blob: 2508c0682160c1f26e5a2efd717a9d4b1bd86d6f [file] [log] [blame]
Sean Callanan8ed9f512009-12-19 02:59:52 +00001/*===- X86DisassemblerDecoder.c - Disassembler decoder -------------*- C -*-==*
2 *
3 * The LLVM Compiler Infrastructure
4 *
5 * This file is distributed under the University of Illinois Open Source
6 * License. See LICENSE.TXT for details.
7 *
8 *===----------------------------------------------------------------------===*
9 *
10 * This file is part of the X86 Disassembler.
11 * It contains the implementation of the instruction decoder.
12 * Documentation for the disassembler can be found in X86Disassembler.h.
13 *
14 *===----------------------------------------------------------------------===*/
15
Sean Callanan8ed9f512009-12-19 02:59:52 +000016#include <stdarg.h> /* for va_*() */
17#include <stdio.h> /* for vsnprintf() */
18#include <stdlib.h> /* for exit() */
Daniel Dunbar71f842d2009-12-19 03:31:50 +000019#include <string.h> /* for memset() */
Sean Callanan8ed9f512009-12-19 02:59:52 +000020
21#include "X86DisassemblerDecoder.h"
22
23#include "X86GenDisassemblerTables.inc"
24
25#define TRUE 1
26#define FALSE 0
27
Sean Callanana144c3f2010-04-02 21:23:51 +000028typedef int8_t bool;
29
Sean Callanana144c3f2010-04-02 21:23:51 +000030#ifndef NDEBUG
31#define debug(s) do { x86DisassemblerDebug(__FILE__, __LINE__, s); } while (0)
32#else
33#define debug(s) do { } while (0)
34#endif
35
Sean Callanan8ed9f512009-12-19 02:59:52 +000036
37/*
38 * contextForAttrs - Client for the instruction context table. Takes a set of
39 * attributes and returns the appropriate decode context.
40 *
41 * @param attrMask - Attributes, from the enumeration attributeBits.
42 * @return - The InstructionContext to use when looking up an
43 * an instruction with these attributes.
44 */
Sean Callanan542eabc2009-12-22 22:51:40 +000045static InstructionContext contextForAttrs(uint8_t attrMask) {
Sean Callanan8ed9f512009-12-19 02:59:52 +000046 return CONTEXTS_SYM[attrMask];
47}
48
49/*
50 * modRMRequired - Reads the appropriate instruction table to determine whether
51 * the ModR/M byte is required to decode a particular instruction.
52 *
53 * @param type - The opcode type (i.e., how many bytes it has).
54 * @param insnContext - The context for the instruction, as returned by
55 * contextForAttrs.
56 * @param opcode - The last byte of the instruction's opcode, not counting
57 * ModR/M extensions and escapes.
58 * @return - TRUE if the ModR/M byte is required, FALSE otherwise.
59 */
Sean Callanan542eabc2009-12-22 22:51:40 +000060static int modRMRequired(OpcodeType type,
Craig Topper146c6d72011-10-02 16:56:09 +000061 InstructionContext insnContext,
62 uint8_t opcode) {
Daniel Dunbarbaf2e352009-12-22 01:41:37 +000063 const struct ContextDecision* decision = 0;
Sean Callanan8ed9f512009-12-19 02:59:52 +000064
65 switch (type) {
66 case ONEBYTE:
67 decision = &ONEBYTE_SYM;
68 break;
69 case TWOBYTE:
70 decision = &TWOBYTE_SYM;
71 break;
72 case THREEBYTE_38:
73 decision = &THREEBYTE38_SYM;
74 break;
75 case THREEBYTE_3A:
76 decision = &THREEBYTE3A_SYM;
77 break;
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +000078 case THREEBYTE_A6:
79 decision = &THREEBYTEA6_SYM;
80 break;
81 case THREEBYTE_A7:
82 decision = &THREEBYTEA7_SYM;
83 break;
Sean Callanan8ed9f512009-12-19 02:59:52 +000084 }
85
86 return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
87 modrm_type != MODRM_ONEENTRY;
88
Sean Callanan8ed9f512009-12-19 02:59:52 +000089 return 0;
90}
91
92/*
93 * decode - Reads the appropriate instruction table to obtain the unique ID of
94 * an instruction.
95 *
96 * @param type - See modRMRequired().
97 * @param insnContext - See modRMRequired().
98 * @param opcode - See modRMRequired().
99 * @param modRM - The ModR/M byte if required, or any value if not.
Sean Callanana144c3f2010-04-02 21:23:51 +0000100 * @return - The UID of the instruction, or 0 on failure.
Sean Callanan8ed9f512009-12-19 02:59:52 +0000101 */
Sean Callanan542eabc2009-12-22 22:51:40 +0000102static InstrUID decode(OpcodeType type,
Sean Callanana144c3f2010-04-02 21:23:51 +0000103 InstructionContext insnContext,
104 uint8_t opcode,
105 uint8_t modRM) {
Benjamin Kramer4d1dca92010-10-23 09:10:44 +0000106 const struct ModRMDecision* dec;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000107
108 switch (type) {
109 default:
Sean Callanana144c3f2010-04-02 21:23:51 +0000110 debug("Unknown opcode type");
111 return 0;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000112 case ONEBYTE:
113 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
114 break;
115 case TWOBYTE:
116 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
117 break;
118 case THREEBYTE_38:
119 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
120 break;
121 case THREEBYTE_3A:
122 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
123 break;
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000124 case THREEBYTE_A6:
125 dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
126 break;
127 case THREEBYTE_A7:
128 dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
129 break;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000130 }
131
132 switch (dec->modrm_type) {
133 default:
Sean Callanana144c3f2010-04-02 21:23:51 +0000134 debug("Corrupt table! Unknown modrm_type");
135 return 0;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000136 case MODRM_ONEENTRY:
137 return dec->instructionIDs[0];
138 case MODRM_SPLITRM:
139 if (modFromModRM(modRM) == 0x3)
140 return dec->instructionIDs[1];
141 else
142 return dec->instructionIDs[0];
143 case MODRM_FULL:
144 return dec->instructionIDs[modRM];
145 }
Sean Callanan8ed9f512009-12-19 02:59:52 +0000146}
147
148/*
149 * specifierForUID - Given a UID, returns the name and operand specification for
150 * that instruction.
151 *
152 * @param uid - The unique ID for the instruction. This should be returned by
153 * decode(); specifierForUID will not check bounds.
154 * @return - A pointer to the specification for that instruction.
155 */
Benjamin Kramer4d1dca92010-10-23 09:10:44 +0000156static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
Sean Callanan8ed9f512009-12-19 02:59:52 +0000157 return &INSTRUCTIONS_SYM[uid];
158}
159
160/*
161 * consumeByte - Uses the reader function provided by the user to consume one
162 * byte from the instruction's memory and advance the cursor.
163 *
164 * @param insn - The instruction with the reader function to use. The cursor
165 * for this instruction is advanced.
166 * @param byte - A pointer to a pre-allocated memory buffer to be populated
167 * with the data read.
168 * @return - 0 if the read was successful; nonzero otherwise.
169 */
Sean Callanan542eabc2009-12-22 22:51:40 +0000170static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
Sean Callanan8ed9f512009-12-19 02:59:52 +0000171 int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
172
173 if (!ret)
174 ++(insn->readerCursor);
175
176 return ret;
177}
178
179/*
180 * lookAtByte - Like consumeByte, but does not advance the cursor.
181 *
182 * @param insn - See consumeByte().
183 * @param byte - See consumeByte().
184 * @return - See consumeByte().
185 */
Sean Callanan542eabc2009-12-22 22:51:40 +0000186static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
Sean Callanan8ed9f512009-12-19 02:59:52 +0000187 return insn->reader(insn->readerArg, byte, insn->readerCursor);
188}
189
Sean Callanan542eabc2009-12-22 22:51:40 +0000190static void unconsumeByte(struct InternalInstruction* insn) {
Sean Callanan8ed9f512009-12-19 02:59:52 +0000191 insn->readerCursor--;
192}
193
Sean Callanan542eabc2009-12-22 22:51:40 +0000194#define CONSUME_FUNC(name, type) \
195 static int name(struct InternalInstruction* insn, type* ptr) { \
196 type combined = 0; \
197 unsigned offset; \
198 for (offset = 0; offset < sizeof(type); ++offset) { \
199 uint8_t byte; \
200 int ret = insn->reader(insn->readerArg, \
201 &byte, \
202 insn->readerCursor + offset); \
203 if (ret) \
204 return ret; \
205 combined = combined | ((type)byte << ((type)offset * 8)); \
206 } \
207 *ptr = combined; \
208 insn->readerCursor += sizeof(type); \
209 return 0; \
Sean Callanan8ed9f512009-12-19 02:59:52 +0000210 }
211
212/*
213 * consume* - Use the reader function provided by the user to consume data
214 * values of various sizes from the instruction's memory and advance the
215 * cursor appropriately. These readers perform endian conversion.
216 *
217 * @param insn - See consumeByte().
218 * @param ptr - A pointer to a pre-allocated memory of appropriate size to
219 * be populated with the data read.
220 * @return - See consumeByte().
221 */
222CONSUME_FUNC(consumeInt8, int8_t)
223CONSUME_FUNC(consumeInt16, int16_t)
224CONSUME_FUNC(consumeInt32, int32_t)
225CONSUME_FUNC(consumeUInt16, uint16_t)
226CONSUME_FUNC(consumeUInt32, uint32_t)
227CONSUME_FUNC(consumeUInt64, uint64_t)
228
229/*
Nuno Lopes392bbd92009-12-19 12:07:00 +0000230 * dbgprintf - Uses the logging function provided by the user to log a single
Sean Callanan8ed9f512009-12-19 02:59:52 +0000231 * message, typically without a carriage-return.
232 *
233 * @param insn - The instruction containing the logging function.
234 * @param format - See printf().
235 * @param ... - See printf().
236 */
Sean Callanan542eabc2009-12-22 22:51:40 +0000237static void dbgprintf(struct InternalInstruction* insn,
238 const char* format,
239 ...) {
Sean Callanan8ed9f512009-12-19 02:59:52 +0000240 char buffer[256];
241 va_list ap;
242
243 if (!insn->dlog)
244 return;
245
246 va_start(ap, format);
247 (void)vsnprintf(buffer, sizeof(buffer), format, ap);
248 va_end(ap);
249
250 insn->dlog(insn->dlogArg, buffer);
251
252 return;
253}
254
255/*
256 * setPrefixPresent - Marks that a particular prefix is present at a particular
257 * location.
258 *
259 * @param insn - The instruction to be marked as having the prefix.
260 * @param prefix - The prefix that is present.
261 * @param location - The location where the prefix is located (in the address
262 * space of the instruction's reader).
263 */
Sean Callanan542eabc2009-12-22 22:51:40 +0000264static void setPrefixPresent(struct InternalInstruction* insn,
Sean Callanan8ed9f512009-12-19 02:59:52 +0000265 uint8_t prefix,
266 uint64_t location)
267{
268 insn->prefixPresent[prefix] = 1;
269 insn->prefixLocations[prefix] = location;
270}
271
272/*
273 * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
274 * present at a given location.
275 *
276 * @param insn - The instruction to be queried.
277 * @param prefix - The prefix.
278 * @param location - The location to query.
279 * @return - Whether the prefix is at that location.
280 */
Sean Callanan542eabc2009-12-22 22:51:40 +0000281static BOOL isPrefixAtLocation(struct InternalInstruction* insn,
282 uint8_t prefix,
283 uint64_t location)
Sean Callanan8ed9f512009-12-19 02:59:52 +0000284{
285 if (insn->prefixPresent[prefix] == 1 &&
286 insn->prefixLocations[prefix] == location)
287 return TRUE;
288 else
289 return FALSE;
290}
291
292/*
293 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
294 * instruction as having them. Also sets the instruction's default operand,
295 * address, and other relevant data sizes to report operands correctly.
296 *
297 * @param insn - The instruction whose prefixes are to be read.
298 * @return - 0 if the instruction could be read until the end of the prefix
299 * bytes, and no prefixes conflicted; nonzero otherwise.
300 */
301static int readPrefixes(struct InternalInstruction* insn) {
302 BOOL isPrefix = TRUE;
303 BOOL prefixGroups[4] = { FALSE };
304 uint64_t prefixLocation;
Ted Kremenek584520e2011-01-23 17:05:06 +0000305 uint8_t byte = 0;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000306
307 BOOL hasAdSize = FALSE;
308 BOOL hasOpSize = FALSE;
309
Nuno Lopes392bbd92009-12-19 12:07:00 +0000310 dbgprintf(insn, "readPrefixes()");
Sean Callanan8ed9f512009-12-19 02:59:52 +0000311
312 while (isPrefix) {
313 prefixLocation = insn->readerCursor;
314
315 if (consumeByte(insn, &byte))
316 return -1;
317
318 switch (byte) {
319 case 0xf0: /* LOCK */
320 case 0xf2: /* REPNE/REPNZ */
321 case 0xf3: /* REP or REPE/REPZ */
322 if (prefixGroups[0])
Nuno Lopes392bbd92009-12-19 12:07:00 +0000323 dbgprintf(insn, "Redundant Group 1 prefix");
Sean Callanan8ed9f512009-12-19 02:59:52 +0000324 prefixGroups[0] = TRUE;
325 setPrefixPresent(insn, byte, prefixLocation);
326 break;
327 case 0x2e: /* CS segment override -OR- Branch not taken */
328 case 0x36: /* SS segment override -OR- Branch taken */
329 case 0x3e: /* DS segment override */
330 case 0x26: /* ES segment override */
331 case 0x64: /* FS segment override */
332 case 0x65: /* GS segment override */
333 switch (byte) {
334 case 0x2e:
335 insn->segmentOverride = SEG_OVERRIDE_CS;
336 break;
337 case 0x36:
338 insn->segmentOverride = SEG_OVERRIDE_SS;
339 break;
340 case 0x3e:
341 insn->segmentOverride = SEG_OVERRIDE_DS;
342 break;
343 case 0x26:
344 insn->segmentOverride = SEG_OVERRIDE_ES;
345 break;
346 case 0x64:
347 insn->segmentOverride = SEG_OVERRIDE_FS;
348 break;
349 case 0x65:
350 insn->segmentOverride = SEG_OVERRIDE_GS;
351 break;
352 default:
Sean Callanana144c3f2010-04-02 21:23:51 +0000353 debug("Unhandled override");
354 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000355 }
356 if (prefixGroups[1])
Nuno Lopes392bbd92009-12-19 12:07:00 +0000357 dbgprintf(insn, "Redundant Group 2 prefix");
Sean Callanan8ed9f512009-12-19 02:59:52 +0000358 prefixGroups[1] = TRUE;
359 setPrefixPresent(insn, byte, prefixLocation);
360 break;
361 case 0x66: /* Operand-size override */
362 if (prefixGroups[2])
Nuno Lopes392bbd92009-12-19 12:07:00 +0000363 dbgprintf(insn, "Redundant Group 3 prefix");
Sean Callanan8ed9f512009-12-19 02:59:52 +0000364 prefixGroups[2] = TRUE;
365 hasOpSize = TRUE;
366 setPrefixPresent(insn, byte, prefixLocation);
367 break;
368 case 0x67: /* Address-size override */
369 if (prefixGroups[3])
Nuno Lopes392bbd92009-12-19 12:07:00 +0000370 dbgprintf(insn, "Redundant Group 4 prefix");
Sean Callanan8ed9f512009-12-19 02:59:52 +0000371 prefixGroups[3] = TRUE;
372 hasAdSize = TRUE;
373 setPrefixPresent(insn, byte, prefixLocation);
374 break;
375 default: /* Not a prefix byte */
376 isPrefix = FALSE;
377 break;
378 }
379
380 if (isPrefix)
Nuno Lopes392bbd92009-12-19 12:07:00 +0000381 dbgprintf(insn, "Found prefix 0x%hhx", byte);
Sean Callanan8ed9f512009-12-19 02:59:52 +0000382 }
Sean Callanana21e2ea2011-03-15 01:23:15 +0000383
384 insn->vexSize = 0;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000385
Sean Callanana21e2ea2011-03-15 01:23:15 +0000386 if (byte == 0xc4) {
387 uint8_t byte1;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000388
Sean Callanana21e2ea2011-03-15 01:23:15 +0000389 if (lookAtByte(insn, &byte1)) {
390 dbgprintf(insn, "Couldn't read second byte of VEX");
391 return -1;
392 }
393
Craig Topper100d86a2011-09-26 05:12:43 +0000394 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
Sean Callanana21e2ea2011-03-15 01:23:15 +0000395 insn->vexSize = 3;
396 insn->necessaryPrefixLocation = insn->readerCursor - 1;
397 }
398 else {
Sean Callanan8ed9f512009-12-19 02:59:52 +0000399 unconsumeByte(insn);
400 insn->necessaryPrefixLocation = insn->readerCursor - 1;
401 }
Sean Callanana21e2ea2011-03-15 01:23:15 +0000402
403 if (insn->vexSize == 3) {
404 insn->vexPrefix[0] = byte;
405 consumeByte(insn, &insn->vexPrefix[1]);
406 consumeByte(insn, &insn->vexPrefix[2]);
407
408 /* We simulate the REX prefix for simplicity's sake */
Craig Topper7b229762011-10-03 07:51:09 +0000409
410 if (insn->mode == MODE_64BIT) {
411 insn->rexPrefix = 0x40
412 | (wFromVEX3of3(insn->vexPrefix[2]) << 3)
413 | (rFromVEX2of3(insn->vexPrefix[1]) << 2)
414 | (xFromVEX2of3(insn->vexPrefix[1]) << 1)
415 | (bFromVEX2of3(insn->vexPrefix[1]) << 0);
416 }
Sean Callanana21e2ea2011-03-15 01:23:15 +0000417
418 switch (ppFromVEX3of3(insn->vexPrefix[2]))
419 {
420 default:
421 break;
422 case VEX_PREFIX_66:
423 hasOpSize = TRUE;
424 break;
425 }
426
427 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1], insn->vexPrefix[2]);
428 }
Sean Callanan8ed9f512009-12-19 02:59:52 +0000429 }
Sean Callanana21e2ea2011-03-15 01:23:15 +0000430 else if (byte == 0xc5) {
431 uint8_t byte1;
432
433 if (lookAtByte(insn, &byte1)) {
434 dbgprintf(insn, "Couldn't read second byte of VEX");
435 return -1;
436 }
437
Craig Topper100d86a2011-09-26 05:12:43 +0000438 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
Sean Callanana21e2ea2011-03-15 01:23:15 +0000439 insn->vexSize = 2;
440 }
441 else {
442 unconsumeByte(insn);
443 }
444
445 if (insn->vexSize == 2) {
446 insn->vexPrefix[0] = byte;
447 consumeByte(insn, &insn->vexPrefix[1]);
448
Craig Topper7b229762011-10-03 07:51:09 +0000449 if (insn->mode == MODE_64BIT) {
450 insn->rexPrefix = 0x40
451 | (rFromVEX2of2(insn->vexPrefix[1]) << 2);
452 }
Sean Callanana21e2ea2011-03-15 01:23:15 +0000453
454 switch (ppFromVEX2of2(insn->vexPrefix[1]))
455 {
456 default:
457 break;
458 case VEX_PREFIX_66:
459 hasOpSize = TRUE;
460 break;
461 }
462
463 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1]);
464 }
465 }
466 else {
467 if (insn->mode == MODE_64BIT) {
468 if ((byte & 0xf0) == 0x40) {
469 uint8_t opcodeByte;
470
471 if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
472 dbgprintf(insn, "Redundant REX prefix");
473 return -1;
474 }
475
476 insn->rexPrefix = byte;
477 insn->necessaryPrefixLocation = insn->readerCursor - 2;
478
479 dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
480 } else {
481 unconsumeByte(insn);
482 insn->necessaryPrefixLocation = insn->readerCursor - 1;
483 }
484 } else {
485 unconsumeByte(insn);
486 insn->necessaryPrefixLocation = insn->readerCursor - 1;
487 }
488 }
489
Sean Callanan8ed9f512009-12-19 02:59:52 +0000490 if (insn->mode == MODE_16BIT) {
491 insn->registerSize = (hasOpSize ? 4 : 2);
492 insn->addressSize = (hasAdSize ? 4 : 2);
493 insn->displacementSize = (hasAdSize ? 4 : 2);
494 insn->immediateSize = (hasOpSize ? 4 : 2);
495 } else if (insn->mode == MODE_32BIT) {
496 insn->registerSize = (hasOpSize ? 2 : 4);
497 insn->addressSize = (hasAdSize ? 2 : 4);
498 insn->displacementSize = (hasAdSize ? 2 : 4);
Sean Callanan751752e2010-10-22 01:24:11 +0000499 insn->immediateSize = (hasOpSize ? 2 : 4);
Sean Callanan8ed9f512009-12-19 02:59:52 +0000500 } else if (insn->mode == MODE_64BIT) {
501 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
502 insn->registerSize = 8;
503 insn->addressSize = (hasAdSize ? 4 : 8);
504 insn->displacementSize = 4;
505 insn->immediateSize = 4;
506 } else if (insn->rexPrefix) {
507 insn->registerSize = (hasOpSize ? 2 : 4);
508 insn->addressSize = (hasAdSize ? 4 : 8);
509 insn->displacementSize = (hasOpSize ? 2 : 4);
510 insn->immediateSize = (hasOpSize ? 2 : 4);
511 } else {
512 insn->registerSize = (hasOpSize ? 2 : 4);
513 insn->addressSize = (hasAdSize ? 4 : 8);
514 insn->displacementSize = (hasOpSize ? 2 : 4);
515 insn->immediateSize = (hasOpSize ? 2 : 4);
516 }
517 }
518
519 return 0;
520}
521
522/*
523 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
524 * extended or escape opcodes).
525 *
526 * @param insn - The instruction whose opcode is to be read.
527 * @return - 0 if the opcode could be read successfully; nonzero otherwise.
528 */
529static int readOpcode(struct InternalInstruction* insn) {
530 /* Determine the length of the primary opcode */
531
532 uint8_t current;
533
Nuno Lopes392bbd92009-12-19 12:07:00 +0000534 dbgprintf(insn, "readOpcode()");
Sean Callanan8ed9f512009-12-19 02:59:52 +0000535
536 insn->opcodeType = ONEBYTE;
Sean Callanana21e2ea2011-03-15 01:23:15 +0000537
538 if (insn->vexSize == 3)
539 {
540 switch (mmmmmFromVEX2of3(insn->vexPrefix[1]))
541 {
542 default:
543 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", mmmmmFromVEX2of3(insn->vexPrefix[1]));
544 return -1;
545 case 0:
546 break;
547 case VEX_LOB_0F:
548 insn->twoByteEscape = 0x0f;
549 insn->opcodeType = TWOBYTE;
550 return consumeByte(insn, &insn->opcode);
551 case VEX_LOB_0F38:
552 insn->twoByteEscape = 0x0f;
553 insn->threeByteEscape = 0x38;
554 insn->opcodeType = THREEBYTE_38;
555 return consumeByte(insn, &insn->opcode);
556 case VEX_LOB_0F3A:
557 insn->twoByteEscape = 0x0f;
558 insn->threeByteEscape = 0x3a;
559 insn->opcodeType = THREEBYTE_3A;
560 return consumeByte(insn, &insn->opcode);
561 }
562 }
563 else if (insn->vexSize == 2)
564 {
565 insn->twoByteEscape = 0x0f;
566 insn->opcodeType = TWOBYTE;
567 return consumeByte(insn, &insn->opcode);
568 }
569
Sean Callanan8ed9f512009-12-19 02:59:52 +0000570 if (consumeByte(insn, &current))
571 return -1;
572
573 if (current == 0x0f) {
Nuno Lopes392bbd92009-12-19 12:07:00 +0000574 dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
Sean Callanan8ed9f512009-12-19 02:59:52 +0000575
576 insn->twoByteEscape = current;
577
578 if (consumeByte(insn, &current))
579 return -1;
580
581 if (current == 0x38) {
Nuno Lopes392bbd92009-12-19 12:07:00 +0000582 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
Sean Callanan8ed9f512009-12-19 02:59:52 +0000583
584 insn->threeByteEscape = current;
585
586 if (consumeByte(insn, &current))
587 return -1;
588
589 insn->opcodeType = THREEBYTE_38;
590 } else if (current == 0x3a) {
Nuno Lopes392bbd92009-12-19 12:07:00 +0000591 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
Sean Callanan8ed9f512009-12-19 02:59:52 +0000592
593 insn->threeByteEscape = current;
594
595 if (consumeByte(insn, &current))
596 return -1;
597
598 insn->opcodeType = THREEBYTE_3A;
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000599 } else if (current == 0xa6) {
600 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
601
602 insn->threeByteEscape = current;
603
604 if (consumeByte(insn, &current))
605 return -1;
606
607 insn->opcodeType = THREEBYTE_A6;
608 } else if (current == 0xa7) {
609 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
610
611 insn->threeByteEscape = current;
612
613 if (consumeByte(insn, &current))
614 return -1;
615
616 insn->opcodeType = THREEBYTE_A7;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000617 } else {
Nuno Lopes392bbd92009-12-19 12:07:00 +0000618 dbgprintf(insn, "Didn't find a three-byte escape prefix");
Sean Callanan8ed9f512009-12-19 02:59:52 +0000619
620 insn->opcodeType = TWOBYTE;
621 }
622 }
623
624 /*
625 * At this point we have consumed the full opcode.
626 * Anything we consume from here on must be unconsumed.
627 */
628
629 insn->opcode = current;
630
631 return 0;
632}
633
634static int readModRM(struct InternalInstruction* insn);
635
636/*
637 * getIDWithAttrMask - Determines the ID of an instruction, consuming
638 * the ModR/M byte as appropriate for extended and escape opcodes,
639 * and using a supplied attribute mask.
640 *
641 * @param instructionID - A pointer whose target is filled in with the ID of the
642 * instruction.
643 * @param insn - The instruction whose ID is to be determined.
644 * @param attrMask - The attribute mask to search.
645 * @return - 0 if the ModR/M could be read when needed or was not
646 * needed; nonzero otherwise.
647 */
648static int getIDWithAttrMask(uint16_t* instructionID,
649 struct InternalInstruction* insn,
650 uint8_t attrMask) {
651 BOOL hasModRMExtension;
652
653 uint8_t instructionClass;
654
655 instructionClass = contextForAttrs(attrMask);
656
657 hasModRMExtension = modRMRequired(insn->opcodeType,
658 instructionClass,
659 insn->opcode);
660
661 if (hasModRMExtension) {
Rafael Espindola2f867a62011-01-06 16:48:42 +0000662 if (readModRM(insn))
663 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000664
665 *instructionID = decode(insn->opcodeType,
666 instructionClass,
667 insn->opcode,
668 insn->modRM);
669 } else {
670 *instructionID = decode(insn->opcodeType,
671 instructionClass,
672 insn->opcode,
673 0);
674 }
675
676 return 0;
677}
678
679/*
680 * is16BitEquivalent - Determines whether two instruction names refer to
681 * equivalent instructions but one is 16-bit whereas the other is not.
682 *
683 * @param orig - The instruction that is not 16-bit
684 * @param equiv - The instruction that is 16-bit
685 */
686static BOOL is16BitEquvalent(const char* orig, const char* equiv) {
687 off_t i;
688
Sean Callanana144c3f2010-04-02 21:23:51 +0000689 for (i = 0;; i++) {
690 if (orig[i] == '\0' && equiv[i] == '\0')
Sean Callanan8ed9f512009-12-19 02:59:52 +0000691 return TRUE;
Sean Callanana144c3f2010-04-02 21:23:51 +0000692 if (orig[i] == '\0' || equiv[i] == '\0')
Sean Callanan8ed9f512009-12-19 02:59:52 +0000693 return FALSE;
Sean Callanana144c3f2010-04-02 21:23:51 +0000694 if (orig[i] != equiv[i]) {
695 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
Sean Callanan8ed9f512009-12-19 02:59:52 +0000696 continue;
Sean Callanana144c3f2010-04-02 21:23:51 +0000697 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
Sean Callanan8ed9f512009-12-19 02:59:52 +0000698 continue;
Sean Callanana144c3f2010-04-02 21:23:51 +0000699 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
Sean Callanan8ed9f512009-12-19 02:59:52 +0000700 continue;
701 return FALSE;
702 }
703 }
704}
705
706/*
707 * is64BitEquivalent - Determines whether two instruction names refer to
708 * equivalent instructions but one is 64-bit whereas the other is not.
709 *
710 * @param orig - The instruction that is not 64-bit
711 * @param equiv - The instruction that is 64-bit
712 */
713static BOOL is64BitEquivalent(const char* orig, const char* equiv) {
714 off_t i;
715
Sean Callanana144c3f2010-04-02 21:23:51 +0000716 for (i = 0;; i++) {
717 if (orig[i] == '\0' && equiv[i] == '\0')
Sean Callanan8ed9f512009-12-19 02:59:52 +0000718 return TRUE;
Sean Callanana144c3f2010-04-02 21:23:51 +0000719 if (orig[i] == '\0' || equiv[i] == '\0')
Sean Callanan8ed9f512009-12-19 02:59:52 +0000720 return FALSE;
Sean Callanana144c3f2010-04-02 21:23:51 +0000721 if (orig[i] != equiv[i]) {
722 if ((orig[i] == 'W' || orig[i] == 'L') && equiv[i] == 'Q')
Sean Callanan8ed9f512009-12-19 02:59:52 +0000723 continue;
Sean Callanana144c3f2010-04-02 21:23:51 +0000724 if ((orig[i] == '1' || orig[i] == '3') && equiv[i] == '6')
Sean Callanan8ed9f512009-12-19 02:59:52 +0000725 continue;
Sean Callanana144c3f2010-04-02 21:23:51 +0000726 if ((orig[i] == '6' || orig[i] == '2') && equiv[i] == '4')
Sean Callanan8ed9f512009-12-19 02:59:52 +0000727 continue;
728 return FALSE;
729 }
730 }
731}
732
733
734/*
735 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
736 * appropriate for extended and escape opcodes. Determines the attributes and
737 * context for the instruction before doing so.
738 *
739 * @param insn - The instruction whose ID is to be determined.
740 * @return - 0 if the ModR/M could be read when needed or was not needed;
741 * nonzero otherwise.
742 */
743static int getID(struct InternalInstruction* insn) {
744 uint8_t attrMask;
745 uint16_t instructionID;
746
Nuno Lopes392bbd92009-12-19 12:07:00 +0000747 dbgprintf(insn, "getID()");
Sean Callanan8ed9f512009-12-19 02:59:52 +0000748
749 attrMask = ATTR_NONE;
Sean Callanana21e2ea2011-03-15 01:23:15 +0000750
Sean Callanan8ed9f512009-12-19 02:59:52 +0000751 if (insn->mode == MODE_64BIT)
752 attrMask |= ATTR_64BIT;
Sean Callanana21e2ea2011-03-15 01:23:15 +0000753
754 if (insn->vexSize) {
755 attrMask |= ATTR_VEX;
756
757 if (insn->vexSize == 3) {
758 switch (ppFromVEX3of3(insn->vexPrefix[2])) {
759 case VEX_PREFIX_66:
760 attrMask |= ATTR_OPSIZE;
761 break;
762 case VEX_PREFIX_F3:
763 attrMask |= ATTR_XS;
764 break;
765 case VEX_PREFIX_F2:
766 attrMask |= ATTR_XD;
767 break;
768 }
769
Sean Callanana21e2ea2011-03-15 01:23:15 +0000770 if (lFromVEX3of3(insn->vexPrefix[2]))
771 attrMask |= ATTR_VEXL;
772 }
773 else if (insn->vexSize == 2) {
774 switch (ppFromVEX2of2(insn->vexPrefix[1])) {
775 case VEX_PREFIX_66:
776 attrMask |= ATTR_OPSIZE;
777 break;
778 case VEX_PREFIX_F3:
779 attrMask |= ATTR_XS;
780 break;
781 case VEX_PREFIX_F2:
782 attrMask |= ATTR_XD;
783 break;
784 }
785
786 if (lFromVEX2of2(insn->vexPrefix[1]))
787 attrMask |= ATTR_VEXL;
788 }
789 else {
790 return -1;
791 }
792 }
793 else {
Sean Callanana21e2ea2011-03-15 01:23:15 +0000794 if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
795 attrMask |= ATTR_OPSIZE;
796 else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
797 attrMask |= ATTR_XS;
798 else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
799 attrMask |= ATTR_XD;
Sean Callanana21e2ea2011-03-15 01:23:15 +0000800 }
801
Craig Topper6744a172011-10-04 06:30:42 +0000802 if (insn->rexPrefix & 0x08)
803 attrMask |= ATTR_REXW;
804
Sean Callanana144c3f2010-04-02 21:23:51 +0000805 if (getIDWithAttrMask(&instructionID, insn, attrMask))
Sean Callanan8ed9f512009-12-19 02:59:52 +0000806 return -1;
807
808 /* The following clauses compensate for limitations of the tables. */
809
Craig Topper6744a172011-10-04 06:30:42 +0000810 if ((attrMask & ATTR_VEXL) && (attrMask & ATTR_REXW)) {
811 /*
812 * Some VEX instructions ignore the L-bit, but use the W-bit. Normally L-bit
813 * has precedence since there are no L-bit with W-bit entries in the tables.
814 * So if the L-bit isn't significant we should use the W-bit instead.
815 */
816
817 const struct InstructionSpecifier *spec;
818 uint16_t instructionIDWithWBit;
819 const struct InstructionSpecifier *specWithWBit;
820
821 spec = specifierForUID(instructionID);
822
823 if (getIDWithAttrMask(&instructionIDWithWBit,
824 insn,
825 (attrMask & (~ATTR_VEXL)) | ATTR_REXW)) {
826 insn->instructionID = instructionID;
827 insn->spec = spec;
828 return 0;
829 }
830
831 specWithWBit = specifierForUID(instructionIDWithWBit);
832
833 if (instructionID != instructionIDWithWBit) {
834 insn->instructionID = instructionIDWithWBit;
835 insn->spec = specWithWBit;
836 } else {
837 insn->instructionID = instructionID;
838 insn->spec = spec;
839 }
840 return 0;
841 }
842
Sean Callanan8ed9f512009-12-19 02:59:52 +0000843 if ((attrMask & ATTR_XD) && (attrMask & ATTR_REXW)) {
844 /*
845 * Although for SSE instructions it is usually necessary to treat REX.W+F2
846 * as F2 for decode (in the absence of a 64BIT_REXW_XD category) there is
847 * an occasional instruction where F2 is incidental and REX.W is the more
848 * significant. If the decoded instruction is 32-bit and adding REX.W
849 * instead of F2 changes a 32 to a 64, we adopt the new encoding.
850 */
851
Benjamin Kramer4d1dca92010-10-23 09:10:44 +0000852 const struct InstructionSpecifier *spec;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000853 uint16_t instructionIDWithREXw;
Benjamin Kramer4d1dca92010-10-23 09:10:44 +0000854 const struct InstructionSpecifier *specWithREXw;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000855
856 spec = specifierForUID(instructionID);
857
858 if (getIDWithAttrMask(&instructionIDWithREXw,
859 insn,
860 attrMask & (~ATTR_XD))) {
861 /*
862 * Decoding with REX.w would yield nothing; give up and return original
863 * decode.
864 */
865
866 insn->instructionID = instructionID;
867 insn->spec = spec;
868 return 0;
869 }
870
871 specWithREXw = specifierForUID(instructionIDWithREXw);
872
873 if (is64BitEquivalent(spec->name, specWithREXw->name)) {
874 insn->instructionID = instructionIDWithREXw;
875 insn->spec = specWithREXw;
876 } else {
877 insn->instructionID = instructionID;
878 insn->spec = spec;
879 }
880 return 0;
881 }
882
883 if (insn->prefixPresent[0x66] && !(attrMask & ATTR_OPSIZE)) {
884 /*
885 * The instruction tables make no distinction between instructions that
886 * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
887 * particular spot (i.e., many MMX operations). In general we're
888 * conservative, but in the specific case where OpSize is present but not
889 * in the right place we check if there's a 16-bit operation.
890 */
891
Benjamin Kramer4d1dca92010-10-23 09:10:44 +0000892 const struct InstructionSpecifier *spec;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000893 uint16_t instructionIDWithOpsize;
Benjamin Kramer4d1dca92010-10-23 09:10:44 +0000894 const struct InstructionSpecifier *specWithOpsize;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000895
896 spec = specifierForUID(instructionID);
897
898 if (getIDWithAttrMask(&instructionIDWithOpsize,
899 insn,
900 attrMask | ATTR_OPSIZE)) {
901 /*
902 * ModRM required with OpSize but not present; give up and return version
903 * without OpSize set
904 */
905
906 insn->instructionID = instructionID;
907 insn->spec = spec;
908 return 0;
909 }
910
911 specWithOpsize = specifierForUID(instructionIDWithOpsize);
912
913 if (is16BitEquvalent(spec->name, specWithOpsize->name)) {
914 insn->instructionID = instructionIDWithOpsize;
915 insn->spec = specWithOpsize;
916 } else {
917 insn->instructionID = instructionID;
918 insn->spec = spec;
919 }
920 return 0;
921 }
Craig Topper146c6d72011-10-02 16:56:09 +0000922
923 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
924 insn->rexPrefix & 0x01) {
925 /*
926 * NOOP shouldn't decode as NOOP if REX.b is set. Instead
927 * it should decode as XCHG %r8, %eax.
928 */
929
930 const struct InstructionSpecifier *spec;
931 uint16_t instructionIDWithNewOpcode;
932 const struct InstructionSpecifier *specWithNewOpcode;
933
934 spec = specifierForUID(instructionID);
935
936 // Borrow opcode from one of the other XCHGar opcodes
937 insn->opcode = 0x91;
938
939 if (getIDWithAttrMask(&instructionIDWithNewOpcode,
940 insn,
941 attrMask)) {
942 insn->opcode = 0x90;
943
944 insn->instructionID = instructionID;
945 insn->spec = spec;
946 return 0;
947 }
948
949 specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
950
951 // Change back
952 insn->opcode = 0x90;
953
954 insn->instructionID = instructionIDWithNewOpcode;
955 insn->spec = specWithNewOpcode;
956
957 return 0;
958 }
Sean Callanan8ed9f512009-12-19 02:59:52 +0000959
960 insn->instructionID = instructionID;
961 insn->spec = specifierForUID(insn->instructionID);
962
963 return 0;
964}
965
966/*
967 * readSIB - Consumes the SIB byte to determine addressing information for an
968 * instruction.
969 *
970 * @param insn - The instruction whose SIB byte is to be read.
971 * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
972 */
973static int readSIB(struct InternalInstruction* insn) {
Daniel Dunbarbaf2e352009-12-22 01:41:37 +0000974 SIBIndex sibIndexBase = 0;
975 SIBBase sibBaseBase = 0;
Sean Callanan8ed9f512009-12-19 02:59:52 +0000976 uint8_t index, base;
977
Nuno Lopes392bbd92009-12-19 12:07:00 +0000978 dbgprintf(insn, "readSIB()");
Sean Callanan8ed9f512009-12-19 02:59:52 +0000979
980 if (insn->consumedSIB)
981 return 0;
982
983 insn->consumedSIB = TRUE;
984
985 switch (insn->addressSize) {
986 case 2:
Nuno Lopes392bbd92009-12-19 12:07:00 +0000987 dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
Sean Callanan8ed9f512009-12-19 02:59:52 +0000988 return -1;
989 break;
990 case 4:
991 sibIndexBase = SIB_INDEX_EAX;
992 sibBaseBase = SIB_BASE_EAX;
993 break;
994 case 8:
995 sibIndexBase = SIB_INDEX_RAX;
996 sibBaseBase = SIB_BASE_RAX;
997 break;
998 }
999
1000 if (consumeByte(insn, &insn->sib))
1001 return -1;
1002
1003 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1004
1005 switch (index) {
1006 case 0x4:
1007 insn->sibIndex = SIB_INDEX_NONE;
1008 break;
1009 default:
Benjamin Kramer9e9bb082011-02-27 18:13:53 +00001010 insn->sibIndex = (SIBIndex)(sibIndexBase + index);
Sean Callanan8ed9f512009-12-19 02:59:52 +00001011 if (insn->sibIndex == SIB_INDEX_sib ||
1012 insn->sibIndex == SIB_INDEX_sib64)
1013 insn->sibIndex = SIB_INDEX_NONE;
1014 break;
1015 }
1016
1017 switch (scaleFromSIB(insn->sib)) {
1018 case 0:
1019 insn->sibScale = 1;
1020 break;
1021 case 1:
1022 insn->sibScale = 2;
1023 break;
1024 case 2:
1025 insn->sibScale = 4;
1026 break;
1027 case 3:
1028 insn->sibScale = 8;
1029 break;
1030 }
1031
1032 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1033
1034 switch (base) {
1035 case 0x5:
1036 switch (modFromModRM(insn->modRM)) {
1037 case 0x0:
1038 insn->eaDisplacement = EA_DISP_32;
1039 insn->sibBase = SIB_BASE_NONE;
1040 break;
1041 case 0x1:
1042 insn->eaDisplacement = EA_DISP_8;
1043 insn->sibBase = (insn->addressSize == 4 ?
1044 SIB_BASE_EBP : SIB_BASE_RBP);
1045 break;
1046 case 0x2:
1047 insn->eaDisplacement = EA_DISP_32;
1048 insn->sibBase = (insn->addressSize == 4 ?
1049 SIB_BASE_EBP : SIB_BASE_RBP);
1050 break;
1051 case 0x3:
Sean Callanana144c3f2010-04-02 21:23:51 +00001052 debug("Cannot have Mod = 0b11 and a SIB byte");
1053 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001054 }
1055 break;
1056 default:
Benjamin Kramer9e9bb082011-02-27 18:13:53 +00001057 insn->sibBase = (SIBBase)(sibBaseBase + base);
Sean Callanan8ed9f512009-12-19 02:59:52 +00001058 break;
1059 }
1060
1061 return 0;
1062}
1063
1064/*
1065 * readDisplacement - Consumes the displacement of an instruction.
1066 *
1067 * @param insn - The instruction whose displacement is to be read.
1068 * @return - 0 if the displacement byte was successfully read; nonzero
1069 * otherwise.
1070 */
1071static int readDisplacement(struct InternalInstruction* insn) {
1072 int8_t d8;
1073 int16_t d16;
1074 int32_t d32;
1075
Nuno Lopes392bbd92009-12-19 12:07:00 +00001076 dbgprintf(insn, "readDisplacement()");
Sean Callanan8ed9f512009-12-19 02:59:52 +00001077
1078 if (insn->consumedDisplacement)
1079 return 0;
1080
1081 insn->consumedDisplacement = TRUE;
1082
1083 switch (insn->eaDisplacement) {
1084 case EA_DISP_NONE:
1085 insn->consumedDisplacement = FALSE;
1086 break;
1087 case EA_DISP_8:
1088 if (consumeInt8(insn, &d8))
1089 return -1;
1090 insn->displacement = d8;
1091 break;
1092 case EA_DISP_16:
1093 if (consumeInt16(insn, &d16))
1094 return -1;
1095 insn->displacement = d16;
1096 break;
1097 case EA_DISP_32:
1098 if (consumeInt32(insn, &d32))
1099 return -1;
1100 insn->displacement = d32;
1101 break;
1102 }
1103
1104 insn->consumedDisplacement = TRUE;
1105 return 0;
1106}
1107
1108/*
1109 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1110 * displacement) for an instruction and interprets it.
1111 *
1112 * @param insn - The instruction whose addressing information is to be read.
1113 * @return - 0 if the information was successfully read; nonzero otherwise.
1114 */
1115static int readModRM(struct InternalInstruction* insn) {
1116 uint8_t mod, rm, reg;
1117
Nuno Lopes392bbd92009-12-19 12:07:00 +00001118 dbgprintf(insn, "readModRM()");
Sean Callanan8ed9f512009-12-19 02:59:52 +00001119
1120 if (insn->consumedModRM)
1121 return 0;
1122
Rafael Espindola2f867a62011-01-06 16:48:42 +00001123 if (consumeByte(insn, &insn->modRM))
1124 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001125 insn->consumedModRM = TRUE;
1126
1127 mod = modFromModRM(insn->modRM);
1128 rm = rmFromModRM(insn->modRM);
1129 reg = regFromModRM(insn->modRM);
1130
1131 /*
1132 * This goes by insn->registerSize to pick the correct register, which messes
1133 * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
1134 * fixupReg().
1135 */
1136 switch (insn->registerSize) {
1137 case 2:
Sean Callanan06b766d2009-12-22 02:07:42 +00001138 insn->regBase = MODRM_REG_AX;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001139 insn->eaRegBase = EA_REG_AX;
1140 break;
1141 case 4:
Sean Callanan06b766d2009-12-22 02:07:42 +00001142 insn->regBase = MODRM_REG_EAX;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001143 insn->eaRegBase = EA_REG_EAX;
1144 break;
1145 case 8:
Sean Callanan06b766d2009-12-22 02:07:42 +00001146 insn->regBase = MODRM_REG_RAX;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001147 insn->eaRegBase = EA_REG_RAX;
1148 break;
1149 }
1150
1151 reg |= rFromREX(insn->rexPrefix) << 3;
1152 rm |= bFromREX(insn->rexPrefix) << 3;
1153
1154 insn->reg = (Reg)(insn->regBase + reg);
1155
1156 switch (insn->addressSize) {
1157 case 2:
1158 insn->eaBaseBase = EA_BASE_BX_SI;
1159
1160 switch (mod) {
1161 case 0x0:
1162 if (rm == 0x6) {
1163 insn->eaBase = EA_BASE_NONE;
1164 insn->eaDisplacement = EA_DISP_16;
Sean Callanana144c3f2010-04-02 21:23:51 +00001165 if (readDisplacement(insn))
Sean Callanan8ed9f512009-12-19 02:59:52 +00001166 return -1;
1167 } else {
1168 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1169 insn->eaDisplacement = EA_DISP_NONE;
1170 }
1171 break;
1172 case 0x1:
1173 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1174 insn->eaDisplacement = EA_DISP_8;
Sean Callanana144c3f2010-04-02 21:23:51 +00001175 if (readDisplacement(insn))
Sean Callanan8ed9f512009-12-19 02:59:52 +00001176 return -1;
1177 break;
1178 case 0x2:
1179 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1180 insn->eaDisplacement = EA_DISP_16;
Sean Callanana144c3f2010-04-02 21:23:51 +00001181 if (readDisplacement(insn))
Sean Callanan8ed9f512009-12-19 02:59:52 +00001182 return -1;
1183 break;
1184 case 0x3:
1185 insn->eaBase = (EABase)(insn->eaRegBase + rm);
Sean Callanana144c3f2010-04-02 21:23:51 +00001186 if (readDisplacement(insn))
Sean Callanan8ed9f512009-12-19 02:59:52 +00001187 return -1;
1188 break;
1189 }
1190 break;
1191 case 4:
1192 case 8:
1193 insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1194
1195 switch (mod) {
1196 case 0x0:
1197 insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1198 switch (rm) {
1199 case 0x4:
1200 case 0xc: /* in case REXW.b is set */
1201 insn->eaBase = (insn->addressSize == 4 ?
1202 EA_BASE_sib : EA_BASE_sib64);
1203 readSIB(insn);
Sean Callanana144c3f2010-04-02 21:23:51 +00001204 if (readDisplacement(insn))
Sean Callanan8ed9f512009-12-19 02:59:52 +00001205 return -1;
1206 break;
1207 case 0x5:
1208 insn->eaBase = EA_BASE_NONE;
1209 insn->eaDisplacement = EA_DISP_32;
Sean Callanana144c3f2010-04-02 21:23:51 +00001210 if (readDisplacement(insn))
Sean Callanan8ed9f512009-12-19 02:59:52 +00001211 return -1;
1212 break;
1213 default:
1214 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1215 break;
1216 }
1217 break;
1218 case 0x1:
1219 case 0x2:
1220 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1221 switch (rm) {
1222 case 0x4:
1223 case 0xc: /* in case REXW.b is set */
1224 insn->eaBase = EA_BASE_sib;
1225 readSIB(insn);
Sean Callanana144c3f2010-04-02 21:23:51 +00001226 if (readDisplacement(insn))
Sean Callanan8ed9f512009-12-19 02:59:52 +00001227 return -1;
1228 break;
1229 default:
1230 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
Sean Callanana144c3f2010-04-02 21:23:51 +00001231 if (readDisplacement(insn))
Sean Callanan8ed9f512009-12-19 02:59:52 +00001232 return -1;
1233 break;
1234 }
1235 break;
1236 case 0x3:
1237 insn->eaDisplacement = EA_DISP_NONE;
1238 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1239 break;
1240 }
1241 break;
1242 } /* switch (insn->addressSize) */
1243
1244 return 0;
1245}
1246
1247#define GENERIC_FIXUP_FUNC(name, base, prefix) \
1248 static uint8_t name(struct InternalInstruction *insn, \
1249 OperandType type, \
1250 uint8_t index, \
1251 uint8_t *valid) { \
1252 *valid = 1; \
1253 switch (type) { \
1254 default: \
Sean Callanana144c3f2010-04-02 21:23:51 +00001255 debug("Unhandled register type"); \
1256 *valid = 0; \
1257 return 0; \
Sean Callanan8ed9f512009-12-19 02:59:52 +00001258 case TYPE_Rv: \
1259 return base + index; \
1260 case TYPE_R8: \
Sean Callanana144c3f2010-04-02 21:23:51 +00001261 if (insn->rexPrefix && \
Sean Callanan8ed9f512009-12-19 02:59:52 +00001262 index >= 4 && index <= 7) { \
1263 return prefix##_SPL + (index - 4); \
1264 } else { \
1265 return prefix##_AL + index; \
1266 } \
1267 case TYPE_R16: \
1268 return prefix##_AX + index; \
1269 case TYPE_R32: \
1270 return prefix##_EAX + index; \
1271 case TYPE_R64: \
1272 return prefix##_RAX + index; \
Sean Callanana21e2ea2011-03-15 01:23:15 +00001273 case TYPE_XMM256: \
1274 return prefix##_YMM0 + index; \
Sean Callanan8ed9f512009-12-19 02:59:52 +00001275 case TYPE_XMM128: \
1276 case TYPE_XMM64: \
1277 case TYPE_XMM32: \
1278 case TYPE_XMM: \
1279 return prefix##_XMM0 + index; \
1280 case TYPE_MM64: \
1281 case TYPE_MM32: \
1282 case TYPE_MM: \
Sean Callanana144c3f2010-04-02 21:23:51 +00001283 if (index > 7) \
Sean Callanan8ed9f512009-12-19 02:59:52 +00001284 *valid = 0; \
1285 return prefix##_MM0 + index; \
1286 case TYPE_SEGMENTREG: \
Sean Callanana144c3f2010-04-02 21:23:51 +00001287 if (index > 5) \
Sean Callanan8ed9f512009-12-19 02:59:52 +00001288 *valid = 0; \
1289 return prefix##_ES + index; \
1290 case TYPE_DEBUGREG: \
Sean Callanana144c3f2010-04-02 21:23:51 +00001291 if (index > 7) \
Sean Callanan8ed9f512009-12-19 02:59:52 +00001292 *valid = 0; \
1293 return prefix##_DR0 + index; \
Sean Callanan1a8b7892010-05-06 20:59:00 +00001294 case TYPE_CONTROLREG: \
Sean Callanana144c3f2010-04-02 21:23:51 +00001295 if (index > 8) \
Sean Callanan8ed9f512009-12-19 02:59:52 +00001296 *valid = 0; \
Sean Callanan1a8b7892010-05-06 20:59:00 +00001297 return prefix##_CR0 + index; \
Sean Callanan8ed9f512009-12-19 02:59:52 +00001298 } \
1299 }
1300
1301/*
1302 * fixup*Value - Consults an operand type to determine the meaning of the
1303 * reg or R/M field. If the operand is an XMM operand, for example, an
1304 * operand would be XMM0 instead of AX, which readModRM() would otherwise
1305 * misinterpret it as.
1306 *
1307 * @param insn - The instruction containing the operand.
1308 * @param type - The operand type.
1309 * @param index - The existing value of the field as reported by readModRM().
1310 * @param valid - The address of a uint8_t. The target is set to 1 if the
1311 * field is valid for the register class; 0 if not.
Sean Callanana144c3f2010-04-02 21:23:51 +00001312 * @return - The proper value.
Sean Callanan8ed9f512009-12-19 02:59:52 +00001313 */
Sean Callanan06b766d2009-12-22 02:07:42 +00001314GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
Sean Callanan8ed9f512009-12-19 02:59:52 +00001315GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
1316
1317/*
1318 * fixupReg - Consults an operand specifier to determine which of the
1319 * fixup*Value functions to use in correcting readModRM()'ss interpretation.
1320 *
1321 * @param insn - See fixup*Value().
1322 * @param op - The operand specifier.
1323 * @return - 0 if fixup was successful; -1 if the register returned was
1324 * invalid for its class.
1325 */
1326static int fixupReg(struct InternalInstruction *insn,
Benjamin Kramer4d1dca92010-10-23 09:10:44 +00001327 const struct OperandSpecifier *op) {
Sean Callanan8ed9f512009-12-19 02:59:52 +00001328 uint8_t valid;
1329
Nuno Lopes392bbd92009-12-19 12:07:00 +00001330 dbgprintf(insn, "fixupReg()");
Sean Callanan8ed9f512009-12-19 02:59:52 +00001331
1332 switch ((OperandEncoding)op->encoding) {
1333 default:
Sean Callanana144c3f2010-04-02 21:23:51 +00001334 debug("Expected a REG or R/M encoding in fixupReg");
1335 return -1;
Sean Callanana21e2ea2011-03-15 01:23:15 +00001336 case ENCODING_VVVV:
1337 insn->vvvv = (Reg)fixupRegValue(insn,
1338 (OperandType)op->type,
1339 insn->vvvv,
1340 &valid);
1341 if (!valid)
1342 return -1;
1343 break;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001344 case ENCODING_REG:
1345 insn->reg = (Reg)fixupRegValue(insn,
1346 (OperandType)op->type,
1347 insn->reg - insn->regBase,
1348 &valid);
1349 if (!valid)
1350 return -1;
1351 break;
1352 case ENCODING_RM:
1353 if (insn->eaBase >= insn->eaRegBase) {
1354 insn->eaBase = (EABase)fixupRMValue(insn,
1355 (OperandType)op->type,
1356 insn->eaBase - insn->eaRegBase,
1357 &valid);
1358 if (!valid)
1359 return -1;
1360 }
1361 break;
1362 }
1363
1364 return 0;
1365}
1366
1367/*
1368 * readOpcodeModifier - Reads an operand from the opcode field of an
1369 * instruction. Handles AddRegFrm instructions.
1370 *
1371 * @param insn - The instruction whose opcode field is to be read.
1372 * @param inModRM - Indicates that the opcode field is to be read from the
1373 * ModR/M extension; useful for escape opcodes
Sean Callanana144c3f2010-04-02 21:23:51 +00001374 * @return - 0 on success; nonzero otherwise.
Sean Callanan8ed9f512009-12-19 02:59:52 +00001375 */
Sean Callanana144c3f2010-04-02 21:23:51 +00001376static int readOpcodeModifier(struct InternalInstruction* insn) {
Nuno Lopes392bbd92009-12-19 12:07:00 +00001377 dbgprintf(insn, "readOpcodeModifier()");
Sean Callanan8ed9f512009-12-19 02:59:52 +00001378
1379 if (insn->consumedOpcodeModifier)
Sean Callanana144c3f2010-04-02 21:23:51 +00001380 return 0;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001381
1382 insn->consumedOpcodeModifier = TRUE;
1383
Sean Callanana144c3f2010-04-02 21:23:51 +00001384 switch (insn->spec->modifierType) {
Sean Callanan8ed9f512009-12-19 02:59:52 +00001385 default:
Sean Callanana144c3f2010-04-02 21:23:51 +00001386 debug("Unknown modifier type.");
1387 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001388 case MODIFIER_NONE:
Sean Callanana144c3f2010-04-02 21:23:51 +00001389 debug("No modifier but an operand expects one.");
1390 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001391 case MODIFIER_OPCODE:
1392 insn->opcodeModifier = insn->opcode - insn->spec->modifierBase;
Sean Callanana144c3f2010-04-02 21:23:51 +00001393 return 0;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001394 case MODIFIER_MODRM:
1395 insn->opcodeModifier = insn->modRM - insn->spec->modifierBase;
Sean Callanana144c3f2010-04-02 21:23:51 +00001396 return 0;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001397 }
1398}
1399
1400/*
1401 * readOpcodeRegister - Reads an operand from the opcode field of an
1402 * instruction and interprets it appropriately given the operand width.
1403 * Handles AddRegFrm instructions.
1404 *
1405 * @param insn - See readOpcodeModifier().
1406 * @param size - The width (in bytes) of the register being specified.
1407 * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1408 * RAX.
Sean Callanana144c3f2010-04-02 21:23:51 +00001409 * @return - 0 on success; nonzero otherwise.
Sean Callanan8ed9f512009-12-19 02:59:52 +00001410 */
Sean Callanana144c3f2010-04-02 21:23:51 +00001411static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
Nuno Lopes392bbd92009-12-19 12:07:00 +00001412 dbgprintf(insn, "readOpcodeRegister()");
Sean Callanan8ed9f512009-12-19 02:59:52 +00001413
Sean Callanana144c3f2010-04-02 21:23:51 +00001414 if (readOpcodeModifier(insn))
1415 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001416
1417 if (size == 0)
1418 size = insn->registerSize;
1419
1420 switch (size) {
1421 case 1:
Sean Callanan06b766d2009-12-22 02:07:42 +00001422 insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1423 | insn->opcodeModifier));
Sean Callanana144c3f2010-04-02 21:23:51 +00001424 if (insn->rexPrefix &&
1425 insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1426 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
Sean Callanan06b766d2009-12-22 02:07:42 +00001427 insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1428 + (insn->opcodeRegister - MODRM_REG_AL - 4));
Sean Callanan8ed9f512009-12-19 02:59:52 +00001429 }
1430
1431 break;
1432 case 2:
Sean Callanan06b766d2009-12-22 02:07:42 +00001433 insn->opcodeRegister = (Reg)(MODRM_REG_AX
1434 + ((bFromREX(insn->rexPrefix) << 3)
1435 | insn->opcodeModifier));
Sean Callanan8ed9f512009-12-19 02:59:52 +00001436 break;
1437 case 4:
Sean Callanana144c3f2010-04-02 21:23:51 +00001438 insn->opcodeRegister = (Reg)(MODRM_REG_EAX
Sean Callanan06b766d2009-12-22 02:07:42 +00001439 + ((bFromREX(insn->rexPrefix) << 3)
1440 | insn->opcodeModifier));
Sean Callanan8ed9f512009-12-19 02:59:52 +00001441 break;
1442 case 8:
Sean Callanan06b766d2009-12-22 02:07:42 +00001443 insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1444 + ((bFromREX(insn->rexPrefix) << 3)
1445 | insn->opcodeModifier));
Sean Callanan8ed9f512009-12-19 02:59:52 +00001446 break;
1447 }
Sean Callanana144c3f2010-04-02 21:23:51 +00001448
1449 return 0;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001450}
1451
1452/*
1453 * readImmediate - Consumes an immediate operand from an instruction, given the
1454 * desired operand size.
1455 *
1456 * @param insn - The instruction whose operand is to be read.
1457 * @param size - The width (in bytes) of the operand.
1458 * @return - 0 if the immediate was successfully consumed; nonzero
1459 * otherwise.
1460 */
1461static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1462 uint8_t imm8;
1463 uint16_t imm16;
1464 uint32_t imm32;
1465 uint64_t imm64;
1466
Nuno Lopes392bbd92009-12-19 12:07:00 +00001467 dbgprintf(insn, "readImmediate()");
Sean Callanan8ed9f512009-12-19 02:59:52 +00001468
Sean Callanana144c3f2010-04-02 21:23:51 +00001469 if (insn->numImmediatesConsumed == 2) {
1470 debug("Already consumed two immediates");
1471 return -1;
1472 }
Sean Callanan8ed9f512009-12-19 02:59:52 +00001473
1474 if (size == 0)
1475 size = insn->immediateSize;
1476 else
1477 insn->immediateSize = size;
1478
1479 switch (size) {
1480 case 1:
1481 if (consumeByte(insn, &imm8))
1482 return -1;
1483 insn->immediates[insn->numImmediatesConsumed] = imm8;
1484 break;
1485 case 2:
1486 if (consumeUInt16(insn, &imm16))
1487 return -1;
1488 insn->immediates[insn->numImmediatesConsumed] = imm16;
1489 break;
1490 case 4:
1491 if (consumeUInt32(insn, &imm32))
1492 return -1;
1493 insn->immediates[insn->numImmediatesConsumed] = imm32;
1494 break;
1495 case 8:
1496 if (consumeUInt64(insn, &imm64))
1497 return -1;
1498 insn->immediates[insn->numImmediatesConsumed] = imm64;
1499 break;
1500 }
1501
1502 insn->numImmediatesConsumed++;
1503
1504 return 0;
1505}
1506
1507/*
Craig Topper4bbeb182011-09-13 07:37:44 +00001508 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
Sean Callanana21e2ea2011-03-15 01:23:15 +00001509 *
1510 * @param insn - The instruction whose operand is to be read.
Craig Topper4bbeb182011-09-13 07:37:44 +00001511 * @return - 0 if the vvvv was successfully consumed; nonzero
Sean Callanana21e2ea2011-03-15 01:23:15 +00001512 * otherwise.
1513 */
1514static int readVVVV(struct InternalInstruction* insn) {
1515 dbgprintf(insn, "readVVVV()");
1516
1517 if (insn->vexSize == 3)
1518 insn->vvvv = vvvvFromVEX3of3(insn->vexPrefix[2]);
1519 else if (insn->vexSize == 2)
1520 insn->vvvv = vvvvFromVEX2of2(insn->vexPrefix[1]);
1521 else
1522 return -1;
1523
Craig Topper04c5be92011-10-03 08:14:29 +00001524 if (insn->mode != MODE_64BIT)
1525 insn->vvvv &= 0x7;
1526
Sean Callanana21e2ea2011-03-15 01:23:15 +00001527 return 0;
1528}
1529
1530/*
Sean Callanan8ed9f512009-12-19 02:59:52 +00001531 * readOperands - Consults the specifier for an instruction and consumes all
1532 * operands for that instruction, interpreting them as it goes.
1533 *
1534 * @param insn - The instruction whose operands are to be read and interpreted.
1535 * @return - 0 if all operands could be read; nonzero otherwise.
1536 */
1537static int readOperands(struct InternalInstruction* insn) {
1538 int index;
Craig Topper4bbeb182011-09-13 07:37:44 +00001539 int hasVVVV, needVVVV;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001540
Nuno Lopes392bbd92009-12-19 12:07:00 +00001541 dbgprintf(insn, "readOperands()");
Craig Topper4bbeb182011-09-13 07:37:44 +00001542
1543 /* If non-zero vvvv specified, need to make sure one of the operands
1544 uses it. */
1545 hasVVVV = !readVVVV(insn);
1546 needVVVV = hasVVVV && (insn->vvvv != 0);
Sean Callanan8ed9f512009-12-19 02:59:52 +00001547
1548 for (index = 0; index < X86_MAX_OPERANDS; ++index) {
1549 switch (insn->spec->operands[index].encoding) {
1550 case ENCODING_NONE:
1551 break;
1552 case ENCODING_REG:
1553 case ENCODING_RM:
1554 if (readModRM(insn))
1555 return -1;
1556 if (fixupReg(insn, &insn->spec->operands[index]))
1557 return -1;
1558 break;
1559 case ENCODING_CB:
1560 case ENCODING_CW:
1561 case ENCODING_CD:
1562 case ENCODING_CP:
1563 case ENCODING_CO:
1564 case ENCODING_CT:
Nuno Lopes392bbd92009-12-19 12:07:00 +00001565 dbgprintf(insn, "We currently don't hande code-offset encodings");
Sean Callanan8ed9f512009-12-19 02:59:52 +00001566 return -1;
1567 case ENCODING_IB:
1568 if (readImmediate(insn, 1))
1569 return -1;
Sean Callanan5edca812010-04-07 21:42:19 +00001570 if (insn->spec->operands[index].type == TYPE_IMM3 &&
1571 insn->immediates[insn->numImmediatesConsumed - 1] > 7)
1572 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001573 break;
1574 case ENCODING_IW:
1575 if (readImmediate(insn, 2))
1576 return -1;
1577 break;
1578 case ENCODING_ID:
1579 if (readImmediate(insn, 4))
1580 return -1;
1581 break;
1582 case ENCODING_IO:
1583 if (readImmediate(insn, 8))
1584 return -1;
1585 break;
1586 case ENCODING_Iv:
Sean Callanana144c3f2010-04-02 21:23:51 +00001587 if (readImmediate(insn, insn->immediateSize))
1588 return -1;
Chris Lattneraef1fea2010-04-16 21:15:15 +00001589 break;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001590 case ENCODING_Ia:
Sean Callanana144c3f2010-04-02 21:23:51 +00001591 if (readImmediate(insn, insn->addressSize))
1592 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001593 break;
1594 case ENCODING_RB:
Sean Callanana144c3f2010-04-02 21:23:51 +00001595 if (readOpcodeRegister(insn, 1))
1596 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001597 break;
1598 case ENCODING_RW:
Sean Callanana144c3f2010-04-02 21:23:51 +00001599 if (readOpcodeRegister(insn, 2))
1600 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001601 break;
1602 case ENCODING_RD:
Sean Callanana144c3f2010-04-02 21:23:51 +00001603 if (readOpcodeRegister(insn, 4))
1604 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001605 break;
1606 case ENCODING_RO:
Sean Callanana144c3f2010-04-02 21:23:51 +00001607 if (readOpcodeRegister(insn, 8))
1608 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001609 break;
1610 case ENCODING_Rv:
Sean Callanana144c3f2010-04-02 21:23:51 +00001611 if (readOpcodeRegister(insn, 0))
1612 return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001613 break;
1614 case ENCODING_I:
Sean Callanana144c3f2010-04-02 21:23:51 +00001615 if (readOpcodeModifier(insn))
1616 return -1;
Sean Callanana21e2ea2011-03-15 01:23:15 +00001617 break;
1618 case ENCODING_VVVV:
Craig Topper4bbeb182011-09-13 07:37:44 +00001619 needVVVV = 0; /* Mark that we have found a VVVV operand. */
1620 if (!hasVVVV)
Sean Callanana21e2ea2011-03-15 01:23:15 +00001621 return -1;
1622 if (fixupReg(insn, &insn->spec->operands[index]))
1623 return -1;
1624 break;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001625 case ENCODING_DUP:
1626 break;
1627 default:
Nuno Lopes392bbd92009-12-19 12:07:00 +00001628 dbgprintf(insn, "Encountered an operand with an unknown encoding.");
Sean Callanan8ed9f512009-12-19 02:59:52 +00001629 return -1;
1630 }
1631 }
Craig Topper4bbeb182011-09-13 07:37:44 +00001632
1633 /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1634 if (needVVVV) return -1;
Sean Callanan8ed9f512009-12-19 02:59:52 +00001635
1636 return 0;
1637}
1638
1639/*
1640 * decodeInstruction - Reads and interprets a full instruction provided by the
1641 * user.
1642 *
1643 * @param insn - A pointer to the instruction to be populated. Must be
1644 * pre-allocated.
1645 * @param reader - The function to be used to read the instruction's bytes.
1646 * @param readerArg - A generic argument to be passed to the reader to store
1647 * any internal state.
1648 * @param logger - If non-NULL, the function to be used to write log messages
1649 * and warnings.
1650 * @param loggerArg - A generic argument to be passed to the logger to store
1651 * any internal state.
1652 * @param startLoc - The address (in the reader's address space) of the first
1653 * byte in the instruction.
1654 * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1655 * decode the instruction in.
1656 * @return - 0 if the instruction's memory could be read; nonzero if
1657 * not.
1658 */
1659int decodeInstruction(struct InternalInstruction* insn,
1660 byteReader_t reader,
1661 void* readerArg,
1662 dlog_t logger,
1663 void* loggerArg,
1664 uint64_t startLoc,
1665 DisassemblerMode mode) {
Daniel Dunbar71f842d2009-12-19 03:31:50 +00001666 memset(insn, 0, sizeof(struct InternalInstruction));
Sean Callanan8ed9f512009-12-19 02:59:52 +00001667
1668 insn->reader = reader;
1669 insn->readerArg = readerArg;
1670 insn->dlog = logger;
1671 insn->dlogArg = loggerArg;
1672 insn->startLocation = startLoc;
1673 insn->readerCursor = startLoc;
1674 insn->mode = mode;
1675 insn->numImmediatesConsumed = 0;
1676
1677 if (readPrefixes(insn) ||
1678 readOpcode(insn) ||
1679 getID(insn) ||
1680 insn->instructionID == 0 ||
1681 readOperands(insn))
1682 return -1;
1683
1684 insn->length = insn->readerCursor - insn->startLocation;
1685
Benjamin Kramer7c97ed72010-03-18 12:18:36 +00001686 dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1687 startLoc, insn->readerCursor, insn->length);
Sean Callanan8ed9f512009-12-19 02:59:52 +00001688
1689 if (insn->length > 15)
Nuno Lopes392bbd92009-12-19 12:07:00 +00001690 dbgprintf(insn, "Instruction exceeds 15-byte limit");
Sean Callanan8ed9f512009-12-19 02:59:52 +00001691
1692 return 0;
1693}