blob: c077f7c0cac82cb5c3559ca3492167e85bf4e37a [file] [log] [blame]
Chris Lattnerdbe0dec2007-03-31 04:06:36 +00001//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/Instructions.h"
22#include "llvm/Pass.h"
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000023#include "llvm/Target/TargetAsmInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerdd77df32007-04-13 20:30:56 +000028#include "llvm/Transforms/Utils/Local.h"
29#include "llvm/ADT/DenseMap.h"
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000030#include "llvm/ADT/SmallSet.h"
Chris Lattnerd9c3a0d2007-04-02 01:35:34 +000031#include "llvm/Support/Debug.h"
32#include "llvm/Support/Compiler.h"
Chris Lattnerdd77df32007-04-13 20:30:56 +000033#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000034using namespace llvm;
35
36namespace {
37 class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
38 /// TLI - Keep a pointer of a TargetLowering to consult for determining
39 /// transformation profitability.
40 const TargetLowering *TLI;
41 public:
Devang Patel19974732007-05-03 01:11:54 +000042 static char ID; // Pass identifcation, replacement for typeid
Devang Patel794fd752007-05-01 21:15:47 +000043 CodeGenPrepare(const TargetLowering *tli = 0) : FunctionPass((intptr_t)&ID),
44 TLI(tli) {}
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000045 bool runOnFunction(Function &F);
46
47 private:
Chris Lattnerd9c3a0d2007-04-02 01:35:34 +000048 bool EliminateMostlyEmptyBlocks(Function &F);
49 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
50 void EliminateMostlyEmptyBlock(BasicBlock *BB);
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000051 bool OptimizeBlock(BasicBlock &BB);
Chris Lattnerdd77df32007-04-13 20:30:56 +000052 bool OptimizeLoadStoreInst(Instruction *I, Value *Addr,
53 const Type *AccessTy,
54 DenseMap<Value*,Value*> &SunkAddrs);
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000055 };
56}
Devang Patel794fd752007-05-01 21:15:47 +000057
Devang Patel19974732007-05-03 01:11:54 +000058char CodeGenPrepare::ID = 0;
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000059static RegisterPass<CodeGenPrepare> X("codegenprepare",
60 "Optimize for code generation");
61
62FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
63 return new CodeGenPrepare(TLI);
64}
65
66
67bool CodeGenPrepare::runOnFunction(Function &F) {
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000068 bool EverMadeChange = false;
Chris Lattnerd9c3a0d2007-04-02 01:35:34 +000069
70 // First pass, eliminate blocks that contain only PHI nodes and an
71 // unconditional branch.
72 EverMadeChange |= EliminateMostlyEmptyBlocks(F);
73
74 bool MadeChange = true;
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000075 while (MadeChange) {
76 MadeChange = false;
77 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
78 MadeChange |= OptimizeBlock(*BB);
79 EverMadeChange |= MadeChange;
80 }
81 return EverMadeChange;
82}
83
Chris Lattnerd9c3a0d2007-04-02 01:35:34 +000084/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
85/// and an unconditional branch. Passes before isel (e.g. LSR/loopsimplify)
86/// often split edges in ways that are non-optimal for isel. Start by
87/// eliminating these blocks so we can split them the way we want them.
88bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
89 bool MadeChange = false;
90 // Note that this intentionally skips the entry block.
91 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
92 BasicBlock *BB = I++;
93
94 // If this block doesn't end with an uncond branch, ignore it.
95 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
96 if (!BI || !BI->isUnconditional())
97 continue;
98
99 // If the instruction before the branch isn't a phi node, then other stuff
100 // is happening here.
101 BasicBlock::iterator BBI = BI;
102 if (BBI != BB->begin()) {
103 --BBI;
104 if (!isa<PHINode>(BBI)) continue;
105 }
106
107 // Do not break infinite loops.
108 BasicBlock *DestBB = BI->getSuccessor(0);
109 if (DestBB == BB)
110 continue;
111
112 if (!CanMergeBlocks(BB, DestBB))
113 continue;
114
115 EliminateMostlyEmptyBlock(BB);
116 MadeChange = true;
117 }
118 return MadeChange;
119}
120
121/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
122/// single uncond branch between them, and BB contains no other non-phi
123/// instructions.
124bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
125 const BasicBlock *DestBB) const {
126 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
127 // the successor. If there are more complex condition (e.g. preheaders),
128 // don't mess around with them.
129 BasicBlock::const_iterator BBI = BB->begin();
130 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
131 for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
132 UI != E; ++UI) {
133 const Instruction *User = cast<Instruction>(*UI);
134 if (User->getParent() != DestBB || !isa<PHINode>(User))
135 return false;
Devang Patel75abc1e2007-04-25 00:37:04 +0000136 // If User is inside DestBB block and it is a PHINode then check
137 // incoming value. If incoming value is not from BB then this is
138 // a complex condition (e.g. preheaders) we want to avoid here.
139 if (User->getParent() == DestBB) {
140 if (const PHINode *UPN = dyn_cast<PHINode>(User))
141 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
142 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
143 if (Insn && Insn->getParent() == BB &&
144 Insn->getParent() != UPN->getIncomingBlock(I))
145 return false;
146 }
147 }
Chris Lattnerd9c3a0d2007-04-02 01:35:34 +0000148 }
149 }
150
151 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
152 // and DestBB may have conflicting incoming values for the block. If so, we
153 // can't merge the block.
154 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
155 if (!DestBBPN) return true; // no conflict.
156
157 // Collect the preds of BB.
158 SmallPtrSet<BasicBlock*, 16> BBPreds;
159 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
160 // It is faster to get preds from a PHI than with pred_iterator.
161 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
162 BBPreds.insert(BBPN->getIncomingBlock(i));
163 } else {
164 BBPreds.insert(pred_begin(BB), pred_end(BB));
165 }
166
167 // Walk the preds of DestBB.
168 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
169 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
170 if (BBPreds.count(Pred)) { // Common predecessor?
171 BBI = DestBB->begin();
172 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
173 const Value *V1 = PN->getIncomingValueForBlock(Pred);
174 const Value *V2 = PN->getIncomingValueForBlock(BB);
175
176 // If V2 is a phi node in BB, look up what the mapped value will be.
177 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
178 if (V2PN->getParent() == BB)
179 V2 = V2PN->getIncomingValueForBlock(Pred);
180
181 // If there is a conflict, bail out.
182 if (V1 != V2) return false;
183 }
184 }
185 }
186
187 return true;
188}
189
190
191/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
192/// an unconditional branch in it.
193void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
194 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
195 BasicBlock *DestBB = BI->getSuccessor(0);
196
197 DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
198
199 // If the destination block has a single pred, then this is a trivial edge,
200 // just collapse it.
201 if (DestBB->getSinglePredecessor()) {
202 // If DestBB has single-entry PHI nodes, fold them.
203 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
204 PN->replaceAllUsesWith(PN->getIncomingValue(0));
205 PN->eraseFromParent();
206 }
207
208 // Splice all the PHI nodes from BB over to DestBB.
209 DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(),
210 BB->begin(), BI);
211
212 // Anything that branched to BB now branches to DestBB.
213 BB->replaceAllUsesWith(DestBB);
214
215 // Nuke BB.
216 BB->eraseFromParent();
217
218 DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
219 return;
220 }
221
222 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
223 // to handle the new incoming edges it is about to have.
224 PHINode *PN;
225 for (BasicBlock::iterator BBI = DestBB->begin();
226 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
227 // Remove the incoming value for BB, and remember it.
228 Value *InVal = PN->removeIncomingValue(BB, false);
229
230 // Two options: either the InVal is a phi node defined in BB or it is some
231 // value that dominates BB.
232 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
233 if (InValPhi && InValPhi->getParent() == BB) {
234 // Add all of the input values of the input PHI as inputs of this phi.
235 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
236 PN->addIncoming(InValPhi->getIncomingValue(i),
237 InValPhi->getIncomingBlock(i));
238 } else {
239 // Otherwise, add one instance of the dominating value for each edge that
240 // we will be adding.
241 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
242 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
243 PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
244 } else {
245 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
246 PN->addIncoming(InVal, *PI);
247 }
248 }
249 }
250
251 // The PHIs are now updated, change everything that refers to BB to use
252 // DestBB and remove BB.
253 BB->replaceAllUsesWith(DestBB);
254 BB->eraseFromParent();
255
256 DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
257}
258
259
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000260/// SplitEdgeNicely - Split the critical edge from TI to it's specified
261/// successor if it will improve codegen. We only do this if the successor has
262/// phi nodes (otherwise critical edges are ok). If there is already another
263/// predecessor of the succ that is empty (and thus has no phi nodes), use it
264/// instead of introducing a new block.
265static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
266 BasicBlock *TIBB = TI->getParent();
267 BasicBlock *Dest = TI->getSuccessor(SuccNum);
268 assert(isa<PHINode>(Dest->begin()) &&
269 "This should only be called if Dest has a PHI!");
270
271 /// TIPHIValues - This array is lazily computed to determine the values of
272 /// PHIs in Dest that TI would provide.
273 std::vector<Value*> TIPHIValues;
274
275 // Check to see if Dest has any blocks that can be used as a split edge for
276 // this terminator.
277 for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
278 BasicBlock *Pred = *PI;
279 // To be usable, the pred has to end with an uncond branch to the dest.
280 BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
281 if (!PredBr || !PredBr->isUnconditional() ||
282 // Must be empty other than the branch.
283 &Pred->front() != PredBr)
284 continue;
285
286 // Finally, since we know that Dest has phi nodes in it, we have to make
287 // sure that jumping to Pred will have the same affect as going to Dest in
288 // terms of PHI values.
289 PHINode *PN;
290 unsigned PHINo = 0;
291 bool FoundMatch = true;
292 for (BasicBlock::iterator I = Dest->begin();
293 (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
294 if (PHINo == TIPHIValues.size())
295 TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
296
297 // If the PHI entry doesn't work, we can't use this pred.
298 if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
299 FoundMatch = false;
300 break;
301 }
302 }
303
304 // If we found a workable predecessor, change TI to branch to Succ.
305 if (FoundMatch) {
306 Dest->removePredecessor(TIBB);
307 TI->setSuccessor(SuccNum, Pred);
308 return;
309 }
310 }
311
312 SplitCriticalEdge(TI, SuccNum, P, true);
313}
314
Chris Lattnerdd77df32007-04-13 20:30:56 +0000315/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
316/// copy (e.g. it's casting from one pointer type to another, int->uint, or
317/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
318/// registers that must be created and coallesced.
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000319///
320/// Return true if any changes are made.
Chris Lattnerdd77df32007-04-13 20:30:56 +0000321static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
322 // If this is a noop copy,
323 MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
324 MVT::ValueType DstVT = TLI.getValueType(CI->getType());
325
326 // This is an fp<->int conversion?
327 if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
328 return false;
329
330 // If this is an extension, it will be a zero or sign extension, which
331 // isn't a noop.
332 if (SrcVT < DstVT) return false;
333
334 // If these values will be promoted, find out what they will be promoted
335 // to. This helps us consider truncates on PPC as noop copies when they
336 // are.
337 if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
338 SrcVT = TLI.getTypeToTransformTo(SrcVT);
339 if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
340 DstVT = TLI.getTypeToTransformTo(DstVT);
341
342 // If, after promotion, these are the same types, this is a noop copy.
343 if (SrcVT != DstVT)
344 return false;
345
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000346 BasicBlock *DefBB = CI->getParent();
347
348 /// InsertedCasts - Only insert a cast in each block once.
349 std::map<BasicBlock*, CastInst*> InsertedCasts;
350
351 bool MadeChange = false;
352 for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
353 UI != E; ) {
354 Use &TheUse = UI.getUse();
355 Instruction *User = cast<Instruction>(*UI);
356
357 // Figure out which BB this cast is used in. For PHI's this is the
358 // appropriate predecessor block.
359 BasicBlock *UserBB = User->getParent();
360 if (PHINode *PN = dyn_cast<PHINode>(User)) {
361 unsigned OpVal = UI.getOperandNo()/2;
362 UserBB = PN->getIncomingBlock(OpVal);
363 }
364
365 // Preincrement use iterator so we don't invalidate it.
366 ++UI;
367
368 // If this user is in the same block as the cast, don't change the cast.
369 if (UserBB == DefBB) continue;
370
371 // If we have already inserted a cast into this block, use it.
372 CastInst *&InsertedCast = InsertedCasts[UserBB];
373
374 if (!InsertedCast) {
375 BasicBlock::iterator InsertPt = UserBB->begin();
376 while (isa<PHINode>(InsertPt)) ++InsertPt;
377
378 InsertedCast =
379 CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
380 InsertPt);
381 MadeChange = true;
382 }
383
384 // Replace a use of the cast with a use of the new casat.
385 TheUse = InsertedCast;
386 }
387
388 // If we removed all uses, nuke the cast.
389 if (CI->use_empty())
390 CI->eraseFromParent();
391
392 return MadeChange;
393}
394
Chris Lattnerdd77df32007-04-13 20:30:56 +0000395/// EraseDeadInstructions - Erase any dead instructions
396static void EraseDeadInstructions(Value *V) {
397 Instruction *I = dyn_cast<Instruction>(V);
398 if (!I || !I->use_empty()) return;
399
400 SmallPtrSet<Instruction*, 16> Insts;
401 Insts.insert(I);
402
403 while (!Insts.empty()) {
404 I = *Insts.begin();
405 Insts.erase(I);
406 if (isInstructionTriviallyDead(I)) {
407 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
408 if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
409 Insts.insert(U);
410 I->eraseFromParent();
411 }
412 }
413}
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000414
415
Chris Lattnerdd77df32007-04-13 20:30:56 +0000416/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode which
417/// holds actual Value*'s for register values.
418struct ExtAddrMode : public TargetLowering::AddrMode {
419 Value *BaseReg;
420 Value *ScaledReg;
421 ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
422 void dump() const;
423};
424
425static std::ostream &operator<<(std::ostream &OS, const ExtAddrMode &AM) {
426 bool NeedPlus = false;
427 OS << "[";
428 if (AM.BaseGV)
429 OS << (NeedPlus ? " + " : "")
430 << "GV:%" << AM.BaseGV->getName(), NeedPlus = true;
431
432 if (AM.BaseOffs)
433 OS << (NeedPlus ? " + " : "") << AM.BaseOffs, NeedPlus = true;
434
435 if (AM.BaseReg)
436 OS << (NeedPlus ? " + " : "")
437 << "Base:%" << AM.BaseReg->getName(), NeedPlus = true;
438 if (AM.Scale)
439 OS << (NeedPlus ? " + " : "")
440 << AM.Scale << "*%" << AM.ScaledReg->getName(), NeedPlus = true;
441
442 return OS << "]";
443}
444
445void ExtAddrMode::dump() const {
446 cerr << *this << "\n";
447}
448
449static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
450 const Type *AccessTy, ExtAddrMode &AddrMode,
451 SmallVector<Instruction*, 16> &AddrModeInsts,
452 const TargetLowering &TLI, unsigned Depth);
453
454/// FindMaximalLegalAddressingMode - If we can, try to merge the computation of
455/// Addr into the specified addressing mode. If Addr can't be added to AddrMode
456/// this returns false. This assumes that Addr is either a pointer type or
457/// intptr_t for the target.
458static bool FindMaximalLegalAddressingMode(Value *Addr, const Type *AccessTy,
459 ExtAddrMode &AddrMode,
460 SmallVector<Instruction*, 16> &AddrModeInsts,
461 const TargetLowering &TLI,
462 unsigned Depth) {
463
464 // If this is a global variable, fold it into the addressing mode if possible.
465 if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
466 if (AddrMode.BaseGV == 0) {
467 AddrMode.BaseGV = GV;
468 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
469 return true;
470 AddrMode.BaseGV = 0;
471 }
472 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
473 AddrMode.BaseOffs += CI->getSExtValue();
474 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
475 return true;
476 AddrMode.BaseOffs -= CI->getSExtValue();
477 } else if (isa<ConstantPointerNull>(Addr)) {
478 return true;
479 }
480
481 // Look through constant exprs and instructions.
482 unsigned Opcode = ~0U;
483 User *AddrInst = 0;
484 if (Instruction *I = dyn_cast<Instruction>(Addr)) {
485 Opcode = I->getOpcode();
486 AddrInst = I;
487 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
488 Opcode = CE->getOpcode();
489 AddrInst = CE;
490 }
491
492 // Limit recursion to avoid exponential behavior.
493 if (Depth == 5) { AddrInst = 0; Opcode = ~0U; }
494
495 // If this is really an instruction, add it to our list of related
496 // instructions.
497 if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst))
498 AddrModeInsts.push_back(I);
499
500 switch (Opcode) {
501 case Instruction::PtrToInt:
502 // PtrToInt is always a noop, as we know that the int type is pointer sized.
503 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
504 AddrMode, AddrModeInsts, TLI, Depth))
505 return true;
506 break;
507 case Instruction::IntToPtr:
508 // This inttoptr is a no-op if the integer type is pointer sized.
509 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
510 TLI.getPointerTy()) {
511 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
512 AddrMode, AddrModeInsts, TLI, Depth))
513 return true;
514 }
515 break;
516 case Instruction::Add: {
517 // Check to see if we can merge in the RHS then the LHS. If so, we win.
518 ExtAddrMode BackupAddrMode = AddrMode;
519 unsigned OldSize = AddrModeInsts.size();
520 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
521 AddrMode, AddrModeInsts, TLI, Depth+1) &&
522 FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
523 AddrMode, AddrModeInsts, TLI, Depth+1))
524 return true;
525
526 // Restore the old addr mode info.
527 AddrMode = BackupAddrMode;
528 AddrModeInsts.resize(OldSize);
529
530 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
531 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
532 AddrMode, AddrModeInsts, TLI, Depth+1) &&
533 FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
534 AddrMode, AddrModeInsts, TLI, Depth+1))
535 return true;
536
537 // Otherwise we definitely can't merge the ADD in.
538 AddrMode = BackupAddrMode;
539 AddrModeInsts.resize(OldSize);
540 break;
541 }
542 case Instruction::Or: {
543 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
544 if (!RHS) break;
545 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
546 break;
547 }
548 case Instruction::Mul:
549 case Instruction::Shl: {
550 // Can only handle X*C and X << C, and can only handle this when the scale
551 // field is available.
552 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
553 if (!RHS) break;
554 int64_t Scale = RHS->getSExtValue();
555 if (Opcode == Instruction::Shl)
556 Scale = 1 << Scale;
557
558 if (TryMatchingScaledValue(AddrInst->getOperand(0), Scale, AccessTy,
559 AddrMode, AddrModeInsts, TLI, Depth))
560 return true;
561 break;
562 }
563 case Instruction::GetElementPtr: {
564 // Scan the GEP. We check it if it contains constant offsets and at most
565 // one variable offset.
566 int VariableOperand = -1;
567 unsigned VariableScale = 0;
568
569 int64_t ConstantOffset = 0;
570 const TargetData *TD = TLI.getTargetData();
571 gep_type_iterator GTI = gep_type_begin(AddrInst);
572 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
573 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
574 const StructLayout *SL = TD->getStructLayout(STy);
575 unsigned Idx =
576 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
577 ConstantOffset += SL->getElementOffset(Idx);
578 } else {
579 uint64_t TypeSize = TD->getTypeSize(GTI.getIndexedType());
580 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
581 ConstantOffset += CI->getSExtValue()*TypeSize;
582 } else if (TypeSize) { // Scales of zero don't do anything.
583 // We only allow one variable index at the moment.
584 if (VariableOperand != -1) {
585 VariableOperand = -2;
586 break;
587 }
588
589 // Remember the variable index.
590 VariableOperand = i;
591 VariableScale = TypeSize;
592 }
593 }
594 }
595
596 // If the GEP had multiple variable indices, punt.
597 if (VariableOperand == -2)
598 break;
599
600 // A common case is for the GEP to only do a constant offset. In this case,
601 // just add it to the disp field and check validity.
602 if (VariableOperand == -1) {
603 AddrMode.BaseOffs += ConstantOffset;
604 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
605 // Check to see if we can fold the base pointer in too.
606 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
607 AddrMode, AddrModeInsts, TLI,
608 Depth+1))
609 return true;
610 }
611 AddrMode.BaseOffs -= ConstantOffset;
612 } else {
613 // Check that this has no base reg yet. If so, we won't have a place to
614 // put the base of the GEP (assuming it is not a null ptr).
615 bool SetBaseReg = false;
616 if (AddrMode.HasBaseReg) {
617 if (!isa<ConstantPointerNull>(AddrInst->getOperand(0)))
618 break;
619 } else {
620 AddrMode.HasBaseReg = true;
621 AddrMode.BaseReg = AddrInst->getOperand(0);
622 SetBaseReg = true;
623 }
624
625 // See if the scale amount is valid for this target.
626 AddrMode.BaseOffs += ConstantOffset;
627 if (TryMatchingScaledValue(AddrInst->getOperand(VariableOperand),
628 VariableScale, AccessTy, AddrMode,
629 AddrModeInsts, TLI, Depth)) {
630 if (!SetBaseReg) return true;
631
632 // If this match succeeded, we know that we can form an address with the
633 // GepBase as the basereg. See if we can match *more*.
634 AddrMode.HasBaseReg = false;
635 AddrMode.BaseReg = 0;
636 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
637 AddrMode, AddrModeInsts, TLI,
638 Depth+1))
639 return true;
640 // Strange, shouldn't happen. Restore the base reg and succeed the easy
641 // way.
642 AddrMode.HasBaseReg = true;
643 AddrMode.BaseReg = AddrInst->getOperand(0);
644 return true;
645 }
646
647 AddrMode.BaseOffs -= ConstantOffset;
648 if (SetBaseReg) {
649 AddrMode.HasBaseReg = false;
650 AddrMode.BaseReg = 0;
651 }
652 }
653 break;
654 }
655 }
656
657 if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst)) {
658 assert(AddrModeInsts.back() == I && "Stack imbalance");
659 AddrModeInsts.pop_back();
660 }
661
662 // Worse case, the target should support [reg] addressing modes. :)
663 if (!AddrMode.HasBaseReg) {
664 AddrMode.HasBaseReg = true;
665 // Still check for legality in case the target supports [imm] but not [i+r].
666 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
667 AddrMode.BaseReg = Addr;
668 return true;
669 }
670 AddrMode.HasBaseReg = false;
671 }
672
673 // If the base register is already taken, see if we can do [r+r].
674 if (AddrMode.Scale == 0) {
675 AddrMode.Scale = 1;
676 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
677 AddrMode.ScaledReg = Addr;
678 return true;
679 }
680 AddrMode.Scale = 0;
681 }
682 // Couldn't match.
683 return false;
684}
685
686/// TryMatchingScaledValue - Try adding ScaleReg*Scale to the specified
687/// addressing mode. Return true if this addr mode is legal for the target,
688/// false if not.
689static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
690 const Type *AccessTy, ExtAddrMode &AddrMode,
691 SmallVector<Instruction*, 16> &AddrModeInsts,
692 const TargetLowering &TLI, unsigned Depth) {
693 // If we already have a scale of this value, we can add to it, otherwise, we
694 // need an available scale field.
695 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
696 return false;
697
698 ExtAddrMode InputAddrMode = AddrMode;
699
700 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
701 // [A+B + A*7] -> [B+A*8].
702 AddrMode.Scale += Scale;
703 AddrMode.ScaledReg = ScaleReg;
704
705 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
706 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
707 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
708 // X*Scale + C*Scale to addr mode.
709 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(ScaleReg);
710 if (BinOp && BinOp->getOpcode() == Instruction::Add &&
711 isa<ConstantInt>(BinOp->getOperand(1)) && InputAddrMode.ScaledReg ==0) {
712
713 InputAddrMode.Scale = Scale;
714 InputAddrMode.ScaledReg = BinOp->getOperand(0);
715 InputAddrMode.BaseOffs +=
716 cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue()*Scale;
717 if (TLI.isLegalAddressingMode(InputAddrMode, AccessTy)) {
718 AddrModeInsts.push_back(BinOp);
719 AddrMode = InputAddrMode;
720 return true;
721 }
722 }
723
724 // Otherwise, not (x+c)*scale, just return what we have.
725 return true;
726 }
727
728 // Otherwise, back this attempt out.
729 AddrMode.Scale -= Scale;
730 if (AddrMode.Scale == 0) AddrMode.ScaledReg = 0;
731
732 return false;
733}
734
735
736/// IsNonLocalValue - Return true if the specified values are defined in a
737/// different basic block than BB.
738static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
739 if (Instruction *I = dyn_cast<Instruction>(V))
740 return I->getParent() != BB;
741 return false;
742}
743
744/// OptimizeLoadStoreInst - Load and Store Instructions have often have
745/// addressing modes that can do significant amounts of computation. As such,
746/// instruction selection will try to get the load or store to do as much
747/// computation as possible for the program. The problem is that isel can only
748/// see within a single block. As such, we sink as much legal addressing mode
749/// stuff into the block as possible.
750bool CodeGenPrepare::OptimizeLoadStoreInst(Instruction *LdStInst, Value *Addr,
751 const Type *AccessTy,
752 DenseMap<Value*,Value*> &SunkAddrs) {
753 // Figure out what addressing mode will be built up for this operation.
754 SmallVector<Instruction*, 16> AddrModeInsts;
755 ExtAddrMode AddrMode;
756 bool Success = FindMaximalLegalAddressingMode(Addr, AccessTy, AddrMode,
757 AddrModeInsts, *TLI, 0);
758 Success = Success; assert(Success && "Couldn't select *anything*?");
759
760 // Check to see if any of the instructions supersumed by this addr mode are
761 // non-local to I's BB.
762 bool AnyNonLocal = false;
763 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
764 if (IsNonLocalValue(AddrModeInsts[i], LdStInst->getParent())) {
765 AnyNonLocal = true;
766 break;
767 }
768 }
769
770 // If all the instructions matched are already in this BB, don't do anything.
771 if (!AnyNonLocal) {
772 DEBUG(cerr << "CGP: Found local addrmode: " << AddrMode << "\n");
773 return false;
774 }
775
776 // Insert this computation right after this user. Since our caller is
777 // scanning from the top of the BB to the bottom, reuse of the expr are
778 // guaranteed to happen later.
779 BasicBlock::iterator InsertPt = LdStInst;
780
781 // Now that we determined the addressing expression we want to use and know
782 // that we have to sink it into this block. Check to see if we have already
783 // done this for some other load/store instr in this block. If so, reuse the
784 // computation.
785 Value *&SunkAddr = SunkAddrs[Addr];
786 if (SunkAddr) {
787 DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << "\n");
788 if (SunkAddr->getType() != Addr->getType())
789 SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
790 } else {
791 DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << "\n");
792 const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
793
794 Value *Result = 0;
795 // Start with the scale value.
796 if (AddrMode.Scale) {
797 Value *V = AddrMode.ScaledReg;
798 if (V->getType() == IntPtrTy) {
799 // done.
800 } else if (isa<PointerType>(V->getType())) {
801 V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
802 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
803 cast<IntegerType>(V->getType())->getBitWidth()) {
804 V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
805 } else {
806 V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
807 }
808 if (AddrMode.Scale != 1)
809 V = BinaryOperator::createMul(V, ConstantInt::get(IntPtrTy,
810 AddrMode.Scale),
811 "sunkaddr", InsertPt);
812 Result = V;
813 }
814
815 // Add in the base register.
816 if (AddrMode.BaseReg) {
817 Value *V = AddrMode.BaseReg;
818 if (V->getType() != IntPtrTy)
819 V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
820 if (Result)
821 Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
822 else
823 Result = V;
824 }
825
826 // Add in the BaseGV if present.
827 if (AddrMode.BaseGV) {
828 Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
829 InsertPt);
830 if (Result)
831 Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
832 else
833 Result = V;
834 }
835
836 // Add in the Base Offset if present.
837 if (AddrMode.BaseOffs) {
838 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
839 if (Result)
840 Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
841 else
842 Result = V;
843 }
844
845 if (Result == 0)
846 SunkAddr = Constant::getNullValue(Addr->getType());
847 else
848 SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
849 }
850
851 LdStInst->replaceUsesOfWith(Addr, SunkAddr);
852
853 if (Addr->use_empty())
854 EraseDeadInstructions(Addr);
855 return true;
856}
857
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000858// In this pass we look for GEP and cast instructions that are used
859// across basic blocks and rewrite them to improve basic-block-at-a-time
860// selection.
861bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
862 bool MadeChange = false;
863
864 // Split all critical edges where the dest block has a PHI and where the phi
865 // has shared immediate operands.
866 TerminatorInst *BBTI = BB.getTerminator();
867 if (BBTI->getNumSuccessors() > 1) {
868 for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
869 if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
870 isCriticalEdge(BBTI, i, true))
871 SplitEdgeNicely(BBTI, i, this);
872 }
873
874
Chris Lattnerdd77df32007-04-13 20:30:56 +0000875 // Keep track of non-local addresses that have been sunk into this block.
876 // This allows us to avoid inserting duplicate code for blocks with multiple
877 // load/stores of the same address.
878 DenseMap<Value*, Value*> SunkAddrs;
879
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000880 for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
881 Instruction *I = BBI++;
882
Chris Lattnerdd77df32007-04-13 20:30:56 +0000883 if (CastInst *CI = dyn_cast<CastInst>(I)) {
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000884 // If the source of the cast is a constant, then this should have
885 // already been constant folded. The only reason NOT to constant fold
886 // it is if something (e.g. LSR) was careful to place the constant
887 // evaluation in a block other than then one that uses it (e.g. to hoist
888 // the address of globals out of a loop). If this is the case, we don't
889 // want to forward-subst the cast.
890 if (isa<Constant>(CI->getOperand(0)))
891 continue;
892
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000893 if (TLI)
Chris Lattnerdd77df32007-04-13 20:30:56 +0000894 MadeChange |= OptimizeNoopCopyExpression(CI, *TLI);
895 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
896 if (TLI)
897 MadeChange |= OptimizeLoadStoreInst(I, I->getOperand(0), LI->getType(),
898 SunkAddrs);
899 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
900 if (TLI)
901 MadeChange |= OptimizeLoadStoreInst(I, SI->getOperand(1),
902 SI->getOperand(0)->getType(),
903 SunkAddrs);
904 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
Chris Lattnerf25646b2007-04-14 00:17:39 +0000905 if (GEPI->hasAllZeroIndices()) {
Chris Lattnerdd77df32007-04-13 20:30:56 +0000906 /// The GEP operand must be a pointer, so must its result -> BitCast
907 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
908 GEPI->getName(), GEPI);
909 GEPI->replaceAllUsesWith(NC);
910 GEPI->eraseFromParent();
911 MadeChange = true;
912 BBI = NC;
913 }
914 } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
915 // If we found an inline asm expession, and if the target knows how to
916 // lower it to normal LLVM code, do so now.
917 if (TLI && isa<InlineAsm>(CI->getCalledValue()))
918 if (const TargetAsmInfo *TAI =
919 TLI->getTargetMachine().getTargetAsmInfo()) {
920 if (TAI->ExpandInlineAsm(CI))
921 BBI = BB.begin();
922 }
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000923 }
924 }
Chris Lattnerdd77df32007-04-13 20:30:56 +0000925
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000926 return MadeChange;
927}
928