool APInt::operator==(const APInt& RHS) const {
516 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
517 if (isSingleWord())
518 return VAL == RHS.VAL;
519
520 // Get some facts about the number of bits used in the two operands.
521 uint32_t n1 = getActiveBits();
522 uint32_t n2 = RHS.getActiveBits();
523
524 // If the number of bits isn't the same, they aren't equal
525 if (n1 != n2)
526 return false;
527
528 // If the number of bits fits in a word, we only need to compare the low word.
529 if (n1 <= APINT_BITS_PER_WORD)
530 return pVal[0] == RHS.pVal[0];
531
532 // Otherwise, compare everything
533 for (int i = whichWord(n1 - 1); i >= 0; --i)
534 if (pVal[i] != RHS.pVal[i])
535 return false;
536 return true;
537}
538
539bool APInt::operator==(uint64_t Val) const {
540 if (isSingleWord())
541 return VAL == Val;
542
543 uint32_t n = getActiveBits();
544 if (n <= APINT_BITS_PER_WORD)
545 return pVal[0] == Val;
546 else
547 return false;
548}
549
550bool APInt::ult(const APInt& RHS) const {
551 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
552 if (isSingleWord())
553 return VAL < RHS.VAL;
554
555 // Get active bit length of both operands
556 uint32_t n1 = getActiveBits();
557 uint32_t n2 = RHS.getActiveBits();
558
559 // If magnitude of LHS is less than RHS, return true.
560 if (n1 < n2)
561 return true;
562
563 // If magnitude of RHS is greather than LHS, return false.
564 if (n2 < n1)
565 return false;
566
567 // If they bot fit in a word, just compare the low order word
568 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
569 return pVal[0] < RHS.pVal[0];
570
571 // Otherwise, compare all words
572 uint32_t topWord = whichWord(std::max(n1,n2)-1);
573 for (int i = topWord; i >= 0; --i) {
574 if (pVal[i] > RHS.pVal[i])
575 return false;
576 if (pVal[i] < RHS.pVal[i])
577 return true;
578 }
579 return false;
580}
581
582bool APInt::slt(const APInt& RHS) const {
583 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
584 if (isSingleWord()) {
585 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
586 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
587 return lhsSext < rhsSext;
588 }
589
590 APInt lhs(*this);
591 APInt rhs(RHS);
592 bool lhsNeg = isNegative();
593 bool rhsNeg = rhs.isNegative();
594 if (lhsNeg) {
595 // Sign bit is set so perform two's complement to make it positive
596 lhs.flip();
597 lhs++;
598 }
599 if (rhsNeg) {
600 // Sign bit is set so perform two's complement to make it positive
601 rhs.flip();
602 rhs++;
603 }
604
605 // Now we have unsigned values to compare so do the comparison if necessary
606 // based on the negativeness of the values.
607 if (lhsNeg)
608 if (rhsNeg)
609 return lhs.ugt(rhs);
610 else
611 return true;
612 else if (rhsNeg)
613 return false;
614 else
615 return lhs.ult(rhs);
616}
617
618APInt& APInt::set(uint32_t bitPosition) {
619 if (isSingleWord())
620 VAL |= maskBit(bitPosition);
621 else
622 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
623 return *this;
624}
625
626APInt& APInt::set() {
627 if (isSingleWord()) {
628 VAL = -1ULL;
629 return clearUnusedBits();
630 }
631
632 // Set all the bits in all the words.
633 for (uint32_t i = 0; i < getNumWords(); ++i)
634 pVal[i] = -1ULL;
635 // Clear the unused ones
636 return clearUnusedBits();
637}
638
639/// Set the given bit to 0 whose position is given as "bitPosition".
640/// @brief Set a given bit to 0.
641APInt& APInt::clear(uint32_t bitPosition) {
642 if (isSingleWord())
643 VAL &= ~maskBit(bitPosition);
644 else
645 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
646 return *this;
647}
648
649/// @brief Set every bit to 0.
650APInt& APInt::clear() {
651 if (isSingleWord())
652 VAL = 0;
653 else
654 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
655 return *this;
656}
657
658/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
659/// this APInt.
660APInt APInt::operator~() const {
661 APInt Result(*this);
662 Result.flip();
663 return Result;
664}
665
666/// @brief Toggle every bit to its opposite value.
667APInt& APInt::flip() {
668 if (isSingleWord()) {
669 VAL ^= -1ULL;
670 return clearUnusedBits();
671 }
672 for (uint32_t i = 0; i < getNumWords(); ++i)
673 pVal[i] ^= -1ULL;
674 return clearUnusedBits();
675}
676
677/// Toggle a given bit to its opposite value whose position is given
678/// as "bitPosition".
679/// @brief Toggles a given bit to its opposite value.
680APInt& APInt::flip(uint32_t bitPosition) {
681 assert(bitPosition < BitWidth && "Out of the bit-width range!");
682 if ((*this)[bitPosition]) clear(bitPosition);
683 else set(bitPosition);
684 return *this;
685}
686
687uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
688 assert(str != 0 && "Invalid value string");
689 assert(slen > 0 && "Invalid string length");
690
691 // Each computation below needs to know if its negative
692 uint32_t isNegative = str[0] == '-';
693 if (isNegative) {
694 slen--;
695 str++;
696 }
697 // For radixes of power-of-two values, the bits required is accurately and
698 // easily computed
699 if (radix == 2)
700 return slen + isNegative;
701 if (radix == 8)
702 return slen * 3 + isNegative;
703 if (radix == 16)
704 return slen * 4 + isNegative;
705
706 // Otherwise it must be radix == 10, the hard case
707 assert(radix == 10 && "Invalid radix");
708
709 // This is grossly inefficient but accurate. We could probably do something
710 // with a computation of roughly slen*64/20 and then adjust by the value of
711 // the first few digits. But, I'm not sure how accurate that could be.
712
713 // Compute a sufficient number of bits that is always large enough but might
714 // be too large. This avoids the assertion in the constructor.
715 uint32_t sufficient = slen*64/18;
716
717 // Convert to the actual binary value.
718 APInt tmp(sufficient, str, slen, radix);
719
720 // Compute how many bits are required.
721 return isNegative + tmp.logBase2() + 1;
722}
723
724uint64_t APInt::getHashValue() const {
725 // Put the bit width into the low order bits.
726 uint64_t hash = BitWidth;
727
728 // Add the sum of the words to the hash.
729 if (isSingleWord())
730 hash += VAL << 6; // clear separation of up to 64 bits
731 else
732 for (uint32_t i = 0; i < getNumWords(); ++i)
733 hash += pVal[i] << 6; // clear sepration of up to 64 bits
734 return hash;
735}
736
737/// HiBits - This function returns the high "numBits" bits of this APInt.
738APInt APInt::getHiBits(uint32_t numBits) const {
739 return APIntOps::lshr(*this, BitWidth - numBits);
740}
741
742/// LoBits - This function returns the low "numBits" bits of this APInt.
743APInt APInt::getLoBits(uint32_t numBits) const {
744 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
745 BitWidth - numBits);
746}
747
748bool APInt::isPowerOf2() const {
749 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
750}
751
752uint32_t APInt::countLeadingZeros() const {
753 uint32_t Count = 0;
754 if (isSingleWord())
755 Count = CountLeadingZeros_64(VAL);
756 else {
757 for (uint32_t i = getNumWords(); i > 0u; --i) {
758 if (pVal[i-1] == 0)
759 Count += APINT_BITS_PER_WORD;
760 else {
761 Count += CountLeadingZeros_64(pVal[i-1]);
762 break;
763 }
764 }
765 }
766 uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
767 if (remainder)
768 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner00b08ce2007-11-23 22:42:31 +0000769 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000770}
771
772static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
773 uint32_t Count = 0;
774 if (skip)
775 V <<= skip;
776 while (V && (V & (1ULL << 63))) {
777 Count++;
778 V <<= 1;
779 }
780 return Count;
781}
782
783uint32_t APInt::countLeadingOnes() const {
784 if (isSingleWord())
785 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
786
787 uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
788 uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
789 int i = getNumWords() - 1;
790 uint32_t Count = countLeadingOnes_64(pVal[i], shift);
791 if (Count == highWordBits) {
792 for (i--; i >= 0; --i) {
793 if (pVal[i] == -1ULL)
794 Count += APINT_BITS_PER_WORD;
795 else {
796 Count += countLeadingOnes_64(pVal[i], 0);
797 break;
798 }
799 }
800 }
801 return Count;
802}
803
804uint32_t APInt::countTrailingZeros() const {
805 if (isSingleWord())
Anton Korobeynikova0bd36c2007-12-24 11:16:47 +0000806 return std::min(uint32_t(CountTrailingZeros_64(VAL)), BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000807 uint32_t Count = 0;
808 uint32_t i = 0;
809 for (; i < getNumWords() && pVal[i] == 0; ++i)
810 Count += APINT_BITS_PER_WORD;
811 if (i < getNumWords())
812 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000813 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000814}
815
816uint32_t APInt::countPopulation() const {
817 if (isSingleWord())
818 return CountPopulation_64(VAL);
819 uint32_t Count = 0;
820 for (uint32_t i = 0; i < getNumWords(); ++i)
821 Count += CountPopulation_64(pVal[i]);
822 return Count;
823}
824
825APInt APInt::byteSwap() const {
826 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
827 if (BitWidth == 16)
828 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
829 else if (BitWidth == 32)
830 return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
831 else if (BitWidth == 48) {
832 uint32_t Tmp1 = uint32_t(VAL >> 16);
833 Tmp1 = ByteSwap_32(Tmp1);
834 uint16_t Tmp2 = uint16_t(VAL);
835 Tmp2 = ByteSwap_16(Tmp2);
836 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
837 } else if (BitWidth == 64)
838 return APInt(BitWidth, ByteSwap_64(VAL));
839 else {
840 APInt Result(BitWidth, 0);
841 char *pByte = (char*)Result.pVal;
842 for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
843 char Tmp = pByte[i];
844 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
845 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
846 }
847 return Result;
848 }
849}
850
851APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
852 const APInt& API2) {
853 APInt A = API1, B = API2;
854 while (!!B) {
855 APInt T = B;
856 B = APIntOps::urem(A, B);
857 A = T;
858 }
859 return A;
860}
861
862APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
863 union {
864 double D;
865 uint64_t I;
866 } T;
867 T.D = Double;
868
869 // Get the sign bit from the highest order bit
870 bool isNeg = T.I >> 63;
871
872 // Get the 11-bit exponent and adjust for the 1023 bit bias
873 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
874
875 // If the exponent is negative, the value is < 0 so just return 0.
876 if (exp < 0)
877 return APInt(width, 0u);
878
879 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
880 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
881
882 // If the exponent doesn't shift all bits out of the mantissa
883 if (exp < 52)
884 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
885 APInt(width, mantissa >> (52 - exp));
886
887 // If the client didn't provide enough bits for us to shift the mantissa into
888 // then the result is undefined, just return 0
889 if (width <= exp - 52)
890 return APInt(width, 0);
891
892 // Otherwise, we have to shift the mantissa bits up to the right location
893 APInt Tmp(width, mantissa);
894 Tmp = Tmp.shl(exp - 52);
895 return isNeg ? -Tmp : Tmp;
896}
897
898/// RoundToDouble - This function convert this APInt to a double.
899/// The layout for double is as following (IEEE Standard 754):
900/// --------------------------------------
901/// | Sign Exponent Fraction Bias |
902/// |-------------------------------------- |
903/// | 1[63] 11[62-52] 52[51-00] 1023 |
904/// --------------------------------------
905double APInt::roundToDouble(bool isSigned) const {
906
907 // Handle the simple case where the value is contained in one uint64_t.
908 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
909 if (isSigned) {
910 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
911 return double(sext);
912 } else
913 return double(VAL);
914 }
915
916 // Determine if the value is negative.
917 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
918
919 // Construct the absolute value if we're negative.
920 APInt Tmp(isNeg ? -(*this) : (*this));
921
922 // Figure out how many bits we're using.
923 uint32_t n = Tmp.getActiveBits();
924
925 // The exponent (without bias normalization) is just the number of bits
926 // we are using. Note that the sign bit is gone since we constructed the
927 // absolute value.
928 uint64_t exp = n;
929
930 // Return infinity for exponent overflow
931 if (exp > 1023) {
932 if (!isSigned || !isNeg)
933 return std::numeric_limits<double>::infinity();
934 else
935 return -std::numeric_limits<double>::infinity();
936 }
937 exp += 1023; // Increment for 1023 bias
938
939 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
940 // extract the high 52 bits from the correct words in pVal.
941 uint64_t mantissa;
942 unsigned hiWord = whichWord(n-1);
943 if (hiWord == 0) {
944 mantissa = Tmp.pVal[0];
945 if (n > 52)
946 mantissa >>= n - 52; // shift down, we want the top 52 bits.
947 } else {
948 assert(hiWord > 0 && "huh?");
949 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
950 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
951 mantissa = hibits | lobits;
952 }
953
954 // The leading bit of mantissa is implicit, so get rid of it.
955 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
956 union {
957 double D;
958 uint64_t I;
959 } T;
960 T.I = sign | (exp << 52) | mantissa;
961 return T.D;
962}
963
964// Truncate to new width.
965APInt &APInt::trunc(uint32_t width) {
966 assert(width < BitWidth && "Invalid APInt Truncate request");
Reid Spencera15c5012007-12-11 06:53:58 +0000967 assert(width >= MIN_INT_BITS && "Can't truncate to 0 bits");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000968 uint32_t wordsBefore = getNumWords();
969 BitWidth = width;
970 uint32_t wordsAfter = getNumWords();
971 if (wordsBefore != wordsAfter) {
972 if (wordsAfter == 1) {
973 uint64_t *tmp = pVal;
974 VAL = pVal[0];
975 delete [] tmp;
976 } else {
977 uint64_t *newVal = getClearedMemory(wordsAfter);
978 for (uint32_t i = 0; i < wordsAfter; ++i)
979 newVal[i] = pVal[i];
980 delete [] pVal;
981 pVal = newVal;
982 }
983 }
984 return clearUnusedBits();
985}
986
987// Sign extend to a new width.
988APInt &APInt::sext(uint32_t width) {
989 assert(width > BitWidth && "Invalid APInt SignExtend request");
Reid Spencera15c5012007-12-11 06:53:58 +0000990 assert(width <= MAX_INT_BITS && "Too many bits");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991 // If the sign bit isn't set, this is the same as zext.
992 if (!isNegative()) {
993 zext(width);
994 return *this;
995 }
996
997 // The sign bit is set. First, get some facts
998 uint32_t wordsBefore = getNumWords();
999 uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
1000 BitWidth = width;
1001 uint32_t wordsAfter = getNumWords();
1002
1003 // Mask the high order word appropriately
1004 if (wordsBefore == wordsAfter) {
1005 uint32_t newWordBits = width % APINT_BITS_PER_WORD;
1006 // The extension is contained to the wordsBefore-1th word.
1007 uint64_t mask = ~0ULL;
1008 if (newWordBits)
1009 mask >>= APINT_BITS_PER_WORD - newWordBits;
1010 mask <<= wordBits;
1011 if (wordsBefore == 1)
1012 VAL |= mask;
1013 else
1014 pVal[wordsBefore-1] |= mask;
1015 return clearUnusedBits();
1016 }
1017
1018 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1019 uint64_t *newVal = getMemory(wordsAfter);
1020 if (wordsBefore == 1)
1021 newVal[0] = VAL | mask;
1022 else {
1023 for (uint32_t i = 0; i < wordsBefore; ++i)
1024 newVal[i] = pVal[i];
1025 newVal[wordsBefore-1] |= mask;
1026 }
1027 for (uint32_t i = wordsBefore; i < wordsAfter; i++)
1028 newVal[i] = -1ULL;
1029 if (wordsBefore != 1)
1030 delete [] pVal;
1031 pVal = newVal;
1032 return clearUnusedBits();
1033}
1034
1035// Zero extend to a new width.
1036APInt &APInt::zext(uint32_t width) {
1037 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Reid Spencera15c5012007-12-11 06:53:58 +00001038 assert(width <= MAX_INT_BITS && "Too many bits");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001039 uint32_t wordsBefore = getNumWords();
1040 BitWidth = width;
1041 uint32_t wordsAfter = getNumWords();
1042 if (wordsBefore != wordsAfter) {
1043 uint64_t *newVal = getClearedMemory(wordsAfter);
1044 if (wordsBefore == 1)
1045 newVal[0] = VAL;
1046 else
1047 for (uint32_t i = 0; i < wordsBefore; ++i)
1048 newVal[i] = pVal[i];
1049 if (wordsBefore != 1)
1050 delete [] pVal;
1051 pVal = newVal;
1052 }
1053 return *this;
1054}
1055
1056APInt &APInt::zextOrTrunc(uint32_t width) {
1057 if (BitWidth < width)
1058 return zext(width);
1059 if (BitWidth > width)
1060 return trunc(width);
1061 return *this;
1062}
1063
1064APInt &APInt::sextOrTrunc(uint32_t width) {
1065 if (BitWidth < width)
1066 return sext(width);
1067 if (BitWidth > width)
1068 return trunc(width);
1069 return *this;
1070}
1071
1072/// Arithmetic right-shift this APInt by shiftAmt.
1073/// @brief Arithmetic right-shift function.
1074APInt APInt::ashr(uint32_t shiftAmt) const {
1075 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1076 // Handle a degenerate case
1077 if (shiftAmt == 0)
1078 return *this;
1079
1080 // Handle single word shifts with built-in ashr
1081 if (isSingleWord()) {
1082 if (shiftAmt == BitWidth)
1083 return APInt(BitWidth, 0); // undefined
1084 else {
1085 uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
1086 return APInt(BitWidth,
1087 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1088 }
1089 }
1090
1091 // If all the bits were shifted out, the result is, technically, undefined.
1092 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1093 // issues in the algorithm below.
1094 if (shiftAmt == BitWidth) {
1095 if (isNegative())
1096 return APInt(BitWidth, -1ULL);
1097 else
1098 return APInt(BitWidth, 0);
1099 }
1100
1101 // Create some space for the result.
1102 uint64_t * val = new uint64_t[getNumWords()];
1103
1104 // Compute some values needed by the following shift algorithms
1105 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1106 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1107 uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
1108 uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
1109 if (bitsInWord == 0)
1110 bitsInWord = APINT_BITS_PER_WORD;
1111
1112 // If we are shifting whole words, just move whole words
1113 if (wordShift == 0) {
1114 // Move the words containing significant bits
1115 for (uint32_t i = 0; i <= breakWord; ++i)
1116 val[i] = pVal[i+offset]; // move whole word
1117
1118 // Adjust the top significant word for sign bit fill, if negative
1119 if (isNegative())
1120 if (bitsInWord < APINT_BITS_PER_WORD)
1121 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1122 } else {
1123 // Shift the low order words
1124 for (uint32_t i = 0; i < breakWord; ++i) {
1125 // This combines the shifted corresponding word with the low bits from
1126 // the next word (shifted into this word's high bits).
1127 val[i] = (pVal[i+offset] >> wordShift) |
1128 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1129 }
1130
1131 // Shift the break word. In this case there are no bits from the next word
1132 // to include in this word.
1133 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1134
1135 // Deal with sign extenstion in the break word, and possibly the word before
1136 // it.
1137 if (isNegative()) {
1138 if (wordShift > bitsInWord) {
1139 if (breakWord > 0)
1140 val[breakWord-1] |=
1141 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1142 val[breakWord] |= ~0ULL;
1143 } else
1144 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1145 }
1146 }
1147
1148 // Remaining words are 0 or -1, just assign them.
1149 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1150 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1151 val[i] = fillValue;
1152 return APInt(val, BitWidth).clearUnusedBits();
1153}
1154
1155/// Logical right-shift this APInt by shiftAmt.
1156/// @brief Logical right-shift function.
1157APInt APInt::lshr(uint32_t shiftAmt) const {
1158 if (isSingleWord()) {
1159 if (shiftAmt == BitWidth)
1160 return APInt(BitWidth, 0);
1161 else
1162 return APInt(BitWidth, this->VAL >> shiftAmt);
1163 }
1164
1165 // If all the bits were shifted out, the result is 0. This avoids issues
1166 // with shifting by the size of the integer type, which produces undefined
1167 // results. We define these "undefined results" to always be 0.
1168 if (shiftAmt == BitWidth)
1169 return APInt(BitWidth, 0);
1170
1171 // If none of the bits are shifted out, the result is *this. This avoids
1172 // issues with shifting byt he size of the integer type, which produces
1173 // undefined results in the code below. This is also an optimization.
1174 if (shiftAmt == 0)
1175 return *this;
1176
1177 // Create some space for the result.
1178 uint64_t * val = new uint64_t[getNumWords()];
1179
1180 // If we are shifting less than a word, compute the shift with a simple carry
1181 if (shiftAmt < APINT_BITS_PER_WORD) {
1182 uint64_t carry = 0;
1183 for (int i = getNumWords()-1; i >= 0; --i) {
1184 val[i] = (pVal[i] >> shiftAmt) | carry;
1185 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1186 }
1187 return APInt(val, BitWidth).clearUnusedBits();
1188 }
1189
1190 // Compute some values needed by the remaining shift algorithms
1191 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1192 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1193
1194 // If we are shifting whole words, just move whole words
1195 if (wordShift == 0) {
1196 for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1197 val[i] = pVal[i+offset];
1198 for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1199 val[i] = 0;
1200 return APInt(val,BitWidth).clearUnusedBits();
1201 }
1202
1203 // Shift the low order words
1204 uint32_t breakWord = getNumWords() - offset -1;
1205 for (uint32_t i = 0; i < breakWord; ++i)
1206 val[i] = (pVal[i+offset] >> wordShift) |
1207 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1208 // Shift the break word.
1209 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1210
1211 // Remaining words are 0
1212 for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1213 val[i] = 0;
1214 return APInt(val, BitWidth).clearUnusedBits();
1215}
1216
1217/// Left-shift this APInt by shiftAmt.
1218/// @brief Left-shift function.
1219APInt APInt::shl(uint32_t shiftAmt) const {
1220 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1221 if (isSingleWord()) {
1222 if (shiftAmt == BitWidth)
1223 return APInt(BitWidth, 0); // avoid undefined shift results
1224 return APInt(BitWidth, VAL << shiftAmt);
1225 }
1226
1227 // If all the bits were shifted out, the result is 0. This avoids issues
1228 // with shifting by the size of the integer type, which produces undefined
1229 // results. We define these "undefined results" to always be 0.
1230 if (shiftAmt == BitWidth)
1231 return APInt(BitWidth, 0);
1232
1233 // If none of the bits are shifted out, the result is *this. This avoids a
1234 // lshr by the words size in the loop below which can produce incorrect
1235 // results. It also avoids the expensive computation below for a common case.
1236 if (shiftAmt == 0)
1237 return *this;
1238
1239 // Create some space for the result.
1240 uint64_t * val = new uint64_t[getNumWords()];
1241
1242 // If we are shifting less than a word, do it the easy way
1243 if (shiftAmt < APINT_BITS_PER_WORD) {
1244 uint64_t carry = 0;
1245 for (uint32_t i = 0; i < getNumWords(); i++) {
1246 val[i] = pVal[i] << shiftAmt | carry;
1247 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1248 }
1249 return APInt(val, BitWidth).clearUnusedBits();
1250 }
1251
1252 // Compute some values needed by the remaining shift algorithms
1253 uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1254 uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1255
1256 // If we are shifting whole words, just move whole words
1257 if (wordShift == 0) {
1258 for (uint32_t i = 0; i < offset; i++)
1259 val[i] = 0;
1260 for (uint32_t i = offset; i < getNumWords(); i++)
1261 val[i] = pVal[i-offset];
1262 return APInt(val,BitWidth).clearUnusedBits();
1263 }
1264
1265 // Copy whole words from this to Result.
1266 uint32_t i = getNumWords() - 1;
1267 for (; i > offset; --i)
1268 val[i] = pVal[i-offset] << wordShift |
1269 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1270 val[offset] = pVal[0] << wordShift;
1271 for (i = 0; i < offset; ++i)
1272 val[i] = 0;
1273 return APInt(val, BitWidth).clearUnusedBits();
1274}
1275
1276APInt APInt::rotl(uint32_t rotateAmt) const {
1277 if (rotateAmt == 0)
1278 return *this;
1279 // Don't get too fancy, just use existing shift/or facilities
1280 APInt hi(*this);
1281 APInt lo(*this);
1282 hi.shl(rotateAmt);
1283 lo.lshr(BitWidth - rotateAmt);
1284 return hi | lo;
1285}
1286
1287APInt APInt::rotr(uint32_t rotateAmt) const {
1288 if (rotateAmt == 0)
1289 return *this;
1290 // Don't get too fancy, just use existing shift/or facilities
1291 APInt hi(*this);
1292 APInt lo(*this);
1293 lo.lshr(rotateAmt);
1294 hi.shl(BitWidth - rotateAmt);
1295 return hi | lo;
1296}
1297
1298// Square Root - this method computes and returns the square root of "this".
1299// Three mechanisms are used for computation. For small values (<= 5 bits),
1300// a table lookup is done. This gets some performance for common cases. For
1301// values using less than 52 bits, the value is converted to double and then
1302// the libc sqrt function is called. The result is rounded and then converted
1303// back to a uint64_t which is then used to construct the result. Finally,
1304// the Babylonian method for computing square roots is used.
1305APInt APInt::sqrt() const {
1306
1307 // Determine the magnitude of the value.
1308 uint32_t magnitude = getActiveBits();
1309
1310 // Use a fast table for some small values. This also gets rid of some
1311 // rounding errors in libc sqrt for small values.
1312 if (magnitude <= 5) {
1313 static const uint8_t results[32] = {
1314 /* 0 */ 0,
1315 /* 1- 2 */ 1, 1,
1316 /* 3- 6 */ 2, 2, 2, 2,
1317 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1318 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1319 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1320 /* 31 */ 6
1321 };
1322 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1323 }
1324
1325 // If the magnitude of the value fits in less than 52 bits (the precision of
1326 // an IEEE double precision floating point value), then we can use the
1327 // libc sqrt function which will probably use a hardware sqrt computation.
1328 // This should be faster than the algorithm below.
1329 if (magnitude < 52) {
1330#ifdef _MSC_VER
1331 // Amazingly, VC++ doesn't have round().
1332 return APInt(BitWidth,
1333 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1334#else
1335 return APInt(BitWidth,
1336 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1337#endif
1338 }
1339
1340 // Okay, all the short cuts are exhausted. We must compute it. The following
1341 // is a classical Babylonian method for computing the square root. This code
1342 // was adapted to APINt from a wikipedia article on such computations.
1343 // See http://www.wikipedia.org/ and go to the page named
1344 // Calculate_an_integer_square_root.
1345 uint32_t nbits = BitWidth, i = 4;
1346 APInt testy(BitWidth, 16);
1347 APInt x_old(BitWidth, 1);
1348 APInt x_new(BitWidth, 0);
1349 APInt two(BitWidth, 2);
1350
1351 // Select a good starting value using binary logarithms.
1352 for (;; i += 2, testy = testy.shl(2))
1353 if (i >= nbits || this->ule(testy)) {
1354 x_old = x_old.shl(i / 2);
1355 break;
1356 }
1357
1358 // Use the Babylonian method to arrive at the integer square root:
1359 for (;;) {
1360 x_new = (this->udiv(x_old) + x_old).udiv(two);
1361 if (x_old.ule(x_new))
1362 break;
1363 x_old = x_new;
1364 }
1365
1366 // Make sure we return the closest approximation
1367 // NOTE: The rounding calculation below is correct. It will produce an
1368 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1369 // determined to be a rounding issue with pari/gp as it begins to use a
1370 // floating point representation after 192 bits. There are no discrepancies
1371 // between this algorithm and pari/gp for bit widths < 192 bits.
1372 APInt square(x_old * x_old);
1373 APInt nextSquare((x_old + 1) * (x_old +1));
1374 if (this->ult(square))
1375 return x_old;
1376 else if (this->ule(nextSquare)) {
1377 APInt midpoint((nextSquare - square).udiv(two));
1378 APInt offset(*this - square);
1379 if (offset.ult(midpoint))
1380 return x_old;
1381 else
1382 return x_old + 1;
1383 } else
1384 assert(0 && "Error in APInt::sqrt computation");
1385 return x_old + 1;
1386}
1387
1388/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1389/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1390/// variables here have the same names as in the algorithm. Comments explain
1391/// the algorithm and any deviation from it.
1392static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1393 uint32_t m, uint32_t n) {
1394 assert(u && "Must provide dividend");
1395 assert(v && "Must provide divisor");
1396 assert(q && "Must provide quotient");
1397 assert(u != v && u != q && v != q && "Must us different memory");
1398 assert(n>1 && "n must be > 1");
1399
1400 // Knuth uses the value b as the base of the number system. In our case b
1401 // is 2^31 so we just set it to -1u.
1402 uint64_t b = uint64_t(1) << 32;
1403
1404 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1405 DEBUG(cerr << "KnuthDiv: original:");
1406 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1407 DEBUG(cerr << " by");
1408 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1409 DEBUG(cerr << '\n');
1410 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1411 // u and v by d. Note that we have taken Knuth's advice here to use a power
1412 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1413 // 2 allows us to shift instead of multiply and it is easy to determine the
1414 // shift amount from the leading zeros. We are basically normalizing the u
1415 // and v so that its high bits are shifted to the top of v's range without
1416 // overflow. Note that this can require an extra word in u so that u must
1417 // be of length m+n+1.
1418 uint32_t shift = CountLeadingZeros_32(v[n-1]);
1419 uint32_t v_carry = 0;
1420 uint32_t u_carry = 0;
1421 if (shift) {
1422 for (uint32_t i = 0; i < m+n; ++i) {
1423 uint32_t u_tmp = u[i] >> (32 - shift);
1424 u[i] = (u[i] << shift) | u_carry;
1425 u_carry = u_tmp;
1426 }
1427 for (uint32_t i = 0; i < n; ++i) {
1428 uint32_t v_tmp = v[i] >> (32 - shift);
1429 v[i] = (v[i] << shift) | v_carry;
1430 v_carry = v_tmp;
1431 }
1432 }
1433 u[m+n] = u_carry;
1434 DEBUG(cerr << "KnuthDiv: normal:");
1435 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1436 DEBUG(cerr << " by");
1437 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1438 DEBUG(cerr << '\n');
1439
1440 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1441 int j = m;
1442 do {
1443 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1444 // D3. [Calculate q'.].
1445 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1446 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1447 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1448 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1449 // on v[n-2] determines at high speed most of the cases in which the trial
1450 // value qp is one too large, and it eliminates all cases where qp is two
1451 // too large.
1452 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1453 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1454 uint64_t qp = dividend / v[n-1];
1455 uint64_t rp = dividend % v[n-1];
1456 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1457 qp--;
1458 rp += v[n-1];
1459 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1460 qp--;
1461 }
1462 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1463
1464 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1465 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1466 // consists of a simple multiplication by a one-place number, combined with
1467 // a subtraction.
1468 bool isNeg = false;
1469 for (uint32_t i = 0; i < n; ++i) {
1470 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1471 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1472 bool borrow = subtrahend > u_tmp;
1473 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1474 << ", subtrahend == " << subtrahend
1475 << ", borrow = " << borrow << '\n');
1476
1477 uint64_t result = u_tmp - subtrahend;
1478 uint32_t k = j + i;
1479 u[k++] = result & (b-1); // subtract low word
1480 u[k++] = result >> 32; // subtract high word
1481 while (borrow && k <= m+n) { // deal with borrow to the left
1482 borrow = u[k] == 0;
1483 u[k]--;
1484 k++;
1485 }
1486 isNeg |= borrow;
1487 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1488 u[j+i+1] << '\n');
1489 }
1490 DEBUG(cerr << "KnuthDiv: after subtraction:");
1491 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1492 DEBUG(cerr << '\n');
1493 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1494 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1495 // true value plus b**(n+1), namely as the b's complement of
1496 // the true value, and a "borrow" to the left should be remembered.
1497 //
1498 if (isNeg) {
1499 bool carry = true; // true because b's complement is "complement + 1"
1500 for (uint32_t i = 0; i <= m+n; ++i) {
1501 u[i] = ~u[i] + carry; // b's complement
1502 carry = carry && u[i] == 0;
1503 }
1504 }
1505 DEBUG(cerr << "KnuthDiv: after complement:");
1506 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1507 DEBUG(cerr << '\n');
1508
1509 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1510 // negative, go to step D6; otherwise go on to step D7.
1511 q[j] = qp;
1512 if (isNeg) {
1513 // D6. [Add back]. The probability that this step is necessary is very
1514 // small, on the order of only 2/b. Make sure that test data accounts for
1515 // this possibility. Decrease q[j] by 1
1516 q[j]--;
1517 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1518 // A carry will occur to the left of u[j+n], and it should be ignored
1519 // since it cancels with the borrow that occurred in D4.
1520 bool carry = false;
1521 for (uint32_t i = 0; i < n; i++) {
1522 uint32_t limit = std::min(u[j+i],v[i]);
1523 u[j+i] += v[i] + carry;
1524 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1525 }
1526 u[j+n] += carry;
1527 }
1528 DEBUG(cerr << "KnuthDiv: after correction:");
1529 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1530 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1531
1532 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1533 } while (--j >= 0);
1534
1535 DEBUG(cerr << "KnuthDiv: quotient:");
1536 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1537 DEBUG(cerr << '\n');
1538
1539 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1540 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1541 // compute the remainder (urem uses this).
1542 if (r) {
1543 // The value d is expressed by the "shift" value above since we avoided
1544 // multiplication by d by using a shift left. So, all we have to do is
1545 // shift right here. In order to mak
1546 if (shift) {
1547 uint32_t carry = 0;
1548 DEBUG(cerr << "KnuthDiv: remainder:");
1549 for (int i = n-1; i >= 0; i--) {
1550 r[i] = (u[i] >> shift) | carry;
1551 carry = u[i] << (32 - shift);
1552 DEBUG(cerr << " " << r[i]);
1553 }
1554 } else {
1555 for (int i = n-1; i >= 0; i--) {
1556 r[i] = u[i];
1557 DEBUG(cerr << " " << r[i]);
1558 }
1559 }
1560 DEBUG(cerr << '\n');
1561 }
1562 DEBUG(cerr << std::setbase(10) << '\n');
1563}
1564
1565void APInt::divide(const APInt LHS, uint32_t lhsWords,
1566 const APInt &RHS, uint32_t rhsWords,
1567 APInt *Quotient, APInt *Remainder)
1568{
1569 assert(lhsWords >= rhsWords && "Fractional result");
1570
1571 // First, compose the values into an array of 32-bit words instead of
1572 // 64-bit words. This is a necessity of both the "short division" algorithm
1573 // and the the Knuth "classical algorithm" which requires there to be native
1574 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1575 // can't use 64-bit operands here because we don't have native results of
1576 // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1577 // work on large-endian machines.
1578 uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1579 uint32_t n = rhsWords * 2;
1580 uint32_t m = (lhsWords * 2) - n;
1581
1582 // Allocate space for the temporary values we need either on the stack, if
1583 // it will fit, or on the heap if it won't.
1584 uint32_t SPACE[128];
1585 uint32_t *U = 0;
1586 uint32_t *V = 0;
1587 uint32_t *Q = 0;
1588 uint32_t *R = 0;
1589 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1590 U = &SPACE[0];
1591 V = &SPACE[m+n+1];
1592 Q = &SPACE[(m+n+1) + n];
1593 if (Remainder)
1594 R = &SPACE[(m+n+1) + n + (m+n)];
1595 } else {
1596 U = new uint32_t[m + n + 1];
1597 V = new uint32_t[n];
1598 Q = new uint32_t[m+n];
1599 if (Remainder)
1600 R = new uint32_t[n];
1601 }
1602
1603 // Initialize the dividend
1604 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1605 for (unsigned i = 0; i < lhsWords; ++i) {
1606 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1607 U[i * 2] = tmp & mask;
1608 U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1609 }
1610 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1611
1612 // Initialize the divisor
1613 memset(V, 0, (n)*sizeof(uint32_t));
1614 for (unsigned i = 0; i < rhsWords; ++i) {
1615 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1616 V[i * 2] = tmp & mask;
1617 V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1618 }
1619
1620 // initialize the quotient and remainder
1621 memset(Q, 0, (m+n) * sizeof(uint32_t));
1622 if (Remainder)
1623 memset(R, 0, n * sizeof(uint32_t));
1624
1625 // Now, adjust m and n for the Knuth division. n is the number of words in
1626 // the divisor. m is the number of words by which the dividend exceeds the
1627 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1628 // contain any zero words or the Knuth algorithm fails.
1629 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1630 n--;
1631 m++;
1632 }
1633 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1634 m--;
1635
1636 // If we're left with only a single word for the divisor, Knuth doesn't work
1637 // so we implement the short division algorithm here. This is much simpler
1638 // and faster because we are certain that we can divide a 64-bit quantity
1639 // by a 32-bit quantity at hardware speed and short division is simply a
1640 // series of such operations. This is just like doing short division but we
1641 // are using base 2^32 instead of base 10.
1642 assert(n != 0 && "Divide by zero?");
1643 if (n == 1) {
1644 uint32_t divisor = V[0];
1645 uint32_t remainder = 0;
1646 for (int i = m+n-1; i >= 0; i--) {
1647 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1648 if (partial_dividend == 0) {
1649 Q[i] = 0;
1650 remainder = 0;
1651 } else if (partial_dividend < divisor) {
1652 Q[i] = 0;
1653 remainder = partial_dividend;
1654 } else if (partial_dividend == divisor) {
1655 Q[i] = 1;
1656 remainder = 0;
1657 } else {
1658 Q[i] = partial_dividend / divisor;
1659 remainder = partial_dividend - (Q[i] * divisor);
1660 }
1661 }
1662 if (R)
1663 R[0] = remainder;
1664 } else {
1665 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1666 // case n > 1.
1667 KnuthDiv(U, V, Q, R, m, n);
1668 }
1669
1670 // If the caller wants the quotient
1671 if (Quotient) {
1672 // Set up the Quotient value's memory.
1673 if (Quotient->BitWidth != LHS.BitWidth) {
1674 if (Quotient->isSingleWord())
1675 Quotient->VAL = 0;
1676 else
1677 delete [] Quotient->pVal;
1678 Quotient->BitWidth = LHS.BitWidth;
1679 if (!Quotient->isSingleWord())
1680 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1681 } else
1682 Quotient->clear();
1683
1684 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1685 // order words.
1686 if (lhsWords == 1) {
1687 uint64_t tmp =
1688 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1689 if (Quotient->isSingleWord())
1690 Quotient->VAL = tmp;
1691 else
1692 Quotient->pVal[0] = tmp;
1693 } else {
1694 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1695 for (unsigned i = 0; i < lhsWords; ++i)
1696 Quotient->pVal[i] =
1697 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1698 }
1699 }
1700
1701 // If the caller wants the remainder
1702 if (Remainder) {
1703 // Set up the Remainder value's memory.
1704 if (Remainder->BitWidth != RHS.BitWidth) {
1705 if (Remainder->isSingleWord())
1706 Remainder->VAL = 0;
1707 else
1708 delete [] Remainder->pVal;
1709 Remainder->BitWidth = RHS.BitWidth;
1710 if (!Remainder->isSingleWord())
1711 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1712 } else
1713 Remainder->clear();
1714
1715 // The remainder is in R. Reconstitute the remainder into Remainder's low
1716 // order words.
1717 if (rhsWords == 1) {
1718 uint64_t tmp =
1719 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1720 if (Remainder->isSingleWord())
1721 Remainder->VAL = tmp;
1722 else
1723 Remainder->pVal[0] = tmp;
1724 } else {
1725 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1726 for (unsigned i = 0; i < rhsWords; ++i)
1727 Remainder->pVal[i] =
1728 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1729 }
1730 }
1731
1732 // Clean up the memory we allocated.
1733 if (U != &SPACE[0]) {
1734 delete [] U;
1735 delete [] V;
1736 delete [] Q;
1737 delete [] R;
1738 }
1739}
1740
1741APInt APInt::udiv(const APInt& RHS) const {
1742 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1743
1744 // First, deal with the easy case
1745 if (isSingleWord()) {
1746 assert(RHS.VAL != 0 && "Divide by zero?");
1747 return APInt(BitWidth, VAL / RHS.VAL);
1748 }
1749
1750 // Get some facts about the LHS and RHS number of bits and words
1751 uint32_t rhsBits = RHS.getActiveBits();
1752 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1753 assert(rhsWords && "Divided by zero???");
1754 uint32_t lhsBits = this->getActiveBits();
1755 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1756
1757 // Deal with some degenerate cases
1758 if (!lhsWords)
1759 // 0 / X ===> 0
1760 return APInt(BitWidth, 0);
1761 else if (lhsWords < rhsWords || this->ult(RHS)) {
1762 // X / Y ===> 0, iff X < Y
1763 return APInt(BitWidth, 0);
1764 } else if (*this == RHS) {
1765 // X / X ===> 1
1766 return APInt(BitWidth, 1);
1767 } else if (lhsWords == 1 && rhsWords == 1) {
1768 // All high words are zero, just use native divide
1769 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1770 }
1771
1772 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1773 APInt Quotient(1,0); // to hold result.
1774 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1775 return Quotient;
1776}
1777
1778APInt APInt::urem(const APInt& RHS) const {
1779 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1780 if (isSingleWord()) {
1781 assert(RHS.VAL != 0 && "Remainder by zero?");
1782 return APInt(BitWidth, VAL % RHS.VAL);
1783 }
1784
1785 // Get some facts about the LHS
1786 uint32_t lhsBits = getActiveBits();
1787 uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1788
1789 // Get some facts about the RHS
1790 uint32_t rhsBits = RHS.getActiveBits();
1791 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1792 assert(rhsWords && "Performing remainder operation by zero ???");
1793
1794 // Check the degenerate cases
1795 if (lhsWords == 0) {
1796 // 0 % Y ===> 0
1797 return APInt(BitWidth, 0);
1798 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1799 // X % Y ===> X, iff X < Y
1800 return *this;
1801 } else if (*this == RHS) {
1802 // X % X == 0;
1803 return APInt(BitWidth, 0);
1804 } else if (lhsWords == 1) {
1805 // All high words are zero, just use native remainder
1806 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1807 }
1808
1809 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1810 APInt Remainder(1,0);
1811 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1812 return Remainder;
1813}
1814
1815void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1816 APInt &Quotient, APInt &Remainder) {
1817 // Get some size facts about the dividend and divisor
1818 uint32_t lhsBits = LHS.getActiveBits();
1819 uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1820 uint32_t rhsBits = RHS.getActiveBits();
1821 uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1822
1823 // Check the degenerate cases
1824 if (lhsWords == 0) {
1825 Quotient = 0; // 0 / Y ===> 0
1826 Remainder = 0; // 0 % Y ===> 0
1827 return;
1828 }
1829
1830 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1831 Quotient = 0; // X / Y ===> 0, iff X < Y
1832 Remainder = LHS; // X % Y ===> X, iff X < Y
1833 return;
1834 }
1835
1836 if (LHS == RHS) {
1837 Quotient = 1; // X / X ===> 1
1838 Remainder = 0; // X % X ===> 0;
1839 return;
1840 }
1841
1842 if (lhsWords == 1 && rhsWords == 1) {
1843 // There is only one word to consider so use the native versions.
1844 if (LHS.isSingleWord()) {
1845 Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL);
1846 Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL);
1847 } else {
1848 Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]);
1849 Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]);
1850 }
1851 return;
1852 }
1853
1854 // Okay, lets do it the long way
1855 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1856}
1857
1858void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1859 uint8_t radix) {
1860 // Check our assumptions here
1861 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1862 "Radix should be 2, 8, 10, or 16!");
1863 assert(str && "String is null?");
1864 bool isNeg = str[0] == '-';
1865 if (isNeg)
1866 str++, slen--;
1867 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
1868 assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
1869 assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
1870 assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
1871
1872 // Allocate memory
1873 if (!isSingleWord())
1874 pVal = getClearedMemory(getNumWords());
1875
1876 // Figure out if we can shift instead of multiply
1877 uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1878
1879 // Set up an APInt for the digit to add outside the loop so we don't
1880 // constantly construct/destruct it.
1881 APInt apdigit(getBitWidth(), 0);
1882 APInt apradix(getBitWidth(), radix);
1883
1884 // Enter digit traversal loop
1885 for (unsigned i = 0; i < slen; i++) {
1886 // Get a digit
1887 uint32_t digit = 0;
1888 char cdigit = str[i];
1889 if (radix == 16) {
1890 if (!isxdigit(cdigit))
1891 assert(0 && "Invalid hex digit in string");
1892 if (isdigit(cdigit))
1893 digit = cdigit - '0';
1894 else if (cdigit >= 'a')
1895 digit = cdigit - 'a' + 10;
1896 else if (cdigit >= 'A')
1897 digit = cdigit - 'A' + 10;
1898 else
1899 assert(0 && "huh? we shouldn't get here");
1900 } else if (isdigit(cdigit)) {
1901 digit = cdigit - '0';
1902 } else {
1903 assert(0 && "Invalid character in digit string");
1904 }
1905
1906 // Shift or multiply the value by the radix
1907 if (shift)
1908 *this <<= shift;
1909 else
1910 *this *= apradix;
1911
1912 // Add in the digit we just interpreted
1913 if (apdigit.isSingleWord())
1914 apdigit.VAL = digit;
1915 else
1916 apdigit.pVal[0] = digit;
1917 *this += apdigit;
1918 }
1919 // If its negative, put it in two's complement form
1920 if (isNeg) {
1921 (*this)--;
1922 this->flip();
1923 }
1924}
1925
1926std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1927 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1928 "Radix should be 2, 8, 10, or 16!");
1929 static const char *digits[] = {
1930 "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1931 };
1932 std::string result;
1933 uint32_t bits_used = getActiveBits();
1934 if (isSingleWord()) {
1935 char buf[65];
1936 const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1937 (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1938 if (format) {
1939 if (wantSigned) {
1940 int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1941 (APINT_BITS_PER_WORD-BitWidth);
1942 sprintf(buf, format, sextVal);
1943 } else
1944 sprintf(buf, format, VAL);
1945 } else {
1946 memset(buf, 0, 65);
1947 uint64_t v = VAL;
1948 while (bits_used) {
1949 uint32_t bit = v & 1;
1950 bits_used--;
1951 buf[bits_used] = digits[bit][0];
1952 v >>=1;
1953 }
1954 }
1955 result = buf;
1956 return result;
1957 }
1958
1959 if (radix != 10) {
1960 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
1961 // because the number of bits per digit (1,3 and 4 respectively) divides
1962 // equaly. We just shift until there value is zero.
1963
1964 // First, check for a zero value and just short circuit the logic below.
1965 if (*this == 0)
1966 result = "0";
1967 else {
1968 APInt tmp(*this);
1969 size_t insert_at = 0;
1970 if (wantSigned && this->isNegative()) {
1971 // They want to print the signed version and it is a negative value
1972 // Flip the bits and add one to turn it into the equivalent positive
1973 // value and put a '-' in the result.
1974 tmp.flip();
1975 tmp++;
1976 result = "-";
1977 insert_at = 1;
1978 }
1979 // Just shift tmp right for each digit width until it becomes zero
1980 uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
1981 uint64_t mask = radix - 1;
1982 APInt zero(tmp.getBitWidth(), 0);
1983 while (tmp.ne(zero)) {
1984 unsigned digit = (tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask;
1985 result.insert(insert_at, digits[digit]);
1986 tmp = tmp.lshr(shift);
1987 }
1988 }
1989 return result;
1990 }
1991
1992 APInt tmp(*this);
1993 APInt divisor(4, radix);
1994 APInt zero(tmp.getBitWidth(), 0);
1995 size_t insert_at = 0;
1996 if (wantSigned && tmp[BitWidth-1]) {
1997 // They want to print the signed version and it is a negative value
1998 // Flip the bits and add one to turn it into the equivalent positive
1999 // value and put a '-' in the result.
2000 tmp.flip();
2001 tmp++;
2002 result = "-";
2003 insert_at = 1;
2004 }
2005 if (tmp == APInt(tmp.getBitWidth(), 0))
2006 result = "0";
2007 else while (tmp.ne(zero)) {
2008 APInt APdigit(1,0);
2009 APInt tmp2(tmp.getBitWidth(), 0);
2010 divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2011 &APdigit);
2012 uint32_t digit = APdigit.getZExtValue();
2013 assert(digit < radix && "divide failed");
2014 result.insert(insert_at,digits[digit]);
2015 tmp = tmp2;
2016 }
2017
2018 return result;
2019}
2020
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002021void APInt::dump() const
2022{
2023 cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
2024 if (isSingleWord())
2025 cerr << VAL;
2026 else for (unsigned i = getNumWords(); i > 0; i--) {
2027 cerr << pVal[i-1] << " ";
2028 }
Chris Lattner9b502d42007-08-23 05:15:32 +00002029 cerr << " U(" << this->toStringUnsigned(10) << ") S("
Dale Johannesen2fc20782007-09-14 22:26:36 +00002030 << this->toStringSigned(10) << ")" << std::setbase(10);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002031}
Chris Lattner73cde982007-08-16 15:56:55 +00002032
2033// This implements a variety of operations on a representation of
2034// arbitrary precision, two's-complement, bignum integer values.
2035
2036/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2037 and unrestricting assumption. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00002038COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002039
2040/* Some handy functions local to this file. */
2041namespace {
2042
Chris Lattnerdb80e212007-08-20 22:49:32 +00002043 /* Returns the integer part with the least significant BITS set.
2044 BITS cannot be zero. */
2045 inline integerPart
2046 lowBitMask(unsigned int bits)
2047 {
2048 assert (bits != 0 && bits <= integerPartWidth);
2049
2050 return ~(integerPart) 0 >> (integerPartWidth - bits);
2051 }
2052
Neil Booth58ffb232007-10-06 00:43:45 +00002053 /* Returns the value of the lower half of PART. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00002054 inline integerPart
2055 lowHalf(integerPart part)
2056 {
2057 return part & lowBitMask(integerPartWidth / 2);
2058 }
2059
Neil Booth58ffb232007-10-06 00:43:45 +00002060 /* Returns the value of the upper half of PART. */
Chris Lattnerdb80e212007-08-20 22:49:32 +00002061 inline integerPart
2062 highHalf(integerPart part)
2063 {
2064 return part >> (integerPartWidth / 2);
2065 }
2066
Neil Booth58ffb232007-10-06 00:43:45 +00002067 /* Returns the bit number of the most significant set bit of a part.
2068 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002069 unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002070 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002071 {
2072 unsigned int n, msb;
2073
2074 if (value == 0)
2075 return -1U;
2076
2077 n = integerPartWidth / 2;
2078
2079 msb = 0;
2080 do {
2081 if (value >> n) {
2082 value >>= n;
2083 msb += n;
2084 }
2085
2086 n >>= 1;
2087 } while (n);
2088
2089 return msb;
2090 }
2091
Neil Booth58ffb232007-10-06 00:43:45 +00002092 /* Returns the bit number of the least significant set bit of a
2093 part. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002094 unsigned int
2095 partLSB(integerPart value)
2096 {
2097 unsigned int n, lsb;
2098
2099 if (value == 0)
2100 return -1U;
2101
2102 lsb = integerPartWidth - 1;
2103 n = integerPartWidth / 2;
2104
2105 do {
2106 if (value << n) {
2107 value <<= n;
2108 lsb -= n;
2109 }
2110
2111 n >>= 1;
2112 } while (n);
2113
2114 return lsb;
2115 }
2116}
2117
2118/* Sets the least significant part of a bignum to the input value, and
2119 zeroes out higher parts. */
2120void
2121APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2122{
2123 unsigned int i;
2124
Neil Bootha0f524a2007-10-08 13:47:12 +00002125 assert (parts > 0);
2126
Chris Lattner73cde982007-08-16 15:56:55 +00002127 dst[0] = part;
2128 for(i = 1; i < parts; i++)
2129 dst[i] = 0;
2130}
2131
2132/* Assign one bignum to another. */
2133void
2134APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2135{
2136 unsigned int i;
2137
2138 for(i = 0; i < parts; i++)
2139 dst[i] = src[i];
2140}
2141
2142/* Returns true if a bignum is zero, false otherwise. */
2143bool
2144APInt::tcIsZero(const integerPart *src, unsigned int parts)
2145{
2146 unsigned int i;
2147
2148 for(i = 0; i < parts; i++)
2149 if (src[i])
2150 return false;
2151
2152 return true;
2153}
2154
2155/* Extract the given bit of a bignum; returns 0 or 1. */
2156int
2157APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2158{
2159 return(parts[bit / integerPartWidth]
2160 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2161}
2162
2163/* Set the given bit of a bignum. */
2164void
2165APInt::tcSetBit(integerPart *parts, unsigned int bit)
2166{
2167 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2168}
2169
Neil Booth58ffb232007-10-06 00:43:45 +00002170/* Returns the bit number of the least significant set bit of a
2171 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002172unsigned int
2173APInt::tcLSB(const integerPart *parts, unsigned int n)
2174{
2175 unsigned int i, lsb;
2176
2177 for(i = 0; i < n; i++) {
2178 if (parts[i] != 0) {
2179 lsb = partLSB(parts[i]);
2180
2181 return lsb + i * integerPartWidth;
2182 }
2183 }
2184
2185 return -1U;
2186}
2187
Neil Booth58ffb232007-10-06 00:43:45 +00002188/* Returns the bit number of the most significant set bit of a number.
2189 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002190unsigned int
2191APInt::tcMSB(const integerPart *parts, unsigned int n)
2192{
2193 unsigned int msb;
2194
2195 do {
2196 --n;
2197
2198 if (parts[n] != 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002199 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002200
2201 return msb + n * integerPartWidth;
2202 }
2203 } while (n);
2204
2205 return -1U;
2206}
2207
Neil Bootha0f524a2007-10-08 13:47:12 +00002208/* Copy the bit vector of width srcBITS from SRC, starting at bit
2209 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2210 the least significant bit of DST. All high bits above srcBITS in
2211 DST are zero-filled. */
2212void
2213APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
2214 unsigned int srcBits, unsigned int srcLSB)
2215{
2216 unsigned int firstSrcPart, dstParts, shift, n;
2217
2218 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2219 assert (dstParts <= dstCount);
2220
2221 firstSrcPart = srcLSB / integerPartWidth;
2222 tcAssign (dst, src + firstSrcPart, dstParts);
2223
2224 shift = srcLSB % integerPartWidth;
2225 tcShiftRight (dst, dstParts, shift);
2226
2227 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2228 in DST. If this is less that srcBits, append the rest, else
2229 clear the high bits. */
2230 n = dstParts * integerPartWidth - shift;
2231 if (n < srcBits) {
2232 integerPart mask = lowBitMask (srcBits - n);
2233 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2234 << n % integerPartWidth);
2235 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002236 if (srcBits % integerPartWidth)
2237 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002238 }
2239
2240 /* Clear high parts. */
2241 while (dstParts < dstCount)
2242 dst[dstParts++] = 0;
2243}
2244
Chris Lattner73cde982007-08-16 15:56:55 +00002245/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2246integerPart
2247APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2248 integerPart c, unsigned int parts)
2249{
2250 unsigned int i;
2251
2252 assert(c <= 1);
2253
2254 for(i = 0; i < parts; i++) {
2255 integerPart l;
2256
2257 l = dst[i];
2258 if (c) {
2259 dst[i] += rhs[i] + 1;
2260 c = (dst[i] <= l);
2261 } else {
2262 dst[i] += rhs[i];
2263 c = (dst[i] < l);
2264 }
2265 }
2266
2267 return c;
2268}
2269
2270/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2271integerPart
2272APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2273 integerPart c, unsigned int parts)
2274{
2275 unsigned int i;
2276
2277 assert(c <= 1);
2278
2279 for(i = 0; i < parts; i++) {
2280 integerPart l;
2281
2282 l = dst[i];
2283 if (c) {
2284 dst[i] -= rhs[i] + 1;
2285 c = (dst[i] >= l);
2286 } else {
2287 dst[i] -= rhs[i];
2288 c = (dst[i] > l);
2289 }
2290 }
2291
2292 return c;
2293}
2294
2295/* Negate a bignum in-place. */
2296void
2297APInt::tcNegate(integerPart *dst, unsigned int parts)
2298{
2299 tcComplement(dst, parts);
2300 tcIncrement(dst, parts);
2301}
2302
Neil Booth58ffb232007-10-06 00:43:45 +00002303/* DST += SRC * MULTIPLIER + CARRY if add is true
2304 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002305
2306 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2307 they must start at the same point, i.e. DST == SRC.
2308
2309 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2310 returned. Otherwise DST is filled with the least significant
2311 DSTPARTS parts of the result, and if all of the omitted higher
2312 parts were zero return zero, otherwise overflow occurred and
2313 return one. */
2314int
2315APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2316 integerPart multiplier, integerPart carry,
2317 unsigned int srcParts, unsigned int dstParts,
2318 bool add)
2319{
2320 unsigned int i, n;
2321
2322 /* Otherwise our writes of DST kill our later reads of SRC. */
2323 assert(dst <= src || dst >= src + srcParts);
2324 assert(dstParts <= srcParts + 1);
2325
2326 /* N loops; minimum of dstParts and srcParts. */
2327 n = dstParts < srcParts ? dstParts: srcParts;
2328
2329 for(i = 0; i < n; i++) {
2330 integerPart low, mid, high, srcPart;
2331
2332 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2333
2334 This cannot overflow, because
2335
2336 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2337
2338 which is less than n^2. */
2339
2340 srcPart = src[i];
2341
2342 if (multiplier == 0 || srcPart == 0) {
2343 low = carry;
2344 high = 0;
2345 } else {
2346 low = lowHalf(srcPart) * lowHalf(multiplier);
2347 high = highHalf(srcPart) * highHalf(multiplier);
2348
2349 mid = lowHalf(srcPart) * highHalf(multiplier);
2350 high += highHalf(mid);
2351 mid <<= integerPartWidth / 2;
2352 if (low + mid < low)
2353 high++;
2354 low += mid;
2355
2356 mid = highHalf(srcPart) * lowHalf(multiplier);
2357 high += highHalf(mid);
2358 mid <<= integerPartWidth / 2;
2359 if (low + mid < low)
2360 high++;
2361 low += mid;
2362
2363 /* Now add carry. */
2364 if (low + carry < low)
2365 high++;
2366 low += carry;
2367 }
2368
2369 if (add) {
2370 /* And now DST[i], and store the new low part there. */
2371 if (low + dst[i] < low)
2372 high++;
2373 dst[i] += low;
2374 } else
2375 dst[i] = low;
2376
2377 carry = high;
2378 }
2379
2380 if (i < dstParts) {
2381 /* Full multiplication, there is no overflow. */
2382 assert(i + 1 == dstParts);
2383 dst[i] = carry;
2384 return 0;
2385 } else {
2386 /* We overflowed if there is carry. */
2387 if (carry)
2388 return 1;
2389
2390 /* We would overflow if any significant unwritten parts would be
2391 non-zero. This is true if any remaining src parts are non-zero
2392 and the multiplier is non-zero. */
2393 if (multiplier)
2394 for(; i < srcParts; i++)
2395 if (src[i])
2396 return 1;
2397
2398 /* We fitted in the narrow destination. */
2399 return 0;
2400 }
2401}
2402
2403/* DST = LHS * RHS, where DST has the same width as the operands and
2404 is filled with the least significant parts of the result. Returns
2405 one if overflow occurred, otherwise zero. DST must be disjoint
2406 from both operands. */
2407int
2408APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2409 const integerPart *rhs, unsigned int parts)
2410{
2411 unsigned int i;
2412 int overflow;
2413
2414 assert(dst != lhs && dst != rhs);
2415
2416 overflow = 0;
2417 tcSet(dst, 0, parts);
2418
2419 for(i = 0; i < parts; i++)
2420 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2421 parts - i, true);
2422
2423 return overflow;
2424}
2425
Neil Booth004e9f42007-10-06 00:24:48 +00002426/* DST = LHS * RHS, where DST has width the sum of the widths of the
2427 operands. No overflow occurs. DST must be disjoint from both
2428 operands. Returns the number of parts required to hold the
2429 result. */
2430unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002431APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002432 const integerPart *rhs, unsigned int lhsParts,
2433 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002434{
Neil Booth004e9f42007-10-06 00:24:48 +00002435 /* Put the narrower number on the LHS for less loops below. */
2436 if (lhsParts > rhsParts) {
2437 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2438 } else {
2439 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002440
Neil Booth004e9f42007-10-06 00:24:48 +00002441 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002442
Neil Booth004e9f42007-10-06 00:24:48 +00002443 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002444
Neil Booth004e9f42007-10-06 00:24:48 +00002445 for(n = 0; n < lhsParts; n++)
2446 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002447
Neil Booth004e9f42007-10-06 00:24:48 +00002448 n = lhsParts + rhsParts;
2449
2450 return n - (dst[n - 1] == 0);
2451 }
Chris Lattner73cde982007-08-16 15:56:55 +00002452}
2453
2454/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2455 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2456 set REMAINDER to the remainder, return zero. i.e.
2457
2458 OLD_LHS = RHS * LHS + REMAINDER
2459
2460 SCRATCH is a bignum of the same size as the operands and result for
2461 use by the routine; its contents need not be initialized and are
2462 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2463*/
2464int
2465APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2466 integerPart *remainder, integerPart *srhs,
2467 unsigned int parts)
2468{
2469 unsigned int n, shiftCount;
2470 integerPart mask;
2471
2472 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2473
Chris Lattnerdb80e212007-08-20 22:49:32 +00002474 shiftCount = tcMSB(rhs, parts) + 1;
2475 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002476 return true;
2477
Chris Lattnerdb80e212007-08-20 22:49:32 +00002478 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002479 n = shiftCount / integerPartWidth;
2480 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2481
2482 tcAssign(srhs, rhs, parts);
2483 tcShiftLeft(srhs, parts, shiftCount);
2484 tcAssign(remainder, lhs, parts);
2485 tcSet(lhs, 0, parts);
2486
2487 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2488 the total. */
2489 for(;;) {
2490 int compare;
2491
2492 compare = tcCompare(remainder, srhs, parts);
2493 if (compare >= 0) {
2494 tcSubtract(remainder, srhs, 0, parts);
2495 lhs[n] |= mask;
2496 }
2497
2498 if (shiftCount == 0)
2499 break;
2500 shiftCount--;
2501 tcShiftRight(srhs, parts, 1);
2502 if ((mask >>= 1) == 0)
2503 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2504 }
2505
2506 return false;
2507}
2508
2509/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2510 There are no restrictions on COUNT. */
2511void
2512APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2513{
Neil Bootha0f524a2007-10-08 13:47:12 +00002514 if (count) {
2515 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002516
Neil Bootha0f524a2007-10-08 13:47:12 +00002517 /* Jump is the inter-part jump; shift is is intra-part shift. */
2518 jump = count / integerPartWidth;
2519 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002520
Neil Bootha0f524a2007-10-08 13:47:12 +00002521 while (parts > jump) {
2522 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002523
Neil Bootha0f524a2007-10-08 13:47:12 +00002524 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002525
Neil Bootha0f524a2007-10-08 13:47:12 +00002526 /* dst[i] comes from the two parts src[i - jump] and, if we have
2527 an intra-part shift, src[i - jump - 1]. */
2528 part = dst[parts - jump];
2529 if (shift) {
2530 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002531 if (parts >= jump + 1)
2532 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2533 }
2534
Neil Bootha0f524a2007-10-08 13:47:12 +00002535 dst[parts] = part;
2536 }
Chris Lattner73cde982007-08-16 15:56:55 +00002537
Neil Bootha0f524a2007-10-08 13:47:12 +00002538 while (parts > 0)
2539 dst[--parts] = 0;
2540 }
Chris Lattner73cde982007-08-16 15:56:55 +00002541}
2542
2543/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2544 zero. There are no restrictions on COUNT. */
2545void
2546APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2547{
Neil Bootha0f524a2007-10-08 13:47:12 +00002548 if (count) {
2549 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002550
Neil Bootha0f524a2007-10-08 13:47:12 +00002551 /* Jump is the inter-part jump; shift is is intra-part shift. */
2552 jump = count / integerPartWidth;
2553 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002554
Neil Bootha0f524a2007-10-08 13:47:12 +00002555 /* Perform the shift. This leaves the most significant COUNT bits
2556 of the result at zero. */
2557 for(i = 0; i < parts; i++) {
2558 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002559
Neil Bootha0f524a2007-10-08 13:47:12 +00002560 if (i + jump >= parts) {
2561 part = 0;
2562 } else {
2563 part = dst[i + jump];
2564 if (shift) {
2565 part >>= shift;
2566 if (i + jump + 1 < parts)
2567 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2568 }
Chris Lattner73cde982007-08-16 15:56:55 +00002569 }
Chris Lattner73cde982007-08-16 15:56:55 +00002570
Neil Bootha0f524a2007-10-08 13:47:12 +00002571 dst[i] = part;
2572 }
Chris Lattner73cde982007-08-16 15:56:55 +00002573 }
2574}
2575
2576/* Bitwise and of two bignums. */
2577void
2578APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2579{
2580 unsigned int i;
2581
2582 for(i = 0; i < parts; i++)
2583 dst[i] &= rhs[i];
2584}
2585
2586/* Bitwise inclusive or of two bignums. */
2587void
2588APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2589{
2590 unsigned int i;
2591
2592 for(i = 0; i < parts; i++)
2593 dst[i] |= rhs[i];
2594}
2595
2596/* Bitwise exclusive or of two bignums. */
2597void
2598APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2599{
2600 unsigned int i;
2601
2602 for(i = 0; i < parts; i++)
2603 dst[i] ^= rhs[i];
2604}
2605
2606/* Complement a bignum in-place. */
2607void
2608APInt::tcComplement(integerPart *dst, unsigned int parts)
2609{
2610 unsigned int i;
2611
2612 for(i = 0; i < parts; i++)
2613 dst[i] = ~dst[i];
2614}
2615
2616/* Comparison (unsigned) of two bignums. */
2617int
2618APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2619 unsigned int parts)
2620{
2621 while (parts) {
2622 parts--;
2623 if (lhs[parts] == rhs[parts])
2624 continue;
2625
2626 if (lhs[parts] > rhs[parts])
2627 return 1;
2628 else
2629 return -1;
2630 }
2631
2632 return 0;
2633}
2634
2635/* Increment a bignum in-place, return the carry flag. */
2636integerPart
2637APInt::tcIncrement(integerPart *dst, unsigned int parts)
2638{
2639 unsigned int i;
2640
2641 for(i = 0; i < parts; i++)
2642 if (++dst[i] != 0)
2643 break;
2644
2645 return i == parts;
2646}
2647
2648/* Set the least significant BITS bits of a bignum, clear the
2649 rest. */
2650void
2651APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2652 unsigned int bits)
2653{
2654 unsigned int i;
2655
2656 i = 0;
2657 while (bits > integerPartWidth) {
2658 dst[i++] = ~(integerPart) 0;
2659 bits -= integerPartWidth;
2660 }
2661
2662 if (bits)
2663 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2664
2665 while (i < parts)
2666 dst[i++] = 0;
2667}