blob: 8994a3559fb40251df1605a99444e2655f1396d4 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +000029 <li><a href="#gc">Garbage Collector Names</a></li>
Devang Patel25928cb2008-09-04 23:10:26 +000030 <li><a href="#notes">Function Notes</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
32 <li><a href="#datalayout">Data Layout</a></li>
33 </ol>
34 </li>
35 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038 <li><a href="#t_primitive">Primitive Types</a>
39 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043 </ol>
44 </li>
45 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattner251ab812007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048 <li><a href="#t_array">Array Type</a></li>
49 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
51 <li><a href="#t_struct">Structure Type</a></li>
52 <li><a href="#t_pstruct">Packed Structure Type</a></li>
53 <li><a href="#t_vector">Vector Type</a></li>
54 <li><a href="#t_opaque">Opaque Type</a></li>
55 </ol>
56 </li>
57 </ol>
58 </li>
59 <li><a href="#constants">Constants</a>
60 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
67 </li>
68 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
73 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
77 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
79 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
81 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
82 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
83 </ol>
84 </li>
85 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
87 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
90 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
93 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
96 </ol>
97 </li>
98 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
106 </ol>
107 </li>
108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
113 </ol>
114 </li>
Dan Gohman74d6faf2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
122 <ol>
123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
129 </ol>
130 </li>
131 <li><a href="#convertops">Conversion Operations</a>
132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
145 </ol>
146 <li><a href="#otherops">Other Operations</a>
147 <ol>
148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begeman646fa482008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patela3cc5372008-03-10 20:49:15 +0000156 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157 </ol>
158 </li>
159 </ol>
160 </li>
161 <li><a href="#intrinsics">Intrinsic Functions</a>
162 <ol>
163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
168 </ol>
169 </li>
170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
175 </ol>
176 </li>
177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
186 </ol>
187 </li>
188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman361079c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198 </ol>
199 </li>
200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
201 <ol>
202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
208 </ol>
209 </li>
210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000215 </ol>
216 </li>
Andrew Lenharth785610d2008-02-16 01:24:58 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
Andrew Lenharthe44f3902008-02-21 06:45:13 +0000219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang6bde9ec2008-06-25 08:15:39 +0000220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthe44f3902008-02-21 06:45:13 +0000221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang6bde9ec2008-06-25 08:15:39 +0000222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth785610d2008-02-16 01:24:58 +0000232 </ol>
233 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000237 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000239 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
241 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000242 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 </li>
244 </ol>
245 </li>
246</ol>
247
248<div class="doc_author">
249 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
250 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
251</div>
252
253<!-- *********************************************************************** -->
254<div class="doc_section"> <a name="abstract">Abstract </a></div>
255<!-- *********************************************************************** -->
256
257<div class="doc_text">
258<p>This document is a reference manual for the LLVM assembly language.
Bill Wendlinge7846a52008-08-05 22:29:16 +0000259LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattner96451482008-08-05 18:29:16 +0000260type safety, low-level operations, flexibility, and the capability of
261representing 'all' high-level languages cleanly. It is the common code
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000262representation used throughout all phases of the LLVM compilation
263strategy.</p>
264</div>
265
266<!-- *********************************************************************** -->
267<div class="doc_section"> <a name="introduction">Introduction</a> </div>
268<!-- *********************************************************************** -->
269
270<div class="doc_text">
271
272<p>The LLVM code representation is designed to be used in three
273different forms: as an in-memory compiler IR, as an on-disk bitcode
274representation (suitable for fast loading by a Just-In-Time compiler),
275and as a human readable assembly language representation. This allows
276LLVM to provide a powerful intermediate representation for efficient
277compiler transformations and analysis, while providing a natural means
278to debug and visualize the transformations. The three different forms
279of LLVM are all equivalent. This document describes the human readable
280representation and notation.</p>
281
282<p>The LLVM representation aims to be light-weight and low-level
283while being expressive, typed, and extensible at the same time. It
284aims to be a "universal IR" of sorts, by being at a low enough level
285that high-level ideas may be cleanly mapped to it (similar to how
286microprocessors are "universal IR's", allowing many source languages to
287be mapped to them). By providing type information, LLVM can be used as
288the target of optimizations: for example, through pointer analysis, it
289can be proven that a C automatic variable is never accessed outside of
290the current function... allowing it to be promoted to a simple SSA
291value instead of a memory location.</p>
292
293</div>
294
295<!-- _______________________________________________________________________ -->
296<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
297
298<div class="doc_text">
299
300<p>It is important to note that this document describes 'well formed'
301LLVM assembly language. There is a difference between what the parser
302accepts and what is considered 'well formed'. For example, the
303following instruction is syntactically okay, but not well formed:</p>
304
305<div class="doc_code">
306<pre>
307%x = <a href="#i_add">add</a> i32 1, %x
308</pre>
309</div>
310
311<p>...because the definition of <tt>%x</tt> does not dominate all of
312its uses. The LLVM infrastructure provides a verification pass that may
313be used to verify that an LLVM module is well formed. This pass is
314automatically run by the parser after parsing input assembly and by
315the optimizer before it outputs bitcode. The violations pointed out
316by the verifier pass indicate bugs in transformation passes or input to
317the parser.</p>
318</div>
319
Chris Lattnera83fdc02007-10-03 17:34:29 +0000320<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321
322<!-- *********************************************************************** -->
323<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
324<!-- *********************************************************************** -->
325
326<div class="doc_text">
327
Reid Spencerc8245b02007-08-07 14:34:28 +0000328 <p>LLVM identifiers come in two basic types: global and local. Global
329 identifiers (functions, global variables) begin with the @ character. Local
330 identifiers (register names, types) begin with the % character. Additionally,
331 there are three different formats for identifiers, for different purposes:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000332
333<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000334 <li>Named values are represented as a string of characters with their prefix.
335 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
336 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337 Identifiers which require other characters in their names can be surrounded
Reid Spencerc8245b02007-08-07 14:34:28 +0000338 with quotes. In this way, anything except a <tt>&quot;</tt> character can
339 be used in a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000340
Reid Spencerc8245b02007-08-07 14:34:28 +0000341 <li>Unnamed values are represented as an unsigned numeric value with their
342 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343
344 <li>Constants, which are described in a <a href="#constants">section about
345 constants</a>, below.</li>
346</ol>
347
Reid Spencerc8245b02007-08-07 14:34:28 +0000348<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349don't need to worry about name clashes with reserved words, and the set of
350reserved words may be expanded in the future without penalty. Additionally,
351unnamed identifiers allow a compiler to quickly come up with a temporary
352variable without having to avoid symbol table conflicts.</p>
353
354<p>Reserved words in LLVM are very similar to reserved words in other
355languages. There are keywords for different opcodes
356('<tt><a href="#i_add">add</a></tt>',
357 '<tt><a href="#i_bitcast">bitcast</a></tt>',
358 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
359href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
360and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000361none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362
363<p>Here is an example of LLVM code to multiply the integer variable
364'<tt>%X</tt>' by 8:</p>
365
366<p>The easy way:</p>
367
368<div class="doc_code">
369<pre>
370%result = <a href="#i_mul">mul</a> i32 %X, 8
371</pre>
372</div>
373
374<p>After strength reduction:</p>
375
376<div class="doc_code">
377<pre>
378%result = <a href="#i_shl">shl</a> i32 %X, i8 3
379</pre>
380</div>
381
382<p>And the hard way:</p>
383
384<div class="doc_code">
385<pre>
386<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
387<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
388%result = <a href="#i_add">add</a> i32 %1, %1
389</pre>
390</div>
391
392<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
393important lexical features of LLVM:</p>
394
395<ol>
396
397 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
398 line.</li>
399
400 <li>Unnamed temporaries are created when the result of a computation is not
401 assigned to a named value.</li>
402
403 <li>Unnamed temporaries are numbered sequentially</li>
404
405</ol>
406
407<p>...and it also shows a convention that we follow in this document. When
408demonstrating instructions, we will follow an instruction with a comment that
409defines the type and name of value produced. Comments are shown in italic
410text.</p>
411
412</div>
413
414<!-- *********************************************************************** -->
415<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
416<!-- *********************************************************************** -->
417
418<!-- ======================================================================= -->
419<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
420</div>
421
422<div class="doc_text">
423
424<p>LLVM programs are composed of "Module"s, each of which is a
425translation unit of the input programs. Each module consists of
426functions, global variables, and symbol table entries. Modules may be
427combined together with the LLVM linker, which merges function (and
428global variable) definitions, resolves forward declarations, and merges
429symbol table entries. Here is an example of the "hello world" module:</p>
430
431<div class="doc_code">
432<pre><i>; Declare the string constant as a global constant...</i>
433<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
434 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
435
436<i>; External declaration of the puts function</i>
437<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
438
439<i>; Definition of main function</i>
440define i32 @main() { <i>; i32()* </i>
441 <i>; Convert [13x i8 ]* to i8 *...</i>
442 %cast210 = <a
443 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
444
445 <i>; Call puts function to write out the string to stdout...</i>
446 <a
447 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
448 <a
449 href="#i_ret">ret</a> i32 0<br>}<br>
450</pre>
451</div>
452
453<p>This example is made up of a <a href="#globalvars">global variable</a>
454named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
455function, and a <a href="#functionstructure">function definition</a>
456for "<tt>main</tt>".</p>
457
458<p>In general, a module is made up of a list of global values,
459where both functions and global variables are global values. Global values are
460represented by a pointer to a memory location (in this case, a pointer to an
461array of char, and a pointer to a function), and have one of the following <a
462href="#linkage">linkage types</a>.</p>
463
464</div>
465
466<!-- ======================================================================= -->
467<div class="doc_subsection">
468 <a name="linkage">Linkage Types</a>
469</div>
470
471<div class="doc_text">
472
473<p>
474All Global Variables and Functions have one of the following types of linkage:
475</p>
476
477<dl>
478
Dale Johannesen96e7e092008-05-23 23:13:41 +0000479 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000480
481 <dd>Global values with internal linkage are only directly accessible by
482 objects in the current module. In particular, linking code into a module with
483 an internal global value may cause the internal to be renamed as necessary to
484 avoid collisions. Because the symbol is internal to the module, all
485 references can be updated. This corresponds to the notion of the
486 '<tt>static</tt>' keyword in C.
487 </dd>
488
489 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
490
491 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
492 the same name when linkage occurs. This is typically used to implement
493 inline functions, templates, or other code which must be generated in each
494 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
495 allowed to be discarded.
496 </dd>
497
Dale Johannesen96e7e092008-05-23 23:13:41 +0000498 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
499
500 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
501 linkage, except that unreferenced <tt>common</tt> globals may not be
502 discarded. This is used for globals that may be emitted in multiple
503 translation units, but that are not guaranteed to be emitted into every
504 translation unit that uses them. One example of this is tentative
505 definitions in C, such as "<tt>int X;</tt>" at global scope.
506 </dd>
507
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000508 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
509
Dale Johannesen96e7e092008-05-23 23:13:41 +0000510 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
511 that some targets may choose to emit different assembly sequences for them
512 for target-dependent reasons. This is used for globals that are declared
513 "weak" in C source code.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000514 </dd>
515
516 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
517
518 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
519 pointer to array type. When two global variables with appending linkage are
520 linked together, the two global arrays are appended together. This is the
521 LLVM, typesafe, equivalent of having the system linker append together
522 "sections" with identical names when .o files are linked.
523 </dd>
524
525 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattner96451482008-08-05 18:29:16 +0000526 <dd>The semantics of this linkage follow the ELF object file model: the
527 symbol is weak until linked, if not linked, the symbol becomes null instead
528 of being an undefined reference.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000529 </dd>
530
531 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
532
533 <dd>If none of the above identifiers are used, the global is externally
534 visible, meaning that it participates in linkage and can be used to resolve
535 external symbol references.
536 </dd>
537</dl>
538
539 <p>
540 The next two types of linkage are targeted for Microsoft Windows platform
541 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattner96451482008-08-05 18:29:16 +0000542 DLLs (Dynamic Link Libraries).
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000543 </p>
544
545 <dl>
546 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
547
548 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
549 or variable via a global pointer to a pointer that is set up by the DLL
550 exporting the symbol. On Microsoft Windows targets, the pointer name is
551 formed by combining <code>_imp__</code> and the function or variable name.
552 </dd>
553
554 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
555
556 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
557 pointer to a pointer in a DLL, so that it can be referenced with the
558 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
559 name is formed by combining <code>_imp__</code> and the function or variable
560 name.
561 </dd>
562
563</dl>
564
565<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
566variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
567variable and was linked with this one, one of the two would be renamed,
568preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
569external (i.e., lacking any linkage declarations), they are accessible
570outside of the current module.</p>
571<p>It is illegal for a function <i>declaration</i>
572to have any linkage type other than "externally visible", <tt>dllimport</tt>,
573or <tt>extern_weak</tt>.</p>
574<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
575linkages.
576</div>
577
578<!-- ======================================================================= -->
579<div class="doc_subsection">
580 <a name="callingconv">Calling Conventions</a>
581</div>
582
583<div class="doc_text">
584
585<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
586and <a href="#i_invoke">invokes</a> can all have an optional calling convention
587specified for the call. The calling convention of any pair of dynamic
588caller/callee must match, or the behavior of the program is undefined. The
589following calling conventions are supported by LLVM, and more may be added in
590the future:</p>
591
592<dl>
593 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
594
595 <dd>This calling convention (the default if no other calling convention is
596 specified) matches the target C calling conventions. This calling convention
597 supports varargs function calls and tolerates some mismatch in the declared
598 prototype and implemented declaration of the function (as does normal C).
599 </dd>
600
601 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
602
603 <dd>This calling convention attempts to make calls as fast as possible
604 (e.g. by passing things in registers). This calling convention allows the
605 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner96451482008-08-05 18:29:16 +0000606 without having to conform to an externally specified ABI (Application Binary
607 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer07444922008-05-14 09:17:12 +0000608 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
609 supported. This calling convention does not support varargs and requires the
610 prototype of all callees to exactly match the prototype of the function
611 definition.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000612 </dd>
613
614 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
615
616 <dd>This calling convention attempts to make code in the caller as efficient
617 as possible under the assumption that the call is not commonly executed. As
618 such, these calls often preserve all registers so that the call does not break
619 any live ranges in the caller side. This calling convention does not support
620 varargs and requires the prototype of all callees to exactly match the
621 prototype of the function definition.
622 </dd>
623
624 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
625
626 <dd>Any calling convention may be specified by number, allowing
627 target-specific calling conventions to be used. Target specific calling
628 conventions start at 64.
629 </dd>
630</dl>
631
632<p>More calling conventions can be added/defined on an as-needed basis, to
633support pascal conventions or any other well-known target-independent
634convention.</p>
635
636</div>
637
638<!-- ======================================================================= -->
639<div class="doc_subsection">
640 <a name="visibility">Visibility Styles</a>
641</div>
642
643<div class="doc_text">
644
645<p>
646All Global Variables and Functions have one of the following visibility styles:
647</p>
648
649<dl>
650 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
651
Chris Lattner96451482008-08-05 18:29:16 +0000652 <dd>On targets that use the ELF object file format, default visibility means
653 that the declaration is visible to other
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000654 modules and, in shared libraries, means that the declared entity may be
655 overridden. On Darwin, default visibility means that the declaration is
656 visible to other modules. Default visibility corresponds to "external
657 linkage" in the language.
658 </dd>
659
660 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
661
662 <dd>Two declarations of an object with hidden visibility refer to the same
663 object if they are in the same shared object. Usually, hidden visibility
664 indicates that the symbol will not be placed into the dynamic symbol table,
665 so no other module (executable or shared library) can reference it
666 directly.
667 </dd>
668
669 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
670
671 <dd>On ELF, protected visibility indicates that the symbol will be placed in
672 the dynamic symbol table, but that references within the defining module will
673 bind to the local symbol. That is, the symbol cannot be overridden by another
674 module.
675 </dd>
676</dl>
677
678</div>
679
680<!-- ======================================================================= -->
681<div class="doc_subsection">
682 <a name="globalvars">Global Variables</a>
683</div>
684
685<div class="doc_text">
686
687<p>Global variables define regions of memory allocated at compilation time
688instead of run-time. Global variables may optionally be initialized, may have
689an explicit section to be placed in, and may have an optional explicit alignment
690specified. A variable may be defined as "thread_local", which means that it
691will not be shared by threads (each thread will have a separated copy of the
692variable). A variable may be defined as a global "constant," which indicates
693that the contents of the variable will <b>never</b> be modified (enabling better
694optimization, allowing the global data to be placed in the read-only section of
695an executable, etc). Note that variables that need runtime initialization
696cannot be marked "constant" as there is a store to the variable.</p>
697
698<p>
699LLVM explicitly allows <em>declarations</em> of global variables to be marked
700constant, even if the final definition of the global is not. This capability
701can be used to enable slightly better optimization of the program, but requires
702the language definition to guarantee that optimizations based on the
703'constantness' are valid for the translation units that do not include the
704definition.
705</p>
706
707<p>As SSA values, global variables define pointer values that are in
708scope (i.e. they dominate) all basic blocks in the program. Global
709variables always define a pointer to their "content" type because they
710describe a region of memory, and all memory objects in LLVM are
711accessed through pointers.</p>
712
Christopher Lambdd0049d2007-12-11 09:31:00 +0000713<p>A global variable may be declared to reside in a target-specifc numbered
714address space. For targets that support them, address spaces may affect how
715optimizations are performed and/or what target instructions are used to access
Christopher Lamb20a39e92007-12-12 08:44:39 +0000716the variable. The default address space is zero. The address space qualifier
717must precede any other attributes.</p>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000718
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719<p>LLVM allows an explicit section to be specified for globals. If the target
720supports it, it will emit globals to the section specified.</p>
721
722<p>An explicit alignment may be specified for a global. If not present, or if
723the alignment is set to zero, the alignment of the global is set by the target
724to whatever it feels convenient. If an explicit alignment is specified, the
725global is forced to have at least that much alignment. All alignments must be
726a power of 2.</p>
727
Christopher Lambdd0049d2007-12-11 09:31:00 +0000728<p>For example, the following defines a global in a numbered address space with
729an initializer, section, and alignment:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000730
731<div class="doc_code">
732<pre>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000733@G = constant float 1.0 addrspace(5), section "foo", align 4
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734</pre>
735</div>
736
737</div>
738
739
740<!-- ======================================================================= -->
741<div class="doc_subsection">
742 <a name="functionstructure">Functions</a>
743</div>
744
745<div class="doc_text">
746
747<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
748an optional <a href="#linkage">linkage type</a>, an optional
749<a href="#visibility">visibility style</a>, an optional
750<a href="#callingconv">calling convention</a>, a return type, an optional
751<a href="#paramattrs">parameter attribute</a> for the return type, a function
752name, a (possibly empty) argument list (each with optional
753<a href="#paramattrs">parameter attributes</a>), an optional section, an
Devang Pateld468f1c2008-09-04 23:05:13 +0000754optional alignment, an optional <a href="#gc">garbage collector name</a>,
755an optional <a href="#notes">function notes</a>, an
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000756opening curly brace, a list of basic blocks, and a closing curly brace.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757
758LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
759optional <a href="#linkage">linkage type</a>, an optional
760<a href="#visibility">visibility style</a>, an optional
761<a href="#callingconv">calling convention</a>, a return type, an optional
762<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000763name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksend606f5b2007-12-10 03:30:21 +0000764<a href="#gc">garbage collector name</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000765
Chris Lattner96451482008-08-05 18:29:16 +0000766<p>A function definition contains a list of basic blocks, forming the CFG
767(Control Flow Graph) for
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000768the function. Each basic block may optionally start with a label (giving the
769basic block a symbol table entry), contains a list of instructions, and ends
770with a <a href="#terminators">terminator</a> instruction (such as a branch or
771function return).</p>
772
773<p>The first basic block in a function is special in two ways: it is immediately
774executed on entrance to the function, and it is not allowed to have predecessor
775basic blocks (i.e. there can not be any branches to the entry block of a
776function). Because the block can have no predecessors, it also cannot have any
777<a href="#i_phi">PHI nodes</a>.</p>
778
779<p>LLVM allows an explicit section to be specified for functions. If the target
780supports it, it will emit functions to the section specified.</p>
781
782<p>An explicit alignment may be specified for a function. If not present, or if
783the alignment is set to zero, the alignment of the function is set by the target
784to whatever it feels convenient. If an explicit alignment is specified, the
785function is forced to have at least that much alignment. All alignments must be
786a power of 2.</p>
787
788</div>
789
790
791<!-- ======================================================================= -->
792<div class="doc_subsection">
793 <a name="aliasstructure">Aliases</a>
794</div>
795<div class="doc_text">
796 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov96822812008-03-22 08:36:14 +0000797 function, global variable, another alias or bitcast of global value). Aliases
798 may have an optional <a href="#linkage">linkage type</a>, and an
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000799 optional <a href="#visibility">visibility style</a>.</p>
800
801 <h5>Syntax:</h5>
802
803<div class="doc_code">
804<pre>
805@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
806</pre>
807</div>
808
809</div>
810
811
812
813<!-- ======================================================================= -->
814<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
815<div class="doc_text">
816 <p>The return type and each parameter of a function type may have a set of
817 <i>parameter attributes</i> associated with them. Parameter attributes are
818 used to communicate additional information about the result or parameters of
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000819 a function. Parameter attributes are considered to be part of the function,
820 not of the function type, so functions with different parameter attributes
821 can have the same function type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000822
823 <p>Parameter attributes are simple keywords that follow the type specified. If
824 multiple parameter attributes are needed, they are space separated. For
825 example:</p>
826
827<div class="doc_code">
828<pre>
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000829declare i32 @printf(i8* noalias , ...) nounwind
830declare i32 @atoi(i8*) nounwind readonly
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000831</pre>
832</div>
833
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000834 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
835 <tt>readonly</tt>) come immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000836
837 <p>Currently, only the following parameter attributes are defined:</p>
838 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000839 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000840 <dd>This indicates that the parameter should be zero extended just before
841 a call to this function.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000842
Reid Spencerf234bed2007-07-19 23:13:04 +0000843 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000844 <dd>This indicates that the parameter should be sign extended just before
845 a call to this function.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000846
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000847 <dt><tt>inreg</tt></dt>
848 <dd>This indicates that the parameter should be placed in register (if
849 possible) during assembling function call. Support for this attribute is
850 target-specific</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000851
852 <dt><tt>byval</tt></dt>
Chris Lattner04c86182008-01-15 04:34:22 +0000853 <dd>This indicates that the pointer parameter should really be passed by
854 value to the function. The attribute implies that a hidden copy of the
855 pointee is made between the caller and the callee, so the callee is unable
Chris Lattner6a9f3c42008-08-05 18:21:08 +0000856 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner04c86182008-01-15 04:34:22 +0000857 pointer arguments. It is generally used to pass structs and arrays by
858 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000859
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 <dt><tt>sret</tt></dt>
Duncan Sands616cc032008-02-18 04:19:38 +0000861 <dd>This indicates that the pointer parameter specifies the address of a
862 structure that is the return value of the function in the source program.
Duncan Sandsef0e9e42008-03-17 12:17:41 +0000863 Loads and stores to the structure are assumed not to trap.
Duncan Sands616cc032008-02-18 04:19:38 +0000864 May only be applied to the first parameter.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000865
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000866 <dt><tt>noalias</tt></dt>
Owen Andersonc4fc4cd2008-02-18 04:09:01 +0000867 <dd>This indicates that the parameter does not alias any global or any other
868 parameter. The caller is responsible for ensuring that this is the case,
869 usually by placing the value in a stack allocation.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000870
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000871 <dt><tt>noreturn</tt></dt>
872 <dd>This function attribute indicates that the function never returns. This
873 indicates to LLVM that every call to this function should be treated as if
874 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000875
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000876 <dt><tt>nounwind</tt></dt>
Duncan Sandsef0e9e42008-03-17 12:17:41 +0000877 <dd>This function attribute indicates that no exceptions unwind out of the
878 function. Usually this is because the function makes no use of exceptions,
879 but it may also be that the function catches any exceptions thrown when
880 executing it.</dd>
881
Duncan Sands4ee46812007-07-27 19:57:41 +0000882 <dt><tt>nest</tt></dt>
Duncan Sandsf1a7d4c2008-07-08 09:27:25 +0000883 <dd>This indicates that the pointer parameter can be excised using the
Duncan Sands4ee46812007-07-27 19:57:41 +0000884 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Duncan Sands13e13f82007-11-22 20:23:04 +0000885 <dt><tt>readonly</tt></dt>
Duncan Sandsd69c0e62007-11-14 21:14:02 +0000886 <dd>This function attribute indicates that the function has no side-effects
Duncan Sands13e13f82007-11-22 20:23:04 +0000887 except for producing a return value or throwing an exception. The value
888 returned must only depend on the function arguments and/or global variables.
889 It may use values obtained by dereferencing pointers.</dd>
890 <dt><tt>readnone</tt></dt>
891 <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
Duncan Sandsd69c0e62007-11-14 21:14:02 +0000892 function, but in addition it is not allowed to dereference any pointer arguments
893 or global variables.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000894 </dl>
895
896</div>
897
898<!-- ======================================================================= -->
899<div class="doc_subsection">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000900 <a name="gc">Garbage Collector Names</a>
901</div>
902
903<div class="doc_text">
904<p>Each function may specify a garbage collector name, which is simply a
905string.</p>
906
907<div class="doc_code"><pre
908>define void @f() gc "name" { ...</pre></div>
909
910<p>The compiler declares the supported values of <i>name</i>. Specifying a
911collector which will cause the compiler to alter its output in order to support
912the named garbage collection algorithm.</p>
913</div>
914
915<!-- ======================================================================= -->
916<div class="doc_subsection">
Devang Pateld468f1c2008-09-04 23:05:13 +0000917 <a name="notes">Function Notes</a>
918</div>
919
920<div class="doc_text">
Devang Patel25928cb2008-09-04 23:10:26 +0000921<p>The function definition may list function notes which are used by
922various passes.</p>
Devang Pateld468f1c2008-09-04 23:05:13 +0000923
924<div class="doc_code">
Bill Wendling74d3eac2008-09-07 10:26:33 +0000925<pre>
926define void @f() notes(inline=Always) { ... }
927define void @f() notes(inline=Always,opt-size) { ... }
928define void @f() notes(inline=Never,opt-size) { ... }
929define void @f() notes(opt-size) { ... }
930</pre>
Devang Pateld468f1c2008-09-04 23:05:13 +0000931</div>
932
Bill Wendling74d3eac2008-09-07 10:26:33 +0000933<dl>
934<dt><tt>inline=Always</tt></dt>
935<dd>This note requests inliner to inline this function irrespective of inlining
936size threshold for this function.</dd>
937
938<dt><tt>inline=Never</tt></dt>
939<dd>This note requests inliner to never inline this function in any situation.
940This note may not be used together with <tt>inline=Always</tt> note.</dd>
941
942<dt><tt>opt-size</tt></dt>
943<dd>This note suggests optimization passes and code generator passes to make
944choices that help reduce code size.</dd>
945
946</dl>
947
948<p>Any notes that are not documented here are considered invalid notes.</p>
Devang Pateld468f1c2008-09-04 23:05:13 +0000949</div>
950
951<!-- ======================================================================= -->
952<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953 <a name="moduleasm">Module-Level Inline Assembly</a>
954</div>
955
956<div class="doc_text">
957<p>
958Modules may contain "module-level inline asm" blocks, which corresponds to the
959GCC "file scope inline asm" blocks. These blocks are internally concatenated by
960LLVM and treated as a single unit, but may be separated in the .ll file if
961desired. The syntax is very simple:
962</p>
963
964<div class="doc_code">
965<pre>
966module asm "inline asm code goes here"
967module asm "more can go here"
968</pre>
969</div>
970
971<p>The strings can contain any character by escaping non-printable characters.
972 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
973 for the number.
974</p>
975
976<p>
977 The inline asm code is simply printed to the machine code .s file when
978 assembly code is generated.
979</p>
980</div>
981
982<!-- ======================================================================= -->
983<div class="doc_subsection">
984 <a name="datalayout">Data Layout</a>
985</div>
986
987<div class="doc_text">
988<p>A module may specify a target specific data layout string that specifies how
989data is to be laid out in memory. The syntax for the data layout is simply:</p>
990<pre> target datalayout = "<i>layout specification</i>"</pre>
991<p>The <i>layout specification</i> consists of a list of specifications
992separated by the minus sign character ('-'). Each specification starts with a
993letter and may include other information after the letter to define some
994aspect of the data layout. The specifications accepted are as follows: </p>
995<dl>
996 <dt><tt>E</tt></dt>
997 <dd>Specifies that the target lays out data in big-endian form. That is, the
998 bits with the most significance have the lowest address location.</dd>
999 <dt><tt>e</tt></dt>
Chris Lattner96451482008-08-05 18:29:16 +00001000 <dd>Specifies that the target lays out data in little-endian form. That is,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001001 the bits with the least significance have the lowest address location.</dd>
1002 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1003 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1004 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1005 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1006 too.</dd>
1007 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1008 <dd>This specifies the alignment for an integer type of a given bit
1009 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1010 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1011 <dd>This specifies the alignment for a vector type of a given bit
1012 <i>size</i>.</dd>
1013 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1014 <dd>This specifies the alignment for a floating point type of a given bit
1015 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1016 (double).</dd>
1017 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1018 <dd>This specifies the alignment for an aggregate type of a given bit
1019 <i>size</i>.</dd>
1020</dl>
1021<p>When constructing the data layout for a given target, LLVM starts with a
1022default set of specifications which are then (possibly) overriden by the
1023specifications in the <tt>datalayout</tt> keyword. The default specifications
1024are given in this list:</p>
1025<ul>
1026 <li><tt>E</tt> - big endian</li>
1027 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1028 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1029 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1030 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1031 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner96451482008-08-05 18:29:16 +00001032 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033 alignment of 64-bits</li>
1034 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1035 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1036 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1037 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1038 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1039</ul>
Chris Lattner6a9f3c42008-08-05 18:21:08 +00001040<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041following rules:
1042<ol>
1043 <li>If the type sought is an exact match for one of the specifications, that
1044 specification is used.</li>
1045 <li>If no match is found, and the type sought is an integer type, then the
1046 smallest integer type that is larger than the bitwidth of the sought type is
1047 used. If none of the specifications are larger than the bitwidth then the the
1048 largest integer type is used. For example, given the default specifications
1049 above, the i7 type will use the alignment of i8 (next largest) while both
1050 i65 and i256 will use the alignment of i64 (largest specified).</li>
1051 <li>If no match is found, and the type sought is a vector type, then the
1052 largest vector type that is smaller than the sought vector type will be used
1053 as a fall back. This happens because <128 x double> can be implemented in
1054 terms of 64 <2 x double>, for example.</li>
1055</ol>
1056</div>
1057
1058<!-- *********************************************************************** -->
1059<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1060<!-- *********************************************************************** -->
1061
1062<div class="doc_text">
1063
1064<p>The LLVM type system is one of the most important features of the
1065intermediate representation. Being typed enables a number of
Chris Lattner96451482008-08-05 18:29:16 +00001066optimizations to be performed on the intermediate representation directly,
1067without having to do
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001068extra analyses on the side before the transformation. A strong type
1069system makes it easier to read the generated code and enables novel
1070analyses and transformations that are not feasible to perform on normal
1071three address code representations.</p>
1072
1073</div>
1074
1075<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001076<div class="doc_subsection"> <a name="t_classifications">Type
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001077Classifications</a> </div>
1078<div class="doc_text">
Chris Lattner488772f2008-01-04 04:32:38 +00001079<p>The types fall into a few useful
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001080classifications:</p>
1081
1082<table border="1" cellspacing="0" cellpadding="4">
1083 <tbody>
1084 <tr><th>Classification</th><th>Types</th></tr>
1085 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001086 <td><a href="#t_integer">integer</a></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001087 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1088 </tr>
1089 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001090 <td><a href="#t_floating">floating point</a></td>
1091 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001092 </tr>
1093 <tr>
1094 <td><a name="t_firstclass">first class</a></td>
Chris Lattner488772f2008-01-04 04:32:38 +00001095 <td><a href="#t_integer">integer</a>,
1096 <a href="#t_floating">floating point</a>,
1097 <a href="#t_pointer">pointer</a>,
Dan Gohmanf6237db2008-06-18 18:42:13 +00001098 <a href="#t_vector">vector</a>,
Dan Gohman74d6faf2008-05-12 23:51:09 +00001099 <a href="#t_struct">structure</a>,
1100 <a href="#t_array">array</a>,
Dan Gohmand13951e2008-05-23 22:50:26 +00001101 <a href="#t_label">label</a>.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001102 </td>
1103 </tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001104 <tr>
1105 <td><a href="#t_primitive">primitive</a></td>
1106 <td><a href="#t_label">label</a>,
1107 <a href="#t_void">void</a>,
Chris Lattner488772f2008-01-04 04:32:38 +00001108 <a href="#t_floating">floating point</a>.</td>
1109 </tr>
1110 <tr>
1111 <td><a href="#t_derived">derived</a></td>
1112 <td><a href="#t_integer">integer</a>,
1113 <a href="#t_array">array</a>,
1114 <a href="#t_function">function</a>,
1115 <a href="#t_pointer">pointer</a>,
1116 <a href="#t_struct">structure</a>,
1117 <a href="#t_pstruct">packed structure</a>,
1118 <a href="#t_vector">vector</a>,
1119 <a href="#t_opaque">opaque</a>.
1120 </tr>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001121 </tbody>
1122</table>
1123
1124<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1125most important. Values of these types are the only ones which can be
1126produced by instructions, passed as arguments, or used as operands to
Dan Gohman4f29e422008-05-23 21:53:15 +00001127instructions.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001128</div>
1129
1130<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001131<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner86437612008-01-04 04:34:14 +00001132
Chris Lattner488772f2008-01-04 04:32:38 +00001133<div class="doc_text">
1134<p>The primitive types are the fundamental building blocks of the LLVM
1135system.</p>
1136
Chris Lattner86437612008-01-04 04:34:14 +00001137</div>
1138
Chris Lattner488772f2008-01-04 04:32:38 +00001139<!-- _______________________________________________________________________ -->
1140<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1141
1142<div class="doc_text">
1143 <table>
1144 <tbody>
1145 <tr><th>Type</th><th>Description</th></tr>
1146 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1147 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1148 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1149 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1150 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1151 </tbody>
1152 </table>
1153</div>
1154
1155<!-- _______________________________________________________________________ -->
1156<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1157
1158<div class="doc_text">
1159<h5>Overview:</h5>
1160<p>The void type does not represent any value and has no size.</p>
1161
1162<h5>Syntax:</h5>
1163
1164<pre>
1165 void
1166</pre>
1167</div>
1168
1169<!-- _______________________________________________________________________ -->
1170<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1171
1172<div class="doc_text">
1173<h5>Overview:</h5>
1174<p>The label type represents code labels.</p>
1175
1176<h5>Syntax:</h5>
1177
1178<pre>
1179 label
1180</pre>
1181</div>
1182
1183
1184<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001185<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1186
1187<div class="doc_text">
1188
1189<p>The real power in LLVM comes from the derived types in the system.
1190This is what allows a programmer to represent arrays, functions,
1191pointers, and other useful types. Note that these derived types may be
1192recursive: For example, it is possible to have a two dimensional array.</p>
1193
1194</div>
1195
1196<!-- _______________________________________________________________________ -->
1197<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1198
1199<div class="doc_text">
1200
1201<h5>Overview:</h5>
1202<p>The integer type is a very simple derived type that simply specifies an
1203arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12042^23-1 (about 8 million) can be specified.</p>
1205
1206<h5>Syntax:</h5>
1207
1208<pre>
1209 iN
1210</pre>
1211
1212<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1213value.</p>
1214
1215<h5>Examples:</h5>
1216<table class="layout">
Chris Lattner251ab812007-12-18 06:18:21 +00001217 <tbody>
1218 <tr>
1219 <td><tt>i1</tt></td>
1220 <td>a single-bit integer.</td>
1221 </tr><tr>
1222 <td><tt>i32</tt></td>
1223 <td>a 32-bit integer.</td>
1224 </tr><tr>
1225 <td><tt>i1942652</tt></td>
1226 <td>a really big integer of over 1 million bits.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001227 </tr>
Chris Lattner251ab812007-12-18 06:18:21 +00001228 </tbody>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001229</table>
1230</div>
1231
1232<!-- _______________________________________________________________________ -->
1233<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1234
1235<div class="doc_text">
1236
1237<h5>Overview:</h5>
1238
1239<p>The array type is a very simple derived type that arranges elements
1240sequentially in memory. The array type requires a size (number of
1241elements) and an underlying data type.</p>
1242
1243<h5>Syntax:</h5>
1244
1245<pre>
1246 [&lt;# elements&gt; x &lt;elementtype&gt;]
1247</pre>
1248
1249<p>The number of elements is a constant integer value; elementtype may
1250be any type with a size.</p>
1251
1252<h5>Examples:</h5>
1253<table class="layout">
1254 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001255 <td class="left"><tt>[40 x i32]</tt></td>
1256 <td class="left">Array of 40 32-bit integer values.</td>
1257 </tr>
1258 <tr class="layout">
1259 <td class="left"><tt>[41 x i32]</tt></td>
1260 <td class="left">Array of 41 32-bit integer values.</td>
1261 </tr>
1262 <tr class="layout">
1263 <td class="left"><tt>[4 x i8]</tt></td>
1264 <td class="left">Array of 4 8-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 </tr>
1266</table>
1267<p>Here are some examples of multidimensional arrays:</p>
1268<table class="layout">
1269 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001270 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1271 <td class="left">3x4 array of 32-bit integer values.</td>
1272 </tr>
1273 <tr class="layout">
1274 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1275 <td class="left">12x10 array of single precision floating point values.</td>
1276 </tr>
1277 <tr class="layout">
1278 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1279 <td class="left">2x3x4 array of 16-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001280 </tr>
1281</table>
1282
1283<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1284length array. Normally, accesses past the end of an array are undefined in
1285LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1286As a special case, however, zero length arrays are recognized to be variable
1287length. This allows implementation of 'pascal style arrays' with the LLVM
1288type "{ i32, [0 x float]}", for example.</p>
1289
1290</div>
1291
1292<!-- _______________________________________________________________________ -->
1293<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1294<div class="doc_text">
Chris Lattner43030e72008-04-23 04:59:35 +00001295
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001296<h5>Overview:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001297
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001298<p>The function type can be thought of as a function signature. It
Devang Pateld4ba41d2008-03-24 05:35:41 +00001299consists of a return type and a list of formal parameter types. The
Chris Lattner43030e72008-04-23 04:59:35 +00001300return type of a function type is a scalar type, a void type, or a struct type.
Devang Pateld5404c02008-03-24 20:52:42 +00001301If the return type is a struct type then all struct elements must be of first
Chris Lattner43030e72008-04-23 04:59:35 +00001302class types, and the struct must have at least one element.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00001303
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001304<h5>Syntax:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001305
1306<pre>
1307 &lt;returntype list&gt; (&lt;parameter list&gt;)
1308</pre>
1309
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001310<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1311specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1312which indicates that the function takes a variable number of arguments.
1313Variable argument functions can access their arguments with the <a
Devang Patela3cc5372008-03-10 20:49:15 +00001314 href="#int_varargs">variable argument handling intrinsic</a> functions.
1315'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1316<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001317
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001318<h5>Examples:</h5>
1319<table class="layout">
1320 <tr class="layout">
1321 <td class="left"><tt>i32 (i32)</tt></td>
1322 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1323 </td>
1324 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001325 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001326 </tt></td>
1327 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1328 an <tt>i16</tt> that should be sign extended and a
1329 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1330 <tt>float</tt>.
1331 </td>
1332 </tr><tr class="layout">
1333 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1334 <td class="left">A vararg function that takes at least one
1335 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1336 which returns an integer. This is the signature for <tt>printf</tt> in
1337 LLVM.
1338 </td>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001339 </tr><tr class="layout">
1340 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel6dddba22008-03-24 18:10:52 +00001341 <td class="left">A function taking an <tt>i32></tt>, returning two
1342 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001343 </td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001344 </tr>
1345</table>
1346
1347</div>
1348<!-- _______________________________________________________________________ -->
1349<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1350<div class="doc_text">
1351<h5>Overview:</h5>
1352<p>The structure type is used to represent a collection of data members
1353together in memory. The packing of the field types is defined to match
1354the ABI of the underlying processor. The elements of a structure may
1355be any type that has a size.</p>
1356<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1357and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1358field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1359instruction.</p>
1360<h5>Syntax:</h5>
1361<pre> { &lt;type list&gt; }<br></pre>
1362<h5>Examples:</h5>
1363<table class="layout">
1364 <tr class="layout">
1365 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1366 <td class="left">A triple of three <tt>i32</tt> values</td>
1367 </tr><tr class="layout">
1368 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1369 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1370 second element is a <a href="#t_pointer">pointer</a> to a
1371 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1372 an <tt>i32</tt>.</td>
1373 </tr>
1374</table>
1375</div>
1376
1377<!-- _______________________________________________________________________ -->
1378<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1379</div>
1380<div class="doc_text">
1381<h5>Overview:</h5>
1382<p>The packed structure type is used to represent a collection of data members
1383together in memory. There is no padding between fields. Further, the alignment
1384of a packed structure is 1 byte. The elements of a packed structure may
1385be any type that has a size.</p>
1386<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1387and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1388field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1389instruction.</p>
1390<h5>Syntax:</h5>
1391<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1392<h5>Examples:</h5>
1393<table class="layout">
1394 <tr class="layout">
1395 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1396 <td class="left">A triple of three <tt>i32</tt> values</td>
1397 </tr><tr class="layout">
Bill Wendling74d3eac2008-09-07 10:26:33 +00001398 <td class="left">
1399<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001400 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1401 second element is a <a href="#t_pointer">pointer</a> to a
1402 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1403 an <tt>i32</tt>.</td>
1404 </tr>
1405</table>
1406</div>
1407
1408<!-- _______________________________________________________________________ -->
1409<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1410<div class="doc_text">
1411<h5>Overview:</h5>
1412<p>As in many languages, the pointer type represents a pointer or
Christopher Lambdd0049d2007-12-11 09:31:00 +00001413reference to another object, which must live in memory. Pointer types may have
1414an optional address space attribute defining the target-specific numbered
1415address space where the pointed-to object resides. The default address space is
1416zero.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001417<h5>Syntax:</h5>
1418<pre> &lt;type&gt; *<br></pre>
1419<h5>Examples:</h5>
1420<table class="layout">
1421 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001422 <td class="left"><tt>[4x i32]*</tt></td>
1423 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1424 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1425 </tr>
1426 <tr class="layout">
1427 <td class="left"><tt>i32 (i32 *) *</tt></td>
1428 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001429 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner7311d222007-12-19 05:04:11 +00001430 <tt>i32</tt>.</td>
1431 </tr>
1432 <tr class="layout">
1433 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1434 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1435 that resides in address space #5.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001436 </tr>
1437</table>
1438</div>
1439
1440<!-- _______________________________________________________________________ -->
1441<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1442<div class="doc_text">
1443
1444<h5>Overview:</h5>
1445
1446<p>A vector type is a simple derived type that represents a vector
1447of elements. Vector types are used when multiple primitive data
1448are operated in parallel using a single instruction (SIMD).
1449A vector type requires a size (number of
1450elements) and an underlying primitive data type. Vectors must have a power
1451of two length (1, 2, 4, 8, 16 ...). Vector types are
1452considered <a href="#t_firstclass">first class</a>.</p>
1453
1454<h5>Syntax:</h5>
1455
1456<pre>
1457 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1458</pre>
1459
1460<p>The number of elements is a constant integer value; elementtype may
1461be any integer or floating point type.</p>
1462
1463<h5>Examples:</h5>
1464
1465<table class="layout">
1466 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001467 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1468 <td class="left">Vector of 4 32-bit integer values.</td>
1469 </tr>
1470 <tr class="layout">
1471 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1472 <td class="left">Vector of 8 32-bit floating-point values.</td>
1473 </tr>
1474 <tr class="layout">
1475 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1476 <td class="left">Vector of 2 64-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001477 </tr>
1478</table>
1479</div>
1480
1481<!-- _______________________________________________________________________ -->
1482<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1483<div class="doc_text">
1484
1485<h5>Overview:</h5>
1486
1487<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksenda0706e2007-10-14 00:34:53 +00001488corresponds (for example) to the C notion of a forward declared structure type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001489In LLVM, opaque types can eventually be resolved to any type (not just a
1490structure type).</p>
1491
1492<h5>Syntax:</h5>
1493
1494<pre>
1495 opaque
1496</pre>
1497
1498<h5>Examples:</h5>
1499
1500<table class="layout">
1501 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001502 <td class="left"><tt>opaque</tt></td>
1503 <td class="left">An opaque type.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001504 </tr>
1505</table>
1506</div>
1507
1508
1509<!-- *********************************************************************** -->
1510<div class="doc_section"> <a name="constants">Constants</a> </div>
1511<!-- *********************************************************************** -->
1512
1513<div class="doc_text">
1514
1515<p>LLVM has several different basic types of constants. This section describes
1516them all and their syntax.</p>
1517
1518</div>
1519
1520<!-- ======================================================================= -->
1521<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1522
1523<div class="doc_text">
1524
1525<dl>
1526 <dt><b>Boolean constants</b></dt>
1527
1528 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1529 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1530 </dd>
1531
1532 <dt><b>Integer constants</b></dt>
1533
1534 <dd>Standard integers (such as '4') are constants of the <a
1535 href="#t_integer">integer</a> type. Negative numbers may be used with
1536 integer types.
1537 </dd>
1538
1539 <dt><b>Floating point constants</b></dt>
1540
1541 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1542 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00001543 notation (see below). The assembler requires the exact decimal value of
1544 a floating-point constant. For example, the assembler accepts 1.25 but
1545 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1546 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001547
1548 <dt><b>Null pointer constants</b></dt>
1549
1550 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1551 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1552
1553</dl>
1554
1555<p>The one non-intuitive notation for constants is the optional hexadecimal form
1556of floating point constants. For example, the form '<tt>double
15570x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15584.5e+15</tt>'. The only time hexadecimal floating point constants are required
1559(and the only time that they are generated by the disassembler) is when a
1560floating point constant must be emitted but it cannot be represented as a
1561decimal floating point number. For example, NaN's, infinities, and other
1562special values are represented in their IEEE hexadecimal format so that
1563assembly and disassembly do not cause any bits to change in the constants.</p>
1564
1565</div>
1566
1567<!-- ======================================================================= -->
1568<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1569</div>
1570
1571<div class="doc_text">
1572<p>Aggregate constants arise from aggregation of simple constants
1573and smaller aggregate constants.</p>
1574
1575<dl>
1576 <dt><b>Structure constants</b></dt>
1577
1578 <dd>Structure constants are represented with notation similar to structure
1579 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner6c8de962007-12-25 20:34:52 +00001580 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1581 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001582 must have <a href="#t_struct">structure type</a>, and the number and
1583 types of elements must match those specified by the type.
1584 </dd>
1585
1586 <dt><b>Array constants</b></dt>
1587
1588 <dd>Array constants are represented with notation similar to array type
1589 definitions (a comma separated list of elements, surrounded by square brackets
1590 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1591 constants must have <a href="#t_array">array type</a>, and the number and
1592 types of elements must match those specified by the type.
1593 </dd>
1594
1595 <dt><b>Vector constants</b></dt>
1596
1597 <dd>Vector constants are represented with notation similar to vector type
1598 definitions (a comma separated list of elements, surrounded by
1599 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1600 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1601 href="#t_vector">vector type</a>, and the number and types of elements must
1602 match those specified by the type.
1603 </dd>
1604
1605 <dt><b>Zero initialization</b></dt>
1606
1607 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1608 value to zero of <em>any</em> type, including scalar and aggregate types.
1609 This is often used to avoid having to print large zero initializers (e.g. for
1610 large arrays) and is always exactly equivalent to using explicit zero
1611 initializers.
1612 </dd>
1613</dl>
1614
1615</div>
1616
1617<!-- ======================================================================= -->
1618<div class="doc_subsection">
1619 <a name="globalconstants">Global Variable and Function Addresses</a>
1620</div>
1621
1622<div class="doc_text">
1623
1624<p>The addresses of <a href="#globalvars">global variables</a> and <a
1625href="#functionstructure">functions</a> are always implicitly valid (link-time)
1626constants. These constants are explicitly referenced when the <a
1627href="#identifiers">identifier for the global</a> is used and always have <a
1628href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1629file:</p>
1630
1631<div class="doc_code">
1632<pre>
1633@X = global i32 17
1634@Y = global i32 42
1635@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1636</pre>
1637</div>
1638
1639</div>
1640
1641<!-- ======================================================================= -->
1642<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1643<div class="doc_text">
1644 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1645 no specific value. Undefined values may be of any type and be used anywhere
1646 a constant is permitted.</p>
1647
1648 <p>Undefined values indicate to the compiler that the program is well defined
1649 no matter what value is used, giving the compiler more freedom to optimize.
1650 </p>
1651</div>
1652
1653<!-- ======================================================================= -->
1654<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1655</div>
1656
1657<div class="doc_text">
1658
1659<p>Constant expressions are used to allow expressions involving other constants
1660to be used as constants. Constant expressions may be of any <a
1661href="#t_firstclass">first class</a> type and may involve any LLVM operation
1662that does not have side effects (e.g. load and call are not supported). The
1663following is the syntax for constant expressions:</p>
1664
1665<dl>
1666 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1667 <dd>Truncate a constant to another type. The bit size of CST must be larger
1668 than the bit size of TYPE. Both types must be integers.</dd>
1669
1670 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1671 <dd>Zero extend a constant to another type. The bit size of CST must be
1672 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1673
1674 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1675 <dd>Sign extend a constant to another type. The bit size of CST must be
1676 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1677
1678 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1679 <dd>Truncate a floating point constant to another floating point type. The
1680 size of CST must be larger than the size of TYPE. Both types must be
1681 floating point.</dd>
1682
1683 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1684 <dd>Floating point extend a constant to another type. The size of CST must be
1685 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1686
Reid Spencere6adee82007-07-31 14:40:14 +00001687 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001688 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001689 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1690 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1691 of the same number of elements. If the value won't fit in the integer type,
1692 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001693
1694 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1695 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begeman78246ca2007-11-17 03:58:34 +00001696 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1697 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1698 of the same number of elements. If the value won't fit in the integer type,
1699 the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001700
1701 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1702 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001703 constant. TYPE must be a scalar or vector floating point type. CST must be of
1704 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1705 of the same number of elements. If the value won't fit in the floating point
1706 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707
1708 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1709 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begeman78246ca2007-11-17 03:58:34 +00001710 constant. TYPE must be a scalar or vector floating point type. CST must be of
1711 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1712 of the same number of elements. If the value won't fit in the floating point
1713 type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001714
1715 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1716 <dd>Convert a pointer typed constant to the corresponding integer constant
1717 TYPE must be an integer type. CST must be of pointer type. The CST value is
1718 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1719
1720 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1721 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1722 pointer type. CST must be of integer type. The CST value is zero extended,
1723 truncated, or unchanged to make it fit in a pointer size. This one is
1724 <i>really</i> dangerous!</dd>
1725
1726 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1727 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1728 identical (same number of bits). The conversion is done as if the CST value
1729 was stored to memory and read back as TYPE. In other words, no bits change
1730 with this operator, just the type. This can be used for conversion of
1731 vector types to any other type, as long as they have the same bit width. For
1732 pointers it is only valid to cast to another pointer type.
1733 </dd>
1734
1735 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1736
1737 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1738 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1739 instruction, the index list may have zero or more indexes, which are required
1740 to make sense for the type of "CSTPTR".</dd>
1741
1742 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1743
1744 <dd>Perform the <a href="#i_select">select operation</a> on
1745 constants.</dd>
1746
1747 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1748 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1749
1750 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1751 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1752
Nate Begeman646fa482008-05-12 19:01:56 +00001753 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1754 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1755
1756 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1757 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1758
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001759 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1760
1761 <dd>Perform the <a href="#i_extractelement">extractelement
1762 operation</a> on constants.
1763
1764 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1765
1766 <dd>Perform the <a href="#i_insertelement">insertelement
1767 operation</a> on constants.</dd>
1768
1769
1770 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1771
1772 <dd>Perform the <a href="#i_shufflevector">shufflevector
1773 operation</a> on constants.</dd>
1774
1775 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1776
1777 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1778 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1779 binary</a> operations. The constraints on operands are the same as those for
1780 the corresponding instruction (e.g. no bitwise operations on floating point
1781 values are allowed).</dd>
1782</dl>
1783</div>
1784
1785<!-- *********************************************************************** -->
1786<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1787<!-- *********************************************************************** -->
1788
1789<!-- ======================================================================= -->
1790<div class="doc_subsection">
1791<a name="inlineasm">Inline Assembler Expressions</a>
1792</div>
1793
1794<div class="doc_text">
1795
1796<p>
1797LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1798Module-Level Inline Assembly</a>) through the use of a special value. This
1799value represents the inline assembler as a string (containing the instructions
1800to emit), a list of operand constraints (stored as a string), and a flag that
1801indicates whether or not the inline asm expression has side effects. An example
1802inline assembler expression is:
1803</p>
1804
1805<div class="doc_code">
1806<pre>
1807i32 (i32) asm "bswap $0", "=r,r"
1808</pre>
1809</div>
1810
1811<p>
1812Inline assembler expressions may <b>only</b> be used as the callee operand of
1813a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1814</p>
1815
1816<div class="doc_code">
1817<pre>
1818%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1819</pre>
1820</div>
1821
1822<p>
1823Inline asms with side effects not visible in the constraint list must be marked
1824as having side effects. This is done through the use of the
1825'<tt>sideeffect</tt>' keyword, like so:
1826</p>
1827
1828<div class="doc_code">
1829<pre>
1830call void asm sideeffect "eieio", ""()
1831</pre>
1832</div>
1833
1834<p>TODO: The format of the asm and constraints string still need to be
1835documented here. Constraints on what can be done (e.g. duplication, moving, etc
1836need to be documented).
1837</p>
1838
1839</div>
1840
1841<!-- *********************************************************************** -->
1842<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1843<!-- *********************************************************************** -->
1844
1845<div class="doc_text">
1846
1847<p>The LLVM instruction set consists of several different
1848classifications of instructions: <a href="#terminators">terminator
1849instructions</a>, <a href="#binaryops">binary instructions</a>,
1850<a href="#bitwiseops">bitwise binary instructions</a>, <a
1851 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1852instructions</a>.</p>
1853
1854</div>
1855
1856<!-- ======================================================================= -->
1857<div class="doc_subsection"> <a name="terminators">Terminator
1858Instructions</a> </div>
1859
1860<div class="doc_text">
1861
1862<p>As mentioned <a href="#functionstructure">previously</a>, every
1863basic block in a program ends with a "Terminator" instruction, which
1864indicates which block should be executed after the current block is
1865finished. These terminator instructions typically yield a '<tt>void</tt>'
1866value: they produce control flow, not values (the one exception being
1867the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1868<p>There are six different terminator instructions: the '<a
1869 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1870instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1871the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1872 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1873 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1874
1875</div>
1876
1877<!-- _______________________________________________________________________ -->
1878<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1879Instruction</a> </div>
1880<div class="doc_text">
1881<h5>Syntax:</h5>
1882<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1883 ret void <i>; Return from void function</i>
Devang Patela3cc5372008-03-10 20:49:15 +00001884 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001885</pre>
Chris Lattner43030e72008-04-23 04:59:35 +00001886
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001887<h5>Overview:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001888
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001889<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1890value) from a function back to the caller.</p>
1891<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner43030e72008-04-23 04:59:35 +00001892returns value(s) and then causes control flow, and one that just causes
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001893control flow to occur.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001894
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001895<h5>Arguments:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001896
1897<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1898The type of each return value must be a '<a href="#t_firstclass">first
1899class</a>' type. Note that a function is not <a href="#wellformed">well
1900formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1901function that returns values that do not match the return type of the
1902function.</p>
1903
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001904<h5>Semantics:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001905
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001906<p>When the '<tt>ret</tt>' instruction is executed, control flow
1907returns back to the calling function's context. If the caller is a "<a
1908 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1909the instruction after the call. If the caller was an "<a
1910 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1911at the beginning of the "normal" destination block. If the instruction
1912returns a value, that value shall set the call or invoke instruction's
Devang Patela3cc5372008-03-10 20:49:15 +00001913return value. If the instruction returns multiple values then these
Devang Patelec8a5b02008-03-11 05:51:59 +00001914values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1915</a>' instruction.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001916
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001917<h5>Example:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001918
1919<pre>
1920 ret i32 5 <i>; Return an integer value of 5</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001921 ret void <i>; Return from a void function</i>
Devang Patela3cc5372008-03-10 20:49:15 +00001922 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001923</pre>
1924</div>
1925<!-- _______________________________________________________________________ -->
1926<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1927<div class="doc_text">
1928<h5>Syntax:</h5>
1929<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1930</pre>
1931<h5>Overview:</h5>
1932<p>The '<tt>br</tt>' instruction is used to cause control flow to
1933transfer to a different basic block in the current function. There are
1934two forms of this instruction, corresponding to a conditional branch
1935and an unconditional branch.</p>
1936<h5>Arguments:</h5>
1937<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1938single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1939unconditional form of the '<tt>br</tt>' instruction takes a single
1940'<tt>label</tt>' value as a target.</p>
1941<h5>Semantics:</h5>
1942<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1943argument is evaluated. If the value is <tt>true</tt>, control flows
1944to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1945control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1946<h5>Example:</h5>
1947<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1948 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1949</div>
1950<!-- _______________________________________________________________________ -->
1951<div class="doc_subsubsection">
1952 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1953</div>
1954
1955<div class="doc_text">
1956<h5>Syntax:</h5>
1957
1958<pre>
1959 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1960</pre>
1961
1962<h5>Overview:</h5>
1963
1964<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1965several different places. It is a generalization of the '<tt>br</tt>'
1966instruction, allowing a branch to occur to one of many possible
1967destinations.</p>
1968
1969
1970<h5>Arguments:</h5>
1971
1972<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1973comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1974an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1975table is not allowed to contain duplicate constant entries.</p>
1976
1977<h5>Semantics:</h5>
1978
1979<p>The <tt>switch</tt> instruction specifies a table of values and
1980destinations. When the '<tt>switch</tt>' instruction is executed, this
1981table is searched for the given value. If the value is found, control flow is
1982transfered to the corresponding destination; otherwise, control flow is
1983transfered to the default destination.</p>
1984
1985<h5>Implementation:</h5>
1986
1987<p>Depending on properties of the target machine and the particular
1988<tt>switch</tt> instruction, this instruction may be code generated in different
1989ways. For example, it could be generated as a series of chained conditional
1990branches or with a lookup table.</p>
1991
1992<h5>Example:</h5>
1993
1994<pre>
1995 <i>; Emulate a conditional br instruction</i>
1996 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1997 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1998
1999 <i>; Emulate an unconditional br instruction</i>
2000 switch i32 0, label %dest [ ]
2001
2002 <i>; Implement a jump table:</i>
2003 switch i32 %val, label %otherwise [ i32 0, label %onzero
2004 i32 1, label %onone
2005 i32 2, label %ontwo ]
2006</pre>
2007</div>
2008
2009<!-- _______________________________________________________________________ -->
2010<div class="doc_subsubsection">
2011 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2012</div>
2013
2014<div class="doc_text">
2015
2016<h5>Syntax:</h5>
2017
2018<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002019 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002020 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
2021</pre>
2022
2023<h5>Overview:</h5>
2024
2025<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2026function, with the possibility of control flow transfer to either the
2027'<tt>normal</tt>' label or the
2028'<tt>exception</tt>' label. If the callee function returns with the
2029"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2030"normal" label. If the callee (or any indirect callees) returns with the "<a
2031href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patela3cc5372008-03-10 20:49:15 +00002032continued at the dynamically nearest "exception" label. If the callee function
Devang Patelec8a5b02008-03-11 05:51:59 +00002033returns multiple values then individual return values are only accessible through
2034a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002035
2036<h5>Arguments:</h5>
2037
2038<p>This instruction requires several arguments:</p>
2039
2040<ol>
2041 <li>
2042 The optional "cconv" marker indicates which <a href="#callingconv">calling
2043 convention</a> the call should use. If none is specified, the call defaults
2044 to using C calling conventions.
2045 </li>
2046 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2047 function value being invoked. In most cases, this is a direct function
2048 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2049 an arbitrary pointer to function value.
2050 </li>
2051
2052 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2053 function to be invoked. </li>
2054
2055 <li>'<tt>function args</tt>': argument list whose types match the function
2056 signature argument types. If the function signature indicates the function
2057 accepts a variable number of arguments, the extra arguments can be
2058 specified. </li>
2059
2060 <li>'<tt>normal label</tt>': the label reached when the called function
2061 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2062
2063 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2064 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2065
2066</ol>
2067
2068<h5>Semantics:</h5>
2069
2070<p>This instruction is designed to operate as a standard '<tt><a
2071href="#i_call">call</a></tt>' instruction in most regards. The primary
2072difference is that it establishes an association with a label, which is used by
2073the runtime library to unwind the stack.</p>
2074
2075<p>This instruction is used in languages with destructors to ensure that proper
2076cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2077exception. Additionally, this is important for implementation of
2078'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2079
2080<h5>Example:</h5>
2081<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002082 %retval = invoke i32 @Test(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002083 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002084 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002085 unwind label %TestCleanup <i>; {i32}:retval set</i>
2086</pre>
2087</div>
2088
2089
2090<!-- _______________________________________________________________________ -->
2091
2092<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2093Instruction</a> </div>
2094
2095<div class="doc_text">
2096
2097<h5>Syntax:</h5>
2098<pre>
2099 unwind
2100</pre>
2101
2102<h5>Overview:</h5>
2103
2104<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2105at the first callee in the dynamic call stack which used an <a
2106href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2107primarily used to implement exception handling.</p>
2108
2109<h5>Semantics:</h5>
2110
Chris Lattner8b094fc2008-04-19 21:01:16 +00002111<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002112immediately halt. The dynamic call stack is then searched for the first <a
2113href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2114execution continues at the "exceptional" destination block specified by the
2115<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2116dynamic call chain, undefined behavior results.</p>
2117</div>
2118
2119<!-- _______________________________________________________________________ -->
2120
2121<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2122Instruction</a> </div>
2123
2124<div class="doc_text">
2125
2126<h5>Syntax:</h5>
2127<pre>
2128 unreachable
2129</pre>
2130
2131<h5>Overview:</h5>
2132
2133<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2134instruction is used to inform the optimizer that a particular portion of the
2135code is not reachable. This can be used to indicate that the code after a
2136no-return function cannot be reached, and other facts.</p>
2137
2138<h5>Semantics:</h5>
2139
2140<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2141</div>
2142
2143
2144
2145<!-- ======================================================================= -->
2146<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
2147<div class="doc_text">
2148<p>Binary operators are used to do most of the computation in a
Chris Lattnerab596d92008-04-01 18:47:32 +00002149program. They require two operands of the same type, execute an operation on them, and
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002150produce a single value. The operands might represent
2151multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattnerab596d92008-04-01 18:47:32 +00002152The result value has the same type as its operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002153<p>There are several different binary operators:</p>
2154</div>
2155<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002156<div class="doc_subsubsection">
2157 <a name="i_add">'<tt>add</tt>' Instruction</a>
2158</div>
2159
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002160<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002161
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002162<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002163
2164<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002165 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002166</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002167
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002168<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002169
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002170<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002171
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002172<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002173
2174<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2175 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2176 <a href="#t_vector">vector</a> values. Both arguments must have identical
2177 types.</p>
2178
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002179<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002180
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002181<p>The value produced is the integer or floating point sum of the two
2182operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002183
Chris Lattner9aba1e22008-01-28 00:36:27 +00002184<p>If an integer sum has unsigned overflow, the result returned is the
2185mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2186the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002187
Chris Lattner9aba1e22008-01-28 00:36:27 +00002188<p>Because LLVM integers use a two's complement representation, this
2189instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002190
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002191<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002192
2193<pre>
2194 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002195</pre>
2196</div>
2197<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002198<div class="doc_subsubsection">
2199 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2200</div>
2201
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002202<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002203
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002204<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002205
2206<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002207 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002208</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002209
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002210<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002211
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002212<p>The '<tt>sub</tt>' instruction returns the difference of its two
2213operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002214
2215<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2216'<tt>neg</tt>' instruction present in most other intermediate
2217representations.</p>
2218
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002219<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002220
2221<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2222 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2223 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2224 types.</p>
2225
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002226<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002227
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002228<p>The value produced is the integer or floating point difference of
2229the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002230
Chris Lattner9aba1e22008-01-28 00:36:27 +00002231<p>If an integer difference has unsigned overflow, the result returned is the
2232mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2233the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002234
Chris Lattner9aba1e22008-01-28 00:36:27 +00002235<p>Because LLVM integers use a two's complement representation, this
2236instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002237
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002238<h5>Example:</h5>
2239<pre>
2240 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
2241 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
2242</pre>
2243</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002244
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002245<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002246<div class="doc_subsubsection">
2247 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2248</div>
2249
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002250<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002251
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002252<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002253<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002254</pre>
2255<h5>Overview:</h5>
2256<p>The '<tt>mul</tt>' instruction returns the product of its two
2257operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002258
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002259<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002260
2261<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2262href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2263or <a href="#t_vector">vector</a> values. Both arguments must have identical
2264types.</p>
2265
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002266<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002267
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002268<p>The value produced is the integer or floating point product of the
2269two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002270
Chris Lattner9aba1e22008-01-28 00:36:27 +00002271<p>If the result of an integer multiplication has unsigned overflow,
2272the result returned is the mathematical result modulo
22732<sup>n</sup>, where n is the bit width of the result.</p>
2274<p>Because LLVM integers use a two's complement representation, and the
2275result is the same width as the operands, this instruction returns the
2276correct result for both signed and unsigned integers. If a full product
2277(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2278should be sign-extended or zero-extended as appropriate to the
2279width of the full product.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002280<h5>Example:</h5>
2281<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2282</pre>
2283</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002284
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002285<!-- _______________________________________________________________________ -->
2286<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2287</a></div>
2288<div class="doc_text">
2289<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002290<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002291</pre>
2292<h5>Overview:</h5>
2293<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2294operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002295
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002296<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002297
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002298<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002299<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2300values. Both arguments must have identical types.</p>
2301
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002302<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002303
Chris Lattner9aba1e22008-01-28 00:36:27 +00002304<p>The value produced is the unsigned integer quotient of the two operands.</p>
2305<p>Note that unsigned integer division and signed integer division are distinct
2306operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2307<p>Division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002308<h5>Example:</h5>
2309<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2310</pre>
2311</div>
2312<!-- _______________________________________________________________________ -->
2313<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2314</a> </div>
2315<div class="doc_text">
2316<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002317<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002318 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002319</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002320
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002321<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002322
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002323<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2324operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002325
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002326<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002327
2328<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2329<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2330values. Both arguments must have identical types.</p>
2331
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002332<h5>Semantics:</h5>
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002333<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002334<p>Note that signed integer division and unsigned integer division are distinct
2335operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2336<p>Division by zero leads to undefined behavior. Overflow also leads to
2337undefined behavior; this is a rare case, but can occur, for example,
2338by doing a 32-bit division of -2147483648 by -1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002339<h5>Example:</h5>
2340<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2341</pre>
2342</div>
2343<!-- _______________________________________________________________________ -->
2344<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2345Instruction</a> </div>
2346<div class="doc_text">
2347<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002348<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002349 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002350</pre>
2351<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002352
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002353<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2354operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002355
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002356<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002357
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002358<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002359<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2360of floating point values. Both arguments must have identical types.</p>
2361
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002362<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002363
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002364<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002365
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002366<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002367
2368<pre>
2369 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002370</pre>
2371</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002372
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002373<!-- _______________________________________________________________________ -->
2374<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2375</div>
2376<div class="doc_text">
2377<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002378<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002379</pre>
2380<h5>Overview:</h5>
2381<p>The '<tt>urem</tt>' instruction returns the remainder from the
2382unsigned division of its two arguments.</p>
2383<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002384<p>The two arguments to the '<tt>urem</tt>' instruction must be
2385<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2386values. Both arguments must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002387<h5>Semantics:</h5>
2388<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002389This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002390<p>Note that unsigned integer remainder and signed integer remainder are
2391distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2392<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002393<h5>Example:</h5>
2394<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2395</pre>
2396
2397</div>
2398<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002399<div class="doc_subsubsection">
2400 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2401</div>
2402
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002403<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002404
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002405<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002406
2407<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002408 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002409</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002410
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002411<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002412
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002413<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman3e3fd8c2007-11-05 23:35:22 +00002414signed division of its two operands. This instruction can also take
2415<a href="#t_vector">vector</a> versions of the values in which case
2416the elements must be integers.</p>
Chris Lattner08497ce2008-01-04 04:33:49 +00002417
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002418<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002419
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002420<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002421<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2422values. Both arguments must have identical types.</p>
2423
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002424<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002425
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002426<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greifd9068fe2008-08-07 21:46:00 +00002427has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2428operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002429a value. For more information about the difference, see <a
2430 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2431Math Forum</a>. For a table of how this is implemented in various languages,
2432please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2433Wikipedia: modulo operation</a>.</p>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002434<p>Note that signed integer remainder and unsigned integer remainder are
2435distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2436<p>Taking the remainder of a division by zero leads to undefined behavior.
2437Overflow also leads to undefined behavior; this is a rare case, but can occur,
2438for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2439(The remainder doesn't actually overflow, but this rule lets srem be
2440implemented using instructions that return both the result of the division
2441and the remainder.)</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002442<h5>Example:</h5>
2443<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2444</pre>
2445
2446</div>
2447<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002448<div class="doc_subsubsection">
2449 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2450
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002451<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002452
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002453<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002454<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002455</pre>
2456<h5>Overview:</h5>
2457<p>The '<tt>frem</tt>' instruction returns the remainder from the
2458division of its two operands.</p>
2459<h5>Arguments:</h5>
2460<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner6704c212008-05-20 20:48:21 +00002461<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2462of floating point values. Both arguments must have identical types.</p>
2463
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002464<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002465
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002466<p>This instruction returns the <i>remainder</i> of a division.
2467The remainder has the same sign as the dividend.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002468
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002469<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002470
2471<pre>
2472 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002473</pre>
2474</div>
2475
2476<!-- ======================================================================= -->
2477<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2478Operations</a> </div>
2479<div class="doc_text">
2480<p>Bitwise binary operators are used to do various forms of
2481bit-twiddling in a program. They are generally very efficient
2482instructions and can commonly be strength reduced from other
Chris Lattnerdc15b1d2008-04-01 18:45:27 +00002483instructions. They require two operands of the same type, execute an operation on them,
2484and produce a single value. The resulting value is the same type as its operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002485</div>
2486
2487<!-- _______________________________________________________________________ -->
2488<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2489Instruction</a> </div>
2490<div class="doc_text">
2491<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002492<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002493</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002494
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002495<h5>Overview:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002496
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002497<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2498the left a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002499
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002500<h5>Arguments:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002501
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002502<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begemanbb1ce942008-07-29 15:49:41 +00002503 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002504type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002505
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002506<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002507
Gabor Greifd9068fe2008-08-07 21:46:00 +00002508<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2509where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2510equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002511
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002512<h5>Example:</h5><pre>
2513 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2514 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2515 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002516 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002517</pre>
2518</div>
2519<!-- _______________________________________________________________________ -->
2520<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2521Instruction</a> </div>
2522<div class="doc_text">
2523<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002524<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002525</pre>
2526
2527<h5>Overview:</h5>
2528<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2529operand shifted to the right a specified number of bits with zero fill.</p>
2530
2531<h5>Arguments:</h5>
2532<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begemanbb1ce942008-07-29 15:49:41 +00002533<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002534type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002535
2536<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002537
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002538<p>This instruction always performs a logical shift right operation. The most
2539significant bits of the result will be filled with zero bits after the
Gabor Greifd9068fe2008-08-07 21:46:00 +00002540shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2541the number of bits in <tt>op1</tt>, the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002542
2543<h5>Example:</h5>
2544<pre>
2545 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2546 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2547 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2548 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002549 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002550</pre>
2551</div>
2552
2553<!-- _______________________________________________________________________ -->
2554<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2555Instruction</a> </div>
2556<div class="doc_text">
2557
2558<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002559<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002560</pre>
2561
2562<h5>Overview:</h5>
2563<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2564operand shifted to the right a specified number of bits with sign extension.</p>
2565
2566<h5>Arguments:</h5>
2567<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begemanbb1ce942008-07-29 15:49:41 +00002568<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greifd9068fe2008-08-07 21:46:00 +00002569type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002570
2571<h5>Semantics:</h5>
2572<p>This instruction always performs an arithmetic shift right operation,
2573The most significant bits of the result will be filled with the sign bit
Gabor Greifd9068fe2008-08-07 21:46:00 +00002574of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2575larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002576</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002577
2578<h5>Example:</h5>
2579<pre>
2580 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2581 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2582 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2583 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002584 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002585</pre>
2586</div>
2587
2588<!-- _______________________________________________________________________ -->
2589<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2590Instruction</a> </div>
Chris Lattner6704c212008-05-20 20:48:21 +00002591
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002592<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002593
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002594<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002595
2596<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002597 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002598</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002599
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002600<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002601
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002602<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2603its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002604
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002605<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002606
2607<p>The two arguments to the '<tt>and</tt>' instruction must be
2608<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2609values. Both arguments must have identical types.</p>
2610
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002611<h5>Semantics:</h5>
2612<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2613<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002614<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002615<table border="1" cellspacing="0" cellpadding="4">
2616 <tbody>
2617 <tr>
2618 <td>In0</td>
2619 <td>In1</td>
2620 <td>Out</td>
2621 </tr>
2622 <tr>
2623 <td>0</td>
2624 <td>0</td>
2625 <td>0</td>
2626 </tr>
2627 <tr>
2628 <td>0</td>
2629 <td>1</td>
2630 <td>0</td>
2631 </tr>
2632 <tr>
2633 <td>1</td>
2634 <td>0</td>
2635 <td>0</td>
2636 </tr>
2637 <tr>
2638 <td>1</td>
2639 <td>1</td>
2640 <td>1</td>
2641 </tr>
2642 </tbody>
2643</table>
2644</div>
2645<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002646<pre>
2647 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002648 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2649 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2650</pre>
2651</div>
2652<!-- _______________________________________________________________________ -->
2653<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2654<div class="doc_text">
2655<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002656<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002657</pre>
2658<h5>Overview:</h5>
2659<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2660or of its two operands.</p>
2661<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002662
2663<p>The two arguments to the '<tt>or</tt>' instruction must be
2664<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2665values. Both arguments must have identical types.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002666<h5>Semantics:</h5>
2667<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2668<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002669<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002670<table border="1" cellspacing="0" cellpadding="4">
2671 <tbody>
2672 <tr>
2673 <td>In0</td>
2674 <td>In1</td>
2675 <td>Out</td>
2676 </tr>
2677 <tr>
2678 <td>0</td>
2679 <td>0</td>
2680 <td>0</td>
2681 </tr>
2682 <tr>
2683 <td>0</td>
2684 <td>1</td>
2685 <td>1</td>
2686 </tr>
2687 <tr>
2688 <td>1</td>
2689 <td>0</td>
2690 <td>1</td>
2691 </tr>
2692 <tr>
2693 <td>1</td>
2694 <td>1</td>
2695 <td>1</td>
2696 </tr>
2697 </tbody>
2698</table>
2699</div>
2700<h5>Example:</h5>
2701<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2702 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2703 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2704</pre>
2705</div>
2706<!-- _______________________________________________________________________ -->
2707<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2708Instruction</a> </div>
2709<div class="doc_text">
2710<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002711<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002712</pre>
2713<h5>Overview:</h5>
2714<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2715or of its two operands. The <tt>xor</tt> is used to implement the
2716"one's complement" operation, which is the "~" operator in C.</p>
2717<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002718<p>The two arguments to the '<tt>xor</tt>' instruction must be
2719<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2720values. Both arguments must have identical types.</p>
2721
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002722<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002723
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002724<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2725<p> </p>
Bill Wendling1e19eac2008-09-07 10:29:20 +00002726<div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002727<table border="1" cellspacing="0" cellpadding="4">
2728 <tbody>
2729 <tr>
2730 <td>In0</td>
2731 <td>In1</td>
2732 <td>Out</td>
2733 </tr>
2734 <tr>
2735 <td>0</td>
2736 <td>0</td>
2737 <td>0</td>
2738 </tr>
2739 <tr>
2740 <td>0</td>
2741 <td>1</td>
2742 <td>1</td>
2743 </tr>
2744 <tr>
2745 <td>1</td>
2746 <td>0</td>
2747 <td>1</td>
2748 </tr>
2749 <tr>
2750 <td>1</td>
2751 <td>1</td>
2752 <td>0</td>
2753 </tr>
2754 </tbody>
2755</table>
2756</div>
2757<p> </p>
2758<h5>Example:</h5>
2759<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2760 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2761 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2762 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2763</pre>
2764</div>
2765
2766<!-- ======================================================================= -->
2767<div class="doc_subsection">
2768 <a name="vectorops">Vector Operations</a>
2769</div>
2770
2771<div class="doc_text">
2772
2773<p>LLVM supports several instructions to represent vector operations in a
2774target-independent manner. These instructions cover the element-access and
2775vector-specific operations needed to process vectors effectively. While LLVM
2776does directly support these vector operations, many sophisticated algorithms
2777will want to use target-specific intrinsics to take full advantage of a specific
2778target.</p>
2779
2780</div>
2781
2782<!-- _______________________________________________________________________ -->
2783<div class="doc_subsubsection">
2784 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2785</div>
2786
2787<div class="doc_text">
2788
2789<h5>Syntax:</h5>
2790
2791<pre>
2792 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2793</pre>
2794
2795<h5>Overview:</h5>
2796
2797<p>
2798The '<tt>extractelement</tt>' instruction extracts a single scalar
2799element from a vector at a specified index.
2800</p>
2801
2802
2803<h5>Arguments:</h5>
2804
2805<p>
2806The first operand of an '<tt>extractelement</tt>' instruction is a
2807value of <a href="#t_vector">vector</a> type. The second operand is
2808an index indicating the position from which to extract the element.
2809The index may be a variable.</p>
2810
2811<h5>Semantics:</h5>
2812
2813<p>
2814The result is a scalar of the same type as the element type of
2815<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2816<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2817results are undefined.
2818</p>
2819
2820<h5>Example:</h5>
2821
2822<pre>
2823 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2824</pre>
2825</div>
2826
2827
2828<!-- _______________________________________________________________________ -->
2829<div class="doc_subsubsection">
2830 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2831</div>
2832
2833<div class="doc_text">
2834
2835<h5>Syntax:</h5>
2836
2837<pre>
Dan Gohmanbcc3c502008-05-12 23:38:42 +00002838 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002839</pre>
2840
2841<h5>Overview:</h5>
2842
2843<p>
2844The '<tt>insertelement</tt>' instruction inserts a scalar
2845element into a vector at a specified index.
2846</p>
2847
2848
2849<h5>Arguments:</h5>
2850
2851<p>
2852The first operand of an '<tt>insertelement</tt>' instruction is a
2853value of <a href="#t_vector">vector</a> type. The second operand is a
2854scalar value whose type must equal the element type of the first
2855operand. The third operand is an index indicating the position at
2856which to insert the value. The index may be a variable.</p>
2857
2858<h5>Semantics:</h5>
2859
2860<p>
2861The result is a vector of the same type as <tt>val</tt>. Its
2862element values are those of <tt>val</tt> except at position
2863<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2864exceeds the length of <tt>val</tt>, the results are undefined.
2865</p>
2866
2867<h5>Example:</h5>
2868
2869<pre>
2870 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2871</pre>
2872</div>
2873
2874<!-- _______________________________________________________________________ -->
2875<div class="doc_subsubsection">
2876 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2877</div>
2878
2879<div class="doc_text">
2880
2881<h5>Syntax:</h5>
2882
2883<pre>
2884 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2885</pre>
2886
2887<h5>Overview:</h5>
2888
2889<p>
2890The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2891from two input vectors, returning a vector of the same type.
2892</p>
2893
2894<h5>Arguments:</h5>
2895
2896<p>
2897The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2898with types that match each other and types that match the result of the
2899instruction. The third argument is a shuffle mask, which has the same number
2900of elements as the other vector type, but whose element type is always 'i32'.
2901</p>
2902
2903<p>
2904The shuffle mask operand is required to be a constant vector with either
2905constant integer or undef values.
2906</p>
2907
2908<h5>Semantics:</h5>
2909
2910<p>
2911The elements of the two input vectors are numbered from left to right across
2912both of the vectors. The shuffle mask operand specifies, for each element of
2913the result vector, which element of the two input registers the result element
2914gets. The element selector may be undef (meaning "don't care") and the second
2915operand may be undef if performing a shuffle from only one vector.
2916</p>
2917
2918<h5>Example:</h5>
2919
2920<pre>
2921 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2922 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2923 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2924 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2925</pre>
2926</div>
2927
2928
2929<!-- ======================================================================= -->
2930<div class="doc_subsection">
Dan Gohman74d6faf2008-05-12 23:51:09 +00002931 <a name="aggregateops">Aggregate Operations</a>
2932</div>
2933
2934<div class="doc_text">
2935
2936<p>LLVM supports several instructions for working with aggregate values.
2937</p>
2938
2939</div>
2940
2941<!-- _______________________________________________________________________ -->
2942<div class="doc_subsubsection">
2943 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2944</div>
2945
2946<div class="doc_text">
2947
2948<h5>Syntax:</h5>
2949
2950<pre>
2951 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2952</pre>
2953
2954<h5>Overview:</h5>
2955
2956<p>
Dan Gohman6c6dea02008-05-13 18:16:06 +00002957The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2958or array element from an aggregate value.
Dan Gohman74d6faf2008-05-12 23:51:09 +00002959</p>
2960
2961
2962<h5>Arguments:</h5>
2963
2964<p>
2965The first operand of an '<tt>extractvalue</tt>' instruction is a
2966value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohman6c6dea02008-05-13 18:16:06 +00002967type. The operands are constant indices to specify which value to extract
Dan Gohmane5febe42008-05-31 00:58:22 +00002968in a similar manner as indices in a
Dan Gohman74d6faf2008-05-12 23:51:09 +00002969'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2970</p>
2971
2972<h5>Semantics:</h5>
2973
2974<p>
2975The result is the value at the position in the aggregate specified by
2976the index operands.
2977</p>
2978
2979<h5>Example:</h5>
2980
2981<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00002982 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00002983</pre>
2984</div>
2985
2986
2987<!-- _______________________________________________________________________ -->
2988<div class="doc_subsubsection">
2989 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
2990</div>
2991
2992<div class="doc_text">
2993
2994<h5>Syntax:</h5>
2995
2996<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00002997 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00002998</pre>
2999
3000<h5>Overview:</h5>
3001
3002<p>
3003The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohman6c6dea02008-05-13 18:16:06 +00003004into a struct field or array element in an aggregate.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003005</p>
3006
3007
3008<h5>Arguments:</h5>
3009
3010<p>
3011The first operand of an '<tt>insertvalue</tt>' instruction is a
3012value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3013The second operand is a first-class value to insert.
Dan Gohman4f29e422008-05-23 21:53:15 +00003014The following operands are constant indices
Dan Gohmane5febe42008-05-31 00:58:22 +00003015indicating the position at which to insert the value in a similar manner as
Dan Gohman6c6dea02008-05-13 18:16:06 +00003016indices in a
Dan Gohman74d6faf2008-05-12 23:51:09 +00003017'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3018The value to insert must have the same type as the value identified
Dan Gohman6c6dea02008-05-13 18:16:06 +00003019by the indices.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003020
3021<h5>Semantics:</h5>
3022
3023<p>
3024The result is an aggregate of the same type as <tt>val</tt>. Its
3025value is that of <tt>val</tt> except that the value at the position
Dan Gohman6c6dea02008-05-13 18:16:06 +00003026specified by the indices is that of <tt>elt</tt>.
Dan Gohman74d6faf2008-05-12 23:51:09 +00003027</p>
3028
3029<h5>Example:</h5>
3030
3031<pre>
Dan Gohmanb1aab4e2008-06-23 15:26:37 +00003032 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003033</pre>
3034</div>
3035
3036
3037<!-- ======================================================================= -->
3038<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003039 <a name="memoryops">Memory Access and Addressing Operations</a>
3040</div>
3041
3042<div class="doc_text">
3043
3044<p>A key design point of an SSA-based representation is how it
3045represents memory. In LLVM, no memory locations are in SSA form, which
3046makes things very simple. This section describes how to read, write,
3047allocate, and free memory in LLVM.</p>
3048
3049</div>
3050
3051<!-- _______________________________________________________________________ -->
3052<div class="doc_subsubsection">
3053 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3054</div>
3055
3056<div class="doc_text">
3057
3058<h5>Syntax:</h5>
3059
3060<pre>
3061 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3062</pre>
3063
3064<h5>Overview:</h5>
3065
3066<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lambcfe00962007-12-17 01:00:21 +00003067heap and returns a pointer to it. The object is always allocated in the generic
3068address space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003069
3070<h5>Arguments:</h5>
3071
3072<p>The '<tt>malloc</tt>' instruction allocates
3073<tt>sizeof(&lt;type&gt;)*NumElements</tt>
3074bytes of memory from the operating system and returns a pointer of the
3075appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif5082cf42008-02-09 22:24:34 +00003076number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner10368b62008-04-02 00:38:26 +00003077If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif5082cf42008-02-09 22:24:34 +00003078be aligned to at least that boundary. If not specified, or if zero, the target can
3079choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003080
3081<p>'<tt>type</tt>' must be a sized type.</p>
3082
3083<h5>Semantics:</h5>
3084
3085<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner8b094fc2008-04-19 21:01:16 +00003086a pointer is returned. The result of a zero byte allocattion is undefined. The
3087result is null if there is insufficient memory available.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003088
3089<h5>Example:</h5>
3090
3091<pre>
3092 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
3093
3094 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3095 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3096 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3097 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3098 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
3099</pre>
3100</div>
3101
3102<!-- _______________________________________________________________________ -->
3103<div class="doc_subsubsection">
3104 <a name="i_free">'<tt>free</tt>' Instruction</a>
3105</div>
3106
3107<div class="doc_text">
3108
3109<h5>Syntax:</h5>
3110
3111<pre>
3112 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
3113</pre>
3114
3115<h5>Overview:</h5>
3116
3117<p>The '<tt>free</tt>' instruction returns memory back to the unused
3118memory heap to be reallocated in the future.</p>
3119
3120<h5>Arguments:</h5>
3121
3122<p>'<tt>value</tt>' shall be a pointer value that points to a value
3123that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3124instruction.</p>
3125
3126<h5>Semantics:</h5>
3127
3128<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner329d6532008-04-19 22:41:32 +00003129after this instruction executes. If the pointer is null, the operation
3130is a noop.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003131
3132<h5>Example:</h5>
3133
3134<pre>
3135 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3136 free [4 x i8]* %array
3137</pre>
3138</div>
3139
3140<!-- _______________________________________________________________________ -->
3141<div class="doc_subsubsection">
3142 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3143</div>
3144
3145<div class="doc_text">
3146
3147<h5>Syntax:</h5>
3148
3149<pre>
3150 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3151</pre>
3152
3153<h5>Overview:</h5>
3154
3155<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3156currently executing function, to be automatically released when this function
Christopher Lambcfe00962007-12-17 01:00:21 +00003157returns to its caller. The object is always allocated in the generic address
3158space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003159
3160<h5>Arguments:</h5>
3161
3162<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
3163bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif5082cf42008-02-09 22:24:34 +00003164appropriate type to the program. If "NumElements" is specified, it is the
3165number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner10368b62008-04-02 00:38:26 +00003166If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif5082cf42008-02-09 22:24:34 +00003167to be aligned to at least that boundary. If not specified, or if zero, the target
3168can choose to align the allocation on any convenient boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003169
3170<p>'<tt>type</tt>' may be any sized type.</p>
3171
3172<h5>Semantics:</h5>
3173
Chris Lattner8b094fc2008-04-19 21:01:16 +00003174<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3175there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003176memory is automatically released when the function returns. The '<tt>alloca</tt>'
3177instruction is commonly used to represent automatic variables that must
3178have an address available. When the function returns (either with the <tt><a
3179 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner10368b62008-04-02 00:38:26 +00003180instructions), the memory is reclaimed. Allocating zero bytes
3181is legal, but the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003182
3183<h5>Example:</h5>
3184
3185<pre>
3186 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3187 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3188 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3189 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
3190</pre>
3191</div>
3192
3193<!-- _______________________________________________________________________ -->
3194<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3195Instruction</a> </div>
3196<div class="doc_text">
3197<h5>Syntax:</h5>
3198<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
3199<h5>Overview:</h5>
3200<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
3201<h5>Arguments:</h5>
3202<p>The argument to the '<tt>load</tt>' instruction specifies the memory
3203address from which to load. The pointer must point to a <a
3204 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3205marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
3206the number or order of execution of this <tt>load</tt> with other
3207volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3208instructions. </p>
Chris Lattner21003c82008-01-06 21:04:43 +00003209<p>
Chris Lattner10368b62008-04-02 00:38:26 +00003210The optional constant "align" argument specifies the alignment of the operation
Chris Lattner21003c82008-01-06 21:04:43 +00003211(that is, the alignment of the memory address). A value of 0 or an
3212omitted "align" argument means that the operation has the preferential
3213alignment for the target. It is the responsibility of the code emitter
3214to ensure that the alignment information is correct. Overestimating
3215the alignment results in an undefined behavior. Underestimating the
3216alignment may produce less efficient code. An alignment of 1 is always
3217safe.
3218</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003219<h5>Semantics:</h5>
3220<p>The location of memory pointed to is loaded.</p>
3221<h5>Examples:</h5>
3222<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3223 <a
3224 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3225 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
3226</pre>
3227</div>
3228<!-- _______________________________________________________________________ -->
3229<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3230Instruction</a> </div>
3231<div class="doc_text">
3232<h5>Syntax:</h5>
3233<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3234 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3235</pre>
3236<h5>Overview:</h5>
3237<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
3238<h5>Arguments:</h5>
3239<p>There are two arguments to the '<tt>store</tt>' instruction: a value
3240to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner10368b62008-04-02 00:38:26 +00003241operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3242of the '<tt>&lt;value&gt;</tt>'
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003243operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
3244optimizer is not allowed to modify the number or order of execution of
3245this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3246 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner21003c82008-01-06 21:04:43 +00003247<p>
Chris Lattner10368b62008-04-02 00:38:26 +00003248The optional constant "align" argument specifies the alignment of the operation
Chris Lattner21003c82008-01-06 21:04:43 +00003249(that is, the alignment of the memory address). A value of 0 or an
3250omitted "align" argument means that the operation has the preferential
3251alignment for the target. It is the responsibility of the code emitter
3252to ensure that the alignment information is correct. Overestimating
3253the alignment results in an undefined behavior. Underestimating the
3254alignment may produce less efficient code. An alignment of 1 is always
3255safe.
3256</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003257<h5>Semantics:</h5>
3258<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3259at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
3260<h5>Example:</h5>
3261<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling63ffa142007-10-22 05:10:05 +00003262 store i32 3, i32* %ptr <i>; yields {void}</i>
3263 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003264</pre>
3265</div>
3266
3267<!-- _______________________________________________________________________ -->
3268<div class="doc_subsubsection">
3269 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3270</div>
3271
3272<div class="doc_text">
3273<h5>Syntax:</h5>
3274<pre>
3275 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3276</pre>
3277
3278<h5>Overview:</h5>
3279
3280<p>
3281The '<tt>getelementptr</tt>' instruction is used to get the address of a
3282subelement of an aggregate data structure.</p>
3283
3284<h5>Arguments:</h5>
3285
3286<p>This instruction takes a list of integer operands that indicate what
3287elements of the aggregate object to index to. The actual types of the arguments
3288provided depend on the type of the first pointer argument. The
3289'<tt>getelementptr</tt>' instruction is used to index down through the type
3290levels of a structure or to a specific index in an array. When indexing into a
3291structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattnera7d94ba2008-04-24 05:59:56 +00003292into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3293values will be sign extended to 64-bits if required.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003294
3295<p>For example, let's consider a C code fragment and how it gets
3296compiled to LLVM:</p>
3297
3298<div class="doc_code">
3299<pre>
3300struct RT {
3301 char A;
3302 int B[10][20];
3303 char C;
3304};
3305struct ST {
3306 int X;
3307 double Y;
3308 struct RT Z;
3309};
3310
3311int *foo(struct ST *s) {
3312 return &amp;s[1].Z.B[5][13];
3313}
3314</pre>
3315</div>
3316
3317<p>The LLVM code generated by the GCC frontend is:</p>
3318
3319<div class="doc_code">
3320<pre>
3321%RT = type { i8 , [10 x [20 x i32]], i8 }
3322%ST = type { i32, double, %RT }
3323
3324define i32* %foo(%ST* %s) {
3325entry:
3326 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3327 ret i32* %reg
3328}
3329</pre>
3330</div>
3331
3332<h5>Semantics:</h5>
3333
3334<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
3335on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
3336and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
3337<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner10368b62008-04-02 00:38:26 +00003338to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3339structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003340
3341<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
3342type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
3343}</tt>' type, a structure. The second index indexes into the third element of
3344the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3345i8 }</tt>' type, another structure. The third index indexes into the second
3346element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
3347array. The two dimensions of the array are subscripted into, yielding an
3348'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3349to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
3350
3351<p>Note that it is perfectly legal to index partially through a
3352structure, returning a pointer to an inner element. Because of this,
3353the LLVM code for the given testcase is equivalent to:</p>
3354
3355<pre>
3356 define i32* %foo(%ST* %s) {
3357 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
3358 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3359 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
3360 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3361 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3362 ret i32* %t5
3363 }
3364</pre>
3365
3366<p>Note that it is undefined to access an array out of bounds: array and
3367pointer indexes must always be within the defined bounds of the array type.
Chris Lattnera7d94ba2008-04-24 05:59:56 +00003368The one exception for this rule is zero length arrays. These arrays are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003369defined to be accessible as variable length arrays, which requires access
3370beyond the zero'th element.</p>
3371
3372<p>The getelementptr instruction is often confusing. For some more insight
3373into how it works, see <a href="GetElementPtr.html">the getelementptr
3374FAQ</a>.</p>
3375
3376<h5>Example:</h5>
3377
3378<pre>
3379 <i>; yields [12 x i8]*:aptr</i>
3380 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
3381</pre>
3382</div>
3383
3384<!-- ======================================================================= -->
3385<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
3386</div>
3387<div class="doc_text">
3388<p>The instructions in this category are the conversion instructions (casting)
3389which all take a single operand and a type. They perform various bit conversions
3390on the operand.</p>
3391</div>
3392
3393<!-- _______________________________________________________________________ -->
3394<div class="doc_subsubsection">
3395 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3396</div>
3397<div class="doc_text">
3398
3399<h5>Syntax:</h5>
3400<pre>
3401 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3402</pre>
3403
3404<h5>Overview:</h5>
3405<p>
3406The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3407</p>
3408
3409<h5>Arguments:</h5>
3410<p>
3411The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3412be an <a href="#t_integer">integer</a> type, and a type that specifies the size
3413and type of the result, which must be an <a href="#t_integer">integer</a>
3414type. The bit size of <tt>value</tt> must be larger than the bit size of
3415<tt>ty2</tt>. Equal sized types are not allowed.</p>
3416
3417<h5>Semantics:</h5>
3418<p>
3419The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
3420and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3421larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3422It will always truncate bits.</p>
3423
3424<h5>Example:</h5>
3425<pre>
3426 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
3427 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3428 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
3429</pre>
3430</div>
3431
3432<!-- _______________________________________________________________________ -->
3433<div class="doc_subsubsection">
3434 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3435</div>
3436<div class="doc_text">
3437
3438<h5>Syntax:</h5>
3439<pre>
3440 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3441</pre>
3442
3443<h5>Overview:</h5>
3444<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3445<tt>ty2</tt>.</p>
3446
3447
3448<h5>Arguments:</h5>
3449<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
3450<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3451also be of <a href="#t_integer">integer</a> type. The bit size of the
3452<tt>value</tt> must be smaller than the bit size of the destination type,
3453<tt>ty2</tt>.</p>
3454
3455<h5>Semantics:</h5>
3456<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
3457bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
3458
3459<p>When zero extending from i1, the result will always be either 0 or 1.</p>
3460
3461<h5>Example:</h5>
3462<pre>
3463 %X = zext i32 257 to i64 <i>; yields i64:257</i>
3464 %Y = zext i1 true to i32 <i>; yields i32:1</i>
3465</pre>
3466</div>
3467
3468<!-- _______________________________________________________________________ -->
3469<div class="doc_subsubsection">
3470 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3471</div>
3472<div class="doc_text">
3473
3474<h5>Syntax:</h5>
3475<pre>
3476 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3477</pre>
3478
3479<h5>Overview:</h5>
3480<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3481
3482<h5>Arguments:</h5>
3483<p>
3484The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3485<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3486also be of <a href="#t_integer">integer</a> type. The bit size of the
3487<tt>value</tt> must be smaller than the bit size of the destination type,
3488<tt>ty2</tt>.</p>
3489
3490<h5>Semantics:</h5>
3491<p>
3492The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3493bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3494the type <tt>ty2</tt>.</p>
3495
3496<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3497
3498<h5>Example:</h5>
3499<pre>
3500 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3501 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3502</pre>
3503</div>
3504
3505<!-- _______________________________________________________________________ -->
3506<div class="doc_subsubsection">
3507 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3508</div>
3509
3510<div class="doc_text">
3511
3512<h5>Syntax:</h5>
3513
3514<pre>
3515 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3516</pre>
3517
3518<h5>Overview:</h5>
3519<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3520<tt>ty2</tt>.</p>
3521
3522
3523<h5>Arguments:</h5>
3524<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3525 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3526cast it to. The size of <tt>value</tt> must be larger than the size of
3527<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3528<i>no-op cast</i>.</p>
3529
3530<h5>Semantics:</h5>
3531<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3532<a href="#t_floating">floating point</a> type to a smaller
3533<a href="#t_floating">floating point</a> type. If the value cannot fit within
3534the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3535
3536<h5>Example:</h5>
3537<pre>
3538 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3539 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3540</pre>
3541</div>
3542
3543<!-- _______________________________________________________________________ -->
3544<div class="doc_subsubsection">
3545 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3546</div>
3547<div class="doc_text">
3548
3549<h5>Syntax:</h5>
3550<pre>
3551 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3552</pre>
3553
3554<h5>Overview:</h5>
3555<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3556floating point value.</p>
3557
3558<h5>Arguments:</h5>
3559<p>The '<tt>fpext</tt>' instruction takes a
3560<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3561and a <a href="#t_floating">floating point</a> type to cast it to. The source
3562type must be smaller than the destination type.</p>
3563
3564<h5>Semantics:</h5>
3565<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3566<a href="#t_floating">floating point</a> type to a larger
3567<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3568used to make a <i>no-op cast</i> because it always changes bits. Use
3569<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3570
3571<h5>Example:</h5>
3572<pre>
3573 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3574 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3575</pre>
3576</div>
3577
3578<!-- _______________________________________________________________________ -->
3579<div class="doc_subsubsection">
3580 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3581</div>
3582<div class="doc_text">
3583
3584<h5>Syntax:</h5>
3585<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003586 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003587</pre>
3588
3589<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003590<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003591unsigned integer equivalent of type <tt>ty2</tt>.
3592</p>
3593
3594<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003595<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003596scalar or vector <a href="#t_floating">floating point</a> value, and a type
3597to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3598type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3599vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003600
3601<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003602<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003603<a href="#t_floating">floating point</a> operand into the nearest (rounding
3604towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3605the results are undefined.</p>
3606
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003607<h5>Example:</h5>
3608<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003609 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003610 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencere6adee82007-07-31 14:40:14 +00003611 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003612</pre>
3613</div>
3614
3615<!-- _______________________________________________________________________ -->
3616<div class="doc_subsubsection">
3617 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3618</div>
3619<div class="doc_text">
3620
3621<h5>Syntax:</h5>
3622<pre>
3623 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3624</pre>
3625
3626<h5>Overview:</h5>
3627<p>The '<tt>fptosi</tt>' instruction converts
3628<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3629</p>
3630
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003631<h5>Arguments:</h5>
3632<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begeman78246ca2007-11-17 03:58:34 +00003633scalar or vector <a href="#t_floating">floating point</a> value, and a type
3634to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3635type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3636vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003637
3638<h5>Semantics:</h5>
3639<p>The '<tt>fptosi</tt>' instruction converts its
3640<a href="#t_floating">floating point</a> operand into the nearest (rounding
3641towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3642the results are undefined.</p>
3643
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003644<h5>Example:</h5>
3645<pre>
3646 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003647 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003648 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3649</pre>
3650</div>
3651
3652<!-- _______________________________________________________________________ -->
3653<div class="doc_subsubsection">
3654 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3655</div>
3656<div class="doc_text">
3657
3658<h5>Syntax:</h5>
3659<pre>
3660 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3661</pre>
3662
3663<h5>Overview:</h5>
3664<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3665integer and converts that value to the <tt>ty2</tt> type.</p>
3666
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003667<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003668<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3669scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3670to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3671type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3672floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003673
3674<h5>Semantics:</h5>
3675<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3676integer quantity and converts it to the corresponding floating point value. If
3677the value cannot fit in the floating point value, the results are undefined.</p>
3678
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003679<h5>Example:</h5>
3680<pre>
3681 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3682 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3683</pre>
3684</div>
3685
3686<!-- _______________________________________________________________________ -->
3687<div class="doc_subsubsection">
3688 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3689</div>
3690<div class="doc_text">
3691
3692<h5>Syntax:</h5>
3693<pre>
3694 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3695</pre>
3696
3697<h5>Overview:</h5>
3698<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3699integer and converts that value to the <tt>ty2</tt> type.</p>
3700
3701<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00003702<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3703scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3704to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3705type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3706floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003707
3708<h5>Semantics:</h5>
3709<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3710integer quantity and converts it to the corresponding floating point value. If
3711the value cannot fit in the floating point value, the results are undefined.</p>
3712
3713<h5>Example:</h5>
3714<pre>
3715 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3716 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3717</pre>
3718</div>
3719
3720<!-- _______________________________________________________________________ -->
3721<div class="doc_subsubsection">
3722 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3723</div>
3724<div class="doc_text">
3725
3726<h5>Syntax:</h5>
3727<pre>
3728 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3729</pre>
3730
3731<h5>Overview:</h5>
3732<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3733the integer type <tt>ty2</tt>.</p>
3734
3735<h5>Arguments:</h5>
3736<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3737must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3738<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3739
3740<h5>Semantics:</h5>
3741<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3742<tt>ty2</tt> by interpreting the pointer value as an integer and either
3743truncating or zero extending that value to the size of the integer type. If
3744<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3745<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3746are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3747change.</p>
3748
3749<h5>Example:</h5>
3750<pre>
3751 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3752 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3753</pre>
3754</div>
3755
3756<!-- _______________________________________________________________________ -->
3757<div class="doc_subsubsection">
3758 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3759</div>
3760<div class="doc_text">
3761
3762<h5>Syntax:</h5>
3763<pre>
3764 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3765</pre>
3766
3767<h5>Overview:</h5>
3768<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3769a pointer type, <tt>ty2</tt>.</p>
3770
3771<h5>Arguments:</h5>
3772<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3773value to cast, and a type to cast it to, which must be a
3774<a href="#t_pointer">pointer</a> type.
3775
3776<h5>Semantics:</h5>
3777<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3778<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3779the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3780size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3781the size of a pointer then a zero extension is done. If they are the same size,
3782nothing is done (<i>no-op cast</i>).</p>
3783
3784<h5>Example:</h5>
3785<pre>
3786 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3787 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3788 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3789</pre>
3790</div>
3791
3792<!-- _______________________________________________________________________ -->
3793<div class="doc_subsubsection">
3794 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3795</div>
3796<div class="doc_text">
3797
3798<h5>Syntax:</h5>
3799<pre>
3800 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3801</pre>
3802
3803<h5>Overview:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003804
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003805<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3806<tt>ty2</tt> without changing any bits.</p>
3807
3808<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003809
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003810<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3811a first class value, and a type to cast it to, which must also be a <a
3812 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3813and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner6704c212008-05-20 20:48:21 +00003814type is a pointer, the destination type must also be a pointer. This
3815instruction supports bitwise conversion of vectors to integers and to vectors
3816of other types (as long as they have the same size).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003817
3818<h5>Semantics:</h5>
3819<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3820<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3821this conversion. The conversion is done as if the <tt>value</tt> had been
3822stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3823converted to other pointer types with this instruction. To convert pointers to
3824other types, use the <a href="#i_inttoptr">inttoptr</a> or
3825<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3826
3827<h5>Example:</h5>
3828<pre>
3829 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3830 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3831 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3832</pre>
3833</div>
3834
3835<!-- ======================================================================= -->
3836<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3837<div class="doc_text">
3838<p>The instructions in this category are the "miscellaneous"
3839instructions, which defy better classification.</p>
3840</div>
3841
3842<!-- _______________________________________________________________________ -->
3843<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3844</div>
3845<div class="doc_text">
3846<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003847<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003848</pre>
3849<h5>Overview:</h5>
3850<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
Chris Lattner10368b62008-04-02 00:38:26 +00003851of its two integer or pointer operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003852<h5>Arguments:</h5>
3853<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3854the condition code indicating the kind of comparison to perform. It is not
3855a value, just a keyword. The possible condition code are:
3856<ol>
3857 <li><tt>eq</tt>: equal</li>
3858 <li><tt>ne</tt>: not equal </li>
3859 <li><tt>ugt</tt>: unsigned greater than</li>
3860 <li><tt>uge</tt>: unsigned greater or equal</li>
3861 <li><tt>ult</tt>: unsigned less than</li>
3862 <li><tt>ule</tt>: unsigned less or equal</li>
3863 <li><tt>sgt</tt>: signed greater than</li>
3864 <li><tt>sge</tt>: signed greater or equal</li>
3865 <li><tt>slt</tt>: signed less than</li>
3866 <li><tt>sle</tt>: signed less or equal</li>
3867</ol>
3868<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3869<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3870<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003871<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003872the condition code given as <tt>cond</tt>. The comparison performed always
3873yields a <a href="#t_primitive">i1</a> result, as follows:
3874<ol>
3875 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3876 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3877 </li>
3878 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3879 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3880 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003881 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003882 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003883 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003884 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003885 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003886 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003887 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003888 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003889 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003890 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003891 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003892 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003893 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003894 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greifd9068fe2008-08-07 21:46:00 +00003895 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003896</ol>
3897<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3898values are compared as if they were integers.</p>
3899
3900<h5>Example:</h5>
3901<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3902 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3903 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3904 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3905 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3906 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3907</pre>
3908</div>
3909
3910<!-- _______________________________________________________________________ -->
3911<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3912</div>
3913<div class="doc_text">
3914<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003915<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003916</pre>
3917<h5>Overview:</h5>
3918<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3919of its floating point operands.</p>
3920<h5>Arguments:</h5>
3921<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3922the condition code indicating the kind of comparison to perform. It is not
3923a value, just a keyword. The possible condition code are:
3924<ol>
3925 <li><tt>false</tt>: no comparison, always returns false</li>
3926 <li><tt>oeq</tt>: ordered and equal</li>
3927 <li><tt>ogt</tt>: ordered and greater than </li>
3928 <li><tt>oge</tt>: ordered and greater than or equal</li>
3929 <li><tt>olt</tt>: ordered and less than </li>
3930 <li><tt>ole</tt>: ordered and less than or equal</li>
3931 <li><tt>one</tt>: ordered and not equal</li>
3932 <li><tt>ord</tt>: ordered (no nans)</li>
3933 <li><tt>ueq</tt>: unordered or equal</li>
3934 <li><tt>ugt</tt>: unordered or greater than </li>
3935 <li><tt>uge</tt>: unordered or greater than or equal</li>
3936 <li><tt>ult</tt>: unordered or less than </li>
3937 <li><tt>ule</tt>: unordered or less than or equal</li>
3938 <li><tt>une</tt>: unordered or not equal</li>
3939 <li><tt>uno</tt>: unordered (either nans)</li>
3940 <li><tt>true</tt>: no comparison, always returns true</li>
3941</ol>
3942<p><i>Ordered</i> means that neither operand is a QNAN while
3943<i>unordered</i> means that either operand may be a QNAN.</p>
3944<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3945<a href="#t_floating">floating point</a> typed. They must have identical
3946types.</p>
3947<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003948<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00003949according to the condition code given as <tt>cond</tt>. The comparison performed
3950always yields a <a href="#t_primitive">i1</a> result, as follows:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003951<ol>
3952 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3953 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003954 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003955 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003956 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003957 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003958 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003959 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003960 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003961 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003962 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003963 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greifd9068fe2008-08-07 21:46:00 +00003964 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003965 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3966 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003967 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003968 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003969 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003970 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003971 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003972 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003973 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003974 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003975 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003976 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greifd9068fe2008-08-07 21:46:00 +00003977 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003978 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3979 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3980</ol>
3981
3982<h5>Example:</h5>
3983<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3984 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3985 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3986 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3987</pre>
3988</div>
3989
3990<!-- _______________________________________________________________________ -->
Nate Begeman646fa482008-05-12 19:01:56 +00003991<div class="doc_subsubsection">
3992 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
3993</div>
3994<div class="doc_text">
3995<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003996<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begeman646fa482008-05-12 19:01:56 +00003997</pre>
3998<h5>Overview:</h5>
3999<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4000element-wise comparison of its two integer vector operands.</p>
4001<h5>Arguments:</h5>
4002<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4003the condition code indicating the kind of comparison to perform. It is not
4004a value, just a keyword. The possible condition code are:
4005<ol>
4006 <li><tt>eq</tt>: equal</li>
4007 <li><tt>ne</tt>: not equal </li>
4008 <li><tt>ugt</tt>: unsigned greater than</li>
4009 <li><tt>uge</tt>: unsigned greater or equal</li>
4010 <li><tt>ult</tt>: unsigned less than</li>
4011 <li><tt>ule</tt>: unsigned less or equal</li>
4012 <li><tt>sgt</tt>: signed greater than</li>
4013 <li><tt>sge</tt>: signed greater or equal</li>
4014 <li><tt>slt</tt>: signed less than</li>
4015 <li><tt>sle</tt>: signed less or equal</li>
4016</ol>
4017<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4018<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4019<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004020<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00004021according to the condition code given as <tt>cond</tt>. The comparison yields a
4022<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4023identical type as the values being compared. The most significant bit in each
4024element is 1 if the element-wise comparison evaluates to true, and is 0
4025otherwise. All other bits of the result are undefined. The condition codes
4026are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4027instruction</a>.
4028
4029<h5>Example:</h5>
4030<pre>
Chris Lattner6704c212008-05-20 20:48:21 +00004031 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4032 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004033</pre>
4034</div>
4035
4036<!-- _______________________________________________________________________ -->
4037<div class="doc_subsubsection">
4038 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4039</div>
4040<div class="doc_text">
4041<h5>Syntax:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004042<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begeman646fa482008-05-12 19:01:56 +00004043<h5>Overview:</h5>
4044<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4045element-wise comparison of its two floating point vector operands. The output
4046elements have the same width as the input elements.</p>
4047<h5>Arguments:</h5>
4048<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4049the condition code indicating the kind of comparison to perform. It is not
4050a value, just a keyword. The possible condition code are:
4051<ol>
4052 <li><tt>false</tt>: no comparison, always returns false</li>
4053 <li><tt>oeq</tt>: ordered and equal</li>
4054 <li><tt>ogt</tt>: ordered and greater than </li>
4055 <li><tt>oge</tt>: ordered and greater than or equal</li>
4056 <li><tt>olt</tt>: ordered and less than </li>
4057 <li><tt>ole</tt>: ordered and less than or equal</li>
4058 <li><tt>one</tt>: ordered and not equal</li>
4059 <li><tt>ord</tt>: ordered (no nans)</li>
4060 <li><tt>ueq</tt>: unordered or equal</li>
4061 <li><tt>ugt</tt>: unordered or greater than </li>
4062 <li><tt>uge</tt>: unordered or greater than or equal</li>
4063 <li><tt>ult</tt>: unordered or less than </li>
4064 <li><tt>ule</tt>: unordered or less than or equal</li>
4065 <li><tt>une</tt>: unordered or not equal</li>
4066 <li><tt>uno</tt>: unordered (either nans)</li>
4067 <li><tt>true</tt>: no comparison, always returns true</li>
4068</ol>
4069<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4070<a href="#t_floating">floating point</a> typed. They must also be identical
4071types.</p>
4072<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004073<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begeman646fa482008-05-12 19:01:56 +00004074according to the condition code given as <tt>cond</tt>. The comparison yields a
4075<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4076an identical number of elements as the values being compared, and each element
4077having identical with to the width of the floating point elements. The most
4078significant bit in each element is 1 if the element-wise comparison evaluates to
4079true, and is 0 otherwise. All other bits of the result are undefined. The
4080condition codes are evaluated identically to the
4081<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4082
4083<h5>Example:</h5>
4084<pre>
Chris Lattner6704c212008-05-20 20:48:21 +00004085 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4086 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begeman646fa482008-05-12 19:01:56 +00004087</pre>
4088</div>
4089
4090<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00004091<div class="doc_subsubsection">
4092 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4093</div>
4094
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004095<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00004096
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004097<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004098
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004099<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4100<h5>Overview:</h5>
4101<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4102the SSA graph representing the function.</p>
4103<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004104
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004105<p>The type of the incoming values is specified with the first type
4106field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4107as arguments, with one pair for each predecessor basic block of the
4108current block. Only values of <a href="#t_firstclass">first class</a>
4109type may be used as the value arguments to the PHI node. Only labels
4110may be used as the label arguments.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004111
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004112<p>There must be no non-phi instructions between the start of a basic
4113block and the PHI instructions: i.e. PHI instructions must be first in
4114a basic block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004115
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004116<h5>Semantics:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004117
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004118<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4119specified by the pair corresponding to the predecessor basic block that executed
4120just prior to the current block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004121
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004122<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004123<pre>
4124Loop: ; Infinite loop that counts from 0 on up...
4125 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4126 %nextindvar = add i32 %indvar, 1
4127 br label %Loop
4128</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004129</div>
4130
4131<!-- _______________________________________________________________________ -->
4132<div class="doc_subsubsection">
4133 <a name="i_select">'<tt>select</tt>' Instruction</a>
4134</div>
4135
4136<div class="doc_text">
4137
4138<h5>Syntax:</h5>
4139
4140<pre>
4141 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4142</pre>
4143
4144<h5>Overview:</h5>
4145
4146<p>
4147The '<tt>select</tt>' instruction is used to choose one value based on a
4148condition, without branching.
4149</p>
4150
4151
4152<h5>Arguments:</h5>
4153
4154<p>
Chris Lattner6704c212008-05-20 20:48:21 +00004155The '<tt>select</tt>' instruction requires an 'i1' value indicating the
4156condition, and two values of the same <a href="#t_firstclass">first class</a>
4157type. If the val1/val2 are vectors, the entire vectors are selected, not
4158individual elements.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004159</p>
4160
4161<h5>Semantics:</h5>
4162
4163<p>
Chris Lattner6704c212008-05-20 20:48:21 +00004164If the i1 condition evaluates is 1, the instruction returns the first
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004165value argument; otherwise, it returns the second value argument.
4166</p>
4167
4168<h5>Example:</h5>
4169
4170<pre>
4171 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
4172</pre>
4173</div>
4174
4175
4176<!-- _______________________________________________________________________ -->
4177<div class="doc_subsubsection">
4178 <a name="i_call">'<tt>call</tt>' Instruction</a>
4179</div>
4180
4181<div class="doc_text">
4182
4183<h5>Syntax:</h5>
4184<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004185 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004186</pre>
4187
4188<h5>Overview:</h5>
4189
4190<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
4191
4192<h5>Arguments:</h5>
4193
4194<p>This instruction requires several arguments:</p>
4195
4196<ol>
4197 <li>
4198 <p>The optional "tail" marker indicates whether the callee function accesses
4199 any allocas or varargs in the caller. If the "tail" marker is present, the
4200 function call is eligible for tail call optimization. Note that calls may
4201 be marked "tail" even if they do not occur before a <a
4202 href="#i_ret"><tt>ret</tt></a> instruction.
4203 </li>
4204 <li>
4205 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
4206 convention</a> the call should use. If none is specified, the call defaults
4207 to using C calling conventions.
4208 </li>
4209 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004210 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4211 the type of the return value. Functions that return no value are marked
4212 <tt><a href="#t_void">void</a></tt>.</p>
4213 </li>
4214 <li>
4215 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4216 value being invoked. The argument types must match the types implied by
4217 this signature. This type can be omitted if the function is not varargs
4218 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004219 </li>
4220 <li>
4221 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4222 be invoked. In most cases, this is a direct function invocation, but
4223 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
4224 to function value.</p>
4225 </li>
4226 <li>
4227 <p>'<tt>function args</tt>': argument list whose types match the
4228 function signature argument types. All arguments must be of
4229 <a href="#t_firstclass">first class</a> type. If the function signature
4230 indicates the function accepts a variable number of arguments, the extra
4231 arguments can be specified.</p>
4232 </li>
4233</ol>
4234
4235<h5>Semantics:</h5>
4236
4237<p>The '<tt>call</tt>' instruction is used to cause control flow to
4238transfer to a specified function, with its incoming arguments bound to
4239the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4240instruction in the called function, control flow continues with the
4241instruction after the function call, and the return value of the
Chris Lattner5e893ef2008-03-21 17:24:17 +00004242function is bound to the result argument. If the callee returns multiple
4243values then the return values of the function are only accessible through
4244the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004245
4246<h5>Example:</h5>
4247
4248<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004249 %retval = call i32 @test(i32 %argc)
Chris Lattner5e893ef2008-03-21 17:24:17 +00004250 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4251 %X = tail call i32 @foo() <i>; yields i32</i>
4252 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4253 call void %foo(i8 97 signext)
Devang Patela3cc5372008-03-10 20:49:15 +00004254
4255 %struct.A = type { i32, i8 }
Chris Lattner5e893ef2008-03-21 17:24:17 +00004256 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4257 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4258 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004259</pre>
4260
4261</div>
4262
4263<!-- _______________________________________________________________________ -->
4264<div class="doc_subsubsection">
4265 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
4266</div>
4267
4268<div class="doc_text">
4269
4270<h5>Syntax:</h5>
4271
4272<pre>
4273 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
4274</pre>
4275
4276<h5>Overview:</h5>
4277
4278<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
4279the "variable argument" area of a function call. It is used to implement the
4280<tt>va_arg</tt> macro in C.</p>
4281
4282<h5>Arguments:</h5>
4283
4284<p>This instruction takes a <tt>va_list*</tt> value and the type of
4285the argument. It returns a value of the specified argument type and
4286increments the <tt>va_list</tt> to point to the next argument. The
4287actual type of <tt>va_list</tt> is target specific.</p>
4288
4289<h5>Semantics:</h5>
4290
4291<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4292type from the specified <tt>va_list</tt> and causes the
4293<tt>va_list</tt> to point to the next argument. For more information,
4294see the variable argument handling <a href="#int_varargs">Intrinsic
4295Functions</a>.</p>
4296
4297<p>It is legal for this instruction to be called in a function which does not
4298take a variable number of arguments, for example, the <tt>vfprintf</tt>
4299function.</p>
4300
4301<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
4302href="#intrinsics">intrinsic function</a> because it takes a type as an
4303argument.</p>
4304
4305<h5>Example:</h5>
4306
4307<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4308
4309</div>
4310
Devang Patela3cc5372008-03-10 20:49:15 +00004311<!-- _______________________________________________________________________ -->
4312<div class="doc_subsubsection">
4313 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4314</div>
4315
4316<div class="doc_text">
4317
4318<h5>Syntax:</h5>
4319<pre>
Chris Lattneree9da3f2008-03-21 17:20:51 +00004320 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patela3cc5372008-03-10 20:49:15 +00004321</pre>
Chris Lattneree9da3f2008-03-21 17:20:51 +00004322
Devang Patela3cc5372008-03-10 20:49:15 +00004323<h5>Overview:</h5>
4324
4325<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattneree9da3f2008-03-21 17:20:51 +00004326from a '<tt><a href="#i_call">call</a></tt>'
4327or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4328results.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004329
4330<h5>Arguments:</h5>
4331
Chris Lattneree9da3f2008-03-21 17:20:51 +00004332<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattnerd8dd3522008-04-23 04:06:52 +00004333first argument, or an undef value. The value must have <a
4334href="#t_struct">structure type</a>. The second argument is a constant
4335unsigned index value which must be in range for the number of values returned
4336by the call.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004337
4338<h5>Semantics:</h5>
4339
Chris Lattneree9da3f2008-03-21 17:20:51 +00004340<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4341'<tt>index</tt>' from the aggregate value.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00004342
4343<h5>Example:</h5>
4344
4345<pre>
4346 %struct.A = type { i32, i8 }
4347
4348 %r = call %struct.A @foo()
Chris Lattneree9da3f2008-03-21 17:20:51 +00004349 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4350 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patela3cc5372008-03-10 20:49:15 +00004351 add i32 %gr, 42
4352 add i8 %gr1, 41
4353</pre>
4354
4355</div>
4356
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004357<!-- *********************************************************************** -->
4358<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4359<!-- *********************************************************************** -->
4360
4361<div class="doc_text">
4362
4363<p>LLVM supports the notion of an "intrinsic function". These functions have
4364well known names and semantics and are required to follow certain restrictions.
4365Overall, these intrinsics represent an extension mechanism for the LLVM
4366language that does not require changing all of the transformations in LLVM when
4367adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
4368
4369<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
4370prefix is reserved in LLVM for intrinsic names; thus, function names may not
4371begin with this prefix. Intrinsic functions must always be external functions:
4372you cannot define the body of intrinsic functions. Intrinsic functions may
4373only be used in call or invoke instructions: it is illegal to take the address
4374of an intrinsic function. Additionally, because intrinsic functions are part
4375of the LLVM language, it is required if any are added that they be documented
4376here.</p>
4377
Chandler Carrutha228e392007-08-04 01:51:18 +00004378<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4379a family of functions that perform the same operation but on different data
4380types. Because LLVM can represent over 8 million different integer types,
4381overloading is used commonly to allow an intrinsic function to operate on any
4382integer type. One or more of the argument types or the result type can be
4383overloaded to accept any integer type. Argument types may also be defined as
4384exactly matching a previous argument's type or the result type. This allows an
4385intrinsic function which accepts multiple arguments, but needs all of them to
4386be of the same type, to only be overloaded with respect to a single argument or
4387the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004388
Chandler Carrutha228e392007-08-04 01:51:18 +00004389<p>Overloaded intrinsics will have the names of its overloaded argument types
4390encoded into its function name, each preceded by a period. Only those types
4391which are overloaded result in a name suffix. Arguments whose type is matched
4392against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4393take an integer of any width and returns an integer of exactly the same integer
4394width. This leads to a family of functions such as
4395<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4396Only one type, the return type, is overloaded, and only one type suffix is
4397required. Because the argument's type is matched against the return type, it
4398does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004399
4400<p>To learn how to add an intrinsic function, please see the
4401<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
4402</p>
4403
4404</div>
4405
4406<!-- ======================================================================= -->
4407<div class="doc_subsection">
4408 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4409</div>
4410
4411<div class="doc_text">
4412
4413<p>Variable argument support is defined in LLVM with the <a
4414 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
4415intrinsic functions. These functions are related to the similarly
4416named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
4417
4418<p>All of these functions operate on arguments that use a
4419target-specific value type "<tt>va_list</tt>". The LLVM assembly
4420language reference manual does not define what this type is, so all
4421transformations should be prepared to handle these functions regardless of
4422the type used.</p>
4423
4424<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
4425instruction and the variable argument handling intrinsic functions are
4426used.</p>
4427
4428<div class="doc_code">
4429<pre>
4430define i32 @test(i32 %X, ...) {
4431 ; Initialize variable argument processing
4432 %ap = alloca i8*
4433 %ap2 = bitcast i8** %ap to i8*
4434 call void @llvm.va_start(i8* %ap2)
4435
4436 ; Read a single integer argument
4437 %tmp = va_arg i8** %ap, i32
4438
4439 ; Demonstrate usage of llvm.va_copy and llvm.va_end
4440 %aq = alloca i8*
4441 %aq2 = bitcast i8** %aq to i8*
4442 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
4443 call void @llvm.va_end(i8* %aq2)
4444
4445 ; Stop processing of arguments.
4446 call void @llvm.va_end(i8* %ap2)
4447 ret i32 %tmp
4448}
4449
4450declare void @llvm.va_start(i8*)
4451declare void @llvm.va_copy(i8*, i8*)
4452declare void @llvm.va_end(i8*)
4453</pre>
4454</div>
4455
4456</div>
4457
4458<!-- _______________________________________________________________________ -->
4459<div class="doc_subsubsection">
4460 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
4461</div>
4462
4463
4464<div class="doc_text">
4465<h5>Syntax:</h5>
4466<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
4467<h5>Overview:</h5>
4468<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4469<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4470href="#i_va_arg">va_arg</a></tt>.</p>
4471
4472<h5>Arguments:</h5>
4473
4474<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4475
4476<h5>Semantics:</h5>
4477
4478<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4479macro available in C. In a target-dependent way, it initializes the
4480<tt>va_list</tt> element to which the argument points, so that the next call to
4481<tt>va_arg</tt> will produce the first variable argument passed to the function.
4482Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
4483last argument of the function as the compiler can figure that out.</p>
4484
4485</div>
4486
4487<!-- _______________________________________________________________________ -->
4488<div class="doc_subsubsection">
4489 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
4490</div>
4491
4492<div class="doc_text">
4493<h5>Syntax:</h5>
4494<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
4495<h5>Overview:</h5>
4496
4497<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
4498which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
4499or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
4500
4501<h5>Arguments:</h5>
4502
4503<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
4504
4505<h5>Semantics:</h5>
4506
4507<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
4508macro available in C. In a target-dependent way, it destroys the
4509<tt>va_list</tt> element to which the argument points. Calls to <a
4510href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4511<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4512<tt>llvm.va_end</tt>.</p>
4513
4514</div>
4515
4516<!-- _______________________________________________________________________ -->
4517<div class="doc_subsubsection">
4518 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
4519</div>
4520
4521<div class="doc_text">
4522
4523<h5>Syntax:</h5>
4524
4525<pre>
4526 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
4527</pre>
4528
4529<h5>Overview:</h5>
4530
4531<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4532from the source argument list to the destination argument list.</p>
4533
4534<h5>Arguments:</h5>
4535
4536<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
4537The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
4538
4539
4540<h5>Semantics:</h5>
4541
4542<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4543macro available in C. In a target-dependent way, it copies the source
4544<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4545intrinsic is necessary because the <tt><a href="#int_va_start">
4546llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4547example, memory allocation.</p>
4548
4549</div>
4550
4551<!-- ======================================================================= -->
4552<div class="doc_subsection">
4553 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4554</div>
4555
4556<div class="doc_text">
4557
4558<p>
4559LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner96451482008-08-05 18:29:16 +00004560Collection</a> (GC) requires the implementation and generation of these
4561intrinsics.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004562These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
4563stack</a>, as well as garbage collector implementations that require <a
4564href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
4565Front-ends for type-safe garbage collected languages should generate these
4566intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4567href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4568</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00004569
4570<p>The garbage collection intrinsics only operate on objects in the generic
4571 address space (address space zero).</p>
4572
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004573</div>
4574
4575<!-- _______________________________________________________________________ -->
4576<div class="doc_subsubsection">
4577 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
4578</div>
4579
4580<div class="doc_text">
4581
4582<h5>Syntax:</h5>
4583
4584<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004585 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004586</pre>
4587
4588<h5>Overview:</h5>
4589
4590<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
4591the code generator, and allows some metadata to be associated with it.</p>
4592
4593<h5>Arguments:</h5>
4594
4595<p>The first argument specifies the address of a stack object that contains the
4596root pointer. The second pointer (which must be either a constant or a global
4597value address) contains the meta-data to be associated with the root.</p>
4598
4599<h5>Semantics:</h5>
4600
Chris Lattnera7d94ba2008-04-24 05:59:56 +00004601<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004602location. At compile-time, the code generator generates information to allow
Gordon Henriksen40393542007-12-25 02:31:26 +00004603the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4604intrinsic may only be used in a function which <a href="#gc">specifies a GC
4605algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004606
4607</div>
4608
4609
4610<!-- _______________________________________________________________________ -->
4611<div class="doc_subsubsection">
4612 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
4613</div>
4614
4615<div class="doc_text">
4616
4617<h5>Syntax:</h5>
4618
4619<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004620 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004621</pre>
4622
4623<h5>Overview:</h5>
4624
4625<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4626locations, allowing garbage collector implementations that require read
4627barriers.</p>
4628
4629<h5>Arguments:</h5>
4630
4631<p>The second argument is the address to read from, which should be an address
4632allocated from the garbage collector. The first object is a pointer to the
4633start of the referenced object, if needed by the language runtime (otherwise
4634null).</p>
4635
4636<h5>Semantics:</h5>
4637
4638<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4639instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004640garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4641may only be used in a function which <a href="#gc">specifies a GC
4642algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004643
4644</div>
4645
4646
4647<!-- _______________________________________________________________________ -->
4648<div class="doc_subsubsection">
4649 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
4650</div>
4651
4652<div class="doc_text">
4653
4654<h5>Syntax:</h5>
4655
4656<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004657 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004658</pre>
4659
4660<h5>Overview:</h5>
4661
4662<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4663locations, allowing garbage collector implementations that require write
4664barriers (such as generational or reference counting collectors).</p>
4665
4666<h5>Arguments:</h5>
4667
4668<p>The first argument is the reference to store, the second is the start of the
4669object to store it to, and the third is the address of the field of Obj to
4670store to. If the runtime does not require a pointer to the object, Obj may be
4671null.</p>
4672
4673<h5>Semantics:</h5>
4674
4675<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4676instruction, but may be replaced with substantially more complex code by the
Gordon Henriksen40393542007-12-25 02:31:26 +00004677garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4678may only be used in a function which <a href="#gc">specifies a GC
4679algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004680
4681</div>
4682
4683
4684
4685<!-- ======================================================================= -->
4686<div class="doc_subsection">
4687 <a name="int_codegen">Code Generator Intrinsics</a>
4688</div>
4689
4690<div class="doc_text">
4691<p>
4692These intrinsics are provided by LLVM to expose special features that may only
4693be implemented with code generator support.
4694</p>
4695
4696</div>
4697
4698<!-- _______________________________________________________________________ -->
4699<div class="doc_subsubsection">
4700 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4701</div>
4702
4703<div class="doc_text">
4704
4705<h5>Syntax:</h5>
4706<pre>
4707 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4708</pre>
4709
4710<h5>Overview:</h5>
4711
4712<p>
4713The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4714target-specific value indicating the return address of the current function
4715or one of its callers.
4716</p>
4717
4718<h5>Arguments:</h5>
4719
4720<p>
4721The argument to this intrinsic indicates which function to return the address
4722for. Zero indicates the calling function, one indicates its caller, etc. The
4723argument is <b>required</b> to be a constant integer value.
4724</p>
4725
4726<h5>Semantics:</h5>
4727
4728<p>
4729The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4730the return address of the specified call frame, or zero if it cannot be
4731identified. The value returned by this intrinsic is likely to be incorrect or 0
4732for arguments other than zero, so it should only be used for debugging purposes.
4733</p>
4734
4735<p>
4736Note that calling this intrinsic does not prevent function inlining or other
4737aggressive transformations, so the value returned may not be that of the obvious
4738source-language caller.
4739</p>
4740</div>
4741
4742
4743<!-- _______________________________________________________________________ -->
4744<div class="doc_subsubsection">
4745 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4746</div>
4747
4748<div class="doc_text">
4749
4750<h5>Syntax:</h5>
4751<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004752 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004753</pre>
4754
4755<h5>Overview:</h5>
4756
4757<p>
4758The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4759target-specific frame pointer value for the specified stack frame.
4760</p>
4761
4762<h5>Arguments:</h5>
4763
4764<p>
4765The argument to this intrinsic indicates which function to return the frame
4766pointer for. Zero indicates the calling function, one indicates its caller,
4767etc. The argument is <b>required</b> to be a constant integer value.
4768</p>
4769
4770<h5>Semantics:</h5>
4771
4772<p>
4773The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4774the frame address of the specified call frame, or zero if it cannot be
4775identified. The value returned by this intrinsic is likely to be incorrect or 0
4776for arguments other than zero, so it should only be used for debugging purposes.
4777</p>
4778
4779<p>
4780Note that calling this intrinsic does not prevent function inlining or other
4781aggressive transformations, so the value returned may not be that of the obvious
4782source-language caller.
4783</p>
4784</div>
4785
4786<!-- _______________________________________________________________________ -->
4787<div class="doc_subsubsection">
4788 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4789</div>
4790
4791<div class="doc_text">
4792
4793<h5>Syntax:</h5>
4794<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004795 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004796</pre>
4797
4798<h5>Overview:</h5>
4799
4800<p>
4801The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4802the function stack, for use with <a href="#int_stackrestore">
4803<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4804features like scoped automatic variable sized arrays in C99.
4805</p>
4806
4807<h5>Semantics:</h5>
4808
4809<p>
4810This intrinsic returns a opaque pointer value that can be passed to <a
4811href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4812<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4813<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4814state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4815practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4816that were allocated after the <tt>llvm.stacksave</tt> was executed.
4817</p>
4818
4819</div>
4820
4821<!-- _______________________________________________________________________ -->
4822<div class="doc_subsubsection">
4823 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4824</div>
4825
4826<div class="doc_text">
4827
4828<h5>Syntax:</h5>
4829<pre>
4830 declare void @llvm.stackrestore(i8 * %ptr)
4831</pre>
4832
4833<h5>Overview:</h5>
4834
4835<p>
4836The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4837the function stack to the state it was in when the corresponding <a
4838href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4839useful for implementing language features like scoped automatic variable sized
4840arrays in C99.
4841</p>
4842
4843<h5>Semantics:</h5>
4844
4845<p>
4846See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4847</p>
4848
4849</div>
4850
4851
4852<!-- _______________________________________________________________________ -->
4853<div class="doc_subsubsection">
4854 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4855</div>
4856
4857<div class="doc_text">
4858
4859<h5>Syntax:</h5>
4860<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004861 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004862</pre>
4863
4864<h5>Overview:</h5>
4865
4866
4867<p>
4868The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4869a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4870no
4871effect on the behavior of the program but can change its performance
4872characteristics.
4873</p>
4874
4875<h5>Arguments:</h5>
4876
4877<p>
4878<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4879determining if the fetch should be for a read (0) or write (1), and
4880<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4881locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4882<tt>locality</tt> arguments must be constant integers.
4883</p>
4884
4885<h5>Semantics:</h5>
4886
4887<p>
4888This intrinsic does not modify the behavior of the program. In particular,
4889prefetches cannot trap and do not produce a value. On targets that support this
4890intrinsic, the prefetch can provide hints to the processor cache for better
4891performance.
4892</p>
4893
4894</div>
4895
4896<!-- _______________________________________________________________________ -->
4897<div class="doc_subsubsection">
4898 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4899</div>
4900
4901<div class="doc_text">
4902
4903<h5>Syntax:</h5>
4904<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004905 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004906</pre>
4907
4908<h5>Overview:</h5>
4909
4910
4911<p>
4912The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattner96451482008-08-05 18:29:16 +00004913(PC) in a region of
4914code to simulators and other tools. The method is target specific, but it is
4915expected that the marker will use exported symbols to transmit the PC of the
4916marker.
4917The marker makes no guarantees that it will remain with any specific instruction
4918after optimizations. It is possible that the presence of a marker will inhibit
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004919optimizations. The intended use is to be inserted after optimizations to allow
4920correlations of simulation runs.
4921</p>
4922
4923<h5>Arguments:</h5>
4924
4925<p>
4926<tt>id</tt> is a numerical id identifying the marker.
4927</p>
4928
4929<h5>Semantics:</h5>
4930
4931<p>
4932This intrinsic does not modify the behavior of the program. Backends that do not
4933support this intrinisic may ignore it.
4934</p>
4935
4936</div>
4937
4938<!-- _______________________________________________________________________ -->
4939<div class="doc_subsubsection">
4940 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4941</div>
4942
4943<div class="doc_text">
4944
4945<h5>Syntax:</h5>
4946<pre>
4947 declare i64 @llvm.readcyclecounter( )
4948</pre>
4949
4950<h5>Overview:</h5>
4951
4952
4953<p>
4954The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4955counter register (or similar low latency, high accuracy clocks) on those targets
4956that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4957As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4958should only be used for small timings.
4959</p>
4960
4961<h5>Semantics:</h5>
4962
4963<p>
4964When directly supported, reading the cycle counter should not modify any memory.
4965Implementations are allowed to either return a application specific value or a
4966system wide value. On backends without support, this is lowered to a constant 0.
4967</p>
4968
4969</div>
4970
4971<!-- ======================================================================= -->
4972<div class="doc_subsection">
4973 <a name="int_libc">Standard C Library Intrinsics</a>
4974</div>
4975
4976<div class="doc_text">
4977<p>
4978LLVM provides intrinsics for a few important standard C library functions.
4979These intrinsics allow source-language front-ends to pass information about the
4980alignment of the pointer arguments to the code generator, providing opportunity
4981for more efficient code generation.
4982</p>
4983
4984</div>
4985
4986<!-- _______________________________________________________________________ -->
4987<div class="doc_subsubsection">
4988 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4989</div>
4990
4991<div class="doc_text">
4992
4993<h5>Syntax:</h5>
4994<pre>
4995 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4996 i32 &lt;len&gt;, i32 &lt;align&gt;)
4997 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4998 i64 &lt;len&gt;, i32 &lt;align&gt;)
4999</pre>
5000
5001<h5>Overview:</h5>
5002
5003<p>
5004The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5005location to the destination location.
5006</p>
5007
5008<p>
5009Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5010intrinsics do not return a value, and takes an extra alignment argument.
5011</p>
5012
5013<h5>Arguments:</h5>
5014
5015<p>
5016The first argument is a pointer to the destination, the second is a pointer to
5017the source. The third argument is an integer argument
5018specifying the number of bytes to copy, and the fourth argument is the alignment
5019of the source and destination locations.
5020</p>
5021
5022<p>
5023If the call to this intrinisic has an alignment value that is not 0 or 1, then
5024the caller guarantees that both the source and destination pointers are aligned
5025to that boundary.
5026</p>
5027
5028<h5>Semantics:</h5>
5029
5030<p>
5031The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
5032location to the destination location, which are not allowed to overlap. It
5033copies "len" bytes of memory over. If the argument is known to be aligned to
5034some boundary, this can be specified as the fourth argument, otherwise it should
5035be set to 0 or 1.
5036</p>
5037</div>
5038
5039
5040<!-- _______________________________________________________________________ -->
5041<div class="doc_subsubsection">
5042 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
5043</div>
5044
5045<div class="doc_text">
5046
5047<h5>Syntax:</h5>
5048<pre>
5049 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5050 i32 &lt;len&gt;, i32 &lt;align&gt;)
5051 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5052 i64 &lt;len&gt;, i32 &lt;align&gt;)
5053</pre>
5054
5055<h5>Overview:</h5>
5056
5057<p>
5058The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5059location to the destination location. It is similar to the
Chris Lattnerdba16ea2008-01-06 19:51:52 +00005060'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005061</p>
5062
5063<p>
5064Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5065intrinsics do not return a value, and takes an extra alignment argument.
5066</p>
5067
5068<h5>Arguments:</h5>
5069
5070<p>
5071The first argument is a pointer to the destination, the second is a pointer to
5072the source. The third argument is an integer argument
5073specifying the number of bytes to copy, and the fourth argument is the alignment
5074of the source and destination locations.
5075</p>
5076
5077<p>
5078If the call to this intrinisic has an alignment value that is not 0 or 1, then
5079the caller guarantees that the source and destination pointers are aligned to
5080that boundary.
5081</p>
5082
5083<h5>Semantics:</h5>
5084
5085<p>
5086The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
5087location to the destination location, which may overlap. It
5088copies "len" bytes of memory over. If the argument is known to be aligned to
5089some boundary, this can be specified as the fourth argument, otherwise it should
5090be set to 0 or 1.
5091</p>
5092</div>
5093
5094
5095<!-- _______________________________________________________________________ -->
5096<div class="doc_subsubsection">
5097 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
5098</div>
5099
5100<div class="doc_text">
5101
5102<h5>Syntax:</h5>
5103<pre>
5104 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5105 i32 &lt;len&gt;, i32 &lt;align&gt;)
5106 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5107 i64 &lt;len&gt;, i32 &lt;align&gt;)
5108</pre>
5109
5110<h5>Overview:</h5>
5111
5112<p>
5113The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
5114byte value.
5115</p>
5116
5117<p>
5118Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5119does not return a value, and takes an extra alignment argument.
5120</p>
5121
5122<h5>Arguments:</h5>
5123
5124<p>
5125The first argument is a pointer to the destination to fill, the second is the
5126byte value to fill it with, the third argument is an integer
5127argument specifying the number of bytes to fill, and the fourth argument is the
5128known alignment of destination location.
5129</p>
5130
5131<p>
5132If the call to this intrinisic has an alignment value that is not 0 or 1, then
5133the caller guarantees that the destination pointer is aligned to that boundary.
5134</p>
5135
5136<h5>Semantics:</h5>
5137
5138<p>
5139The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5140the
5141destination location. If the argument is known to be aligned to some boundary,
5142this can be specified as the fourth argument, otherwise it should be set to 0 or
51431.
5144</p>
5145</div>
5146
5147
5148<!-- _______________________________________________________________________ -->
5149<div class="doc_subsubsection">
5150 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
5151</div>
5152
5153<div class="doc_text">
5154
5155<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005156<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00005157floating point or vector of floating point type. Not all targets support all
5158types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005159<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005160 declare float @llvm.sqrt.f32(float %Val)
5161 declare double @llvm.sqrt.f64(double %Val)
5162 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5163 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5164 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005165</pre>
5166
5167<h5>Overview:</h5>
5168
5169<p>
5170The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman361079c2007-10-15 20:30:11 +00005171returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005172<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattnerf914a002008-01-29 07:00:44 +00005173negative numbers other than -0.0 (which allows for better optimization, because
5174there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5175defined to return -0.0 like IEEE sqrt.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005176</p>
5177
5178<h5>Arguments:</h5>
5179
5180<p>
5181The argument and return value are floating point numbers of the same type.
5182</p>
5183
5184<h5>Semantics:</h5>
5185
5186<p>
5187This function returns the sqrt of the specified operand if it is a nonnegative
5188floating point number.
5189</p>
5190</div>
5191
5192<!-- _______________________________________________________________________ -->
5193<div class="doc_subsubsection">
5194 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
5195</div>
5196
5197<div class="doc_text">
5198
5199<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005200<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00005201floating point or vector of floating point type. Not all targets support all
5202types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005203<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005204 declare float @llvm.powi.f32(float %Val, i32 %power)
5205 declare double @llvm.powi.f64(double %Val, i32 %power)
5206 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5207 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5208 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005209</pre>
5210
5211<h5>Overview:</h5>
5212
5213<p>
5214The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5215specified (positive or negative) power. The order of evaluation of
Dan Gohman361079c2007-10-15 20:30:11 +00005216multiplications is not defined. When a vector of floating point type is
5217used, the second argument remains a scalar integer value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005218</p>
5219
5220<h5>Arguments:</h5>
5221
5222<p>
5223The second argument is an integer power, and the first is a value to raise to
5224that power.
5225</p>
5226
5227<h5>Semantics:</h5>
5228
5229<p>
5230This function returns the first value raised to the second power with an
5231unspecified sequence of rounding operations.</p>
5232</div>
5233
Dan Gohman361079c2007-10-15 20:30:11 +00005234<!-- _______________________________________________________________________ -->
5235<div class="doc_subsubsection">
5236 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5237</div>
5238
5239<div class="doc_text">
5240
5241<h5>Syntax:</h5>
5242<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5243floating point or vector of floating point type. Not all targets support all
5244types however.
5245<pre>
5246 declare float @llvm.sin.f32(float %Val)
5247 declare double @llvm.sin.f64(double %Val)
5248 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5249 declare fp128 @llvm.sin.f128(fp128 %Val)
5250 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5251</pre>
5252
5253<h5>Overview:</h5>
5254
5255<p>
5256The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5257</p>
5258
5259<h5>Arguments:</h5>
5260
5261<p>
5262The argument and return value are floating point numbers of the same type.
5263</p>
5264
5265<h5>Semantics:</h5>
5266
5267<p>
5268This function returns the sine of the specified operand, returning the
5269same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005270conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005271</div>
5272
5273<!-- _______________________________________________________________________ -->
5274<div class="doc_subsubsection">
5275 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5276</div>
5277
5278<div class="doc_text">
5279
5280<h5>Syntax:</h5>
5281<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5282floating point or vector of floating point type. Not all targets support all
5283types however.
5284<pre>
5285 declare float @llvm.cos.f32(float %Val)
5286 declare double @llvm.cos.f64(double %Val)
5287 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5288 declare fp128 @llvm.cos.f128(fp128 %Val)
5289 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5290</pre>
5291
5292<h5>Overview:</h5>
5293
5294<p>
5295The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5296</p>
5297
5298<h5>Arguments:</h5>
5299
5300<p>
5301The argument and return value are floating point numbers of the same type.
5302</p>
5303
5304<h5>Semantics:</h5>
5305
5306<p>
5307This function returns the cosine of the specified operand, returning the
5308same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005309conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005310</div>
5311
5312<!-- _______________________________________________________________________ -->
5313<div class="doc_subsubsection">
5314 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5315</div>
5316
5317<div class="doc_text">
5318
5319<h5>Syntax:</h5>
5320<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5321floating point or vector of floating point type. Not all targets support all
5322types however.
5323<pre>
5324 declare float @llvm.pow.f32(float %Val, float %Power)
5325 declare double @llvm.pow.f64(double %Val, double %Power)
5326 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5327 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5328 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5329</pre>
5330
5331<h5>Overview:</h5>
5332
5333<p>
5334The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5335specified (positive or negative) power.
5336</p>
5337
5338<h5>Arguments:</h5>
5339
5340<p>
5341The second argument is a floating point power, and the first is a value to
5342raise to that power.
5343</p>
5344
5345<h5>Semantics:</h5>
5346
5347<p>
5348This function returns the first value raised to the second power,
5349returning the
5350same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00005351conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005352</div>
5353
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005354
5355<!-- ======================================================================= -->
5356<div class="doc_subsection">
5357 <a name="int_manip">Bit Manipulation Intrinsics</a>
5358</div>
5359
5360<div class="doc_text">
5361<p>
5362LLVM provides intrinsics for a few important bit manipulation operations.
5363These allow efficient code generation for some algorithms.
5364</p>
5365
5366</div>
5367
5368<!-- _______________________________________________________________________ -->
5369<div class="doc_subsubsection">
5370 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
5371</div>
5372
5373<div class="doc_text">
5374
5375<h5>Syntax:</h5>
5376<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carrutha228e392007-08-04 01:51:18 +00005377type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005378<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005379 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5380 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5381 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005382</pre>
5383
5384<h5>Overview:</h5>
5385
5386<p>
5387The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
5388values with an even number of bytes (positive multiple of 16 bits). These are
5389useful for performing operations on data that is not in the target's native
5390byte order.
5391</p>
5392
5393<h5>Semantics:</h5>
5394
5395<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00005396The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005397and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5398intrinsic returns an i32 value that has the four bytes of the input i32
5399swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00005400i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5401<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005402additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
5403</p>
5404
5405</div>
5406
5407<!-- _______________________________________________________________________ -->
5408<div class="doc_subsubsection">
5409 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
5410</div>
5411
5412<div class="doc_text">
5413
5414<h5>Syntax:</h5>
5415<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5416width. Not all targets support all bit widths however.
5417<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005418 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5419 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005420 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005421 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5422 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005423</pre>
5424
5425<h5>Overview:</h5>
5426
5427<p>
5428The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5429value.
5430</p>
5431
5432<h5>Arguments:</h5>
5433
5434<p>
5435The only argument is the value to be counted. The argument may be of any
5436integer type. The return type must match the argument type.
5437</p>
5438
5439<h5>Semantics:</h5>
5440
5441<p>
5442The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5443</p>
5444</div>
5445
5446<!-- _______________________________________________________________________ -->
5447<div class="doc_subsubsection">
5448 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
5449</div>
5450
5451<div class="doc_text">
5452
5453<h5>Syntax:</h5>
5454<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5455integer bit width. Not all targets support all bit widths however.
5456<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005457 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5458 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005459 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005460 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5461 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005462</pre>
5463
5464<h5>Overview:</h5>
5465
5466<p>
5467The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5468leading zeros in a variable.
5469</p>
5470
5471<h5>Arguments:</h5>
5472
5473<p>
5474The only argument is the value to be counted. The argument may be of any
5475integer type. The return type must match the argument type.
5476</p>
5477
5478<h5>Semantics:</h5>
5479
5480<p>
5481The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5482in a variable. If the src == 0 then the result is the size in bits of the type
5483of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
5484</p>
5485</div>
5486
5487
5488
5489<!-- _______________________________________________________________________ -->
5490<div class="doc_subsubsection">
5491 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
5492</div>
5493
5494<div class="doc_text">
5495
5496<h5>Syntax:</h5>
5497<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5498integer bit width. Not all targets support all bit widths however.
5499<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005500 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5501 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005502 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005503 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5504 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005505</pre>
5506
5507<h5>Overview:</h5>
5508
5509<p>
5510The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5511trailing zeros.
5512</p>
5513
5514<h5>Arguments:</h5>
5515
5516<p>
5517The only argument is the value to be counted. The argument may be of any
5518integer type. The return type must match the argument type.
5519</p>
5520
5521<h5>Semantics:</h5>
5522
5523<p>
5524The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5525in a variable. If the src == 0 then the result is the size in bits of the type
5526of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5527</p>
5528</div>
5529
5530<!-- _______________________________________________________________________ -->
5531<div class="doc_subsubsection">
5532 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
5533</div>
5534
5535<div class="doc_text">
5536
5537<h5>Syntax:</h5>
5538<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
5539on any integer bit width.
5540<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005541 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5542 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005543</pre>
5544
5545<h5>Overview:</h5>
5546<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
5547range of bits from an integer value and returns them in the same bit width as
5548the original value.</p>
5549
5550<h5>Arguments:</h5>
5551<p>The first argument, <tt>%val</tt> and the result may be integer types of
5552any bit width but they must have the same bit width. The second and third
5553arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
5554
5555<h5>Semantics:</h5>
5556<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
5557of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5558<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5559operates in forward mode.</p>
5560<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5561right by <tt>%loBit</tt> bits and then ANDing it with a mask with
5562only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5563<ol>
5564 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5565 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5566 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5567 to determine the number of bits to retain.</li>
5568 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5569 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5570</ol>
5571<p>In reverse mode, a similar computation is made except that the bits are
5572returned in the reverse order. So, for example, if <tt>X</tt> has the value
5573<tt>i16 0x0ACF (101011001111)</tt> and we apply
5574<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5575<tt>i16 0x0026 (000000100110)</tt>.</p>
5576</div>
5577
5578<div class="doc_subsubsection">
5579 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5580</div>
5581
5582<div class="doc_text">
5583
5584<h5>Syntax:</h5>
5585<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5586on any integer bit width.
5587<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005588 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5589 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005590</pre>
5591
5592<h5>Overview:</h5>
5593<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5594of bits in an integer value with another integer value. It returns the integer
5595with the replaced bits.</p>
5596
5597<h5>Arguments:</h5>
5598<p>The first argument, <tt>%val</tt> and the result may be integer types of
5599any bit width but they must have the same bit width. <tt>%val</tt> is the value
5600whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5601integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5602type since they specify only a bit index.</p>
5603
5604<h5>Semantics:</h5>
5605<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5606of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5607<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5608operates in forward mode.</p>
5609<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5610truncating it down to the size of the replacement area or zero extending it
5611up to that size.</p>
5612<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5613are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5614in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5615to the <tt>%hi</tt>th bit.
5616<p>In reverse mode, a similar computation is made except that the bits are
5617reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5618<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
5619<h5>Examples:</h5>
5620<pre>
5621 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
5622 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5623 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5624 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
5625 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
5626</pre>
5627</div>
5628
5629<!-- ======================================================================= -->
5630<div class="doc_subsection">
5631 <a name="int_debugger">Debugger Intrinsics</a>
5632</div>
5633
5634<div class="doc_text">
5635<p>
5636The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5637are described in the <a
5638href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5639Debugging</a> document.
5640</p>
5641</div>
5642
5643
5644<!-- ======================================================================= -->
5645<div class="doc_subsection">
5646 <a name="int_eh">Exception Handling Intrinsics</a>
5647</div>
5648
5649<div class="doc_text">
5650<p> The LLVM exception handling intrinsics (which all start with
5651<tt>llvm.eh.</tt> prefix), are described in the <a
5652href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5653Handling</a> document. </p>
5654</div>
5655
5656<!-- ======================================================================= -->
5657<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00005658 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00005659</div>
5660
5661<div class="doc_text">
5662<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005663 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00005664 the <tt>nest</tt> attribute, from a function. The result is a callable
5665 function pointer lacking the nest parameter - the caller does not need
5666 to provide a value for it. Instead, the value to use is stored in
5667 advance in a "trampoline", a block of memory usually allocated
5668 on the stack, which also contains code to splice the nest value into the
5669 argument list. This is used to implement the GCC nested function address
5670 extension.
5671</p>
5672<p>
5673 For example, if the function is
5674 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005675 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005676<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005677 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5678 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5679 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5680 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00005681</pre>
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005682 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5683 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005684</div>
5685
5686<!-- _______________________________________________________________________ -->
5687<div class="doc_subsubsection">
5688 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5689</div>
5690<div class="doc_text">
5691<h5>Syntax:</h5>
5692<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005693declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00005694</pre>
5695<h5>Overview:</h5>
5696<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005697 This fills the memory pointed to by <tt>tramp</tt> with code
5698 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00005699</p>
5700<h5>Arguments:</h5>
5701<p>
5702 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5703 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5704 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00005705 intrinsic. Note that the size and the alignment are target-specific - LLVM
5706 currently provides no portable way of determining them, so a front-end that
5707 generates this intrinsic needs to have some target-specific knowledge.
5708 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00005709</p>
5710<h5>Semantics:</h5>
5711<p>
5712 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00005713 dependent code, turning it into a function. A pointer to this function is
5714 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00005715 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005716 before being called. The new function's signature is the same as that of
5717 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5718 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5719 of pointer type. Calling the new function is equivalent to calling
5720 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5721 missing <tt>nest</tt> argument. If, after calling
5722 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5723 modified, then the effect of any later call to the returned function pointer is
5724 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00005725</p>
5726</div>
5727
5728<!-- ======================================================================= -->
5729<div class="doc_subsection">
Andrew Lenharth785610d2008-02-16 01:24:58 +00005730 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5731</div>
5732
5733<div class="doc_text">
5734<p>
5735 These intrinsic functions expand the "universal IR" of LLVM to represent
5736 hardware constructs for atomic operations and memory synchronization. This
5737 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattner96451482008-08-05 18:29:16 +00005738 is aimed at a low enough level to allow any programming models or APIs
5739 (Application Programming Interfaces) which
Andrew Lenharth785610d2008-02-16 01:24:58 +00005740 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5741 hardware behavior. Just as hardware provides a "universal IR" for source
5742 languages, it also provides a starting point for developing a "universal"
5743 atomic operation and synchronization IR.
5744</p>
5745<p>
5746 These do <em>not</em> form an API such as high-level threading libraries,
5747 software transaction memory systems, atomic primitives, and intrinsic
5748 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5749 application libraries. The hardware interface provided by LLVM should allow
5750 a clean implementation of all of these APIs and parallel programming models.
5751 No one model or paradigm should be selected above others unless the hardware
5752 itself ubiquitously does so.
5753
5754</p>
5755</div>
5756
5757<!-- _______________________________________________________________________ -->
5758<div class="doc_subsubsection">
5759 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5760</div>
5761<div class="doc_text">
5762<h5>Syntax:</h5>
5763<pre>
5764declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5765i1 &lt;device&gt; )
5766
5767</pre>
5768<h5>Overview:</h5>
5769<p>
5770 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5771 specific pairs of memory access types.
5772</p>
5773<h5>Arguments:</h5>
5774<p>
5775 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5776 The first four arguments enables a specific barrier as listed below. The fith
5777 argument specifies that the barrier applies to io or device or uncached memory.
5778
5779</p>
5780 <ul>
5781 <li><tt>ll</tt>: load-load barrier</li>
5782 <li><tt>ls</tt>: load-store barrier</li>
5783 <li><tt>sl</tt>: store-load barrier</li>
5784 <li><tt>ss</tt>: store-store barrier</li>
5785 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5786 </ul>
5787<h5>Semantics:</h5>
5788<p>
5789 This intrinsic causes the system to enforce some ordering constraints upon
5790 the loads and stores of the program. This barrier does not indicate
5791 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5792 which they occur. For any of the specified pairs of load and store operations
5793 (f.ex. load-load, or store-load), all of the first operations preceding the
5794 barrier will complete before any of the second operations succeeding the
5795 barrier begin. Specifically the semantics for each pairing is as follows:
5796</p>
5797 <ul>
5798 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5799 after the barrier begins.</li>
5800
5801 <li><tt>ls</tt>: All loads before the barrier must complete before any
5802 store after the barrier begins.</li>
5803 <li><tt>ss</tt>: All stores before the barrier must complete before any
5804 store after the barrier begins.</li>
5805 <li><tt>sl</tt>: All stores before the barrier must complete before any
5806 load after the barrier begins.</li>
5807 </ul>
5808<p>
5809 These semantics are applied with a logical "and" behavior when more than one
5810 is enabled in a single memory barrier intrinsic.
5811</p>
5812<p>
5813 Backends may implement stronger barriers than those requested when they do not
5814 support as fine grained a barrier as requested. Some architectures do not
5815 need all types of barriers and on such architectures, these become noops.
5816</p>
5817<h5>Example:</h5>
5818<pre>
5819%ptr = malloc i32
5820 store i32 4, %ptr
5821
5822%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5823 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5824 <i>; guarantee the above finishes</i>
5825 store i32 8, %ptr <i>; before this begins</i>
5826</pre>
5827</div>
5828
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005829<!-- _______________________________________________________________________ -->
5830<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005831 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005832</div>
5833<div class="doc_text">
5834<h5>Syntax:</h5>
5835<p>
Mon P Wangce3ac892008-07-30 04:36:53 +00005836 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5837 any integer bit width and for different address spaces. Not all targets
5838 support all bit widths however.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005839
5840<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005841declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5842declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5843declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5844declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005845
5846</pre>
5847<h5>Overview:</h5>
5848<p>
5849 This loads a value in memory and compares it to a given value. If they are
5850 equal, it stores a new value into the memory.
5851</p>
5852<h5>Arguments:</h5>
5853<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005854 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005855 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5856 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5857 this integer type. While any bit width integer may be used, targets may only
5858 lower representations they support in hardware.
5859
5860</p>
5861<h5>Semantics:</h5>
5862<p>
5863 This entire intrinsic must be executed atomically. It first loads the value
5864 in memory pointed to by <tt>ptr</tt> and compares it with the value
5865 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5866 loaded value is yielded in all cases. This provides the equivalent of an
5867 atomic compare-and-swap operation within the SSA framework.
5868</p>
5869<h5>Examples:</h5>
5870
5871<pre>
5872%ptr = malloc i32
5873 store i32 4, %ptr
5874
5875%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00005876%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005877 <i>; yields {i32}:result1 = 4</i>
5878%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5879%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5880
5881%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00005882%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005883 <i>; yields {i32}:result2 = 8</i>
5884%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5885
5886%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5887</pre>
5888</div>
5889
5890<!-- _______________________________________________________________________ -->
5891<div class="doc_subsubsection">
5892 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5893</div>
5894<div class="doc_text">
5895<h5>Syntax:</h5>
5896
5897<p>
5898 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5899 integer bit width. Not all targets support all bit widths however.</p>
5900<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005901declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5902declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5903declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5904declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005905
5906</pre>
5907<h5>Overview:</h5>
5908<p>
5909 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5910 the value from memory. It then stores the value in <tt>val</tt> in the memory
5911 at <tt>ptr</tt>.
5912</p>
5913<h5>Arguments:</h5>
5914
5915<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005916 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005917 <tt>val</tt> argument and the result must be integers of the same bit width.
5918 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5919 integer type. The targets may only lower integer representations they
5920 support.
5921</p>
5922<h5>Semantics:</h5>
5923<p>
5924 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5925 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5926 equivalent of an atomic swap operation within the SSA framework.
5927
5928</p>
5929<h5>Examples:</h5>
5930<pre>
5931%ptr = malloc i32
5932 store i32 4, %ptr
5933
5934%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00005935%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005936 <i>; yields {i32}:result1 = 4</i>
5937%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5938%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5939
5940%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00005941%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005942 <i>; yields {i32}:result2 = 8</i>
5943
5944%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5945%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5946</pre>
5947</div>
5948
5949<!-- _______________________________________________________________________ -->
5950<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005951 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005952
5953</div>
5954<div class="doc_text">
5955<h5>Syntax:</h5>
5956<p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005957 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005958 integer bit width. Not all targets support all bit widths however.</p>
5959<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00005960declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5961declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5962declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5963declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005964
5965</pre>
5966<h5>Overview:</h5>
5967<p>
5968 This intrinsic adds <tt>delta</tt> to the value stored in memory at
5969 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5970</p>
5971<h5>Arguments:</h5>
5972<p>
5973
5974 The intrinsic takes two arguments, the first a pointer to an integer value
5975 and the second an integer value. The result is also an integer value. These
5976 integer types can have any bit width, but they must all have the same bit
5977 width. The targets may only lower integer representations they support.
5978</p>
5979<h5>Semantics:</h5>
5980<p>
5981 This intrinsic does a series of operations atomically. It first loads the
5982 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5983 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5984</p>
5985
5986<h5>Examples:</h5>
5987<pre>
5988%ptr = malloc i32
5989 store i32 4, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00005990%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005991 <i>; yields {i32}:result1 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00005992%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005993 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00005994%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005995 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00005996%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00005997</pre>
5998</div>
5999
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006000<!-- _______________________________________________________________________ -->
6001<div class="doc_subsubsection">
6002 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6003
6004</div>
6005<div class="doc_text">
6006<h5>Syntax:</h5>
6007<p>
6008 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wangce3ac892008-07-30 04:36:53 +00006009 any integer bit width and for different address spaces. Not all targets
6010 support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006011<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006012declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6013declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6014declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6015declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006016
6017</pre>
6018<h5>Overview:</h5>
6019<p>
6020 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6021 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6022</p>
6023<h5>Arguments:</h5>
6024<p>
6025
6026 The intrinsic takes two arguments, the first a pointer to an integer value
6027 and the second an integer value. The result is also an integer value. These
6028 integer types can have any bit width, but they must all have the same bit
6029 width. The targets may only lower integer representations they support.
6030</p>
6031<h5>Semantics:</h5>
6032<p>
6033 This intrinsic does a series of operations atomically. It first loads the
6034 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6035 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6036</p>
6037
6038<h5>Examples:</h5>
6039<pre>
6040%ptr = malloc i32
6041 store i32 8, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006042%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006043 <i>; yields {i32}:result1 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006044%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006045 <i>; yields {i32}:result2 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006046%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006047 <i>; yields {i32}:result3 = 2</i>
6048%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6049</pre>
6050</div>
6051
6052<!-- _______________________________________________________________________ -->
6053<div class="doc_subsubsection">
6054 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6055 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6056 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6057 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6058
6059</div>
6060<div class="doc_text">
6061<h5>Syntax:</h5>
6062<p>
6063 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6064 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wangce3ac892008-07-30 04:36:53 +00006065 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6066 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006067<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006068declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6069declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6070declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6071declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006072
6073</pre>
6074
6075<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006076declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6077declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6078declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6079declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006080
6081</pre>
6082
6083<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006084declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6085declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6086declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6087declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006088
6089</pre>
6090
6091<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006092declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6093declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6094declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6095declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006096
6097</pre>
6098<h5>Overview:</h5>
6099<p>
6100 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6101 the value stored in memory at <tt>ptr</tt>. It yields the original value
6102 at <tt>ptr</tt>.
6103</p>
6104<h5>Arguments:</h5>
6105<p>
6106
6107 These intrinsics take two arguments, the first a pointer to an integer value
6108 and the second an integer value. The result is also an integer value. These
6109 integer types can have any bit width, but they must all have the same bit
6110 width. The targets may only lower integer representations they support.
6111</p>
6112<h5>Semantics:</h5>
6113<p>
6114 These intrinsics does a series of operations atomically. They first load the
6115 value stored at <tt>ptr</tt>. They then do the bitwise operation
6116 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6117 value stored at <tt>ptr</tt>.
6118</p>
6119
6120<h5>Examples:</h5>
6121<pre>
6122%ptr = malloc i32
6123 store i32 0x0F0F, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006124%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006125 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006126%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006127 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006128%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006129 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006130%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006131 <i>; yields {i32}:result3 = FF</i>
6132%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6133</pre>
6134</div>
6135
6136
6137<!-- _______________________________________________________________________ -->
6138<div class="doc_subsubsection">
6139 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6140 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6141 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6142 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6143
6144</div>
6145<div class="doc_text">
6146<h5>Syntax:</h5>
6147<p>
6148 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6149 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wangce3ac892008-07-30 04:36:53 +00006150 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6151 address spaces. Not all targets
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006152 support all bit widths however.</p>
6153<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006154declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6155declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6156declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6157declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006158
6159</pre>
6160
6161<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006162declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6163declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6164declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6165declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006166
6167</pre>
6168
6169<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006170declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6171declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6172declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6173declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006174
6175</pre>
6176
6177<pre>
Mon P Wangce3ac892008-07-30 04:36:53 +00006178declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6179declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6180declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6181declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006182
6183</pre>
6184<h5>Overview:</h5>
6185<p>
6186 These intrinsics takes the signed or unsigned minimum or maximum of
6187 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6188 original value at <tt>ptr</tt>.
6189</p>
6190<h5>Arguments:</h5>
6191<p>
6192
6193 These intrinsics take two arguments, the first a pointer to an integer value
6194 and the second an integer value. The result is also an integer value. These
6195 integer types can have any bit width, but they must all have the same bit
6196 width. The targets may only lower integer representations they support.
6197</p>
6198<h5>Semantics:</h5>
6199<p>
6200 These intrinsics does a series of operations atomically. They first load the
6201 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6202 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6203 the original value stored at <tt>ptr</tt>.
6204</p>
6205
6206<h5>Examples:</h5>
6207<pre>
6208%ptr = malloc i32
6209 store i32 7, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006210%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006211 <i>; yields {i32}:result0 = 7</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006212%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006213 <i>; yields {i32}:result1 = -2</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006214%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006215 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006216%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006217 <i>; yields {i32}:result3 = 8</i>
6218%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6219</pre>
6220</div>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006221
6222<!-- ======================================================================= -->
6223<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006224 <a name="int_general">General Intrinsics</a>
6225</div>
6226
6227<div class="doc_text">
6228<p> This class of intrinsics is designed to be generic and has
6229no specific purpose. </p>
6230</div>
6231
6232<!-- _______________________________________________________________________ -->
6233<div class="doc_subsubsection">
6234 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6235</div>
6236
6237<div class="doc_text">
6238
6239<h5>Syntax:</h5>
6240<pre>
6241 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6242</pre>
6243
6244<h5>Overview:</h5>
6245
6246<p>
6247The '<tt>llvm.var.annotation</tt>' intrinsic
6248</p>
6249
6250<h5>Arguments:</h5>
6251
6252<p>
6253The first argument is a pointer to a value, the second is a pointer to a
6254global string, the third is a pointer to a global string which is the source
6255file name, and the last argument is the line number.
6256</p>
6257
6258<h5>Semantics:</h5>
6259
6260<p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006261This intrinsic allows annotation of local variables with arbitrary strings.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006262This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006263annotations. These have no other defined use, they are ignored by code
6264generation and optimization.
6265</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006266</div>
6267
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006268<!-- _______________________________________________________________________ -->
6269<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00006270 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006271</div>
6272
6273<div class="doc_text">
6274
6275<h5>Syntax:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00006276<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6277any integer bit width.
6278</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006279<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00006280 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6281 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6282 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6283 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6284 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006285</pre>
6286
6287<h5>Overview:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00006288
6289<p>
6290The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006291</p>
6292
6293<h5>Arguments:</h5>
6294
6295<p>
6296The first argument is an integer value (result of some expression),
6297the second is a pointer to a global string, the third is a pointer to a global
6298string which is the source file name, and the last argument is the line number.
Tanya Lattnere545be72007-09-21 23:56:27 +00006299It returns the value of the first argument.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006300</p>
6301
6302<h5>Semantics:</h5>
6303
6304<p>
6305This intrinsic allows annotations to be put on arbitrary expressions
6306with arbitrary strings. This can be useful for special purpose optimizations
6307that want to look for these annotations. These have no other defined use, they
6308are ignored by code generation and optimization.
6309</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006310
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006311<!-- _______________________________________________________________________ -->
6312<div class="doc_subsubsection">
6313 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6314</div>
6315
6316<div class="doc_text">
6317
6318<h5>Syntax:</h5>
6319<pre>
6320 declare void @llvm.trap()
6321</pre>
6322
6323<h5>Overview:</h5>
6324
6325<p>
6326The '<tt>llvm.trap</tt>' intrinsic
6327</p>
6328
6329<h5>Arguments:</h5>
6330
6331<p>
6332None
6333</p>
6334
6335<h5>Semantics:</h5>
6336
6337<p>
6338This intrinsics is lowered to the target dependent trap instruction. If the
6339target does not have a trap instruction, this intrinsic will be lowered to the
6340call of the abort() function.
6341</p>
6342</div>
6343
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006344<!-- *********************************************************************** -->
6345<hr>
6346<address>
6347 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6348 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6349 <a href="http://validator.w3.org/check/referer"><img
Chris Lattner08497ce2008-01-04 04:33:49 +00006350 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006351
6352 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
6353 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
6354 Last modified: $Date$
6355</address>
Chris Lattner08497ce2008-01-04 04:33:49 +00006356
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006357</body>
6358</html>