blob: 294d9aa61e0b4c94b294667be5df8cdf2b91f5d0 [file] [log] [blame]
Chris Lattner93f3bcf2009-10-10 09:04:27 +00001//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SSAUpdater class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/SSAUpdater.h"
15#include "llvm/Instructions.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/Support/CFG.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/ValueHandle.h"
20#include "llvm/Support/raw_ostream.h"
21using namespace llvm;
22
23typedef DenseMap<BasicBlock*, TrackingVH<Value> > AvailableValsTy;
24typedef std::vector<std::pair<BasicBlock*, TrackingVH<Value> > >
25 IncomingPredInfoTy;
26
27static AvailableValsTy &getAvailableVals(void *AV) {
28 return *static_cast<AvailableValsTy*>(AV);
29}
30
31static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
32 return *static_cast<IncomingPredInfoTy*>(IPI);
33}
34
35
36SSAUpdater::SSAUpdater() : AV(0), PrototypeValue(0), IPI(0) {}
37
38SSAUpdater::~SSAUpdater() {
39 delete &getAvailableVals(AV);
40 delete &getIncomingPredInfo(IPI);
41}
42
43/// Initialize - Reset this object to get ready for a new set of SSA
44/// updates. ProtoValue is the value used to name PHI nodes.
45void SSAUpdater::Initialize(Value *ProtoValue) {
46 if (AV == 0)
47 AV = new AvailableValsTy();
48 else
49 getAvailableVals(AV).clear();
50
51 if (IPI == 0)
52 IPI = new IncomingPredInfoTy();
53 else
54 getIncomingPredInfo(IPI).clear();
55 PrototypeValue = ProtoValue;
56}
57
58/// AddAvailableValue - Indicate that a rewritten value is available in the
59/// specified block with the specified value.
60void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
61 assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
62 assert(PrototypeValue->getType() == V->getType() &&
63 "All rewritten values must have the same type");
64 getAvailableVals(AV)[BB] = V;
65}
66
Chris Lattner1a8d4de2009-10-10 23:00:11 +000067/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
68/// live at the end of the specified block.
Chris Lattner5fb10722009-10-10 22:41:58 +000069Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
Chris Lattner93f3bcf2009-10-10 09:04:27 +000070 assert(getIncomingPredInfo(IPI).empty() && "Unexpected Internal State");
Chris Lattner5fb10722009-10-10 22:41:58 +000071 Value *Res = GetValueAtEndOfBlockInternal(BB);
Chris Lattner93f3bcf2009-10-10 09:04:27 +000072 assert(getIncomingPredInfo(IPI).empty() && "Unexpected Internal State");
73 return Res;
74}
75
Chris Lattner1a8d4de2009-10-10 23:00:11 +000076/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
77/// is live in the middle of the specified block.
78///
79/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
80/// important case: if there is a definition of the rewritten value after the
81/// 'use' in BB. Consider code like this:
82///
83/// X1 = ...
84/// SomeBB:
85/// use(X)
86/// X2 = ...
87/// br Cond, SomeBB, OutBB
88///
89/// In this case, there are two values (X1 and X2) added to the AvailableVals
90/// set by the client of the rewriter, and those values are both live out of
91/// their respective blocks. However, the use of X happens in the *middle* of
92/// a block. Because of this, we need to insert a new PHI node in SomeBB to
93/// merge the appropriate values, and this value isn't live out of the block.
94///
95Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
96 // If there is no definition of the renamed variable in this block, just use
97 // GetValueAtEndOfBlock to do our work.
98 if (!getAvailableVals(AV).count(BB))
99 return GetValueAtEndOfBlock(BB);
100
101 // Otherwise, we have the hard case. Get the live-in values for each
102 // predecessor.
103 SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
104 Value *SingularValue = 0;
105
106 // We can get our predecessor info by walking the pred_iterator list, but it
107 // is relatively slow. If we already have PHI nodes in this block, walk one
108 // of them to get the predecessor list instead.
109 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
110 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
111 BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
112 Value *PredVal = GetValueAtEndOfBlock(PredBB);
113 PredValues.push_back(std::make_pair(PredBB, PredVal));
114
115 // Compute SingularValue.
116 if (i == 0)
117 SingularValue = PredVal;
118 else if (PredVal != SingularValue)
119 SingularValue = 0;
120 }
121 } else {
122 bool isFirstPred = true;
123 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
124 BasicBlock *PredBB = *PI;
125 Value *PredVal = GetValueAtEndOfBlock(PredBB);
126 PredValues.push_back(std::make_pair(PredBB, PredVal));
127
128 // Compute SingularValue.
129 if (isFirstPred) {
130 SingularValue = PredVal;
131 isFirstPred = false;
132 } else if (PredVal != SingularValue)
133 SingularValue = 0;
134 }
135 }
136
137 // If there are no predecessors, just return undef.
138 if (PredValues.empty())
139 return UndefValue::get(PrototypeValue->getType());
140
141 // Otherwise, if all the merged values are the same, just use it.
142 if (SingularValue != 0)
143 return SingularValue;
144
145 // Otherwise, we do need a PHI: insert one now.
146 PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(),
147 PrototypeValue->getName(),
148 &BB->front());
149 InsertedPHI->reserveOperandSpace(PredValues.size());
150
151 // Fill in all the predecessors of the PHI.
152 for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
153 InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
154
155 // See if the PHI node can be merged to a single value. This can happen in
156 // loop cases when we get a PHI of itself and one other value.
157 if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
158 InsertedPHI->eraseFromParent();
159 return ConstVal;
160 }
161 DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
162 return InsertedPHI;
163}
164
Chris Lattner93f3bcf2009-10-10 09:04:27 +0000165/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
166/// which use their value in the corresponding predecessor.
167void SSAUpdater::RewriteUse(Use &U) {
168 Instruction *User = cast<Instruction>(U.getUser());
169 BasicBlock *UseBB = User->getParent();
170 if (PHINode *UserPN = dyn_cast<PHINode>(User))
171 UseBB = UserPN->getIncomingBlock(U);
172
Chris Lattner1a8d4de2009-10-10 23:00:11 +0000173 U.set(GetValueInMiddleOfBlock(UseBB));
Chris Lattner93f3bcf2009-10-10 09:04:27 +0000174}
175
176
Chris Lattner5fb10722009-10-10 22:41:58 +0000177/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
178/// for the specified BB and if so, return it. If not, construct SSA form by
179/// walking predecessors inserting PHI nodes as needed until we get to a block
180/// where the value is available.
Chris Lattner93f3bcf2009-10-10 09:04:27 +0000181///
Chris Lattner5fb10722009-10-10 22:41:58 +0000182Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
Chris Lattner93f3bcf2009-10-10 09:04:27 +0000183 AvailableValsTy &AvailableVals = getAvailableVals(AV);
184
185 // Query AvailableVals by doing an insertion of null.
186 std::pair<AvailableValsTy::iterator, bool> InsertRes =
187 AvailableVals.insert(std::make_pair(BB, WeakVH()));
188
189 // Handle the case when the insertion fails because we have already seen BB.
190 if (!InsertRes.second) {
191 // If the insertion failed, there are two cases. The first case is that the
192 // value is already available for the specified block. If we get this, just
193 // return the value.
194 if (InsertRes.first->second != 0)
195 return InsertRes.first->second;
196
197 // Otherwise, if the value we find is null, then this is the value is not
198 // known but it is being computed elsewhere in our recursion. This means
199 // that we have a cycle. Handle this by inserting a PHI node and returning
200 // it. When we get back to the first instance of the recursion we will fill
201 // in the PHI node.
202 return InsertRes.first->second =
203 PHINode::Create(PrototypeValue->getType(), PrototypeValue->getName(),
204 &BB->front());
205 }
206
207 // Okay, the value isn't in the map and we just inserted a null in the entry
208 // to indicate that we're processing the block. Since we have no idea what
209 // value is in this block, we have to recurse through our predecessors.
210 //
211 // While we're walking our predecessors, we keep track of them in a vector,
212 // then insert a PHI node in the end if we actually need one. We could use a
213 // smallvector here, but that would take a lot of stack space for every level
214 // of the recursion, just use IncomingPredInfo as an explicit stack.
215 IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
216 unsigned FirstPredInfoEntry = IncomingPredInfo.size();
217
218 // As we're walking the predecessors, keep track of whether they are all
219 // producing the same value. If so, this value will capture it, if not, it
220 // will get reset to null. We distinguish the no-predecessor case explicitly
221 // below.
222 TrackingVH<Value> SingularValue;
223
224 // We can get our predecessor info by walking the pred_iterator list, but it
225 // is relatively slow. If we already have PHI nodes in this block, walk one
226 // of them to get the predecessor list instead.
227 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
228 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
229 BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
Chris Lattner5fb10722009-10-10 22:41:58 +0000230 Value *PredVal = GetValueAtEndOfBlockInternal(PredBB);
Chris Lattner93f3bcf2009-10-10 09:04:27 +0000231 IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
232
233 // Compute SingularValue.
234 if (i == 0)
235 SingularValue = PredVal;
236 else if (PredVal != SingularValue)
237 SingularValue = 0;
238 }
239 } else {
240 bool isFirstPred = true;
241 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
242 BasicBlock *PredBB = *PI;
Chris Lattner5fb10722009-10-10 22:41:58 +0000243 Value *PredVal = GetValueAtEndOfBlockInternal(PredBB);
Chris Lattner93f3bcf2009-10-10 09:04:27 +0000244 IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
245
246 // Compute SingularValue.
247 if (isFirstPred) {
248 SingularValue = PredVal;
249 isFirstPred = false;
250 } else if (PredVal != SingularValue)
251 SingularValue = 0;
252 }
253 }
254
255 // If there are no predecessors, then we must have found an unreachable block
256 // just return 'undef'. Since there are no predecessors, InsertRes must not
257 // be invalidated.
258 if (IncomingPredInfo.size() == FirstPredInfoEntry)
259 return InsertRes.first->second = UndefValue::get(PrototypeValue->getType());
260
261 /// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If
262 /// this block is involved in a loop, a no-entry PHI node will have been
263 /// inserted as InsertedVal. Otherwise, we'll still have the null we inserted
264 /// above.
265 TrackingVH<Value> &InsertedVal = AvailableVals[BB];
266
267 // If all the predecessor values are the same then we don't need to insert a
268 // PHI. This is the simple and common case.
269 if (SingularValue) {
270 // If a PHI node got inserted, replace it with the singlar value and delete
271 // it.
272 if (InsertedVal) {
273 PHINode *OldVal = cast<PHINode>(InsertedVal);
274 // Be careful about dead loops. These RAUW's also update InsertedVal.
275 if (InsertedVal != SingularValue)
276 OldVal->replaceAllUsesWith(SingularValue);
277 else
278 OldVal->replaceAllUsesWith(UndefValue::get(InsertedVal->getType()));
279 OldVal->eraseFromParent();
280 } else {
281 InsertedVal = SingularValue;
282 }
283
284 // Drop the entries we added in IncomingPredInfo to restore the stack.
285 IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
286 IncomingPredInfo.end());
287 return InsertedVal;
288 }
289
290 // Otherwise, we do need a PHI: insert one now if we don't already have one.
291 if (InsertedVal == 0)
292 InsertedVal = PHINode::Create(PrototypeValue->getType(),
293 PrototypeValue->getName(), &BB->front());
294
295 PHINode *InsertedPHI = cast<PHINode>(InsertedVal);
296 InsertedPHI->reserveOperandSpace(IncomingPredInfo.size()-FirstPredInfoEntry);
297
298 // Fill in all the predecessors of the PHI.
Chris Lattnerf9920fa2009-10-10 09:09:20 +0000299 for (IncomingPredInfoTy::iterator I =
300 IncomingPredInfo.begin()+FirstPredInfoEntry,
301 E = IncomingPredInfo.end(); I != E; ++I)
Chris Lattner93f3bcf2009-10-10 09:04:27 +0000302 InsertedPHI->addIncoming(I->second, I->first);
303
304 // Drop the entries we added in IncomingPredInfo to restore the stack.
305 IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
306 IncomingPredInfo.end());
307
308 // See if the PHI node can be merged to a single value. This can happen in
309 // loop cases when we get a PHI of itself and one other value.
310 if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
311 InsertedPHI->replaceAllUsesWith(ConstVal);
312 InsertedPHI->eraseFromParent();
313 InsertedVal = ConstVal;
314 } else {
315 DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
316 }
317
318 return InsertedVal;
319}
320
321