blob: ea50f3e4c9c2a7bcbbc505033cd2e2de003f0e0e [file] [log] [blame]
Chris Lattner6148c022001-12-03 17:28:42 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner6148c022001-12-03 17:28:42 +00009//
Chris Lattner40bf8b42004-04-02 20:24:31 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation make the following changes to each loop with an
15// identifiable induction variable:
16// 1. All loops are transformed to have a SINGLE canonical induction variable
17// which starts at zero and steps by one.
18// 2. The canonical induction variable is guaranteed to be the first PHI node
19// in the loop header block.
20// 3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24// 1. The exit condition for the loop is canonicalized to compare the
25// induction value against the exit value. This turns loops like:
26// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27// 2. Any use outside of the loop of an expression derived from the indvar
28// is changed to compute the derived value outside of the loop, eliminating
29// the dependence on the exit value of the induction variable. If the only
30// purpose of the loop is to compute the exit value of some derived
31// expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed. Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
Chris Lattner6148c022001-12-03 17:28:42 +000037//
38//===----------------------------------------------------------------------===//
39
Chris Lattner022103b2002-05-07 20:03:00 +000040#include "llvm/Transforms/Scalar.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000041#include "llvm/BasicBlock.h"
Chris Lattner59fdaee2004-04-15 15:21:43 +000042#include "llvm/Constants.h"
Chris Lattner18b3c972003-12-22 05:02:01 +000043#include "llvm/Instructions.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000044#include "llvm/Type.h"
Chris Lattner59fdaee2004-04-15 15:21:43 +000045#include "llvm/Analysis/ScalarEvolutionExpressions.h"
John Criswell47df12d2003-12-18 17:19:19 +000046#include "llvm/Analysis/LoopInfo.h"
Chris Lattner455889a2002-02-12 22:39:50 +000047#include "llvm/Support/CFG.h"
John Criswell47df12d2003-12-18 17:19:19 +000048#include "llvm/Transforms/Utils/Local.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000049#include "Support/CommandLine.h"
Chris Lattnera92f6962002-10-01 22:38:41 +000050#include "Support/Statistic.h"
John Criswell47df12d2003-12-18 17:19:19 +000051using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000052
Chris Lattner5e761402002-09-10 05:24:05 +000053namespace {
Chris Lattner4a7553e2004-04-23 21:29:48 +000054 /// SCEVExpander - This class uses information about analyze scalars to
55 /// rewrite expressions in canonical form.
56 ///
57 /// Clients should create an instance of this class when rewriting is needed,
58 /// and destroying it when finished to allow the release of the associated
59 /// memory.
60 struct SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
61 ScalarEvolution &SE;
62 LoopInfo &LI;
63 std::map<SCEVHandle, Value*> InsertedExpressions;
64 std::set<Instruction*> InsertedInstructions;
65
66 Instruction *InsertPt;
67
68 friend class SCEVVisitor<SCEVExpander, Value*>;
69 public:
70 SCEVExpander(ScalarEvolution &se, LoopInfo &li) : SE(se), LI(li) {}
71
72 /// isInsertedInstruction - Return true if the specified instruction was
73 /// inserted by the code rewriter. If so, the client should not modify the
74 /// instruction.
75 bool isInsertedInstruction(Instruction *I) const {
76 return InsertedInstructions.count(I);
77 }
78
79 /// getOrInsertCanonicalInductionVariable - This method returns the
80 /// canonical induction variable of the specified type for the specified
81 /// loop (inserting one if there is none). A canonical induction variable
82 /// starts at zero and steps by one on each iteration.
83 Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){
84 assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
85 "Can only insert integer or floating point induction variables!");
86 SCEVHandle H = SCEVAddRecExpr::get(SCEVUnknown::getIntegerSCEV(0, Ty),
87 SCEVUnknown::getIntegerSCEV(1, Ty), L);
88 return expand(H);
89 }
90
91 /// addInsertedValue - Remember the specified instruction as being the
92 /// canonical form for the specified SCEV.
93 void addInsertedValue(Instruction *I, SCEV *S) {
94 InsertedExpressions[S] = (Value*)I;
95 InsertedInstructions.insert(I);
96 }
97
98 /// expandCodeFor - Insert code to directly compute the specified SCEV
99 /// expression into the program. The inserted code is inserted into the
100 /// specified block.
101 ///
102 /// If a particular value sign is required, a type may be specified for the
103 /// result.
104 Value *expandCodeFor(SCEVHandle SH, Instruction *IP, const Type *Ty = 0) {
105 // Expand the code for this SCEV.
106 this->InsertPt = IP;
107 return expandInTy(SH, Ty);
108 }
109
110 protected:
111 Value *expand(SCEV *S) {
112 // Check to see if we already expanded this.
113 std::map<SCEVHandle, Value*>::iterator I = InsertedExpressions.find(S);
114 if (I != InsertedExpressions.end())
115 return I->second;
116
117 Value *V = visit(S);
118 InsertedExpressions[S] = V;
119 return V;
120 }
121
122 Value *expandInTy(SCEV *S, const Type *Ty) {
123 Value *V = expand(S);
124 if (Ty && V->getType() != Ty) {
125 // FIXME: keep track of the cast instruction.
126 if (Constant *C = dyn_cast<Constant>(V))
127 return ConstantExpr::getCast(C, Ty);
128 else if (Instruction *I = dyn_cast<Instruction>(V)) {
129 // Check to see if there is already a cast. If there is, use it.
130 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
131 UI != E; ++UI) {
132 if ((*UI)->getType() == Ty)
133 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
134 BasicBlock::iterator It = I; ++It;
135 while (isa<PHINode>(It)) ++It;
136 if (It != BasicBlock::iterator(CI)) {
137 // Splice the cast immediately after the operand in question.
138 I->getParent()->getInstList().splice(It,
139 CI->getParent()->getInstList(),
140 CI);
141 }
142 return CI;
143 }
144 }
145 BasicBlock::iterator IP = I; ++IP;
146 if (InvokeInst *II = dyn_cast<InvokeInst>(I))
147 IP = II->getNormalDest()->begin();
148 while (isa<PHINode>(IP)) ++IP;
149 return new CastInst(V, Ty, V->getName(), IP);
150 } else {
151 // FIXME: check to see if there is already a cast!
152 return new CastInst(V, Ty, V->getName(), InsertPt);
153 }
154 }
155 return V;
156 }
157
158 Value *visitConstant(SCEVConstant *S) {
159 return S->getValue();
160 }
161
162 Value *visitTruncateExpr(SCEVTruncateExpr *S) {
163 Value *V = expand(S->getOperand());
164 return new CastInst(V, S->getType(), "tmp.", InsertPt);
165 }
166
167 Value *visitZeroExtendExpr(SCEVZeroExtendExpr *S) {
Chris Lattner2b994c72004-06-19 18:15:50 +0000168 Value *V = expandInTy(S->getOperand(),S->getType()->getUnsignedVersion());
Chris Lattner4a7553e2004-04-23 21:29:48 +0000169 return new CastInst(V, S->getType(), "tmp.", InsertPt);
170 }
171
172 Value *visitAddExpr(SCEVAddExpr *S) {
173 const Type *Ty = S->getType();
174 Value *V = expandInTy(S->getOperand(S->getNumOperands()-1), Ty);
175
176 // Emit a bunch of add instructions
177 for (int i = S->getNumOperands()-2; i >= 0; --i)
178 V = BinaryOperator::create(Instruction::Add, V,
179 expandInTy(S->getOperand(i), Ty),
180 "tmp.", InsertPt);
181 return V;
182 }
183
184 Value *visitMulExpr(SCEVMulExpr *S);
185
186 Value *visitUDivExpr(SCEVUDivExpr *S) {
187 const Type *Ty = S->getType();
188 Value *LHS = expandInTy(S->getLHS(), Ty);
189 Value *RHS = expandInTy(S->getRHS(), Ty);
190 return BinaryOperator::create(Instruction::Div, LHS, RHS, "tmp.",
191 InsertPt);
192 }
193
194 Value *visitAddRecExpr(SCEVAddRecExpr *S);
195
196 Value *visitUnknown(SCEVUnknown *S) {
197 return S->getValue();
198 }
199 };
200}
201
202Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
203 const Type *Ty = S->getType();
204 int FirstOp = 0; // Set if we should emit a subtract.
205 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
206 if (SC->getValue()->isAllOnesValue())
207 FirstOp = 1;
208
209 int i = S->getNumOperands()-2;
210 Value *V = expandInTy(S->getOperand(i+1), Ty);
211
212 // Emit a bunch of multiply instructions
213 for (; i >= FirstOp; --i)
214 V = BinaryOperator::create(Instruction::Mul, V,
215 expandInTy(S->getOperand(i), Ty),
216 "tmp.", InsertPt);
217 // -1 * ... ---> 0 - ...
218 if (FirstOp == 1)
219 V = BinaryOperator::create(Instruction::Sub, Constant::getNullValue(Ty),
220 V, "tmp.", InsertPt);
221 return V;
222}
223
224Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
225 const Type *Ty = S->getType();
226 const Loop *L = S->getLoop();
227 // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
228 assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
229
230 // {X,+,F} --> X + {0,+,F}
231 if (!isa<SCEVConstant>(S->getStart()) ||
232 !cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
233 Value *Start = expandInTy(S->getStart(), Ty);
234 std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
235 NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
236 Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
237
238 // FIXME: look for an existing add to use.
239 return BinaryOperator::create(Instruction::Add, Rest, Start, "tmp.",
240 InsertPt);
241 }
242
243 // {0,+,1} --> Insert a canonical induction variable into the loop!
244 if (S->getNumOperands() == 2 &&
245 S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
246 // Create and insert the PHI node for the induction variable in the
247 // specified loop.
248 BasicBlock *Header = L->getHeader();
249 PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
250 PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
251
252 pred_iterator HPI = pred_begin(Header);
253 assert(HPI != pred_end(Header) && "Loop with zero preds???");
254 if (!L->contains(*HPI)) ++HPI;
255 assert(HPI != pred_end(Header) && L->contains(*HPI) &&
256 "No backedge in loop?");
257
258 // Insert a unit add instruction right before the terminator corresponding
259 // to the back-edge.
260 Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
261 : ConstantInt::get(Ty, 1);
262 Instruction *Add = BinaryOperator::create(Instruction::Add, PN, One,
263 "indvar.next",
264 (*HPI)->getTerminator());
265
266 pred_iterator PI = pred_begin(Header);
267 if (*PI == L->getLoopPreheader())
268 ++PI;
269 PN->addIncoming(Add, *PI);
270 return PN;
271 }
272
273 // Get the canonical induction variable I for this loop.
274 Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
275
276 if (S->getNumOperands() == 2) { // {0,+,F} --> i*F
277 Value *F = expandInTy(S->getOperand(1), Ty);
278 return BinaryOperator::create(Instruction::Mul, I, F, "tmp.", InsertPt);
279 }
280
281 // If this is a chain of recurrences, turn it into a closed form, using the
282 // folders, then expandCodeFor the closed form. This allows the folders to
283 // simplify the expression without having to build a bunch of special code
284 // into this folder.
285 SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
286
287 SCEVHandle V = S->evaluateAtIteration(IH);
288 //std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
289
290 return expandInTy(V, Ty);
291}
292
293
294namespace {
Chris Lattnera92f6962002-10-01 22:38:41 +0000295 Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
Chris Lattner40bf8b42004-04-02 20:24:31 +0000296 Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted");
Chris Lattner3adf51d2003-09-10 05:24:46 +0000297 Statistic<> NumInserted("indvars", "Number of canonical indvars added");
Chris Lattner40bf8b42004-04-02 20:24:31 +0000298 Statistic<> NumReplaced("indvars", "Number of exit values replaced");
299 Statistic<> NumLFTR ("indvars", "Number of loop exit tests replaced");
Chris Lattner3324e712003-12-22 03:58:44 +0000300
301 class IndVarSimplify : public FunctionPass {
Chris Lattner40bf8b42004-04-02 20:24:31 +0000302 LoopInfo *LI;
303 ScalarEvolution *SE;
Chris Lattner15cad752003-12-23 07:47:09 +0000304 bool Changed;
Chris Lattner3324e712003-12-22 03:58:44 +0000305 public:
306 virtual bool runOnFunction(Function &) {
Chris Lattner40bf8b42004-04-02 20:24:31 +0000307 LI = &getAnalysis<LoopInfo>();
308 SE = &getAnalysis<ScalarEvolution>();
Chris Lattner15cad752003-12-23 07:47:09 +0000309 Changed = false;
310
Chris Lattner3324e712003-12-22 03:58:44 +0000311 // Induction Variables live in the header nodes of loops
Chris Lattner40bf8b42004-04-02 20:24:31 +0000312 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
Chris Lattner329c1c62004-01-08 00:09:44 +0000313 runOnLoop(*I);
Chris Lattner3324e712003-12-22 03:58:44 +0000314 return Changed;
315 }
316
Chris Lattner3324e712003-12-22 03:58:44 +0000317 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattner3324e712003-12-22 03:58:44 +0000318 AU.addRequiredID(LoopSimplifyID);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000319 AU.addRequired<ScalarEvolution>();
320 AU.addRequired<LoopInfo>();
Chris Lattner3324e712003-12-22 03:58:44 +0000321 AU.addPreservedID(LoopSimplifyID);
322 AU.setPreservesCFG();
323 }
Chris Lattner40bf8b42004-04-02 20:24:31 +0000324 private:
325 void runOnLoop(Loop *L);
326 void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
327 std::set<Instruction*> &DeadInsts);
328 void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
Chris Lattner4a7553e2004-04-23 21:29:48 +0000329 SCEVExpander &RW);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000330 void RewriteLoopExitValues(Loop *L);
331
332 void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
Chris Lattner3324e712003-12-22 03:58:44 +0000333 };
334 RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
Chris Lattner5e761402002-09-10 05:24:05 +0000335}
Chris Lattner394437f2001-12-04 04:32:29 +0000336
Chris Lattner3324e712003-12-22 03:58:44 +0000337Pass *llvm::createIndVarSimplifyPass() {
338 return new IndVarSimplify();
Chris Lattner394437f2001-12-04 04:32:29 +0000339}
340
Chris Lattner40bf8b42004-04-02 20:24:31 +0000341/// DeleteTriviallyDeadInstructions - If any of the instructions is the
342/// specified set are trivially dead, delete them and see if this makes any of
343/// their operands subsequently dead.
344void IndVarSimplify::
345DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
346 while (!Insts.empty()) {
347 Instruction *I = *Insts.begin();
348 Insts.erase(Insts.begin());
349 if (isInstructionTriviallyDead(I)) {
350 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
351 if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
352 Insts.insert(U);
353 SE->deleteInstructionFromRecords(I);
354 I->getParent()->getInstList().erase(I);
355 Changed = true;
356 }
357 }
358}
359
360
361/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
362/// recurrence. If so, change it into an integer recurrence, permitting
363/// analysis by the SCEV routines.
364void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
365 BasicBlock *Preheader,
366 std::set<Instruction*> &DeadInsts) {
367 assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
368 unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
369 unsigned BackedgeIdx = PreheaderIdx^1;
370 if (GetElementPtrInst *GEPI =
371 dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
372 if (GEPI->getOperand(0) == PN) {
373 assert(GEPI->getNumOperands() == 2 && "GEP types must mismatch!");
374
375 // Okay, we found a pointer recurrence. Transform this pointer
376 // recurrence into an integer recurrence. Compute the value that gets
377 // added to the pointer at every iteration.
378 Value *AddedVal = GEPI->getOperand(1);
379
380 // Insert a new integer PHI node into the top of the block.
381 PHINode *NewPhi = new PHINode(AddedVal->getType(),
382 PN->getName()+".rec", PN);
383 NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()),
384 Preheader);
385 // Create the new add instruction.
386 Value *NewAdd = BinaryOperator::create(Instruction::Add, NewPhi,
387 AddedVal,
388 GEPI->getName()+".rec", GEPI);
389 NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
390
391 // Update the existing GEP to use the recurrence.
392 GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
393
394 // Update the GEP to use the new recurrence we just inserted.
395 GEPI->setOperand(1, NewAdd);
396
397 // Finally, if there are any other users of the PHI node, we must
398 // insert a new GEP instruction that uses the pre-incremented version
399 // of the induction amount.
400 if (!PN->use_empty()) {
401 BasicBlock::iterator InsertPos = PN; ++InsertPos;
402 while (isa<PHINode>(InsertPos)) ++InsertPos;
403 std::string Name = PN->getName(); PN->setName("");
404 Value *PreInc =
405 new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
406 std::vector<Value*>(1, NewPhi), Name,
407 InsertPos);
408 PN->replaceAllUsesWith(PreInc);
409 }
410
411 // Delete the old PHI for sure, and the GEP if its otherwise unused.
412 DeadInsts.insert(PN);
413
414 ++NumPointer;
415 Changed = true;
416 }
417}
418
419/// LinearFunctionTestReplace - This method rewrites the exit condition of the
Chris Lattner59fdaee2004-04-15 15:21:43 +0000420/// loop to be a canonical != comparison against the incremented loop induction
421/// variable. This pass is able to rewrite the exit tests of any loop where the
422/// SCEV analysis can determine a loop-invariant trip count of the loop, which
423/// is actually a much broader range than just linear tests.
Chris Lattner40bf8b42004-04-02 20:24:31 +0000424void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
Chris Lattner4a7553e2004-04-23 21:29:48 +0000425 SCEVExpander &RW) {
Chris Lattner40bf8b42004-04-02 20:24:31 +0000426 // Find the exit block for the loop. We can currently only handle loops with
427 // a single exit.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +0000428 std::vector<BasicBlock*> ExitBlocks;
429 L->getExitBlocks(ExitBlocks);
430 if (ExitBlocks.size() != 1) return;
431 BasicBlock *ExitBlock = ExitBlocks[0];
Chris Lattner40bf8b42004-04-02 20:24:31 +0000432
433 // Make sure there is only one predecessor block in the loop.
434 BasicBlock *ExitingBlock = 0;
435 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
436 PI != PE; ++PI)
437 if (L->contains(*PI)) {
438 if (ExitingBlock == 0)
439 ExitingBlock = *PI;
440 else
441 return; // Multiple exits from loop to this block.
442 }
443 assert(ExitingBlock && "Loop info is broken");
444
445 if (!isa<BranchInst>(ExitingBlock->getTerminator()))
446 return; // Can't rewrite non-branch yet
447 BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
448 assert(BI->isConditional() && "Must be conditional to be part of loop!");
449
450 std::set<Instruction*> InstructionsToDelete;
451 if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
452 InstructionsToDelete.insert(Cond);
453
Chris Lattnerd2440572004-04-15 20:26:22 +0000454 // If the exiting block is not the same as the backedge block, we must compare
455 // against the preincremented value, otherwise we prefer to compare against
456 // the post-incremented value.
457 BasicBlock *Header = L->getHeader();
458 pred_iterator HPI = pred_begin(Header);
459 assert(HPI != pred_end(Header) && "Loop with zero preds???");
460 if (!L->contains(*HPI)) ++HPI;
461 assert(HPI != pred_end(Header) && L->contains(*HPI) &&
462 "No backedge in loop?");
Chris Lattner59fdaee2004-04-15 15:21:43 +0000463
Chris Lattnerd2440572004-04-15 20:26:22 +0000464 SCEVHandle TripCount = IterationCount;
465 Value *IndVar;
466 if (*HPI == ExitingBlock) {
467 // The IterationCount expression contains the number of times that the
468 // backedge actually branches to the loop header. This is one less than the
469 // number of times the loop executes, so add one to it.
470 Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
471 TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
472 IndVar = L->getCanonicalInductionVariableIncrement();
473 } else {
474 // We have to use the preincremented value...
475 IndVar = L->getCanonicalInductionVariable();
476 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000477
Chris Lattner40bf8b42004-04-02 20:24:31 +0000478 // Expand the code for the iteration count into the preheader of the loop.
479 BasicBlock *Preheader = L->getLoopPreheader();
Chris Lattner4a7553e2004-04-23 21:29:48 +0000480 Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
Chris Lattner40bf8b42004-04-02 20:24:31 +0000481 IndVar->getType());
482
483 // Insert a new setne or seteq instruction before the branch.
484 Instruction::BinaryOps Opcode;
485 if (L->contains(BI->getSuccessor(0)))
486 Opcode = Instruction::SetNE;
487 else
488 Opcode = Instruction::SetEQ;
489
490 Value *Cond = new SetCondInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
491 BI->setCondition(Cond);
492 ++NumLFTR;
493 Changed = true;
494
495 DeleteTriviallyDeadInstructions(InstructionsToDelete);
496}
497
498
499/// RewriteLoopExitValues - Check to see if this loop has a computable
500/// loop-invariant execution count. If so, this means that we can compute the
501/// final value of any expressions that are recurrent in the loop, and
502/// substitute the exit values from the loop into any instructions outside of
503/// the loop that use the final values of the current expressions.
504void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
505 BasicBlock *Preheader = L->getLoopPreheader();
506
507 // Scan all of the instructions in the loop, looking at those that have
508 // extra-loop users and which are recurrences.
Chris Lattner4a7553e2004-04-23 21:29:48 +0000509 SCEVExpander Rewriter(*SE, *LI);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000510
511 // We insert the code into the preheader of the loop if the loop contains
512 // multiple exit blocks, or in the exit block if there is exactly one.
513 BasicBlock *BlockToInsertInto;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +0000514 std::vector<BasicBlock*> ExitBlocks;
515 L->getExitBlocks(ExitBlocks);
516 if (ExitBlocks.size() == 1)
517 BlockToInsertInto = ExitBlocks[0];
Chris Lattner40bf8b42004-04-02 20:24:31 +0000518 else
519 BlockToInsertInto = Preheader;
520 BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
521 while (isa<PHINode>(InsertPt)) ++InsertPt;
522
Chris Lattner20aa0982004-04-17 18:44:09 +0000523 bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
524
Chris Lattner40bf8b42004-04-02 20:24:31 +0000525 std::set<Instruction*> InstructionsToDelete;
526
527 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
528 if (LI->getLoopFor(L->getBlocks()[i]) == L) { // Not in a subloop...
529 BasicBlock *BB = L->getBlocks()[i];
530 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
531 if (I->getType()->isInteger()) { // Is an integer instruction
532 SCEVHandle SH = SE->getSCEV(I);
Chris Lattner20aa0982004-04-17 18:44:09 +0000533 if (SH->hasComputableLoopEvolution(L) || // Varies predictably
534 HasConstantItCount) {
Chris Lattner40bf8b42004-04-02 20:24:31 +0000535 // Find out if this predictably varying value is actually used
536 // outside of the loop. "extra" as opposed to "intra".
537 std::vector<User*> ExtraLoopUsers;
538 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
539 UI != E; ++UI)
540 if (!L->contains(cast<Instruction>(*UI)->getParent()))
541 ExtraLoopUsers.push_back(*UI);
542 if (!ExtraLoopUsers.empty()) {
543 // Okay, this instruction has a user outside of the current loop
544 // and varies predictably in this loop. Evaluate the value it
545 // contains when the loop exits, and insert code for it.
Chris Lattner20aa0982004-04-17 18:44:09 +0000546 SCEVHandle ExitValue = SE->getSCEVAtScope(I, L->getParentLoop());
Chris Lattner40bf8b42004-04-02 20:24:31 +0000547 if (!isa<SCEVCouldNotCompute>(ExitValue)) {
548 Changed = true;
549 ++NumReplaced;
Chris Lattner4a7553e2004-04-23 21:29:48 +0000550 Value *NewVal = Rewriter.expandCodeFor(ExitValue, InsertPt,
Chris Lattner40bf8b42004-04-02 20:24:31 +0000551 I->getType());
552
553 // Rewrite any users of the computed value outside of the loop
554 // with the newly computed value.
555 for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i)
556 ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);
557
558 // If this instruction is dead now, schedule it to be removed.
559 if (I->use_empty())
560 InstructionsToDelete.insert(I);
561 }
562 }
563 }
564 }
565 }
566
567 DeleteTriviallyDeadInstructions(InstructionsToDelete);
568}
569
570
571void IndVarSimplify::runOnLoop(Loop *L) {
572 // First step. Check to see if there are any trivial GEP pointer recurrences.
573 // If there are, change them into integer recurrences, permitting analysis by
574 // the SCEV routines.
575 //
576 BasicBlock *Header = L->getHeader();
577 BasicBlock *Preheader = L->getLoopPreheader();
578
579 std::set<Instruction*> DeadInsts;
580 for (BasicBlock::iterator I = Header->begin();
581 PHINode *PN = dyn_cast<PHINode>(I); ++I)
582 if (isa<PointerType>(PN->getType()))
583 EliminatePointerRecurrence(PN, Preheader, DeadInsts);
584
585 if (!DeadInsts.empty())
586 DeleteTriviallyDeadInstructions(DeadInsts);
587
588
589 // Next, transform all loops nesting inside of this loop.
590 for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
Chris Lattner329c1c62004-01-08 00:09:44 +0000591 runOnLoop(*I);
Chris Lattner3324e712003-12-22 03:58:44 +0000592
Chris Lattner40bf8b42004-04-02 20:24:31 +0000593 // Check to see if this loop has a computable loop-invariant execution count.
594 // If so, this means that we can compute the final value of any expressions
595 // that are recurrent in the loop, and substitute the exit values from the
596 // loop into any instructions outside of the loop that use the final values of
597 // the current expressions.
Chris Lattner3dec1f22002-05-10 15:38:35 +0000598 //
Chris Lattner40bf8b42004-04-02 20:24:31 +0000599 SCEVHandle IterationCount = SE->getIterationCount(L);
600 if (!isa<SCEVCouldNotCompute>(IterationCount))
601 RewriteLoopExitValues(L);
Chris Lattner6148c022001-12-03 17:28:42 +0000602
Chris Lattner40bf8b42004-04-02 20:24:31 +0000603 // Next, analyze all of the induction variables in the loop, canonicalizing
604 // auxillary induction variables.
605 std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
606
607 for (BasicBlock::iterator I = Header->begin();
608 PHINode *PN = dyn_cast<PHINode>(I); ++I)
609 if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
610 SCEVHandle SCEV = SE->getSCEV(PN);
611 if (SCEV->hasComputableLoopEvolution(L))
612 if (SE->shouldSubstituteIndVar(SCEV)) // HACK!
613 IndVars.push_back(std::make_pair(PN, SCEV));
614 }
615
616 // If there are no induction variables in the loop, there is nothing more to
617 // do.
Chris Lattnerf50af082004-04-17 18:08:33 +0000618 if (IndVars.empty()) {
619 // Actually, if we know how many times the loop iterates, lets insert a
620 // canonical induction variable to help subsequent passes.
621 if (!isa<SCEVCouldNotCompute>(IterationCount)) {
Chris Lattner4a7553e2004-04-23 21:29:48 +0000622 SCEVExpander Rewriter(*SE, *LI);
623 Rewriter.getOrInsertCanonicalInductionVariable(L,
Chris Lattnerf50af082004-04-17 18:08:33 +0000624 IterationCount->getType());
625 LinearFunctionTestReplace(L, IterationCount, Rewriter);
626 }
627 return;
628 }
Chris Lattner40bf8b42004-04-02 20:24:31 +0000629
630 // Compute the type of the largest recurrence expression.
Chris Lattner6148c022001-12-03 17:28:42 +0000631 //
Chris Lattner40bf8b42004-04-02 20:24:31 +0000632 const Type *LargestType = IndVars[0].first->getType();
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000633 bool DifferingSizes = false;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000634 for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
635 const Type *Ty = IndVars[i].first->getType();
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000636 DifferingSizes |= Ty->getPrimitiveSize() != LargestType->getPrimitiveSize();
Chris Lattner40bf8b42004-04-02 20:24:31 +0000637 if (Ty->getPrimitiveSize() > LargestType->getPrimitiveSize())
638 LargestType = Ty;
Chris Lattner6148c022001-12-03 17:28:42 +0000639 }
640
Chris Lattner40bf8b42004-04-02 20:24:31 +0000641 // Create a rewriter object which we'll use to transform the code with.
Chris Lattner4a7553e2004-04-23 21:29:48 +0000642 SCEVExpander Rewriter(*SE, *LI);
Chris Lattner15cad752003-12-23 07:47:09 +0000643
Chris Lattner40bf8b42004-04-02 20:24:31 +0000644 // Now that we know the largest of of the induction variables in this loop,
645 // insert a canonical induction variable of the largest size.
Chris Lattner006118f2004-04-16 06:03:17 +0000646 LargestType = LargestType->getUnsignedVersion();
Chris Lattner4a7553e2004-04-23 21:29:48 +0000647 Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000648 ++NumInserted;
649 Changed = true;
Chris Lattner15cad752003-12-23 07:47:09 +0000650
Chris Lattner40bf8b42004-04-02 20:24:31 +0000651 if (!isa<SCEVCouldNotCompute>(IterationCount))
Chris Lattner59fdaee2004-04-15 15:21:43 +0000652 LinearFunctionTestReplace(L, IterationCount, Rewriter);
Chris Lattner15cad752003-12-23 07:47:09 +0000653
Chris Lattner40bf8b42004-04-02 20:24:31 +0000654 // Now that we have a canonical induction variable, we can rewrite any
655 // recurrences in terms of the induction variable. Start with the auxillary
656 // induction variables, and recursively rewrite any of their uses.
657 BasicBlock::iterator InsertPt = Header->begin();
658 while (isa<PHINode>(InsertPt)) ++InsertPt;
Chris Lattner6148c022001-12-03 17:28:42 +0000659
Chris Lattner5d461d22004-04-21 22:22:01 +0000660 // If there were induction variables of other sizes, cast the primary
661 // induction variable to the right size for them, avoiding the need for the
662 // code evaluation methods to insert induction variables of different sizes.
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000663 if (DifferingSizes) {
664 bool InsertedSizes[17] = { false };
665 InsertedSizes[LargestType->getPrimitiveSize()] = true;
666 for (unsigned i = 0, e = IndVars.size(); i != e; ++i)
667 if (!InsertedSizes[IndVars[i].first->getType()->getPrimitiveSize()]) {
668 PHINode *PN = IndVars[i].first;
669 InsertedSizes[PN->getType()->getPrimitiveSize()] = true;
670 Instruction *New = new CastInst(IndVar,
671 PN->getType()->getUnsignedVersion(),
672 "indvar", InsertPt);
673 Rewriter.addInsertedValue(New, SE->getSCEV(New));
674 }
675 }
676
677 // If there were induction variables of other sizes, cast the primary
678 // induction variable to the right size for them, avoiding the need for the
679 // code evaluation methods to insert induction variables of different sizes.
Chris Lattner5d461d22004-04-21 22:22:01 +0000680 std::map<unsigned, Value*> InsertedSizes;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000681 while (!IndVars.empty()) {
682 PHINode *PN = IndVars.back().first;
Chris Lattner4a7553e2004-04-23 21:29:48 +0000683 Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000684 PN->getType());
685 std::string Name = PN->getName();
686 PN->setName("");
687 NewVal->setName(Name);
Chris Lattner5d461d22004-04-21 22:22:01 +0000688
Chris Lattner40bf8b42004-04-02 20:24:31 +0000689 // Replace the old PHI Node with the inserted computation.
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000690 PN->replaceAllUsesWith(NewVal);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000691 DeadInsts.insert(PN);
692 IndVars.pop_back();
693 ++NumRemoved;
Chris Lattner4753bf22001-12-05 19:41:33 +0000694 Changed = true;
Chris Lattner394437f2001-12-04 04:32:29 +0000695 }
696
Chris Lattnerb4782d12004-04-22 15:12:36 +0000697#if 0
Chris Lattner1363e852004-04-21 23:36:08 +0000698 // Now replace all derived expressions in the loop body with simpler
699 // expressions.
Chris Lattner40bf8b42004-04-02 20:24:31 +0000700 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
701 if (LI->getLoopFor(L->getBlocks()[i]) == L) { // Not in a subloop...
702 BasicBlock *BB = L->getBlocks()[i];
703 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
704 if (I->getType()->isInteger() && // Is an integer instruction
Chris Lattner1363e852004-04-21 23:36:08 +0000705 !I->use_empty() &&
Chris Lattner40bf8b42004-04-02 20:24:31 +0000706 !Rewriter.isInsertedInstruction(I)) {
707 SCEVHandle SH = SE->getSCEV(I);
Chris Lattner4a7553e2004-04-23 21:29:48 +0000708 Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
Chris Lattner1363e852004-04-21 23:36:08 +0000709 if (V != I) {
710 if (isa<Instruction>(V)) {
711 std::string Name = I->getName();
712 I->setName("");
713 V->setName(Name);
714 }
715 I->replaceAllUsesWith(V);
716 DeadInsts.insert(I);
717 ++NumRemoved;
718 Changed = true;
719 }
Chris Lattner40bf8b42004-04-02 20:24:31 +0000720 }
Chris Lattner394437f2001-12-04 04:32:29 +0000721 }
Chris Lattnerb4782d12004-04-22 15:12:36 +0000722#endif
Chris Lattner1363e852004-04-21 23:36:08 +0000723
Chris Lattner1363e852004-04-21 23:36:08 +0000724 DeleteTriviallyDeadInstructions(DeadInsts);
Chris Lattner6148c022001-12-03 17:28:42 +0000725}