blob: b88ba4850509263f3037883ec6a4c912df9d4e3a [file] [log] [blame]
Dan Gohman28a193e2010-05-07 15:40:13 +00001//===-- Sink.cpp - Code Sinking -------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks, when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sink"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Analysis/Dominators.h"
19#include "llvm/Analysis/LoopInfo.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Support/CFG.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28STATISTIC(NumSunk, "Number of instructions sunk");
29
30namespace {
31 class Sinking : public FunctionPass {
32 DominatorTree *DT;
33 LoopInfo *LI;
34 AliasAnalysis *AA;
35
36 public:
37 static char ID; // Pass identification
38 Sinking() : FunctionPass(&ID) {}
39
40 virtual bool runOnFunction(Function &F);
41
42 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
43 AU.setPreservesCFG();
44 FunctionPass::getAnalysisUsage(AU);
45 AU.addRequired<AliasAnalysis>();
46 AU.addRequired<DominatorTree>();
47 AU.addRequired<LoopInfo>();
48 AU.addPreserved<DominatorTree>();
49 AU.addPreserved<LoopInfo>();
50 }
51 private:
52 bool ProcessBlock(BasicBlock &BB);
53 bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
54 bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
55 };
56} // end anonymous namespace
57
58char Sinking::ID = 0;
59static RegisterPass<Sinking>
60X("sink", "Code sinking");
61
62FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
63
64/// AllUsesDominatedByBlock - Return true if all uses of the specified value
65/// occur in blocks dominated by the specified block.
66bool Sinking::AllUsesDominatedByBlock(Instruction *Inst,
67 BasicBlock *BB) const {
68 // Ignoring debug uses is necessary so debug info doesn't affect the code.
69 // This may leave a referencing dbg_value in the original block, before
70 // the definition of the vreg. Dwarf generator handles this although the
71 // user might not get the right info at runtime.
72 for (Value::use_iterator I = Inst->use_begin(),
73 E = Inst->use_end(); I != E; ++I) {
74 // Determine the block of the use.
75 Instruction *UseInst = cast<Instruction>(*I);
76 BasicBlock *UseBlock = UseInst->getParent();
77 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
78 // PHI nodes use the operand in the predecessor block, not the block with
79 // the PHI.
80 unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo());
81 UseBlock = PN->getIncomingBlock(Num);
82 }
83 // Check that it dominates.
84 if (!DT->dominates(BB, UseBlock))
85 return false;
86 }
87 return true;
88}
89
90bool Sinking::runOnFunction(Function &F) {
91 DT = &getAnalysis<DominatorTree>();
92 LI = &getAnalysis<LoopInfo>();
93 AA = &getAnalysis<AliasAnalysis>();
94
95 bool EverMadeChange = false;
96
97 while (1) {
98 bool MadeChange = false;
99
100 // Process all basic blocks.
101 for (Function::iterator I = F.begin(), E = F.end();
102 I != E; ++I)
103 MadeChange |= ProcessBlock(*I);
104
105 // If this iteration over the code changed anything, keep iterating.
106 if (!MadeChange) break;
107 EverMadeChange = true;
108 }
109 return EverMadeChange;
110}
111
112bool Sinking::ProcessBlock(BasicBlock &BB) {
113 // Can't sink anything out of a block that has less than two successors.
114 if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false;
115
116 // Don't bother sinking code out of unreachable blocks. In addition to being
117 // unprofitable, it can also lead to infinite looping, because in an unreachable
118 // loop there may be nowhere to stop.
119 if (!DT->isReachableFromEntry(&BB)) return false;
120
121 bool MadeChange = false;
122
123 // Walk the basic block bottom-up. Remember if we saw a store.
124 BasicBlock::iterator I = BB.end();
125 --I;
126 bool ProcessedBegin = false;
127 SmallPtrSet<Instruction *, 8> Stores;
128 do {
129 Instruction *Inst = I; // The instruction to sink.
130
131 // Predecrement I (if it's not begin) so that it isn't invalidated by
132 // sinking.
133 ProcessedBegin = I == BB.begin();
134 if (!ProcessedBegin)
135 --I;
136
137 if (isa<DbgInfoIntrinsic>(Inst))
138 continue;
139
140 if (SinkInstruction(Inst, Stores))
141 ++NumSunk, MadeChange = true;
142
143 // If we just processed the first instruction in the block, we're done.
144 } while (!ProcessedBegin);
145
146 return MadeChange;
147}
148
149static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
150 SmallPtrSet<Instruction *, 8> &Stores) {
151 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
152 if (L->isVolatile()) return false;
153
154 Value *Ptr = L->getPointerOperand();
155 unsigned Size = AA->getTypeStoreSize(L->getType());
156 for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
157 E = Stores.end(); I != E; ++I)
158 if (AA->getModRefInfo(*I, Ptr, Size) & AliasAnalysis::Mod)
159 return false;
160 }
161
162 if (Inst->mayWriteToMemory()) {
163 Stores.insert(Inst);
164 return false;
165 }
166
167 return Inst->isSafeToSpeculativelyExecute();
168}
169
170/// SinkInstruction - Determine whether it is safe to sink the specified machine
171/// instruction out of its current block into a successor.
172bool Sinking::SinkInstruction(Instruction *Inst,
173 SmallPtrSet<Instruction *, 8> &Stores) {
174 // Check if it's safe to move the instruction.
175 if (!isSafeToMove(Inst, AA, Stores))
176 return false;
177
178 // FIXME: This should include support for sinking instructions within the
179 // block they are currently in to shorten the live ranges. We often get
180 // instructions sunk into the top of a large block, but it would be better to
181 // also sink them down before their first use in the block. This xform has to
182 // be careful not to *increase* register pressure though, e.g. sinking
183 // "x = y + z" down if it kills y and z would increase the live ranges of y
184 // and z and only shrink the live range of x.
185
186 // Loop over all the operands of the specified instruction. If there is
187 // anything we can't handle, bail out.
188 BasicBlock *ParentBlock = Inst->getParent();
189
190 // SuccToSinkTo - This is the successor to sink this instruction to, once we
191 // decide.
192 BasicBlock *SuccToSinkTo = 0;
193
194 // FIXME: This picks a successor to sink into based on having one
195 // successor that dominates all the uses. However, there are cases where
196 // sinking can happen but where the sink point isn't a successor. For
197 // example:
198 // x = computation
199 // if () {} else {}
200 // use x
201 // the instruction could be sunk over the whole diamond for the
202 // if/then/else (or loop, etc), allowing it to be sunk into other blocks
203 // after that.
204
205 // Instructions can only be sunk if all their uses are in blocks
206 // dominated by one of the successors.
207 // Look at all the successors and decide which one
208 // we should sink to.
209 for (succ_iterator SI = succ_begin(ParentBlock),
210 E = succ_end(ParentBlock); SI != E; ++SI) {
211 if (AllUsesDominatedByBlock(Inst, *SI)) {
212 SuccToSinkTo = *SI;
213 break;
214 }
215 }
216
217 // If we couldn't find a block to sink to, ignore this instruction.
218 if (SuccToSinkTo == 0)
219 return false;
220
221 // It is not possible to sink an instruction into its own block. This can
222 // happen with loops.
223 if (Inst->getParent() == SuccToSinkTo)
224 return false;
225
226 DEBUG(dbgs() << "Sink instr " << *Inst);
227 DEBUG(dbgs() << "to block ";
228 WriteAsOperand(dbgs(), SuccToSinkTo, false));
229
230 // If the block has multiple predecessors, this would introduce computation on
231 // a path that it doesn't already exist. We could split the critical edge,
232 // but for now we just punt.
233 // FIXME: Split critical edges if not backedges.
234 if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) {
235 // We cannot sink a load across a critical edge - there may be stores in
236 // other code paths.
237 if (!Inst->isSafeToSpeculativelyExecute()) {
238 DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
239 return false;
240 }
241
242 // We don't want to sink across a critical edge if we don't dominate the
243 // successor. We could be introducing calculations to new code paths.
244 if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
245 DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
246 return false;
247 }
248
249 // Don't sink instructions into a loop.
250 if (LI->isLoopHeader(SuccToSinkTo)) {
251 DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
252 return false;
253 }
254
255 // Otherwise we are OK with sinking along a critical edge.
256 DEBUG(dbgs() << "Sinking along critical edge.\n");
257 }
258
259 // Determine where to insert into. Skip phi nodes.
260 BasicBlock::iterator InsertPos = SuccToSinkTo->begin();
261 while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos))
262 ++InsertPos;
263
264 // Move the instruction.
265 Inst->moveBefore(InsertPos);
266 return true;
267}