blob: 58eb3bc2750f82980bfb9c9cb1a5b4d9ec1f3eee [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions. This pass does not modify the CFG This pass is where algebraic
12// simplification happens.
13//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/Analysis/ConstantFolding.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Transforms/Utils/Local.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/GetElementPtrTypeIterator.h"
49#include "llvm/Support/InstVisitor.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/PatternMatch.h"
52#include "llvm/Support/Compiler.h"
53#include "llvm/ADT/DenseMap.h"
54#include "llvm/ADT/SmallVector.h"
55#include "llvm/ADT/SmallPtrSet.h"
56#include "llvm/ADT/Statistic.h"
57#include "llvm/ADT/STLExtras.h"
58#include <algorithm>
59#include <sstream>
60using namespace llvm;
61using namespace llvm::PatternMatch;
62
63STATISTIC(NumCombined , "Number of insts combined");
64STATISTIC(NumConstProp, "Number of constant folds");
65STATISTIC(NumDeadInst , "Number of dead inst eliminated");
66STATISTIC(NumDeadStore, "Number of dead stores eliminated");
67STATISTIC(NumSunkInst , "Number of instructions sunk");
68
69namespace {
70 class VISIBILITY_HIDDEN InstCombiner
71 : public FunctionPass,
72 public InstVisitor<InstCombiner, Instruction*> {
73 // Worklist of all of the instructions that need to be simplified.
74 std::vector<Instruction*> Worklist;
75 DenseMap<Instruction*, unsigned> WorklistMap;
76 TargetData *TD;
77 bool MustPreserveLCSSA;
78 public:
79 static char ID; // Pass identification, replacement for typeid
80 InstCombiner() : FunctionPass((intptr_t)&ID) {}
81
82 /// AddToWorkList - Add the specified instruction to the worklist if it
83 /// isn't already in it.
84 void AddToWorkList(Instruction *I) {
85 if (WorklistMap.insert(std::make_pair(I, Worklist.size())))
86 Worklist.push_back(I);
87 }
88
89 // RemoveFromWorkList - remove I from the worklist if it exists.
90 void RemoveFromWorkList(Instruction *I) {
91 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
92 if (It == WorklistMap.end()) return; // Not in worklist.
93
94 // Don't bother moving everything down, just null out the slot.
95 Worklist[It->second] = 0;
96
97 WorklistMap.erase(It);
98 }
99
100 Instruction *RemoveOneFromWorkList() {
101 Instruction *I = Worklist.back();
102 Worklist.pop_back();
103 WorklistMap.erase(I);
104 return I;
105 }
106
107
108 /// AddUsersToWorkList - When an instruction is simplified, add all users of
109 /// the instruction to the work lists because they might get more simplified
110 /// now.
111 ///
112 void AddUsersToWorkList(Value &I) {
113 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
114 UI != UE; ++UI)
115 AddToWorkList(cast<Instruction>(*UI));
116 }
117
118 /// AddUsesToWorkList - When an instruction is simplified, add operands to
119 /// the work lists because they might get more simplified now.
120 ///
121 void AddUsesToWorkList(Instruction &I) {
122 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
123 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
124 AddToWorkList(Op);
125 }
126
127 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
128 /// dead. Add all of its operands to the worklist, turning them into
129 /// undef's to reduce the number of uses of those instructions.
130 ///
131 /// Return the specified operand before it is turned into an undef.
132 ///
133 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
134 Value *R = I.getOperand(op);
135
136 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
137 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
138 AddToWorkList(Op);
139 // Set the operand to undef to drop the use.
140 I.setOperand(i, UndefValue::get(Op->getType()));
141 }
142
143 return R;
144 }
145
146 public:
147 virtual bool runOnFunction(Function &F);
148
149 bool DoOneIteration(Function &F, unsigned ItNum);
150
151 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
152 AU.addRequired<TargetData>();
153 AU.addPreservedID(LCSSAID);
154 AU.setPreservesCFG();
155 }
156
157 TargetData &getTargetData() const { return *TD; }
158
159 // Visitation implementation - Implement instruction combining for different
160 // instruction types. The semantics are as follows:
161 // Return Value:
162 // null - No change was made
163 // I - Change was made, I is still valid, I may be dead though
164 // otherwise - Change was made, replace I with returned instruction
165 //
166 Instruction *visitAdd(BinaryOperator &I);
167 Instruction *visitSub(BinaryOperator &I);
168 Instruction *visitMul(BinaryOperator &I);
169 Instruction *visitURem(BinaryOperator &I);
170 Instruction *visitSRem(BinaryOperator &I);
171 Instruction *visitFRem(BinaryOperator &I);
172 Instruction *commonRemTransforms(BinaryOperator &I);
173 Instruction *commonIRemTransforms(BinaryOperator &I);
174 Instruction *commonDivTransforms(BinaryOperator &I);
175 Instruction *commonIDivTransforms(BinaryOperator &I);
176 Instruction *visitUDiv(BinaryOperator &I);
177 Instruction *visitSDiv(BinaryOperator &I);
178 Instruction *visitFDiv(BinaryOperator &I);
179 Instruction *visitAnd(BinaryOperator &I);
180 Instruction *visitOr (BinaryOperator &I);
181 Instruction *visitXor(BinaryOperator &I);
182 Instruction *visitShl(BinaryOperator &I);
183 Instruction *visitAShr(BinaryOperator &I);
184 Instruction *visitLShr(BinaryOperator &I);
185 Instruction *commonShiftTransforms(BinaryOperator &I);
186 Instruction *visitFCmpInst(FCmpInst &I);
187 Instruction *visitICmpInst(ICmpInst &I);
188 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
189 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
190 Instruction *LHS,
191 ConstantInt *RHS);
192 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
193 ConstantInt *DivRHS);
194
195 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
196 ICmpInst::Predicate Cond, Instruction &I);
197 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
198 BinaryOperator &I);
199 Instruction *commonCastTransforms(CastInst &CI);
200 Instruction *commonIntCastTransforms(CastInst &CI);
201 Instruction *commonPointerCastTransforms(CastInst &CI);
202 Instruction *visitTrunc(TruncInst &CI);
203 Instruction *visitZExt(ZExtInst &CI);
204 Instruction *visitSExt(SExtInst &CI);
205 Instruction *visitFPTrunc(CastInst &CI);
206 Instruction *visitFPExt(CastInst &CI);
207 Instruction *visitFPToUI(CastInst &CI);
208 Instruction *visitFPToSI(CastInst &CI);
209 Instruction *visitUIToFP(CastInst &CI);
210 Instruction *visitSIToFP(CastInst &CI);
211 Instruction *visitPtrToInt(CastInst &CI);
212 Instruction *visitIntToPtr(CastInst &CI);
213 Instruction *visitBitCast(BitCastInst &CI);
214 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
215 Instruction *FI);
216 Instruction *visitSelectInst(SelectInst &CI);
217 Instruction *visitCallInst(CallInst &CI);
218 Instruction *visitInvokeInst(InvokeInst &II);
219 Instruction *visitPHINode(PHINode &PN);
220 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
221 Instruction *visitAllocationInst(AllocationInst &AI);
222 Instruction *visitFreeInst(FreeInst &FI);
223 Instruction *visitLoadInst(LoadInst &LI);
224 Instruction *visitStoreInst(StoreInst &SI);
225 Instruction *visitBranchInst(BranchInst &BI);
226 Instruction *visitSwitchInst(SwitchInst &SI);
227 Instruction *visitInsertElementInst(InsertElementInst &IE);
228 Instruction *visitExtractElementInst(ExtractElementInst &EI);
229 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
230
231 // visitInstruction - Specify what to return for unhandled instructions...
232 Instruction *visitInstruction(Instruction &I) { return 0; }
233
234 private:
235 Instruction *visitCallSite(CallSite CS);
236 bool transformConstExprCastCall(CallSite CS);
237
238 public:
239 // InsertNewInstBefore - insert an instruction New before instruction Old
240 // in the program. Add the new instruction to the worklist.
241 //
242 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
243 assert(New && New->getParent() == 0 &&
244 "New instruction already inserted into a basic block!");
245 BasicBlock *BB = Old.getParent();
246 BB->getInstList().insert(&Old, New); // Insert inst
247 AddToWorkList(New);
248 return New;
249 }
250
251 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
252 /// This also adds the cast to the worklist. Finally, this returns the
253 /// cast.
254 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
255 Instruction &Pos) {
256 if (V->getType() == Ty) return V;
257
258 if (Constant *CV = dyn_cast<Constant>(V))
259 return ConstantExpr::getCast(opc, CV, Ty);
260
261 Instruction *C = CastInst::create(opc, V, Ty, V->getName(), &Pos);
262 AddToWorkList(C);
263 return C;
264 }
265
266 // ReplaceInstUsesWith - This method is to be used when an instruction is
267 // found to be dead, replacable with another preexisting expression. Here
268 // we add all uses of I to the worklist, replace all uses of I with the new
269 // value, then return I, so that the inst combiner will know that I was
270 // modified.
271 //
272 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
273 AddUsersToWorkList(I); // Add all modified instrs to worklist
274 if (&I != V) {
275 I.replaceAllUsesWith(V);
276 return &I;
277 } else {
278 // If we are replacing the instruction with itself, this must be in a
279 // segment of unreachable code, so just clobber the instruction.
280 I.replaceAllUsesWith(UndefValue::get(I.getType()));
281 return &I;
282 }
283 }
284
285 // UpdateValueUsesWith - This method is to be used when an value is
286 // found to be replacable with another preexisting expression or was
287 // updated. Here we add all uses of I to the worklist, replace all uses of
288 // I with the new value (unless the instruction was just updated), then
289 // return true, so that the inst combiner will know that I was modified.
290 //
291 bool UpdateValueUsesWith(Value *Old, Value *New) {
292 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
293 if (Old != New)
294 Old->replaceAllUsesWith(New);
295 if (Instruction *I = dyn_cast<Instruction>(Old))
296 AddToWorkList(I);
297 if (Instruction *I = dyn_cast<Instruction>(New))
298 AddToWorkList(I);
299 return true;
300 }
301
302 // EraseInstFromFunction - When dealing with an instruction that has side
303 // effects or produces a void value, we can't rely on DCE to delete the
304 // instruction. Instead, visit methods should return the value returned by
305 // this function.
306 Instruction *EraseInstFromFunction(Instruction &I) {
307 assert(I.use_empty() && "Cannot erase instruction that is used!");
308 AddUsesToWorkList(I);
309 RemoveFromWorkList(&I);
310 I.eraseFromParent();
311 return 0; // Don't do anything with FI
312 }
313
314 private:
315 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
316 /// InsertBefore instruction. This is specialized a bit to avoid inserting
317 /// casts that are known to not do anything...
318 ///
319 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
320 Value *V, const Type *DestTy,
321 Instruction *InsertBefore);
322
323 /// SimplifyCommutative - This performs a few simplifications for
324 /// commutative operators.
325 bool SimplifyCommutative(BinaryOperator &I);
326
327 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
328 /// most-complex to least-complex order.
329 bool SimplifyCompare(CmpInst &I);
330
331 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
332 /// on the demanded bits.
333 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
334 APInt& KnownZero, APInt& KnownOne,
335 unsigned Depth = 0);
336
337 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
338 uint64_t &UndefElts, unsigned Depth = 0);
339
340 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
341 // PHI node as operand #0, see if we can fold the instruction into the PHI
342 // (which is only possible if all operands to the PHI are constants).
343 Instruction *FoldOpIntoPhi(Instruction &I);
344
345 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
346 // operator and they all are only used by the PHI, PHI together their
347 // inputs, and do the operation once, to the result of the PHI.
348 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
349 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
350
351
352 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
353 ConstantInt *AndRHS, BinaryOperator &TheAnd);
354
355 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
356 bool isSub, Instruction &I);
357 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
358 bool isSigned, bool Inside, Instruction &IB);
359 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
360 Instruction *MatchBSwap(BinaryOperator &I);
361 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
362
363 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
364 };
365
366 char InstCombiner::ID = 0;
367 RegisterPass<InstCombiner> X("instcombine", "Combine redundant instructions");
368}
369
370// getComplexity: Assign a complexity or rank value to LLVM Values...
371// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
372static unsigned getComplexity(Value *V) {
373 if (isa<Instruction>(V)) {
374 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
375 return 3;
376 return 4;
377 }
378 if (isa<Argument>(V)) return 3;
379 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
380}
381
382// isOnlyUse - Return true if this instruction will be deleted if we stop using
383// it.
384static bool isOnlyUse(Value *V) {
385 return V->hasOneUse() || isa<Constant>(V);
386}
387
388// getPromotedType - Return the specified type promoted as it would be to pass
389// though a va_arg area...
390static const Type *getPromotedType(const Type *Ty) {
391 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
392 if (ITy->getBitWidth() < 32)
393 return Type::Int32Ty;
394 }
395 return Ty;
396}
397
398/// getBitCastOperand - If the specified operand is a CastInst or a constant
399/// expression bitcast, return the operand value, otherwise return null.
400static Value *getBitCastOperand(Value *V) {
401 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
402 return I->getOperand(0);
403 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
404 if (CE->getOpcode() == Instruction::BitCast)
405 return CE->getOperand(0);
406 return 0;
407}
408
409/// This function is a wrapper around CastInst::isEliminableCastPair. It
410/// simply extracts arguments and returns what that function returns.
411static Instruction::CastOps
412isEliminableCastPair(
413 const CastInst *CI, ///< The first cast instruction
414 unsigned opcode, ///< The opcode of the second cast instruction
415 const Type *DstTy, ///< The target type for the second cast instruction
416 TargetData *TD ///< The target data for pointer size
417) {
418
419 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
420 const Type *MidTy = CI->getType(); // B from above
421
422 // Get the opcodes of the two Cast instructions
423 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
424 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
425
426 return Instruction::CastOps(
427 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
428 DstTy, TD->getIntPtrType()));
429}
430
431/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
432/// in any code being generated. It does not require codegen if V is simple
433/// enough or if the cast can be folded into other casts.
434static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
435 const Type *Ty, TargetData *TD) {
436 if (V->getType() == Ty || isa<Constant>(V)) return false;
437
438 // If this is another cast that can be eliminated, it isn't codegen either.
439 if (const CastInst *CI = dyn_cast<CastInst>(V))
440 if (isEliminableCastPair(CI, opcode, Ty, TD))
441 return false;
442 return true;
443}
444
445/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
446/// InsertBefore instruction. This is specialized a bit to avoid inserting
447/// casts that are known to not do anything...
448///
449Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
450 Value *V, const Type *DestTy,
451 Instruction *InsertBefore) {
452 if (V->getType() == DestTy) return V;
453 if (Constant *C = dyn_cast<Constant>(V))
454 return ConstantExpr::getCast(opcode, C, DestTy);
455
456 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
457}
458
459// SimplifyCommutative - This performs a few simplifications for commutative
460// operators:
461//
462// 1. Order operands such that they are listed from right (least complex) to
463// left (most complex). This puts constants before unary operators before
464// binary operators.
465//
466// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
467// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
468//
469bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
470 bool Changed = false;
471 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
472 Changed = !I.swapOperands();
473
474 if (!I.isAssociative()) return Changed;
475 Instruction::BinaryOps Opcode = I.getOpcode();
476 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
477 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
478 if (isa<Constant>(I.getOperand(1))) {
479 Constant *Folded = ConstantExpr::get(I.getOpcode(),
480 cast<Constant>(I.getOperand(1)),
481 cast<Constant>(Op->getOperand(1)));
482 I.setOperand(0, Op->getOperand(0));
483 I.setOperand(1, Folded);
484 return true;
485 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
486 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
487 isOnlyUse(Op) && isOnlyUse(Op1)) {
488 Constant *C1 = cast<Constant>(Op->getOperand(1));
489 Constant *C2 = cast<Constant>(Op1->getOperand(1));
490
491 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
492 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
493 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
494 Op1->getOperand(0),
495 Op1->getName(), &I);
496 AddToWorkList(New);
497 I.setOperand(0, New);
498 I.setOperand(1, Folded);
499 return true;
500 }
501 }
502 return Changed;
503}
504
505/// SimplifyCompare - For a CmpInst this function just orders the operands
506/// so that theyare listed from right (least complex) to left (most complex).
507/// This puts constants before unary operators before binary operators.
508bool InstCombiner::SimplifyCompare(CmpInst &I) {
509 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
510 return false;
511 I.swapOperands();
512 // Compare instructions are not associative so there's nothing else we can do.
513 return true;
514}
515
516// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
517// if the LHS is a constant zero (which is the 'negate' form).
518//
519static inline Value *dyn_castNegVal(Value *V) {
520 if (BinaryOperator::isNeg(V))
521 return BinaryOperator::getNegArgument(V);
522
523 // Constants can be considered to be negated values if they can be folded.
524 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
525 return ConstantExpr::getNeg(C);
526 return 0;
527}
528
529static inline Value *dyn_castNotVal(Value *V) {
530 if (BinaryOperator::isNot(V))
531 return BinaryOperator::getNotArgument(V);
532
533 // Constants can be considered to be not'ed values...
534 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
535 return ConstantInt::get(~C->getValue());
536 return 0;
537}
538
539// dyn_castFoldableMul - If this value is a multiply that can be folded into
540// other computations (because it has a constant operand), return the
541// non-constant operand of the multiply, and set CST to point to the multiplier.
542// Otherwise, return null.
543//
544static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
545 if (V->hasOneUse() && V->getType()->isInteger())
546 if (Instruction *I = dyn_cast<Instruction>(V)) {
547 if (I->getOpcode() == Instruction::Mul)
548 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
549 return I->getOperand(0);
550 if (I->getOpcode() == Instruction::Shl)
551 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
552 // The multiplier is really 1 << CST.
553 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
554 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
555 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
556 return I->getOperand(0);
557 }
558 }
559 return 0;
560}
561
562/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
563/// expression, return it.
564static User *dyn_castGetElementPtr(Value *V) {
565 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
566 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
567 if (CE->getOpcode() == Instruction::GetElementPtr)
568 return cast<User>(V);
569 return false;
570}
571
572/// AddOne - Add one to a ConstantInt
573static ConstantInt *AddOne(ConstantInt *C) {
574 APInt Val(C->getValue());
575 return ConstantInt::get(++Val);
576}
577/// SubOne - Subtract one from a ConstantInt
578static ConstantInt *SubOne(ConstantInt *C) {
579 APInt Val(C->getValue());
580 return ConstantInt::get(--Val);
581}
582/// Add - Add two ConstantInts together
583static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
584 return ConstantInt::get(C1->getValue() + C2->getValue());
585}
586/// And - Bitwise AND two ConstantInts together
587static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
588 return ConstantInt::get(C1->getValue() & C2->getValue());
589}
590/// Subtract - Subtract one ConstantInt from another
591static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
592 return ConstantInt::get(C1->getValue() - C2->getValue());
593}
594/// Multiply - Multiply two ConstantInts together
595static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
596 return ConstantInt::get(C1->getValue() * C2->getValue());
597}
598
599/// ComputeMaskedBits - Determine which of the bits specified in Mask are
600/// known to be either zero or one and return them in the KnownZero/KnownOne
601/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
602/// processing.
603/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
604/// we cannot optimize based on the assumption that it is zero without changing
605/// it to be an explicit zero. If we don't change it to zero, other code could
606/// optimized based on the contradictory assumption that it is non-zero.
607/// Because instcombine aggressively folds operations with undef args anyway,
608/// this won't lose us code quality.
609static void ComputeMaskedBits(Value *V, const APInt &Mask, APInt& KnownZero,
610 APInt& KnownOne, unsigned Depth = 0) {
611 assert(V && "No Value?");
612 assert(Depth <= 6 && "Limit Search Depth");
613 uint32_t BitWidth = Mask.getBitWidth();
614 assert(cast<IntegerType>(V->getType())->getBitWidth() == BitWidth &&
615 KnownZero.getBitWidth() == BitWidth &&
616 KnownOne.getBitWidth() == BitWidth &&
617 "V, Mask, KnownOne and KnownZero should have same BitWidth");
618 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
619 // We know all of the bits for a constant!
620 KnownOne = CI->getValue() & Mask;
621 KnownZero = ~KnownOne & Mask;
622 return;
623 }
624
625 if (Depth == 6 || Mask == 0)
626 return; // Limit search depth.
627
628 Instruction *I = dyn_cast<Instruction>(V);
629 if (!I) return;
630
631 KnownZero.clear(); KnownOne.clear(); // Don't know anything.
632 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
633
634 switch (I->getOpcode()) {
635 case Instruction::And: {
636 // If either the LHS or the RHS are Zero, the result is zero.
637 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
638 APInt Mask2(Mask & ~KnownZero);
639 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
640 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
641 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
642
643 // Output known-1 bits are only known if set in both the LHS & RHS.
644 KnownOne &= KnownOne2;
645 // Output known-0 are known to be clear if zero in either the LHS | RHS.
646 KnownZero |= KnownZero2;
647 return;
648 }
649 case Instruction::Or: {
650 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
651 APInt Mask2(Mask & ~KnownOne);
652 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
653 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
654 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
655
656 // Output known-0 bits are only known if clear in both the LHS & RHS.
657 KnownZero &= KnownZero2;
658 // Output known-1 are known to be set if set in either the LHS | RHS.
659 KnownOne |= KnownOne2;
660 return;
661 }
662 case Instruction::Xor: {
663 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
664 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
665 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
666 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
667
668 // Output known-0 bits are known if clear or set in both the LHS & RHS.
669 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
670 // Output known-1 are known to be set if set in only one of the LHS, RHS.
671 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
672 KnownZero = KnownZeroOut;
673 return;
674 }
675 case Instruction::Select:
676 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
677 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
678 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
679 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
680
681 // Only known if known in both the LHS and RHS.
682 KnownOne &= KnownOne2;
683 KnownZero &= KnownZero2;
684 return;
685 case Instruction::FPTrunc:
686 case Instruction::FPExt:
687 case Instruction::FPToUI:
688 case Instruction::FPToSI:
689 case Instruction::SIToFP:
690 case Instruction::PtrToInt:
691 case Instruction::UIToFP:
692 case Instruction::IntToPtr:
693 return; // Can't work with floating point or pointers
694 case Instruction::Trunc: {
695 // All these have integer operands
696 uint32_t SrcBitWidth =
697 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
698 APInt MaskIn(Mask);
699 MaskIn.zext(SrcBitWidth);
700 KnownZero.zext(SrcBitWidth);
701 KnownOne.zext(SrcBitWidth);
702 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
703 KnownZero.trunc(BitWidth);
704 KnownOne.trunc(BitWidth);
705 return;
706 }
707 case Instruction::BitCast: {
708 const Type *SrcTy = I->getOperand(0)->getType();
709 if (SrcTy->isInteger()) {
710 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
711 return;
712 }
713 break;
714 }
715 case Instruction::ZExt: {
716 // Compute the bits in the result that are not present in the input.
717 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
718 uint32_t SrcBitWidth = SrcTy->getBitWidth();
719
720 APInt MaskIn(Mask);
721 MaskIn.trunc(SrcBitWidth);
722 KnownZero.trunc(SrcBitWidth);
723 KnownOne.trunc(SrcBitWidth);
724 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
725 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
726 // The top bits are known to be zero.
727 KnownZero.zext(BitWidth);
728 KnownOne.zext(BitWidth);
729 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
730 return;
731 }
732 case Instruction::SExt: {
733 // Compute the bits in the result that are not present in the input.
734 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
735 uint32_t SrcBitWidth = SrcTy->getBitWidth();
736
737 APInt MaskIn(Mask);
738 MaskIn.trunc(SrcBitWidth);
739 KnownZero.trunc(SrcBitWidth);
740 KnownOne.trunc(SrcBitWidth);
741 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
742 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
743 KnownZero.zext(BitWidth);
744 KnownOne.zext(BitWidth);
745
746 // If the sign bit of the input is known set or clear, then we know the
747 // top bits of the result.
748 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
749 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
750 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
751 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
752 return;
753 }
754 case Instruction::Shl:
755 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
756 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
757 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
758 APInt Mask2(Mask.lshr(ShiftAmt));
759 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, Depth+1);
760 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
761 KnownZero <<= ShiftAmt;
762 KnownOne <<= ShiftAmt;
763 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
764 return;
765 }
766 break;
767 case Instruction::LShr:
768 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
769 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
770 // Compute the new bits that are at the top now.
771 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
772
773 // Unsigned shift right.
774 APInt Mask2(Mask.shl(ShiftAmt));
775 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
776 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
777 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
778 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
779 // high bits known zero.
780 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
781 return;
782 }
783 break;
784 case Instruction::AShr:
785 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
786 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
787 // Compute the new bits that are at the top now.
788 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
789
790 // Signed shift right.
791 APInt Mask2(Mask.shl(ShiftAmt));
792 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
793 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
794 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
795 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
796
797 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
798 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
799 KnownZero |= HighBits;
800 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
801 KnownOne |= HighBits;
802 return;
803 }
804 break;
805 }
806}
807
808/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
809/// this predicate to simplify operations downstream. Mask is known to be zero
810/// for bits that V cannot have.
811static bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0) {
812 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
813 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
814 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
815 return (KnownZero & Mask) == Mask;
816}
817
818/// ShrinkDemandedConstant - Check to see if the specified operand of the
819/// specified instruction is a constant integer. If so, check to see if there
820/// are any bits set in the constant that are not demanded. If so, shrink the
821/// constant and return true.
822static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
823 APInt Demanded) {
824 assert(I && "No instruction?");
825 assert(OpNo < I->getNumOperands() && "Operand index too large");
826
827 // If the operand is not a constant integer, nothing to do.
828 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
829 if (!OpC) return false;
830
831 // If there are no bits set that aren't demanded, nothing to do.
832 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
833 if ((~Demanded & OpC->getValue()) == 0)
834 return false;
835
836 // This instruction is producing bits that are not demanded. Shrink the RHS.
837 Demanded &= OpC->getValue();
838 I->setOperand(OpNo, ConstantInt::get(Demanded));
839 return true;
840}
841
842// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
843// set of known zero and one bits, compute the maximum and minimum values that
844// could have the specified known zero and known one bits, returning them in
845// min/max.
846static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
847 const APInt& KnownZero,
848 const APInt& KnownOne,
849 APInt& Min, APInt& Max) {
850 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
851 assert(KnownZero.getBitWidth() == BitWidth &&
852 KnownOne.getBitWidth() == BitWidth &&
853 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
854 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
855 APInt UnknownBits = ~(KnownZero|KnownOne);
856
857 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
858 // bit if it is unknown.
859 Min = KnownOne;
860 Max = KnownOne|UnknownBits;
861
862 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
863 Min.set(BitWidth-1);
864 Max.clear(BitWidth-1);
865 }
866}
867
868// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
869// a set of known zero and one bits, compute the maximum and minimum values that
870// could have the specified known zero and known one bits, returning them in
871// min/max.
872static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000873 const APInt &KnownZero,
874 const APInt &KnownOne,
875 APInt &Min, APInt &Max) {
876 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000877 assert(KnownZero.getBitWidth() == BitWidth &&
878 KnownOne.getBitWidth() == BitWidth &&
879 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
880 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
881 APInt UnknownBits = ~(KnownZero|KnownOne);
882
883 // The minimum value is when the unknown bits are all zeros.
884 Min = KnownOne;
885 // The maximum value is when the unknown bits are all ones.
886 Max = KnownOne|UnknownBits;
887}
888
889/// SimplifyDemandedBits - This function attempts to replace V with a simpler
890/// value based on the demanded bits. When this function is called, it is known
891/// that only the bits set in DemandedMask of the result of V are ever used
892/// downstream. Consequently, depending on the mask and V, it may be possible
893/// to replace V with a constant or one of its operands. In such cases, this
894/// function does the replacement and returns true. In all other cases, it
895/// returns false after analyzing the expression and setting KnownOne and known
896/// to be one in the expression. KnownZero contains all the bits that are known
897/// to be zero in the expression. These are provided to potentially allow the
898/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
899/// the expression. KnownOne and KnownZero always follow the invariant that
900/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
901/// the bits in KnownOne and KnownZero may only be accurate for those bits set
902/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
903/// and KnownOne must all be the same.
904bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
905 APInt& KnownZero, APInt& KnownOne,
906 unsigned Depth) {
907 assert(V != 0 && "Null pointer of Value???");
908 assert(Depth <= 6 && "Limit Search Depth");
909 uint32_t BitWidth = DemandedMask.getBitWidth();
910 const IntegerType *VTy = cast<IntegerType>(V->getType());
911 assert(VTy->getBitWidth() == BitWidth &&
912 KnownZero.getBitWidth() == BitWidth &&
913 KnownOne.getBitWidth() == BitWidth &&
914 "Value *V, DemandedMask, KnownZero and KnownOne \
915 must have same BitWidth");
916 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
917 // We know all of the bits for a constant!
918 KnownOne = CI->getValue() & DemandedMask;
919 KnownZero = ~KnownOne & DemandedMask;
920 return false;
921 }
922
923 KnownZero.clear();
924 KnownOne.clear();
925 if (!V->hasOneUse()) { // Other users may use these bits.
926 if (Depth != 0) { // Not at the root.
927 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
928 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
929 return false;
930 }
931 // If this is the root being simplified, allow it to have multiple uses,
932 // just set the DemandedMask to all bits.
933 DemandedMask = APInt::getAllOnesValue(BitWidth);
934 } else if (DemandedMask == 0) { // Not demanding any bits from V.
935 if (V != UndefValue::get(VTy))
936 return UpdateValueUsesWith(V, UndefValue::get(VTy));
937 return false;
938 } else if (Depth == 6) { // Limit search depth.
939 return false;
940 }
941
942 Instruction *I = dyn_cast<Instruction>(V);
943 if (!I) return false; // Only analyze instructions.
944
945 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
946 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
947 switch (I->getOpcode()) {
948 default: break;
949 case Instruction::And:
950 // If either the LHS or the RHS are Zero, the result is zero.
951 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
952 RHSKnownZero, RHSKnownOne, Depth+1))
953 return true;
954 assert((RHSKnownZero & RHSKnownOne) == 0 &&
955 "Bits known to be one AND zero?");
956
957 // If something is known zero on the RHS, the bits aren't demanded on the
958 // LHS.
959 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
960 LHSKnownZero, LHSKnownOne, Depth+1))
961 return true;
962 assert((LHSKnownZero & LHSKnownOne) == 0 &&
963 "Bits known to be one AND zero?");
964
965 // If all of the demanded bits are known 1 on one side, return the other.
966 // These bits cannot contribute to the result of the 'and'.
967 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
968 (DemandedMask & ~LHSKnownZero))
969 return UpdateValueUsesWith(I, I->getOperand(0));
970 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
971 (DemandedMask & ~RHSKnownZero))
972 return UpdateValueUsesWith(I, I->getOperand(1));
973
974 // If all of the demanded bits in the inputs are known zeros, return zero.
975 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
976 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
977
978 // If the RHS is a constant, see if we can simplify it.
979 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
980 return UpdateValueUsesWith(I, I);
981
982 // Output known-1 bits are only known if set in both the LHS & RHS.
983 RHSKnownOne &= LHSKnownOne;
984 // Output known-0 are known to be clear if zero in either the LHS | RHS.
985 RHSKnownZero |= LHSKnownZero;
986 break;
987 case Instruction::Or:
988 // If either the LHS or the RHS are One, the result is One.
989 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
990 RHSKnownZero, RHSKnownOne, Depth+1))
991 return true;
992 assert((RHSKnownZero & RHSKnownOne) == 0 &&
993 "Bits known to be one AND zero?");
994 // If something is known one on the RHS, the bits aren't demanded on the
995 // LHS.
996 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
997 LHSKnownZero, LHSKnownOne, Depth+1))
998 return true;
999 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1000 "Bits known to be one AND zero?");
1001
1002 // If all of the demanded bits are known zero on one side, return the other.
1003 // These bits cannot contribute to the result of the 'or'.
1004 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
1005 (DemandedMask & ~LHSKnownOne))
1006 return UpdateValueUsesWith(I, I->getOperand(0));
1007 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
1008 (DemandedMask & ~RHSKnownOne))
1009 return UpdateValueUsesWith(I, I->getOperand(1));
1010
1011 // If all of the potentially set bits on one side are known to be set on
1012 // the other side, just use the 'other' side.
1013 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
1014 (DemandedMask & (~RHSKnownZero)))
1015 return UpdateValueUsesWith(I, I->getOperand(0));
1016 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
1017 (DemandedMask & (~LHSKnownZero)))
1018 return UpdateValueUsesWith(I, I->getOperand(1));
1019
1020 // If the RHS is a constant, see if we can simplify it.
1021 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1022 return UpdateValueUsesWith(I, I);
1023
1024 // Output known-0 bits are only known if clear in both the LHS & RHS.
1025 RHSKnownZero &= LHSKnownZero;
1026 // Output known-1 are known to be set if set in either the LHS | RHS.
1027 RHSKnownOne |= LHSKnownOne;
1028 break;
1029 case Instruction::Xor: {
1030 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1031 RHSKnownZero, RHSKnownOne, Depth+1))
1032 return true;
1033 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1034 "Bits known to be one AND zero?");
1035 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1036 LHSKnownZero, LHSKnownOne, Depth+1))
1037 return true;
1038 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1039 "Bits known to be one AND zero?");
1040
1041 // If all of the demanded bits are known zero on one side, return the other.
1042 // These bits cannot contribute to the result of the 'xor'.
1043 if ((DemandedMask & RHSKnownZero) == DemandedMask)
1044 return UpdateValueUsesWith(I, I->getOperand(0));
1045 if ((DemandedMask & LHSKnownZero) == DemandedMask)
1046 return UpdateValueUsesWith(I, I->getOperand(1));
1047
1048 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1049 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
1050 (RHSKnownOne & LHSKnownOne);
1051 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1052 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
1053 (RHSKnownOne & LHSKnownZero);
1054
1055 // If all of the demanded bits are known to be zero on one side or the
1056 // other, turn this into an *inclusive* or.
1057 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1058 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
1059 Instruction *Or =
1060 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1061 I->getName());
1062 InsertNewInstBefore(Or, *I);
1063 return UpdateValueUsesWith(I, Or);
1064 }
1065
1066 // If all of the demanded bits on one side are known, and all of the set
1067 // bits on that side are also known to be set on the other side, turn this
1068 // into an AND, as we know the bits will be cleared.
1069 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1070 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
1071 // all known
1072 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
1073 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
1074 Instruction *And =
1075 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
1076 InsertNewInstBefore(And, *I);
1077 return UpdateValueUsesWith(I, And);
1078 }
1079 }
1080
1081 // If the RHS is a constant, see if we can simplify it.
1082 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1083 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1084 return UpdateValueUsesWith(I, I);
1085
1086 RHSKnownZero = KnownZeroOut;
1087 RHSKnownOne = KnownOneOut;
1088 break;
1089 }
1090 case Instruction::Select:
1091 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
1092 RHSKnownZero, RHSKnownOne, Depth+1))
1093 return true;
1094 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1095 LHSKnownZero, LHSKnownOne, Depth+1))
1096 return true;
1097 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1098 "Bits known to be one AND zero?");
1099 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1100 "Bits known to be one AND zero?");
1101
1102 // If the operands are constants, see if we can simplify them.
1103 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1104 return UpdateValueUsesWith(I, I);
1105 if (ShrinkDemandedConstant(I, 2, DemandedMask))
1106 return UpdateValueUsesWith(I, I);
1107
1108 // Only known if known in both the LHS and RHS.
1109 RHSKnownOne &= LHSKnownOne;
1110 RHSKnownZero &= LHSKnownZero;
1111 break;
1112 case Instruction::Trunc: {
1113 uint32_t truncBf =
1114 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
1115 DemandedMask.zext(truncBf);
1116 RHSKnownZero.zext(truncBf);
1117 RHSKnownOne.zext(truncBf);
1118 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1119 RHSKnownZero, RHSKnownOne, Depth+1))
1120 return true;
1121 DemandedMask.trunc(BitWidth);
1122 RHSKnownZero.trunc(BitWidth);
1123 RHSKnownOne.trunc(BitWidth);
1124 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1125 "Bits known to be one AND zero?");
1126 break;
1127 }
1128 case Instruction::BitCast:
1129 if (!I->getOperand(0)->getType()->isInteger())
1130 return false;
1131
1132 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1133 RHSKnownZero, RHSKnownOne, Depth+1))
1134 return true;
1135 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1136 "Bits known to be one AND zero?");
1137 break;
1138 case Instruction::ZExt: {
1139 // Compute the bits in the result that are not present in the input.
1140 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1141 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1142
1143 DemandedMask.trunc(SrcBitWidth);
1144 RHSKnownZero.trunc(SrcBitWidth);
1145 RHSKnownOne.trunc(SrcBitWidth);
1146 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1147 RHSKnownZero, RHSKnownOne, Depth+1))
1148 return true;
1149 DemandedMask.zext(BitWidth);
1150 RHSKnownZero.zext(BitWidth);
1151 RHSKnownOne.zext(BitWidth);
1152 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1153 "Bits known to be one AND zero?");
1154 // The top bits are known to be zero.
1155 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1156 break;
1157 }
1158 case Instruction::SExt: {
1159 // Compute the bits in the result that are not present in the input.
1160 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1161 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1162
1163 APInt InputDemandedBits = DemandedMask &
1164 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1165
1166 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1167 // If any of the sign extended bits are demanded, we know that the sign
1168 // bit is demanded.
1169 if ((NewBits & DemandedMask) != 0)
1170 InputDemandedBits.set(SrcBitWidth-1);
1171
1172 InputDemandedBits.trunc(SrcBitWidth);
1173 RHSKnownZero.trunc(SrcBitWidth);
1174 RHSKnownOne.trunc(SrcBitWidth);
1175 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1176 RHSKnownZero, RHSKnownOne, Depth+1))
1177 return true;
1178 InputDemandedBits.zext(BitWidth);
1179 RHSKnownZero.zext(BitWidth);
1180 RHSKnownOne.zext(BitWidth);
1181 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1182 "Bits known to be one AND zero?");
1183
1184 // If the sign bit of the input is known set or clear, then we know the
1185 // top bits of the result.
1186
1187 // If the input sign bit is known zero, or if the NewBits are not demanded
1188 // convert this into a zero extension.
1189 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1190 {
1191 // Convert to ZExt cast
1192 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1193 return UpdateValueUsesWith(I, NewCast);
1194 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1195 RHSKnownOne |= NewBits;
1196 }
1197 break;
1198 }
1199 case Instruction::Add: {
1200 // Figure out what the input bits are. If the top bits of the and result
1201 // are not demanded, then the add doesn't demand them from its input
1202 // either.
1203 uint32_t NLZ = DemandedMask.countLeadingZeros();
1204
1205 // If there is a constant on the RHS, there are a variety of xformations
1206 // we can do.
1207 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1208 // If null, this should be simplified elsewhere. Some of the xforms here
1209 // won't work if the RHS is zero.
1210 if (RHS->isZero())
1211 break;
1212
1213 // If the top bit of the output is demanded, demand everything from the
1214 // input. Otherwise, we demand all the input bits except NLZ top bits.
1215 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1216
1217 // Find information about known zero/one bits in the input.
1218 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1219 LHSKnownZero, LHSKnownOne, Depth+1))
1220 return true;
1221
1222 // If the RHS of the add has bits set that can't affect the input, reduce
1223 // the constant.
1224 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1225 return UpdateValueUsesWith(I, I);
1226
1227 // Avoid excess work.
1228 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1229 break;
1230
1231 // Turn it into OR if input bits are zero.
1232 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1233 Instruction *Or =
1234 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1235 I->getName());
1236 InsertNewInstBefore(Or, *I);
1237 return UpdateValueUsesWith(I, Or);
1238 }
1239
1240 // We can say something about the output known-zero and known-one bits,
1241 // depending on potential carries from the input constant and the
1242 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1243 // bits set and the RHS constant is 0x01001, then we know we have a known
1244 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1245
1246 // To compute this, we first compute the potential carry bits. These are
1247 // the bits which may be modified. I'm not aware of a better way to do
1248 // this scan.
1249 const APInt& RHSVal = RHS->getValue();
1250 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1251
1252 // Now that we know which bits have carries, compute the known-1/0 sets.
1253
1254 // Bits are known one if they are known zero in one operand and one in the
1255 // other, and there is no input carry.
1256 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1257 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1258
1259 // Bits are known zero if they are known zero in both operands and there
1260 // is no input carry.
1261 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1262 } else {
1263 // If the high-bits of this ADD are not demanded, then it does not demand
1264 // the high bits of its LHS or RHS.
1265 if (DemandedMask[BitWidth-1] == 0) {
1266 // Right fill the mask of bits for this ADD to demand the most
1267 // significant bit and all those below it.
1268 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1269 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1270 LHSKnownZero, LHSKnownOne, Depth+1))
1271 return true;
1272 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1273 LHSKnownZero, LHSKnownOne, Depth+1))
1274 return true;
1275 }
1276 }
1277 break;
1278 }
1279 case Instruction::Sub:
1280 // If the high-bits of this SUB are not demanded, then it does not demand
1281 // the high bits of its LHS or RHS.
1282 if (DemandedMask[BitWidth-1] == 0) {
1283 // Right fill the mask of bits for this SUB to demand the most
1284 // significant bit and all those below it.
1285 uint32_t NLZ = DemandedMask.countLeadingZeros();
1286 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1287 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1288 LHSKnownZero, LHSKnownOne, Depth+1))
1289 return true;
1290 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1291 LHSKnownZero, LHSKnownOne, Depth+1))
1292 return true;
1293 }
1294 break;
1295 case Instruction::Shl:
1296 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1297 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1298 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1299 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1300 RHSKnownZero, RHSKnownOne, Depth+1))
1301 return true;
1302 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1303 "Bits known to be one AND zero?");
1304 RHSKnownZero <<= ShiftAmt;
1305 RHSKnownOne <<= ShiftAmt;
1306 // low bits known zero.
1307 if (ShiftAmt)
1308 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1309 }
1310 break;
1311 case Instruction::LShr:
1312 // For a logical shift right
1313 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1314 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1315
1316 // Unsigned shift right.
1317 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1318 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1319 RHSKnownZero, RHSKnownOne, Depth+1))
1320 return true;
1321 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1322 "Bits known to be one AND zero?");
1323 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1324 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1325 if (ShiftAmt) {
1326 // Compute the new bits that are at the top now.
1327 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1328 RHSKnownZero |= HighBits; // high bits known zero.
1329 }
1330 }
1331 break;
1332 case Instruction::AShr:
1333 // If this is an arithmetic shift right and only the low-bit is set, we can
1334 // always convert this into a logical shr, even if the shift amount is
1335 // variable. The low bit of the shift cannot be an input sign bit unless
1336 // the shift amount is >= the size of the datatype, which is undefined.
1337 if (DemandedMask == 1) {
1338 // Perform the logical shift right.
1339 Value *NewVal = BinaryOperator::createLShr(
1340 I->getOperand(0), I->getOperand(1), I->getName());
1341 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1342 return UpdateValueUsesWith(I, NewVal);
1343 }
1344
1345 // If the sign bit is the only bit demanded by this ashr, then there is no
1346 // need to do it, the shift doesn't change the high bit.
1347 if (DemandedMask.isSignBit())
1348 return UpdateValueUsesWith(I, I->getOperand(0));
1349
1350 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1351 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1352
1353 // Signed shift right.
1354 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1355 // If any of the "high bits" are demanded, we should set the sign bit as
1356 // demanded.
1357 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1358 DemandedMaskIn.set(BitWidth-1);
1359 if (SimplifyDemandedBits(I->getOperand(0),
1360 DemandedMaskIn,
1361 RHSKnownZero, RHSKnownOne, Depth+1))
1362 return true;
1363 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1364 "Bits known to be one AND zero?");
1365 // Compute the new bits that are at the top now.
1366 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1367 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1368 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1369
1370 // Handle the sign bits.
1371 APInt SignBit(APInt::getSignBit(BitWidth));
1372 // Adjust to where it is now in the mask.
1373 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1374
1375 // If the input sign bit is known to be zero, or if none of the top bits
1376 // are demanded, turn this into an unsigned shift right.
1377 if (RHSKnownZero[BitWidth-ShiftAmt-1] ||
1378 (HighBits & ~DemandedMask) == HighBits) {
1379 // Perform the logical shift right.
1380 Value *NewVal = BinaryOperator::createLShr(
1381 I->getOperand(0), SA, I->getName());
1382 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1383 return UpdateValueUsesWith(I, NewVal);
1384 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1385 RHSKnownOne |= HighBits;
1386 }
1387 }
1388 break;
1389 }
1390
1391 // If the client is only demanding bits that we know, return the known
1392 // constant.
1393 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1394 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1395 return false;
1396}
1397
1398
1399/// SimplifyDemandedVectorElts - The specified value producecs a vector with
1400/// 64 or fewer elements. DemandedElts contains the set of elements that are
1401/// actually used by the caller. This method analyzes which elements of the
1402/// operand are undef and returns that information in UndefElts.
1403///
1404/// If the information about demanded elements can be used to simplify the
1405/// operation, the operation is simplified, then the resultant value is
1406/// returned. This returns null if no change was made.
1407Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1408 uint64_t &UndefElts,
1409 unsigned Depth) {
1410 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1411 assert(VWidth <= 64 && "Vector too wide to analyze!");
1412 uint64_t EltMask = ~0ULL >> (64-VWidth);
1413 assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 &&
1414 "Invalid DemandedElts!");
1415
1416 if (isa<UndefValue>(V)) {
1417 // If the entire vector is undefined, just return this info.
1418 UndefElts = EltMask;
1419 return 0;
1420 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1421 UndefElts = EltMask;
1422 return UndefValue::get(V->getType());
1423 }
1424
1425 UndefElts = 0;
1426 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1427 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1428 Constant *Undef = UndefValue::get(EltTy);
1429
1430 std::vector<Constant*> Elts;
1431 for (unsigned i = 0; i != VWidth; ++i)
1432 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1433 Elts.push_back(Undef);
1434 UndefElts |= (1ULL << i);
1435 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1436 Elts.push_back(Undef);
1437 UndefElts |= (1ULL << i);
1438 } else { // Otherwise, defined.
1439 Elts.push_back(CP->getOperand(i));
1440 }
1441
1442 // If we changed the constant, return it.
1443 Constant *NewCP = ConstantVector::get(Elts);
1444 return NewCP != CP ? NewCP : 0;
1445 } else if (isa<ConstantAggregateZero>(V)) {
1446 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1447 // set to undef.
1448 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1449 Constant *Zero = Constant::getNullValue(EltTy);
1450 Constant *Undef = UndefValue::get(EltTy);
1451 std::vector<Constant*> Elts;
1452 for (unsigned i = 0; i != VWidth; ++i)
1453 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1454 UndefElts = DemandedElts ^ EltMask;
1455 return ConstantVector::get(Elts);
1456 }
1457
1458 if (!V->hasOneUse()) { // Other users may use these bits.
1459 if (Depth != 0) { // Not at the root.
1460 // TODO: Just compute the UndefElts information recursively.
1461 return false;
1462 }
1463 return false;
1464 } else if (Depth == 10) { // Limit search depth.
1465 return false;
1466 }
1467
1468 Instruction *I = dyn_cast<Instruction>(V);
1469 if (!I) return false; // Only analyze instructions.
1470
1471 bool MadeChange = false;
1472 uint64_t UndefElts2;
1473 Value *TmpV;
1474 switch (I->getOpcode()) {
1475 default: break;
1476
1477 case Instruction::InsertElement: {
1478 // If this is a variable index, we don't know which element it overwrites.
1479 // demand exactly the same input as we produce.
1480 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1481 if (Idx == 0) {
1482 // Note that we can't propagate undef elt info, because we don't know
1483 // which elt is getting updated.
1484 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1485 UndefElts2, Depth+1);
1486 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1487 break;
1488 }
1489
1490 // If this is inserting an element that isn't demanded, remove this
1491 // insertelement.
1492 unsigned IdxNo = Idx->getZExtValue();
1493 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1494 return AddSoonDeadInstToWorklist(*I, 0);
1495
1496 // Otherwise, the element inserted overwrites whatever was there, so the
1497 // input demanded set is simpler than the output set.
1498 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1499 DemandedElts & ~(1ULL << IdxNo),
1500 UndefElts, Depth+1);
1501 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1502
1503 // The inserted element is defined.
1504 UndefElts |= 1ULL << IdxNo;
1505 break;
1506 }
1507 case Instruction::BitCast: {
1508 // Vector->vector casts only.
1509 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1510 if (!VTy) break;
1511 unsigned InVWidth = VTy->getNumElements();
1512 uint64_t InputDemandedElts = 0;
1513 unsigned Ratio;
1514
1515 if (VWidth == InVWidth) {
1516 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1517 // elements as are demanded of us.
1518 Ratio = 1;
1519 InputDemandedElts = DemandedElts;
1520 } else if (VWidth > InVWidth) {
1521 // Untested so far.
1522 break;
1523
1524 // If there are more elements in the result than there are in the source,
1525 // then an input element is live if any of the corresponding output
1526 // elements are live.
1527 Ratio = VWidth/InVWidth;
1528 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1529 if (DemandedElts & (1ULL << OutIdx))
1530 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1531 }
1532 } else {
1533 // Untested so far.
1534 break;
1535
1536 // If there are more elements in the source than there are in the result,
1537 // then an input element is live if the corresponding output element is
1538 // live.
1539 Ratio = InVWidth/VWidth;
1540 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1541 if (DemandedElts & (1ULL << InIdx/Ratio))
1542 InputDemandedElts |= 1ULL << InIdx;
1543 }
1544
1545 // div/rem demand all inputs, because they don't want divide by zero.
1546 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1547 UndefElts2, Depth+1);
1548 if (TmpV) {
1549 I->setOperand(0, TmpV);
1550 MadeChange = true;
1551 }
1552
1553 UndefElts = UndefElts2;
1554 if (VWidth > InVWidth) {
1555 assert(0 && "Unimp");
1556 // If there are more elements in the result than there are in the source,
1557 // then an output element is undef if the corresponding input element is
1558 // undef.
1559 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1560 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1561 UndefElts |= 1ULL << OutIdx;
1562 } else if (VWidth < InVWidth) {
1563 assert(0 && "Unimp");
1564 // If there are more elements in the source than there are in the result,
1565 // then a result element is undef if all of the corresponding input
1566 // elements are undef.
1567 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1568 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1569 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1570 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1571 }
1572 break;
1573 }
1574 case Instruction::And:
1575 case Instruction::Or:
1576 case Instruction::Xor:
1577 case Instruction::Add:
1578 case Instruction::Sub:
1579 case Instruction::Mul:
1580 // div/rem demand all inputs, because they don't want divide by zero.
1581 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1582 UndefElts, Depth+1);
1583 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1584 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1585 UndefElts2, Depth+1);
1586 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1587
1588 // Output elements are undefined if both are undefined. Consider things
1589 // like undef&0. The result is known zero, not undef.
1590 UndefElts &= UndefElts2;
1591 break;
1592
1593 case Instruction::Call: {
1594 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1595 if (!II) break;
1596 switch (II->getIntrinsicID()) {
1597 default: break;
1598
1599 // Binary vector operations that work column-wise. A dest element is a
1600 // function of the corresponding input elements from the two inputs.
1601 case Intrinsic::x86_sse_sub_ss:
1602 case Intrinsic::x86_sse_mul_ss:
1603 case Intrinsic::x86_sse_min_ss:
1604 case Intrinsic::x86_sse_max_ss:
1605 case Intrinsic::x86_sse2_sub_sd:
1606 case Intrinsic::x86_sse2_mul_sd:
1607 case Intrinsic::x86_sse2_min_sd:
1608 case Intrinsic::x86_sse2_max_sd:
1609 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1610 UndefElts, Depth+1);
1611 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1612 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1613 UndefElts2, Depth+1);
1614 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1615
1616 // If only the low elt is demanded and this is a scalarizable intrinsic,
1617 // scalarize it now.
1618 if (DemandedElts == 1) {
1619 switch (II->getIntrinsicID()) {
1620 default: break;
1621 case Intrinsic::x86_sse_sub_ss:
1622 case Intrinsic::x86_sse_mul_ss:
1623 case Intrinsic::x86_sse2_sub_sd:
1624 case Intrinsic::x86_sse2_mul_sd:
1625 // TODO: Lower MIN/MAX/ABS/etc
1626 Value *LHS = II->getOperand(1);
1627 Value *RHS = II->getOperand(2);
1628 // Extract the element as scalars.
1629 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1630 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1631
1632 switch (II->getIntrinsicID()) {
1633 default: assert(0 && "Case stmts out of sync!");
1634 case Intrinsic::x86_sse_sub_ss:
1635 case Intrinsic::x86_sse2_sub_sd:
1636 TmpV = InsertNewInstBefore(BinaryOperator::createSub(LHS, RHS,
1637 II->getName()), *II);
1638 break;
1639 case Intrinsic::x86_sse_mul_ss:
1640 case Intrinsic::x86_sse2_mul_sd:
1641 TmpV = InsertNewInstBefore(BinaryOperator::createMul(LHS, RHS,
1642 II->getName()), *II);
1643 break;
1644 }
1645
1646 Instruction *New =
1647 new InsertElementInst(UndefValue::get(II->getType()), TmpV, 0U,
1648 II->getName());
1649 InsertNewInstBefore(New, *II);
1650 AddSoonDeadInstToWorklist(*II, 0);
1651 return New;
1652 }
1653 }
1654
1655 // Output elements are undefined if both are undefined. Consider things
1656 // like undef&0. The result is known zero, not undef.
1657 UndefElts &= UndefElts2;
1658 break;
1659 }
1660 break;
1661 }
1662 }
1663 return MadeChange ? I : 0;
1664}
1665
1666/// @returns true if the specified compare instruction is
1667/// true when both operands are equal...
1668/// @brief Determine if the ICmpInst returns true if both operands are equal
1669static bool isTrueWhenEqual(ICmpInst &ICI) {
1670 ICmpInst::Predicate pred = ICI.getPredicate();
1671 return pred == ICmpInst::ICMP_EQ || pred == ICmpInst::ICMP_UGE ||
1672 pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE ||
1673 pred == ICmpInst::ICMP_SLE;
1674}
1675
1676/// AssociativeOpt - Perform an optimization on an associative operator. This
1677/// function is designed to check a chain of associative operators for a
1678/// potential to apply a certain optimization. Since the optimization may be
1679/// applicable if the expression was reassociated, this checks the chain, then
1680/// reassociates the expression as necessary to expose the optimization
1681/// opportunity. This makes use of a special Functor, which must define
1682/// 'shouldApply' and 'apply' methods.
1683///
1684template<typename Functor>
1685Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
1686 unsigned Opcode = Root.getOpcode();
1687 Value *LHS = Root.getOperand(0);
1688
1689 // Quick check, see if the immediate LHS matches...
1690 if (F.shouldApply(LHS))
1691 return F.apply(Root);
1692
1693 // Otherwise, if the LHS is not of the same opcode as the root, return.
1694 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1695 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1696 // Should we apply this transform to the RHS?
1697 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1698
1699 // If not to the RHS, check to see if we should apply to the LHS...
1700 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1701 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1702 ShouldApply = true;
1703 }
1704
1705 // If the functor wants to apply the optimization to the RHS of LHSI,
1706 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1707 if (ShouldApply) {
1708 BasicBlock *BB = Root.getParent();
1709
1710 // Now all of the instructions are in the current basic block, go ahead
1711 // and perform the reassociation.
1712 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1713
1714 // First move the selected RHS to the LHS of the root...
1715 Root.setOperand(0, LHSI->getOperand(1));
1716
1717 // Make what used to be the LHS of the root be the user of the root...
1718 Value *ExtraOperand = TmpLHSI->getOperand(1);
1719 if (&Root == TmpLHSI) {
1720 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1721 return 0;
1722 }
1723 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1724 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
1725 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
1726 BasicBlock::iterator ARI = &Root; ++ARI;
1727 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
1728 ARI = Root;
1729
1730 // Now propagate the ExtraOperand down the chain of instructions until we
1731 // get to LHSI.
1732 while (TmpLHSI != LHSI) {
1733 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1734 // Move the instruction to immediately before the chain we are
1735 // constructing to avoid breaking dominance properties.
1736 NextLHSI->getParent()->getInstList().remove(NextLHSI);
1737 BB->getInstList().insert(ARI, NextLHSI);
1738 ARI = NextLHSI;
1739
1740 Value *NextOp = NextLHSI->getOperand(1);
1741 NextLHSI->setOperand(1, ExtraOperand);
1742 TmpLHSI = NextLHSI;
1743 ExtraOperand = NextOp;
1744 }
1745
1746 // Now that the instructions are reassociated, have the functor perform
1747 // the transformation...
1748 return F.apply(Root);
1749 }
1750
1751 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1752 }
1753 return 0;
1754}
1755
1756
1757// AddRHS - Implements: X + X --> X << 1
1758struct AddRHS {
1759 Value *RHS;
1760 AddRHS(Value *rhs) : RHS(rhs) {}
1761 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1762 Instruction *apply(BinaryOperator &Add) const {
1763 return BinaryOperator::createShl(Add.getOperand(0),
1764 ConstantInt::get(Add.getType(), 1));
1765 }
1766};
1767
1768// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1769// iff C1&C2 == 0
1770struct AddMaskingAnd {
1771 Constant *C2;
1772 AddMaskingAnd(Constant *c) : C2(c) {}
1773 bool shouldApply(Value *LHS) const {
1774 ConstantInt *C1;
1775 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1776 ConstantExpr::getAnd(C1, C2)->isNullValue();
1777 }
1778 Instruction *apply(BinaryOperator &Add) const {
1779 return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
1780 }
1781};
1782
1783static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1784 InstCombiner *IC) {
1785 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
1786 if (Constant *SOC = dyn_cast<Constant>(SO))
1787 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
1788
1789 return IC->InsertNewInstBefore(CastInst::create(
1790 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
1791 }
1792
1793 // Figure out if the constant is the left or the right argument.
1794 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1795 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1796
1797 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1798 if (ConstIsRHS)
1799 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1800 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1801 }
1802
1803 Value *Op0 = SO, *Op1 = ConstOperand;
1804 if (!ConstIsRHS)
1805 std::swap(Op0, Op1);
1806 Instruction *New;
1807 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
1808 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
1809 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1810 New = CmpInst::create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
1811 SO->getName()+".cmp");
1812 else {
1813 assert(0 && "Unknown binary instruction type!");
1814 abort();
1815 }
1816 return IC->InsertNewInstBefore(New, I);
1817}
1818
1819// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1820// constant as the other operand, try to fold the binary operator into the
1821// select arguments. This also works for Cast instructions, which obviously do
1822// not have a second operand.
1823static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1824 InstCombiner *IC) {
1825 // Don't modify shared select instructions
1826 if (!SI->hasOneUse()) return 0;
1827 Value *TV = SI->getOperand(1);
1828 Value *FV = SI->getOperand(2);
1829
1830 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1831 // Bool selects with constant operands can be folded to logical ops.
1832 if (SI->getType() == Type::Int1Ty) return 0;
1833
1834 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1835 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1836
1837 return new SelectInst(SI->getCondition(), SelectTrueVal,
1838 SelectFalseVal);
1839 }
1840 return 0;
1841}
1842
1843
1844/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1845/// node as operand #0, see if we can fold the instruction into the PHI (which
1846/// is only possible if all operands to the PHI are constants).
1847Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1848 PHINode *PN = cast<PHINode>(I.getOperand(0));
1849 unsigned NumPHIValues = PN->getNumIncomingValues();
1850 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1851
1852 // Check to see if all of the operands of the PHI are constants. If there is
1853 // one non-constant value, remember the BB it is. If there is more than one
1854 // or if *it* is a PHI, bail out.
1855 BasicBlock *NonConstBB = 0;
1856 for (unsigned i = 0; i != NumPHIValues; ++i)
1857 if (!isa<Constant>(PN->getIncomingValue(i))) {
1858 if (NonConstBB) return 0; // More than one non-const value.
1859 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1860 NonConstBB = PN->getIncomingBlock(i);
1861
1862 // If the incoming non-constant value is in I's block, we have an infinite
1863 // loop.
1864 if (NonConstBB == I.getParent())
1865 return 0;
1866 }
1867
1868 // If there is exactly one non-constant value, we can insert a copy of the
1869 // operation in that block. However, if this is a critical edge, we would be
1870 // inserting the computation one some other paths (e.g. inside a loop). Only
1871 // do this if the pred block is unconditionally branching into the phi block.
1872 if (NonConstBB) {
1873 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1874 if (!BI || !BI->isUnconditional()) return 0;
1875 }
1876
1877 // Okay, we can do the transformation: create the new PHI node.
1878 PHINode *NewPN = new PHINode(I.getType(), "");
1879 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1880 InsertNewInstBefore(NewPN, *PN);
1881 NewPN->takeName(PN);
1882
1883 // Next, add all of the operands to the PHI.
1884 if (I.getNumOperands() == 2) {
1885 Constant *C = cast<Constant>(I.getOperand(1));
1886 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001887 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001888 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1889 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1890 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1891 else
1892 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1893 } else {
1894 assert(PN->getIncomingBlock(i) == NonConstBB);
1895 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
1896 InV = BinaryOperator::create(BO->getOpcode(),
1897 PN->getIncomingValue(i), C, "phitmp",
1898 NonConstBB->getTerminator());
1899 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1900 InV = CmpInst::create(CI->getOpcode(),
1901 CI->getPredicate(),
1902 PN->getIncomingValue(i), C, "phitmp",
1903 NonConstBB->getTerminator());
1904 else
1905 assert(0 && "Unknown binop!");
1906
1907 AddToWorkList(cast<Instruction>(InV));
1908 }
1909 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1910 }
1911 } else {
1912 CastInst *CI = cast<CastInst>(&I);
1913 const Type *RetTy = CI->getType();
1914 for (unsigned i = 0; i != NumPHIValues; ++i) {
1915 Value *InV;
1916 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1917 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1918 } else {
1919 assert(PN->getIncomingBlock(i) == NonConstBB);
1920 InV = CastInst::create(CI->getOpcode(), PN->getIncomingValue(i),
1921 I.getType(), "phitmp",
1922 NonConstBB->getTerminator());
1923 AddToWorkList(cast<Instruction>(InV));
1924 }
1925 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1926 }
1927 }
1928 return ReplaceInstUsesWith(I, NewPN);
1929}
1930
1931Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1932 bool Changed = SimplifyCommutative(I);
1933 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1934
1935 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1936 // X + undef -> undef
1937 if (isa<UndefValue>(RHS))
1938 return ReplaceInstUsesWith(I, RHS);
1939
1940 // X + 0 --> X
1941 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1942 if (RHSC->isNullValue())
1943 return ReplaceInstUsesWith(I, LHS);
1944 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1945 if (CFP->isExactlyValue(-0.0))
1946 return ReplaceInstUsesWith(I, LHS);
1947 }
1948
1949 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
1950 // X + (signbit) --> X ^ signbit
1951 const APInt& Val = CI->getValue();
1952 uint32_t BitWidth = Val.getBitWidth();
1953 if (Val == APInt::getSignBit(BitWidth))
1954 return BinaryOperator::createXor(LHS, RHS);
1955
1956 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1957 // (X & 254)+1 -> (X&254)|1
1958 if (!isa<VectorType>(I.getType())) {
1959 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1960 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
1961 KnownZero, KnownOne))
1962 return &I;
1963 }
1964 }
1965
1966 if (isa<PHINode>(LHS))
1967 if (Instruction *NV = FoldOpIntoPhi(I))
1968 return NV;
1969
1970 ConstantInt *XorRHS = 0;
1971 Value *XorLHS = 0;
1972 if (isa<ConstantInt>(RHSC) &&
1973 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1974 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
1975 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
1976
1977 uint32_t Size = TySizeBits / 2;
1978 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
1979 APInt CFF80Val(-C0080Val);
1980 do {
1981 if (TySizeBits > Size) {
1982 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1983 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1984 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
1985 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
1986 // This is a sign extend if the top bits are known zero.
1987 if (!MaskedValueIsZero(XorLHS,
1988 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
1989 Size = 0; // Not a sign ext, but can't be any others either.
1990 break;
1991 }
1992 }
1993 Size >>= 1;
1994 C0080Val = APIntOps::lshr(C0080Val, Size);
1995 CFF80Val = APIntOps::ashr(CFF80Val, Size);
1996 } while (Size >= 1);
1997
1998 // FIXME: This shouldn't be necessary. When the backends can handle types
1999 // with funny bit widths then this whole cascade of if statements should
2000 // be removed. It is just here to get the size of the "middle" type back
2001 // up to something that the back ends can handle.
2002 const Type *MiddleType = 0;
2003 switch (Size) {
2004 default: break;
2005 case 32: MiddleType = Type::Int32Ty; break;
2006 case 16: MiddleType = Type::Int16Ty; break;
2007 case 8: MiddleType = Type::Int8Ty; break;
2008 }
2009 if (MiddleType) {
2010 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2011 InsertNewInstBefore(NewTrunc, I);
2012 return new SExtInst(NewTrunc, I.getType(), I.getName());
2013 }
2014 }
2015 }
2016
2017 // X + X --> X << 1
2018 if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) {
2019 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2020
2021 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2022 if (RHSI->getOpcode() == Instruction::Sub)
2023 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2024 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2025 }
2026 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2027 if (LHSI->getOpcode() == Instruction::Sub)
2028 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2029 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2030 }
2031 }
2032
2033 // -A + B --> B - A
2034 if (Value *V = dyn_castNegVal(LHS))
2035 return BinaryOperator::createSub(RHS, V);
2036
2037 // A + -B --> A - B
2038 if (!isa<Constant>(RHS))
2039 if (Value *V = dyn_castNegVal(RHS))
2040 return BinaryOperator::createSub(LHS, V);
2041
2042
2043 ConstantInt *C2;
2044 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2045 if (X == RHS) // X*C + X --> X * (C+1)
2046 return BinaryOperator::createMul(RHS, AddOne(C2));
2047
2048 // X*C1 + X*C2 --> X * (C1+C2)
2049 ConstantInt *C1;
2050 if (X == dyn_castFoldableMul(RHS, C1))
2051 return BinaryOperator::createMul(X, Add(C1, C2));
2052 }
2053
2054 // X + X*C --> X * (C+1)
2055 if (dyn_castFoldableMul(RHS, C2) == LHS)
2056 return BinaryOperator::createMul(LHS, AddOne(C2));
2057
2058 // X + ~X --> -1 since ~X = -X-1
2059 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2060 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2061
2062
2063 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2064 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2065 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2066 return R;
2067
2068 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2069 Value *X = 0;
2070 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
2071 return BinaryOperator::createSub(SubOne(CRHS), X);
2072
2073 // (X & FF00) + xx00 -> (X+xx00) & FF00
2074 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2075 Constant *Anded = And(CRHS, C2);
2076 if (Anded == CRHS) {
2077 // See if all bits from the first bit set in the Add RHS up are included
2078 // in the mask. First, get the rightmost bit.
2079 const APInt& AddRHSV = CRHS->getValue();
2080
2081 // Form a mask of all bits from the lowest bit added through the top.
2082 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2083
2084 // See if the and mask includes all of these bits.
2085 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2086
2087 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2088 // Okay, the xform is safe. Insert the new add pronto.
2089 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
2090 LHS->getName()), I);
2091 return BinaryOperator::createAnd(NewAdd, C2);
2092 }
2093 }
2094 }
2095
2096 // Try to fold constant add into select arguments.
2097 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2098 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2099 return R;
2100 }
2101
2102 // add (cast *A to intptrtype) B ->
2103 // cast (GEP (cast *A to sbyte*) B) ->
2104 // intptrtype
2105 {
2106 CastInst *CI = dyn_cast<CastInst>(LHS);
2107 Value *Other = RHS;
2108 if (!CI) {
2109 CI = dyn_cast<CastInst>(RHS);
2110 Other = LHS;
2111 }
2112 if (CI && CI->getType()->isSized() &&
2113 (CI->getType()->getPrimitiveSizeInBits() ==
2114 TD->getIntPtrType()->getPrimitiveSizeInBits())
2115 && isa<PointerType>(CI->getOperand(0)->getType())) {
2116 Value *I2 = InsertCastBefore(Instruction::BitCast, CI->getOperand(0),
2117 PointerType::get(Type::Int8Ty), I);
2118 I2 = InsertNewInstBefore(new GetElementPtrInst(I2, Other, "ctg2"), I);
2119 return new PtrToIntInst(I2, CI->getType());
2120 }
2121 }
2122
2123 return Changed ? &I : 0;
2124}
2125
2126// isSignBit - Return true if the value represented by the constant only has the
2127// highest order bit set.
2128static bool isSignBit(ConstantInt *CI) {
2129 uint32_t NumBits = CI->getType()->getPrimitiveSizeInBits();
2130 return CI->getValue() == APInt::getSignBit(NumBits);
2131}
2132
2133Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2134 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2135
2136 if (Op0 == Op1) // sub X, X -> 0
2137 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2138
2139 // If this is a 'B = x-(-A)', change to B = x+A...
2140 if (Value *V = dyn_castNegVal(Op1))
2141 return BinaryOperator::createAdd(Op0, V);
2142
2143 if (isa<UndefValue>(Op0))
2144 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2145 if (isa<UndefValue>(Op1))
2146 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2147
2148 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2149 // Replace (-1 - A) with (~A)...
2150 if (C->isAllOnesValue())
2151 return BinaryOperator::createNot(Op1);
2152
2153 // C - ~X == X + (1+C)
2154 Value *X = 0;
2155 if (match(Op1, m_Not(m_Value(X))))
2156 return BinaryOperator::createAdd(X, AddOne(C));
2157
2158 // -(X >>u 31) -> (X >>s 31)
2159 // -(X >>s 31) -> (X >>u 31)
2160 if (C->isZero()) {
2161 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1))
2162 if (SI->getOpcode() == Instruction::LShr) {
2163 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2164 // Check to see if we are shifting out everything but the sign bit.
2165 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2166 SI->getType()->getPrimitiveSizeInBits()-1) {
2167 // Ok, the transformation is safe. Insert AShr.
2168 return BinaryOperator::create(Instruction::AShr,
2169 SI->getOperand(0), CU, SI->getName());
2170 }
2171 }
2172 }
2173 else if (SI->getOpcode() == Instruction::AShr) {
2174 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2175 // Check to see if we are shifting out everything but the sign bit.
2176 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2177 SI->getType()->getPrimitiveSizeInBits()-1) {
2178 // Ok, the transformation is safe. Insert LShr.
2179 return BinaryOperator::createLShr(
2180 SI->getOperand(0), CU, SI->getName());
2181 }
2182 }
2183 }
2184 }
2185
2186 // Try to fold constant sub into select arguments.
2187 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2188 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2189 return R;
2190
2191 if (isa<PHINode>(Op0))
2192 if (Instruction *NV = FoldOpIntoPhi(I))
2193 return NV;
2194 }
2195
2196 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2197 if (Op1I->getOpcode() == Instruction::Add &&
2198 !Op0->getType()->isFPOrFPVector()) {
2199 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
2200 return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
2201 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
2202 return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
2203 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2204 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2205 // C1-(X+C2) --> (C1-C2)-X
2206 return BinaryOperator::createSub(Subtract(CI1, CI2),
2207 Op1I->getOperand(0));
2208 }
2209 }
2210
2211 if (Op1I->hasOneUse()) {
2212 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2213 // is not used by anyone else...
2214 //
2215 if (Op1I->getOpcode() == Instruction::Sub &&
2216 !Op1I->getType()->isFPOrFPVector()) {
2217 // Swap the two operands of the subexpr...
2218 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2219 Op1I->setOperand(0, IIOp1);
2220 Op1I->setOperand(1, IIOp0);
2221
2222 // Create the new top level add instruction...
2223 return BinaryOperator::createAdd(Op0, Op1);
2224 }
2225
2226 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2227 //
2228 if (Op1I->getOpcode() == Instruction::And &&
2229 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2230 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2231
2232 Value *NewNot =
2233 InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
2234 return BinaryOperator::createAnd(Op0, NewNot);
2235 }
2236
2237 // 0 - (X sdiv C) -> (X sdiv -C)
2238 if (Op1I->getOpcode() == Instruction::SDiv)
2239 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2240 if (CSI->isZero())
2241 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
2242 return BinaryOperator::createSDiv(Op1I->getOperand(0),
2243 ConstantExpr::getNeg(DivRHS));
2244
2245 // X - X*C --> X * (1-C)
2246 ConstantInt *C2 = 0;
2247 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2248 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
2249 return BinaryOperator::createMul(Op0, CP1);
2250 }
2251 }
2252 }
2253
2254 if (!Op0->getType()->isFPOrFPVector())
2255 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2256 if (Op0I->getOpcode() == Instruction::Add) {
2257 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2258 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2259 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2260 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2261 } else if (Op0I->getOpcode() == Instruction::Sub) {
2262 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
2263 return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
2264 }
2265
2266 ConstantInt *C1;
2267 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2268 if (X == Op1) // X*C - X --> X * (C-1)
2269 return BinaryOperator::createMul(Op1, SubOne(C1));
2270
2271 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2272 if (X == dyn_castFoldableMul(Op1, C2))
2273 return BinaryOperator::createMul(Op1, Subtract(C1, C2));
2274 }
2275 return 0;
2276}
2277
2278/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2279/// comparison only checks the sign bit. If it only checks the sign bit, set
2280/// TrueIfSigned if the result of the comparison is true when the input value is
2281/// signed.
2282static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2283 bool &TrueIfSigned) {
2284 switch (pred) {
2285 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2286 TrueIfSigned = true;
2287 return RHS->isZero();
2288 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2289 TrueIfSigned = true;
2290 return RHS->isAllOnesValue();
2291 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2292 TrueIfSigned = false;
2293 return RHS->isAllOnesValue();
2294 case ICmpInst::ICMP_UGT:
2295 // True if LHS u> RHS and RHS == high-bit-mask - 1
2296 TrueIfSigned = true;
2297 return RHS->getValue() ==
2298 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2299 case ICmpInst::ICMP_UGE:
2300 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2301 TrueIfSigned = true;
2302 return RHS->getValue() ==
2303 APInt::getSignBit(RHS->getType()->getPrimitiveSizeInBits());
2304 default:
2305 return false;
2306 }
2307}
2308
2309Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2310 bool Changed = SimplifyCommutative(I);
2311 Value *Op0 = I.getOperand(0);
2312
2313 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2314 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2315
2316 // Simplify mul instructions with a constant RHS...
2317 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2318 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2319
2320 // ((X << C1)*C2) == (X * (C2 << C1))
2321 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2322 if (SI->getOpcode() == Instruction::Shl)
2323 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
2324 return BinaryOperator::createMul(SI->getOperand(0),
2325 ConstantExpr::getShl(CI, ShOp));
2326
2327 if (CI->isZero())
2328 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2329 if (CI->equalsInt(1)) // X * 1 == X
2330 return ReplaceInstUsesWith(I, Op0);
2331 if (CI->isAllOnesValue()) // X * -1 == 0 - X
2332 return BinaryOperator::createNeg(Op0, I.getName());
2333
2334 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2335 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
2336 return BinaryOperator::createShl(Op0,
2337 ConstantInt::get(Op0->getType(), Val.logBase2()));
2338 }
2339 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2340 if (Op1F->isNullValue())
2341 return ReplaceInstUsesWith(I, Op1);
2342
2343 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2344 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
2345 if (Op1F->getValue() == 1.0)
2346 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
2347 }
2348
2349 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2350 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
2351 isa<ConstantInt>(Op0I->getOperand(1))) {
2352 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
2353 Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0),
2354 Op1, "tmp");
2355 InsertNewInstBefore(Add, I);
2356 Value *C1C2 = ConstantExpr::getMul(Op1,
2357 cast<Constant>(Op0I->getOperand(1)));
2358 return BinaryOperator::createAdd(Add, C1C2);
2359
2360 }
2361
2362 // Try to fold constant mul into select arguments.
2363 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2364 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2365 return R;
2366
2367 if (isa<PHINode>(Op0))
2368 if (Instruction *NV = FoldOpIntoPhi(I))
2369 return NV;
2370 }
2371
2372 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2373 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
2374 return BinaryOperator::createMul(Op0v, Op1v);
2375
2376 // If one of the operands of the multiply is a cast from a boolean value, then
2377 // we know the bool is either zero or one, so this is a 'masking' multiply.
2378 // See if we can simplify things based on how the boolean was originally
2379 // formed.
2380 CastInst *BoolCast = 0;
2381 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(0)))
2382 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2383 BoolCast = CI;
2384 if (!BoolCast)
2385 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2386 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2387 BoolCast = CI;
2388 if (BoolCast) {
2389 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2390 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2391 const Type *SCOpTy = SCIOp0->getType();
2392 bool TIS = false;
2393
2394 // If the icmp is true iff the sign bit of X is set, then convert this
2395 // multiply into a shift/and combination.
2396 if (isa<ConstantInt>(SCIOp1) &&
2397 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2398 TIS) {
2399 // Shift the X value right to turn it into "all signbits".
2400 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2401 SCOpTy->getPrimitiveSizeInBits()-1);
2402 Value *V =
2403 InsertNewInstBefore(
2404 BinaryOperator::create(Instruction::AShr, SCIOp0, Amt,
2405 BoolCast->getOperand(0)->getName()+
2406 ".mask"), I);
2407
2408 // If the multiply type is not the same as the source type, sign extend
2409 // or truncate to the multiply type.
2410 if (I.getType() != V->getType()) {
2411 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2412 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2413 Instruction::CastOps opcode =
2414 (SrcBits == DstBits ? Instruction::BitCast :
2415 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2416 V = InsertCastBefore(opcode, V, I.getType(), I);
2417 }
2418
2419 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
2420 return BinaryOperator::createAnd(V, OtherOp);
2421 }
2422 }
2423 }
2424
2425 return Changed ? &I : 0;
2426}
2427
2428/// This function implements the transforms on div instructions that work
2429/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2430/// used by the visitors to those instructions.
2431/// @brief Transforms common to all three div instructions
2432Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2433 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2434
2435 // undef / X -> 0
2436 if (isa<UndefValue>(Op0))
2437 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2438
2439 // X / undef -> undef
2440 if (isa<UndefValue>(Op1))
2441 return ReplaceInstUsesWith(I, Op1);
2442
2443 // Handle cases involving: div X, (select Cond, Y, Z)
2444 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2445 // div X, (Cond ? 0 : Y) -> div X, Y. If the div and the select are in the
2446 // same basic block, then we replace the select with Y, and the condition
2447 // of the select with false (if the cond value is in the same BB). If the
2448 // select has uses other than the div, this allows them to be simplified
2449 // also. Note that div X, Y is just as good as div X, 0 (undef)
2450 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2451 if (ST->isNullValue()) {
2452 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2453 if (CondI && CondI->getParent() == I.getParent())
2454 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
2455 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2456 I.setOperand(1, SI->getOperand(2));
2457 else
2458 UpdateValueUsesWith(SI, SI->getOperand(2));
2459 return &I;
2460 }
2461
2462 // Likewise for: div X, (Cond ? Y : 0) -> div X, Y
2463 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2464 if (ST->isNullValue()) {
2465 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2466 if (CondI && CondI->getParent() == I.getParent())
2467 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
2468 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2469 I.setOperand(1, SI->getOperand(1));
2470 else
2471 UpdateValueUsesWith(SI, SI->getOperand(1));
2472 return &I;
2473 }
2474 }
2475
2476 return 0;
2477}
2478
2479/// This function implements the transforms common to both integer division
2480/// instructions (udiv and sdiv). It is called by the visitors to those integer
2481/// division instructions.
2482/// @brief Common integer divide transforms
2483Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2484 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2485
2486 if (Instruction *Common = commonDivTransforms(I))
2487 return Common;
2488
2489 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2490 // div X, 1 == X
2491 if (RHS->equalsInt(1))
2492 return ReplaceInstUsesWith(I, Op0);
2493
2494 // (X / C1) / C2 -> X / (C1*C2)
2495 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2496 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2497 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
2498 return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0),
2499 Multiply(RHS, LHSRHS));
2500 }
2501
2502 if (!RHS->isZero()) { // avoid X udiv 0
2503 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2504 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2505 return R;
2506 if (isa<PHINode>(Op0))
2507 if (Instruction *NV = FoldOpIntoPhi(I))
2508 return NV;
2509 }
2510 }
2511
2512 // 0 / X == 0, we don't need to preserve faults!
2513 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2514 if (LHS->equalsInt(0))
2515 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2516
2517 return 0;
2518}
2519
2520Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2521 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2522
2523 // Handle the integer div common cases
2524 if (Instruction *Common = commonIDivTransforms(I))
2525 return Common;
2526
2527 // X udiv C^2 -> X >> C
2528 // Check to see if this is an unsigned division with an exact power of 2,
2529 // if so, convert to a right shift.
2530 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
2531 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
2532 return BinaryOperator::createLShr(Op0,
2533 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
2534 }
2535
2536 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2537 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2538 if (RHSI->getOpcode() == Instruction::Shl &&
2539 isa<ConstantInt>(RHSI->getOperand(0))) {
2540 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2541 if (C1.isPowerOf2()) {
2542 Value *N = RHSI->getOperand(1);
2543 const Type *NTy = N->getType();
2544 if (uint32_t C2 = C1.logBase2()) {
2545 Constant *C2V = ConstantInt::get(NTy, C2);
2546 N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I);
2547 }
2548 return BinaryOperator::createLShr(Op0, N);
2549 }
2550 }
2551 }
2552
2553 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2554 // where C1&C2 are powers of two.
2555 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2556 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2557 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2558 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2559 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2560 // Compute the shift amounts
2561 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2562 // Construct the "on true" case of the select
2563 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
2564 Instruction *TSI = BinaryOperator::createLShr(
2565 Op0, TC, SI->getName()+".t");
2566 TSI = InsertNewInstBefore(TSI, I);
2567
2568 // Construct the "on false" case of the select
2569 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
2570 Instruction *FSI = BinaryOperator::createLShr(
2571 Op0, FC, SI->getName()+".f");
2572 FSI = InsertNewInstBefore(FSI, I);
2573
2574 // construct the select instruction and return it.
2575 return new SelectInst(SI->getOperand(0), TSI, FSI, SI->getName());
2576 }
2577 }
2578 return 0;
2579}
2580
2581Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2582 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2583
2584 // Handle the integer div common cases
2585 if (Instruction *Common = commonIDivTransforms(I))
2586 return Common;
2587
2588 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2589 // sdiv X, -1 == -X
2590 if (RHS->isAllOnesValue())
2591 return BinaryOperator::createNeg(Op0);
2592
2593 // -X/C -> X/-C
2594 if (Value *LHSNeg = dyn_castNegVal(Op0))
2595 return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
2596 }
2597
2598 // If the sign bits of both operands are zero (i.e. we can prove they are
2599 // unsigned inputs), turn this into a udiv.
2600 if (I.getType()->isInteger()) {
2601 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2602 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
2603 return BinaryOperator::createUDiv(Op0, Op1, I.getName());
2604 }
2605 }
2606
2607 return 0;
2608}
2609
2610Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2611 return commonDivTransforms(I);
2612}
2613
2614/// GetFactor - If we can prove that the specified value is at least a multiple
2615/// of some factor, return that factor.
2616static Constant *GetFactor(Value *V) {
2617 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2618 return CI;
2619
2620 // Unless we can be tricky, we know this is a multiple of 1.
2621 Constant *Result = ConstantInt::get(V->getType(), 1);
2622
2623 Instruction *I = dyn_cast<Instruction>(V);
2624 if (!I) return Result;
2625
2626 if (I->getOpcode() == Instruction::Mul) {
2627 // Handle multiplies by a constant, etc.
2628 return ConstantExpr::getMul(GetFactor(I->getOperand(0)),
2629 GetFactor(I->getOperand(1)));
2630 } else if (I->getOpcode() == Instruction::Shl) {
2631 // (X<<C) -> X * (1 << C)
2632 if (Constant *ShRHS = dyn_cast<Constant>(I->getOperand(1))) {
2633 ShRHS = ConstantExpr::getShl(Result, ShRHS);
2634 return ConstantExpr::getMul(GetFactor(I->getOperand(0)), ShRHS);
2635 }
2636 } else if (I->getOpcode() == Instruction::And) {
2637 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
2638 // X & 0xFFF0 is known to be a multiple of 16.
2639 uint32_t Zeros = RHS->getValue().countTrailingZeros();
2640 if (Zeros != V->getType()->getPrimitiveSizeInBits())
2641 return ConstantExpr::getShl(Result,
2642 ConstantInt::get(Result->getType(), Zeros));
2643 }
2644 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
2645 // Only handle int->int casts.
2646 if (!CI->isIntegerCast())
2647 return Result;
2648 Value *Op = CI->getOperand(0);
2649 return ConstantExpr::getCast(CI->getOpcode(), GetFactor(Op), V->getType());
2650 }
2651 return Result;
2652}
2653
2654/// This function implements the transforms on rem instructions that work
2655/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2656/// is used by the visitors to those instructions.
2657/// @brief Transforms common to all three rem instructions
2658Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2659 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2660
2661 // 0 % X == 0, we don't need to preserve faults!
2662 if (Constant *LHS = dyn_cast<Constant>(Op0))
2663 if (LHS->isNullValue())
2664 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2665
2666 if (isa<UndefValue>(Op0)) // undef % X -> 0
2667 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2668 if (isa<UndefValue>(Op1))
2669 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2670
2671 // Handle cases involving: rem X, (select Cond, Y, Z)
2672 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2673 // rem X, (Cond ? 0 : Y) -> rem X, Y. If the rem and the select are in
2674 // the same basic block, then we replace the select with Y, and the
2675 // condition of the select with false (if the cond value is in the same
2676 // BB). If the select has uses other than the div, this allows them to be
2677 // simplified also.
2678 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2679 if (ST->isNullValue()) {
2680 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2681 if (CondI && CondI->getParent() == I.getParent())
2682 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
2683 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2684 I.setOperand(1, SI->getOperand(2));
2685 else
2686 UpdateValueUsesWith(SI, SI->getOperand(2));
2687 return &I;
2688 }
2689 // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
2690 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2691 if (ST->isNullValue()) {
2692 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2693 if (CondI && CondI->getParent() == I.getParent())
2694 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
2695 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2696 I.setOperand(1, SI->getOperand(1));
2697 else
2698 UpdateValueUsesWith(SI, SI->getOperand(1));
2699 return &I;
2700 }
2701 }
2702
2703 return 0;
2704}
2705
2706/// This function implements the transforms common to both integer remainder
2707/// instructions (urem and srem). It is called by the visitors to those integer
2708/// remainder instructions.
2709/// @brief Common integer remainder transforms
2710Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2711 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2712
2713 if (Instruction *common = commonRemTransforms(I))
2714 return common;
2715
2716 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2717 // X % 0 == undef, we don't need to preserve faults!
2718 if (RHS->equalsInt(0))
2719 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2720
2721 if (RHS->equalsInt(1)) // X % 1 == 0
2722 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2723
2724 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2725 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2726 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2727 return R;
2728 } else if (isa<PHINode>(Op0I)) {
2729 if (Instruction *NV = FoldOpIntoPhi(I))
2730 return NV;
2731 }
2732 // (X * C1) % C2 --> 0 iff C1 % C2 == 0
2733 if (ConstantExpr::getSRem(GetFactor(Op0I), RHS)->isNullValue())
2734 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2735 }
2736 }
2737
2738 return 0;
2739}
2740
2741Instruction *InstCombiner::visitURem(BinaryOperator &I) {
2742 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2743
2744 if (Instruction *common = commonIRemTransforms(I))
2745 return common;
2746
2747 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2748 // X urem C^2 -> X and C
2749 // Check to see if this is an unsigned remainder with an exact power of 2,
2750 // if so, convert to a bitwise and.
2751 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
2752 if (C->getValue().isPowerOf2())
2753 return BinaryOperator::createAnd(Op0, SubOne(C));
2754 }
2755
2756 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
2757 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
2758 if (RHSI->getOpcode() == Instruction::Shl &&
2759 isa<ConstantInt>(RHSI->getOperand(0))) {
2760 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
2761 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
2762 Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
2763 "tmp"), I);
2764 return BinaryOperator::createAnd(Op0, Add);
2765 }
2766 }
2767 }
2768
2769 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
2770 // where C1&C2 are powers of two.
2771 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2772 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2773 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2774 // STO == 0 and SFO == 0 handled above.
2775 if ((STO->getValue().isPowerOf2()) &&
2776 (SFO->getValue().isPowerOf2())) {
2777 Value *TrueAnd = InsertNewInstBefore(
2778 BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
2779 Value *FalseAnd = InsertNewInstBefore(
2780 BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
2781 return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
2782 }
2783 }
2784 }
2785
2786 return 0;
2787}
2788
2789Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
2790 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2791
2792 if (Instruction *common = commonIRemTransforms(I))
2793 return common;
2794
2795 if (Value *RHSNeg = dyn_castNegVal(Op1))
2796 if (!isa<ConstantInt>(RHSNeg) ||
2797 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive()) {
2798 // X % -Y -> X % Y
2799 AddUsesToWorkList(I);
2800 I.setOperand(1, RHSNeg);
2801 return &I;
2802 }
2803
2804 // If the top bits of both operands are zero (i.e. we can prove they are
2805 // unsigned inputs), turn this into a urem.
2806 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2807 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
2808 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
2809 return BinaryOperator::createURem(Op0, Op1, I.getName());
2810 }
2811
2812 return 0;
2813}
2814
2815Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
2816 return commonRemTransforms(I);
2817}
2818
2819// isMaxValueMinusOne - return true if this is Max-1
2820static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) {
2821 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
2822 if (!isSigned)
2823 return C->getValue() == APInt::getAllOnesValue(TypeBits) - 1;
2824 return C->getValue() == APInt::getSignedMaxValue(TypeBits)-1;
2825}
2826
2827// isMinValuePlusOne - return true if this is Min+1
2828static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) {
2829 if (!isSigned)
2830 return C->getValue() == 1; // unsigned
2831
2832 // Calculate 1111111111000000000000
2833 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
2834 return C->getValue() == APInt::getSignedMinValue(TypeBits)+1;
2835}
2836
2837// isOneBitSet - Return true if there is exactly one bit set in the specified
2838// constant.
2839static bool isOneBitSet(const ConstantInt *CI) {
2840 return CI->getValue().isPowerOf2();
2841}
2842
2843// isHighOnes - Return true if the constant is of the form 1+0+.
2844// This is the same as lowones(~X).
2845static bool isHighOnes(const ConstantInt *CI) {
2846 return (~CI->getValue() + 1).isPowerOf2();
2847}
2848
2849/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
2850/// are carefully arranged to allow folding of expressions such as:
2851///
2852/// (A < B) | (A > B) --> (A != B)
2853///
2854/// Note that this is only valid if the first and second predicates have the
2855/// same sign. Is illegal to do: (A u< B) | (A s> B)
2856///
2857/// Three bits are used to represent the condition, as follows:
2858/// 0 A > B
2859/// 1 A == B
2860/// 2 A < B
2861///
2862/// <=> Value Definition
2863/// 000 0 Always false
2864/// 001 1 A > B
2865/// 010 2 A == B
2866/// 011 3 A >= B
2867/// 100 4 A < B
2868/// 101 5 A != B
2869/// 110 6 A <= B
2870/// 111 7 Always true
2871///
2872static unsigned getICmpCode(const ICmpInst *ICI) {
2873 switch (ICI->getPredicate()) {
2874 // False -> 0
2875 case ICmpInst::ICMP_UGT: return 1; // 001
2876 case ICmpInst::ICMP_SGT: return 1; // 001
2877 case ICmpInst::ICMP_EQ: return 2; // 010
2878 case ICmpInst::ICMP_UGE: return 3; // 011
2879 case ICmpInst::ICMP_SGE: return 3; // 011
2880 case ICmpInst::ICMP_ULT: return 4; // 100
2881 case ICmpInst::ICMP_SLT: return 4; // 100
2882 case ICmpInst::ICMP_NE: return 5; // 101
2883 case ICmpInst::ICMP_ULE: return 6; // 110
2884 case ICmpInst::ICMP_SLE: return 6; // 110
2885 // True -> 7
2886 default:
2887 assert(0 && "Invalid ICmp predicate!");
2888 return 0;
2889 }
2890}
2891
2892/// getICmpValue - This is the complement of getICmpCode, which turns an
2893/// opcode and two operands into either a constant true or false, or a brand
2894/// new /// ICmp instruction. The sign is passed in to determine which kind
2895/// of predicate to use in new icmp instructions.
2896static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
2897 switch (code) {
2898 default: assert(0 && "Illegal ICmp code!");
2899 case 0: return ConstantInt::getFalse();
2900 case 1:
2901 if (sign)
2902 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
2903 else
2904 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
2905 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
2906 case 3:
2907 if (sign)
2908 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
2909 else
2910 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
2911 case 4:
2912 if (sign)
2913 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
2914 else
2915 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
2916 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
2917 case 6:
2918 if (sign)
2919 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
2920 else
2921 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
2922 case 7: return ConstantInt::getTrue();
2923 }
2924}
2925
2926static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
2927 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
2928 (ICmpInst::isSignedPredicate(p1) &&
2929 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
2930 (ICmpInst::isSignedPredicate(p2) &&
2931 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
2932}
2933
2934namespace {
2935// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
2936struct FoldICmpLogical {
2937 InstCombiner &IC;
2938 Value *LHS, *RHS;
2939 ICmpInst::Predicate pred;
2940 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
2941 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
2942 pred(ICI->getPredicate()) {}
2943 bool shouldApply(Value *V) const {
2944 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
2945 if (PredicatesFoldable(pred, ICI->getPredicate()))
2946 return (ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS ||
2947 ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS);
2948 return false;
2949 }
2950 Instruction *apply(Instruction &Log) const {
2951 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
2952 if (ICI->getOperand(0) != LHS) {
2953 assert(ICI->getOperand(1) == LHS);
2954 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
2955 }
2956
2957 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
2958 unsigned LHSCode = getICmpCode(ICI);
2959 unsigned RHSCode = getICmpCode(RHSICI);
2960 unsigned Code;
2961 switch (Log.getOpcode()) {
2962 case Instruction::And: Code = LHSCode & RHSCode; break;
2963 case Instruction::Or: Code = LHSCode | RHSCode; break;
2964 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
2965 default: assert(0 && "Illegal logical opcode!"); return 0;
2966 }
2967
2968 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
2969 ICmpInst::isSignedPredicate(ICI->getPredicate());
2970
2971 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
2972 if (Instruction *I = dyn_cast<Instruction>(RV))
2973 return I;
2974 // Otherwise, it's a constant boolean value...
2975 return IC.ReplaceInstUsesWith(Log, RV);
2976 }
2977};
2978} // end anonymous namespace
2979
2980// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
2981// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
2982// guaranteed to be a binary operator.
2983Instruction *InstCombiner::OptAndOp(Instruction *Op,
2984 ConstantInt *OpRHS,
2985 ConstantInt *AndRHS,
2986 BinaryOperator &TheAnd) {
2987 Value *X = Op->getOperand(0);
2988 Constant *Together = 0;
2989 if (!Op->isShift())
2990 Together = And(AndRHS, OpRHS);
2991
2992 switch (Op->getOpcode()) {
2993 case Instruction::Xor:
2994 if (Op->hasOneUse()) {
2995 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
2996 Instruction *And = BinaryOperator::createAnd(X, AndRHS);
2997 InsertNewInstBefore(And, TheAnd);
2998 And->takeName(Op);
2999 return BinaryOperator::createXor(And, Together);
3000 }
3001 break;
3002 case Instruction::Or:
3003 if (Together == AndRHS) // (X | C) & C --> C
3004 return ReplaceInstUsesWith(TheAnd, AndRHS);
3005
3006 if (Op->hasOneUse() && Together != OpRHS) {
3007 // (X | C1) & C2 --> (X | (C1&C2)) & C2
3008 Instruction *Or = BinaryOperator::createOr(X, Together);
3009 InsertNewInstBefore(Or, TheAnd);
3010 Or->takeName(Op);
3011 return BinaryOperator::createAnd(Or, AndRHS);
3012 }
3013 break;
3014 case Instruction::Add:
3015 if (Op->hasOneUse()) {
3016 // Adding a one to a single bit bit-field should be turned into an XOR
3017 // of the bit. First thing to check is to see if this AND is with a
3018 // single bit constant.
3019 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3020
3021 // If there is only one bit set...
3022 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3023 // Ok, at this point, we know that we are masking the result of the
3024 // ADD down to exactly one bit. If the constant we are adding has
3025 // no bits set below this bit, then we can eliminate the ADD.
3026 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3027
3028 // Check to see if any bits below the one bit set in AndRHSV are set.
3029 if ((AddRHS & (AndRHSV-1)) == 0) {
3030 // If not, the only thing that can effect the output of the AND is
3031 // the bit specified by AndRHSV. If that bit is set, the effect of
3032 // the XOR is to toggle the bit. If it is clear, then the ADD has
3033 // no effect.
3034 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3035 TheAnd.setOperand(0, X);
3036 return &TheAnd;
3037 } else {
3038 // Pull the XOR out of the AND.
3039 Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS);
3040 InsertNewInstBefore(NewAnd, TheAnd);
3041 NewAnd->takeName(Op);
3042 return BinaryOperator::createXor(NewAnd, AndRHS);
3043 }
3044 }
3045 }
3046 }
3047 break;
3048
3049 case Instruction::Shl: {
3050 // We know that the AND will not produce any of the bits shifted in, so if
3051 // the anded constant includes them, clear them now!
3052 //
3053 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3054 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3055 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3056 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3057
3058 if (CI->getValue() == ShlMask) {
3059 // Masking out bits that the shift already masks
3060 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3061 } else if (CI != AndRHS) { // Reducing bits set in and.
3062 TheAnd.setOperand(1, CI);
3063 return &TheAnd;
3064 }
3065 break;
3066 }
3067 case Instruction::LShr:
3068 {
3069 // We know that the AND will not produce any of the bits shifted in, so if
3070 // the anded constant includes them, clear them now! This only applies to
3071 // unsigned shifts, because a signed shr may bring in set bits!
3072 //
3073 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3074 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3075 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3076 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3077
3078 if (CI->getValue() == ShrMask) {
3079 // Masking out bits that the shift already masks.
3080 return ReplaceInstUsesWith(TheAnd, Op);
3081 } else if (CI != AndRHS) {
3082 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3083 return &TheAnd;
3084 }
3085 break;
3086 }
3087 case Instruction::AShr:
3088 // Signed shr.
3089 // See if this is shifting in some sign extension, then masking it out
3090 // with an and.
3091 if (Op->hasOneUse()) {
3092 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3093 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3094 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3095 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3096 if (C == AndRHS) { // Masking out bits shifted in.
3097 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3098 // Make the argument unsigned.
3099 Value *ShVal = Op->getOperand(0);
3100 ShVal = InsertNewInstBefore(
3101 BinaryOperator::createLShr(ShVal, OpRHS,
3102 Op->getName()), TheAnd);
3103 return BinaryOperator::createAnd(ShVal, AndRHS, TheAnd.getName());
3104 }
3105 }
3106 break;
3107 }
3108 return 0;
3109}
3110
3111
3112/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3113/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3114/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3115/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3116/// insert new instructions.
3117Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3118 bool isSigned, bool Inside,
3119 Instruction &IB) {
3120 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3121 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3122 "Lo is not <= Hi in range emission code!");
3123
3124 if (Inside) {
3125 if (Lo == Hi) // Trivially false.
3126 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3127
3128 // V >= Min && V < Hi --> V < Hi
3129 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3130 ICmpInst::Predicate pred = (isSigned ?
3131 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3132 return new ICmpInst(pred, V, Hi);
3133 }
3134
3135 // Emit V-Lo <u Hi-Lo
3136 Constant *NegLo = ConstantExpr::getNeg(Lo);
3137 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
3138 InsertNewInstBefore(Add, IB);
3139 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3140 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3141 }
3142
3143 if (Lo == Hi) // Trivially true.
3144 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3145
3146 // V < Min || V >= Hi -> V > Hi-1
3147 Hi = SubOne(cast<ConstantInt>(Hi));
3148 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3149 ICmpInst::Predicate pred = (isSigned ?
3150 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3151 return new ICmpInst(pred, V, Hi);
3152 }
3153
3154 // Emit V-Lo >u Hi-1-Lo
3155 // Note that Hi has already had one subtracted from it, above.
3156 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
3157 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
3158 InsertNewInstBefore(Add, IB);
3159 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3160 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3161}
3162
3163// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3164// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3165// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3166// not, since all 1s are not contiguous.
3167static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3168 const APInt& V = Val->getValue();
3169 uint32_t BitWidth = Val->getType()->getBitWidth();
3170 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3171
3172 // look for the first zero bit after the run of ones
3173 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3174 // look for the first non-zero bit
3175 ME = V.getActiveBits();
3176 return true;
3177}
3178
3179/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3180/// where isSub determines whether the operator is a sub. If we can fold one of
3181/// the following xforms:
3182///
3183/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3184/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3185/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3186///
3187/// return (A +/- B).
3188///
3189Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3190 ConstantInt *Mask, bool isSub,
3191 Instruction &I) {
3192 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3193 if (!LHSI || LHSI->getNumOperands() != 2 ||
3194 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3195
3196 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3197
3198 switch (LHSI->getOpcode()) {
3199 default: return 0;
3200 case Instruction::And:
3201 if (And(N, Mask) == Mask) {
3202 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3203 if ((Mask->getValue().countLeadingZeros() +
3204 Mask->getValue().countPopulation()) ==
3205 Mask->getValue().getBitWidth())
3206 break;
3207
3208 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3209 // part, we don't need any explicit masks to take them out of A. If that
3210 // is all N is, ignore it.
3211 uint32_t MB = 0, ME = 0;
3212 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3213 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3214 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3215 if (MaskedValueIsZero(RHS, Mask))
3216 break;
3217 }
3218 }
3219 return 0;
3220 case Instruction::Or:
3221 case Instruction::Xor:
3222 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3223 if ((Mask->getValue().countLeadingZeros() +
3224 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3225 && And(N, Mask)->isZero())
3226 break;
3227 return 0;
3228 }
3229
3230 Instruction *New;
3231 if (isSub)
3232 New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
3233 else
3234 New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
3235 return InsertNewInstBefore(New, I);
3236}
3237
3238Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3239 bool Changed = SimplifyCommutative(I);
3240 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3241
3242 if (isa<UndefValue>(Op1)) // X & undef -> 0
3243 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3244
3245 // and X, X = X
3246 if (Op0 == Op1)
3247 return ReplaceInstUsesWith(I, Op1);
3248
3249 // See if we can simplify any instructions used by the instruction whose sole
3250 // purpose is to compute bits we don't care about.
3251 if (!isa<VectorType>(I.getType())) {
3252 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3253 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3254 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3255 KnownZero, KnownOne))
3256 return &I;
3257 } else {
3258 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3259 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3260 return ReplaceInstUsesWith(I, I.getOperand(0));
3261 } else if (isa<ConstantAggregateZero>(Op1)) {
3262 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3263 }
3264 }
3265
3266 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3267 const APInt& AndRHSMask = AndRHS->getValue();
3268 APInt NotAndRHS(~AndRHSMask);
3269
3270 // Optimize a variety of ((val OP C1) & C2) combinations...
3271 if (isa<BinaryOperator>(Op0)) {
3272 Instruction *Op0I = cast<Instruction>(Op0);
3273 Value *Op0LHS = Op0I->getOperand(0);
3274 Value *Op0RHS = Op0I->getOperand(1);
3275 switch (Op0I->getOpcode()) {
3276 case Instruction::Xor:
3277 case Instruction::Or:
3278 // If the mask is only needed on one incoming arm, push it up.
3279 if (Op0I->hasOneUse()) {
3280 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3281 // Not masking anything out for the LHS, move to RHS.
3282 Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
3283 Op0RHS->getName()+".masked");
3284 InsertNewInstBefore(NewRHS, I);
3285 return BinaryOperator::create(
3286 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3287 }
3288 if (!isa<Constant>(Op0RHS) &&
3289 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3290 // Not masking anything out for the RHS, move to LHS.
3291 Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
3292 Op0LHS->getName()+".masked");
3293 InsertNewInstBefore(NewLHS, I);
3294 return BinaryOperator::create(
3295 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3296 }
3297 }
3298
3299 break;
3300 case Instruction::Add:
3301 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3302 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3303 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3304 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
3305 return BinaryOperator::createAnd(V, AndRHS);
3306 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
3307 return BinaryOperator::createAnd(V, AndRHS); // Add commutes
3308 break;
3309
3310 case Instruction::Sub:
3311 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3312 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3313 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3314 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
3315 return BinaryOperator::createAnd(V, AndRHS);
3316 break;
3317 }
3318
3319 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3320 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3321 return Res;
3322 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3323 // If this is an integer truncation or change from signed-to-unsigned, and
3324 // if the source is an and/or with immediate, transform it. This
3325 // frequently occurs for bitfield accesses.
3326 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3327 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3328 CastOp->getNumOperands() == 2)
3329 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1)))
3330 if (CastOp->getOpcode() == Instruction::And) {
3331 // Change: and (cast (and X, C1) to T), C2
3332 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3333 // This will fold the two constants together, which may allow
3334 // other simplifications.
3335 Instruction *NewCast = CastInst::createTruncOrBitCast(
3336 CastOp->getOperand(0), I.getType(),
3337 CastOp->getName()+".shrunk");
3338 NewCast = InsertNewInstBefore(NewCast, I);
3339 // trunc_or_bitcast(C1)&C2
3340 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3341 C3 = ConstantExpr::getAnd(C3, AndRHS);
3342 return BinaryOperator::createAnd(NewCast, C3);
3343 } else if (CastOp->getOpcode() == Instruction::Or) {
3344 // Change: and (cast (or X, C1) to T), C2
3345 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3346 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3347 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3348 return ReplaceInstUsesWith(I, AndRHS);
3349 }
3350 }
3351 }
3352
3353 // Try to fold constant and into select arguments.
3354 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3355 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3356 return R;
3357 if (isa<PHINode>(Op0))
3358 if (Instruction *NV = FoldOpIntoPhi(I))
3359 return NV;
3360 }
3361
3362 Value *Op0NotVal = dyn_castNotVal(Op0);
3363 Value *Op1NotVal = dyn_castNotVal(Op1);
3364
3365 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3366 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3367
3368 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3369 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
3370 Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
3371 I.getName()+".demorgan");
3372 InsertNewInstBefore(Or, I);
3373 return BinaryOperator::createNot(Or);
3374 }
3375
3376 {
3377 Value *A = 0, *B = 0, *C = 0, *D = 0;
3378 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3379 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3380 return ReplaceInstUsesWith(I, Op1);
3381
3382 // (A|B) & ~(A&B) -> A^B
3383 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3384 if ((A == C && B == D) || (A == D && B == C))
3385 return BinaryOperator::createXor(A, B);
3386 }
3387 }
3388
3389 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3390 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3391 return ReplaceInstUsesWith(I, Op0);
3392
3393 // ~(A&B) & (A|B) -> A^B
3394 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3395 if ((A == C && B == D) || (A == D && B == C))
3396 return BinaryOperator::createXor(A, B);
3397 }
3398 }
3399
3400 if (Op0->hasOneUse() &&
3401 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3402 if (A == Op1) { // (A^B)&A -> A&(A^B)
3403 I.swapOperands(); // Simplify below
3404 std::swap(Op0, Op1);
3405 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3406 cast<BinaryOperator>(Op0)->swapOperands();
3407 I.swapOperands(); // Simplify below
3408 std::swap(Op0, Op1);
3409 }
3410 }
3411 if (Op1->hasOneUse() &&
3412 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3413 if (B == Op0) { // B&(A^B) -> B&(B^A)
3414 cast<BinaryOperator>(Op1)->swapOperands();
3415 std::swap(A, B);
3416 }
3417 if (A == Op0) { // A&(A^B) -> A & ~B
3418 Instruction *NotB = BinaryOperator::createNot(B, "tmp");
3419 InsertNewInstBefore(NotB, I);
3420 return BinaryOperator::createAnd(A, NotB);
3421 }
3422 }
3423 }
3424
3425 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3426 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3427 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3428 return R;
3429
3430 Value *LHSVal, *RHSVal;
3431 ConstantInt *LHSCst, *RHSCst;
3432 ICmpInst::Predicate LHSCC, RHSCC;
3433 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3434 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3435 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3436 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3437 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3438 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3439 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
3440 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE) {
3441 // Ensure that the larger constant is on the RHS.
3442 ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ?
3443 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
3444 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3445 ICmpInst *LHS = cast<ICmpInst>(Op0);
3446 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
3447 std::swap(LHS, RHS);
3448 std::swap(LHSCst, RHSCst);
3449 std::swap(LHSCC, RHSCC);
3450 }
3451
3452 // At this point, we know we have have two icmp instructions
3453 // comparing a value against two constants and and'ing the result
3454 // together. Because of the above check, we know that we only have
3455 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3456 // (from the FoldICmpLogical check above), that the two constants
3457 // are not equal and that the larger constant is on the RHS
3458 assert(LHSCst != RHSCst && "Compares not folded above?");
3459
3460 switch (LHSCC) {
3461 default: assert(0 && "Unknown integer condition code!");
3462 case ICmpInst::ICMP_EQ:
3463 switch (RHSCC) {
3464 default: assert(0 && "Unknown integer condition code!");
3465 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3466 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3467 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3468 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3469 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3470 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3471 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3472 return ReplaceInstUsesWith(I, LHS);
3473 }
3474 case ICmpInst::ICMP_NE:
3475 switch (RHSCC) {
3476 default: assert(0 && "Unknown integer condition code!");
3477 case ICmpInst::ICMP_ULT:
3478 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3479 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3480 break; // (X != 13 & X u< 15) -> no change
3481 case ICmpInst::ICMP_SLT:
3482 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3483 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3484 break; // (X != 13 & X s< 15) -> no change
3485 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3486 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3487 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3488 return ReplaceInstUsesWith(I, RHS);
3489 case ICmpInst::ICMP_NE:
3490 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3491 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3492 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
3493 LHSVal->getName()+".off");
3494 InsertNewInstBefore(Add, I);
3495 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3496 ConstantInt::get(Add->getType(), 1));
3497 }
3498 break; // (X != 13 & X != 15) -> no change
3499 }
3500 break;
3501 case ICmpInst::ICMP_ULT:
3502 switch (RHSCC) {
3503 default: assert(0 && "Unknown integer condition code!");
3504 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3505 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3506 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3507 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3508 break;
3509 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3510 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3511 return ReplaceInstUsesWith(I, LHS);
3512 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3513 break;
3514 }
3515 break;
3516 case ICmpInst::ICMP_SLT:
3517 switch (RHSCC) {
3518 default: assert(0 && "Unknown integer condition code!");
3519 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3520 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3521 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3522 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3523 break;
3524 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3525 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3526 return ReplaceInstUsesWith(I, LHS);
3527 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3528 break;
3529 }
3530 break;
3531 case ICmpInst::ICMP_UGT:
3532 switch (RHSCC) {
3533 default: assert(0 && "Unknown integer condition code!");
3534 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X > 13
3535 return ReplaceInstUsesWith(I, LHS);
3536 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3537 return ReplaceInstUsesWith(I, RHS);
3538 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3539 break;
3540 case ICmpInst::ICMP_NE:
3541 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3542 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3543 break; // (X u> 13 & X != 15) -> no change
3544 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
3545 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
3546 true, I);
3547 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3548 break;
3549 }
3550 break;
3551 case ICmpInst::ICMP_SGT:
3552 switch (RHSCC) {
3553 default: assert(0 && "Unknown integer condition code!");
3554 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X s> 13
3555 return ReplaceInstUsesWith(I, LHS);
3556 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3557 return ReplaceInstUsesWith(I, RHS);
3558 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3559 break;
3560 case ICmpInst::ICMP_NE:
3561 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3562 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3563 break; // (X s> 13 & X != 15) -> no change
3564 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
3565 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
3566 true, I);
3567 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3568 break;
3569 }
3570 break;
3571 }
3572 }
3573 }
3574
3575 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3576 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3577 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3578 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3579 const Type *SrcTy = Op0C->getOperand(0)->getType();
3580 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3581 // Only do this if the casts both really cause code to be generated.
3582 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
3583 I.getType(), TD) &&
3584 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
3585 I.getType(), TD)) {
3586 Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0),
3587 Op1C->getOperand(0),
3588 I.getName());
3589 InsertNewInstBefore(NewOp, I);
3590 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
3591 }
3592 }
3593
3594 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
3595 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3596 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3597 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3598 SI0->getOperand(1) == SI1->getOperand(1) &&
3599 (SI0->hasOneUse() || SI1->hasOneUse())) {
3600 Instruction *NewOp =
3601 InsertNewInstBefore(BinaryOperator::createAnd(SI0->getOperand(0),
3602 SI1->getOperand(0),
3603 SI0->getName()), I);
3604 return BinaryOperator::create(SI1->getOpcode(), NewOp,
3605 SI1->getOperand(1));
3606 }
3607 }
3608
3609 return Changed ? &I : 0;
3610}
3611
3612/// CollectBSwapParts - Look to see if the specified value defines a single byte
3613/// in the result. If it does, and if the specified byte hasn't been filled in
3614/// yet, fill it in and return false.
3615static bool CollectBSwapParts(Value *V, SmallVector<Value*, 8> &ByteValues) {
3616 Instruction *I = dyn_cast<Instruction>(V);
3617 if (I == 0) return true;
3618
3619 // If this is an or instruction, it is an inner node of the bswap.
3620 if (I->getOpcode() == Instruction::Or)
3621 return CollectBSwapParts(I->getOperand(0), ByteValues) ||
3622 CollectBSwapParts(I->getOperand(1), ByteValues);
3623
3624 uint32_t BitWidth = I->getType()->getPrimitiveSizeInBits();
3625 // If this is a shift by a constant int, and it is "24", then its operand
3626 // defines a byte. We only handle unsigned types here.
3627 if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
3628 // Not shifting the entire input by N-1 bytes?
3629 if (cast<ConstantInt>(I->getOperand(1))->getLimitedValue(BitWidth) !=
3630 8*(ByteValues.size()-1))
3631 return true;
3632
3633 unsigned DestNo;
3634 if (I->getOpcode() == Instruction::Shl) {
3635 // X << 24 defines the top byte with the lowest of the input bytes.
3636 DestNo = ByteValues.size()-1;
3637 } else {
3638 // X >>u 24 defines the low byte with the highest of the input bytes.
3639 DestNo = 0;
3640 }
3641
3642 // If the destination byte value is already defined, the values are or'd
3643 // together, which isn't a bswap (unless it's an or of the same bits).
3644 if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
3645 return true;
3646 ByteValues[DestNo] = I->getOperand(0);
3647 return false;
3648 }
3649
3650 // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we
3651 // don't have this.
3652 Value *Shift = 0, *ShiftLHS = 0;
3653 ConstantInt *AndAmt = 0, *ShiftAmt = 0;
3654 if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
3655 !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
3656 return true;
3657 Instruction *SI = cast<Instruction>(Shift);
3658
3659 // Make sure that the shift amount is by a multiple of 8 and isn't too big.
3660 if (ShiftAmt->getLimitedValue(BitWidth) & 7 ||
3661 ShiftAmt->getLimitedValue(BitWidth) > 8*ByteValues.size())
3662 return true;
3663
3664 // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
3665 unsigned DestByte;
3666 if (AndAmt->getValue().getActiveBits() > 64)
3667 return true;
3668 uint64_t AndAmtVal = AndAmt->getZExtValue();
3669 for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
3670 if (AndAmtVal == uint64_t(0xFF) << 8*DestByte)
3671 break;
3672 // Unknown mask for bswap.
3673 if (DestByte == ByteValues.size()) return true;
3674
3675 unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
3676 unsigned SrcByte;
3677 if (SI->getOpcode() == Instruction::Shl)
3678 SrcByte = DestByte - ShiftBytes;
3679 else
3680 SrcByte = DestByte + ShiftBytes;
3681
3682 // If the SrcByte isn't a bswapped value from the DestByte, reject it.
3683 if (SrcByte != ByteValues.size()-DestByte-1)
3684 return true;
3685
3686 // If the destination byte value is already defined, the values are or'd
3687 // together, which isn't a bswap (unless it's an or of the same bits).
3688 if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
3689 return true;
3690 ByteValues[DestByte] = SI->getOperand(0);
3691 return false;
3692}
3693
3694/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
3695/// If so, insert the new bswap intrinsic and return it.
3696Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
3697 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
3698 if (!ITy || ITy->getBitWidth() % 16)
3699 return 0; // Can only bswap pairs of bytes. Can't do vectors.
3700
3701 /// ByteValues - For each byte of the result, we keep track of which value
3702 /// defines each byte.
3703 SmallVector<Value*, 8> ByteValues;
3704 ByteValues.resize(ITy->getBitWidth()/8);
3705
3706 // Try to find all the pieces corresponding to the bswap.
3707 if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
3708 CollectBSwapParts(I.getOperand(1), ByteValues))
3709 return 0;
3710
3711 // Check to see if all of the bytes come from the same value.
3712 Value *V = ByteValues[0];
3713 if (V == 0) return 0; // Didn't find a byte? Must be zero.
3714
3715 // Check to make sure that all of the bytes come from the same value.
3716 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
3717 if (ByteValues[i] != V)
3718 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00003719 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003720 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00003721 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003722 return new CallInst(F, V);
3723}
3724
3725
3726Instruction *InstCombiner::visitOr(BinaryOperator &I) {
3727 bool Changed = SimplifyCommutative(I);
3728 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3729
3730 if (isa<UndefValue>(Op1)) // X | undef -> -1
3731 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
3732
3733 // or X, X = X
3734 if (Op0 == Op1)
3735 return ReplaceInstUsesWith(I, Op0);
3736
3737 // See if we can simplify any instructions used by the instruction whose sole
3738 // purpose is to compute bits we don't care about.
3739 if (!isa<VectorType>(I.getType())) {
3740 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3741 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3742 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3743 KnownZero, KnownOne))
3744 return &I;
3745 } else if (isa<ConstantAggregateZero>(Op1)) {
3746 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
3747 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3748 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
3749 return ReplaceInstUsesWith(I, I.getOperand(1));
3750 }
3751
3752
3753
3754 // or X, -1 == -1
3755 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3756 ConstantInt *C1 = 0; Value *X = 0;
3757 // (X & C1) | C2 --> (X | C2) & (C1|C2)
3758 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
3759 Instruction *Or = BinaryOperator::createOr(X, RHS);
3760 InsertNewInstBefore(Or, I);
3761 Or->takeName(Op0);
3762 return BinaryOperator::createAnd(Or,
3763 ConstantInt::get(RHS->getValue() | C1->getValue()));
3764 }
3765
3766 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
3767 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
3768 Instruction *Or = BinaryOperator::createOr(X, RHS);
3769 InsertNewInstBefore(Or, I);
3770 Or->takeName(Op0);
3771 return BinaryOperator::createXor(Or,
3772 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
3773 }
3774
3775 // Try to fold constant and into select arguments.
3776 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3777 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3778 return R;
3779 if (isa<PHINode>(Op0))
3780 if (Instruction *NV = FoldOpIntoPhi(I))
3781 return NV;
3782 }
3783
3784 Value *A = 0, *B = 0;
3785 ConstantInt *C1 = 0, *C2 = 0;
3786
3787 if (match(Op0, m_And(m_Value(A), m_Value(B))))
3788 if (A == Op1 || B == Op1) // (A & ?) | A --> A
3789 return ReplaceInstUsesWith(I, Op1);
3790 if (match(Op1, m_And(m_Value(A), m_Value(B))))
3791 if (A == Op0 || B == Op0) // A | (A & ?) --> A
3792 return ReplaceInstUsesWith(I, Op0);
3793
3794 // (A | B) | C and A | (B | C) -> bswap if possible.
3795 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
3796 if (match(Op0, m_Or(m_Value(), m_Value())) ||
3797 match(Op1, m_Or(m_Value(), m_Value())) ||
3798 (match(Op0, m_Shift(m_Value(), m_Value())) &&
3799 match(Op1, m_Shift(m_Value(), m_Value())))) {
3800 if (Instruction *BSwap = MatchBSwap(I))
3801 return BSwap;
3802 }
3803
3804 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
3805 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
3806 MaskedValueIsZero(Op1, C1->getValue())) {
3807 Instruction *NOr = BinaryOperator::createOr(A, Op1);
3808 InsertNewInstBefore(NOr, I);
3809 NOr->takeName(Op0);
3810 return BinaryOperator::createXor(NOr, C1);
3811 }
3812
3813 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
3814 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
3815 MaskedValueIsZero(Op0, C1->getValue())) {
3816 Instruction *NOr = BinaryOperator::createOr(A, Op0);
3817 InsertNewInstBefore(NOr, I);
3818 NOr->takeName(Op0);
3819 return BinaryOperator::createXor(NOr, C1);
3820 }
3821
3822 // (A & C)|(B & D)
3823 Value *C = 0, *D = 0;
3824 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3825 match(Op1, m_And(m_Value(B), m_Value(D)))) {
3826 Value *V1 = 0, *V2 = 0, *V3 = 0;
3827 C1 = dyn_cast<ConstantInt>(C);
3828 C2 = dyn_cast<ConstantInt>(D);
3829 if (C1 && C2) { // (A & C1)|(B & C2)
3830 // If we have: ((V + N) & C1) | (V & C2)
3831 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
3832 // replace with V+N.
3833 if (C1->getValue() == ~C2->getValue()) {
3834 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
3835 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
3836 // Add commutes, try both ways.
3837 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
3838 return ReplaceInstUsesWith(I, A);
3839 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
3840 return ReplaceInstUsesWith(I, A);
3841 }
3842 // Or commutes, try both ways.
3843 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
3844 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
3845 // Add commutes, try both ways.
3846 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
3847 return ReplaceInstUsesWith(I, B);
3848 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
3849 return ReplaceInstUsesWith(I, B);
3850 }
3851 }
3852 V1 = 0; V2 = 0; V3 = 0;
3853 }
3854
3855 // Check to see if we have any common things being and'ed. If so, find the
3856 // terms for V1 & (V2|V3).
3857 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
3858 if (A == B) // (A & C)|(A & D) == A & (C|D)
3859 V1 = A, V2 = C, V3 = D;
3860 else if (A == D) // (A & C)|(B & A) == A & (B|C)
3861 V1 = A, V2 = B, V3 = C;
3862 else if (C == B) // (A & C)|(C & D) == C & (A|D)
3863 V1 = C, V2 = A, V3 = D;
3864 else if (C == D) // (A & C)|(B & C) == C & (A|B)
3865 V1 = C, V2 = A, V3 = B;
3866
3867 if (V1) {
3868 Value *Or =
3869 InsertNewInstBefore(BinaryOperator::createOr(V2, V3, "tmp"), I);
3870 return BinaryOperator::createAnd(V1, Or);
3871 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003872 }
3873 }
3874
3875 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
3876 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3877 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3878 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3879 SI0->getOperand(1) == SI1->getOperand(1) &&
3880 (SI0->hasOneUse() || SI1->hasOneUse())) {
3881 Instruction *NewOp =
3882 InsertNewInstBefore(BinaryOperator::createOr(SI0->getOperand(0),
3883 SI1->getOperand(0),
3884 SI0->getName()), I);
3885 return BinaryOperator::create(SI1->getOpcode(), NewOp,
3886 SI1->getOperand(1));
3887 }
3888 }
3889
3890 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
3891 if (A == Op1) // ~A | A == -1
3892 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
3893 } else {
3894 A = 0;
3895 }
3896 // Note, A is still live here!
3897 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
3898 if (Op0 == B)
3899 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
3900
3901 // (~A | ~B) == (~(A & B)) - De Morgan's Law
3902 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
3903 Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
3904 I.getName()+".demorgan"), I);
3905 return BinaryOperator::createNot(And);
3906 }
3907 }
3908
3909 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
3910 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
3911 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3912 return R;
3913
3914 Value *LHSVal, *RHSVal;
3915 ConstantInt *LHSCst, *RHSCst;
3916 ICmpInst::Predicate LHSCC, RHSCC;
3917 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3918 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3919 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
3920 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
3921 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3922 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3923 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
3924 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3925 // We can't fold (ugt x, C) | (sgt x, C2).
3926 PredicatesFoldable(LHSCC, RHSCC)) {
3927 // Ensure that the larger constant is on the RHS.
3928 ICmpInst *LHS = cast<ICmpInst>(Op0);
3929 bool NeedsSwap;
3930 if (ICmpInst::isSignedPredicate(LHSCC))
3931 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
3932 else
3933 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3934
3935 if (NeedsSwap) {
3936 std::swap(LHS, RHS);
3937 std::swap(LHSCst, RHSCst);
3938 std::swap(LHSCC, RHSCC);
3939 }
3940
3941 // At this point, we know we have have two icmp instructions
3942 // comparing a value against two constants and or'ing the result
3943 // together. Because of the above check, we know that we only have
3944 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
3945 // FoldICmpLogical check above), that the two constants are not
3946 // equal.
3947 assert(LHSCst != RHSCst && "Compares not folded above?");
3948
3949 switch (LHSCC) {
3950 default: assert(0 && "Unknown integer condition code!");
3951 case ICmpInst::ICMP_EQ:
3952 switch (RHSCC) {
3953 default: assert(0 && "Unknown integer condition code!");
3954 case ICmpInst::ICMP_EQ:
3955 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
3956 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3957 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
3958 LHSVal->getName()+".off");
3959 InsertNewInstBefore(Add, I);
3960 AddCST = Subtract(AddOne(RHSCst), LHSCst);
3961 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
3962 }
3963 break; // (X == 13 | X == 15) -> no change
3964 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
3965 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
3966 break;
3967 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
3968 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
3969 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
3970 return ReplaceInstUsesWith(I, RHS);
3971 }
3972 break;
3973 case ICmpInst::ICMP_NE:
3974 switch (RHSCC) {
3975 default: assert(0 && "Unknown integer condition code!");
3976 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
3977 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
3978 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
3979 return ReplaceInstUsesWith(I, LHS);
3980 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
3981 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
3982 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
3983 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
3984 }
3985 break;
3986 case ICmpInst::ICMP_ULT:
3987 switch (RHSCC) {
3988 default: assert(0 && "Unknown integer condition code!");
3989 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
3990 break;
3991 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
3992 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
3993 false, I);
3994 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
3995 break;
3996 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
3997 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
3998 return ReplaceInstUsesWith(I, RHS);
3999 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4000 break;
4001 }
4002 break;
4003 case ICmpInst::ICMP_SLT:
4004 switch (RHSCC) {
4005 default: assert(0 && "Unknown integer condition code!");
4006 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4007 break;
4008 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
4009 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4010 false, I);
4011 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4012 break;
4013 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4014 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4015 return ReplaceInstUsesWith(I, RHS);
4016 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4017 break;
4018 }
4019 break;
4020 case ICmpInst::ICMP_UGT:
4021 switch (RHSCC) {
4022 default: assert(0 && "Unknown integer condition code!");
4023 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4024 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4025 return ReplaceInstUsesWith(I, LHS);
4026 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4027 break;
4028 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4029 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4030 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4031 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4032 break;
4033 }
4034 break;
4035 case ICmpInst::ICMP_SGT:
4036 switch (RHSCC) {
4037 default: assert(0 && "Unknown integer condition code!");
4038 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4039 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4040 return ReplaceInstUsesWith(I, LHS);
4041 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4042 break;
4043 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4044 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4045 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4046 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4047 break;
4048 }
4049 break;
4050 }
4051 }
4052 }
4053
4054 // fold (or (cast A), (cast B)) -> (cast (or A, B))
4055 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4056 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4057 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
4058 const Type *SrcTy = Op0C->getOperand(0)->getType();
4059 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4060 // Only do this if the casts both really cause code to be generated.
4061 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4062 I.getType(), TD) &&
4063 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4064 I.getType(), TD)) {
4065 Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0),
4066 Op1C->getOperand(0),
4067 I.getName());
4068 InsertNewInstBefore(NewOp, I);
4069 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4070 }
4071 }
4072
4073
4074 return Changed ? &I : 0;
4075}
4076
4077// XorSelf - Implements: X ^ X --> 0
4078struct XorSelf {
4079 Value *RHS;
4080 XorSelf(Value *rhs) : RHS(rhs) {}
4081 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4082 Instruction *apply(BinaryOperator &Xor) const {
4083 return &Xor;
4084 }
4085};
4086
4087
4088Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4089 bool Changed = SimplifyCommutative(I);
4090 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4091
4092 if (isa<UndefValue>(Op1))
4093 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
4094
4095 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4096 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004097 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004098 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4099 }
4100
4101 // See if we can simplify any instructions used by the instruction whose sole
4102 // purpose is to compute bits we don't care about.
4103 if (!isa<VectorType>(I.getType())) {
4104 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4105 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4106 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4107 KnownZero, KnownOne))
4108 return &I;
4109 } else if (isa<ConstantAggregateZero>(Op1)) {
4110 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4111 }
4112
4113 // Is this a ~ operation?
4114 if (Value *NotOp = dyn_castNotVal(&I)) {
4115 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4116 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4117 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4118 if (Op0I->getOpcode() == Instruction::And ||
4119 Op0I->getOpcode() == Instruction::Or) {
4120 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4121 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4122 Instruction *NotY =
4123 BinaryOperator::createNot(Op0I->getOperand(1),
4124 Op0I->getOperand(1)->getName()+".not");
4125 InsertNewInstBefore(NotY, I);
4126 if (Op0I->getOpcode() == Instruction::And)
4127 return BinaryOperator::createOr(Op0NotVal, NotY);
4128 else
4129 return BinaryOperator::createAnd(Op0NotVal, NotY);
4130 }
4131 }
4132 }
4133 }
4134
4135
4136 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004137 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4138 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4139 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004140 return new ICmpInst(ICI->getInversePredicate(),
4141 ICI->getOperand(0), ICI->getOperand(1));
4142
Nick Lewycky1405e922007-08-06 20:04:16 +00004143 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4144 return new FCmpInst(FCI->getInversePredicate(),
4145 FCI->getOperand(0), FCI->getOperand(1));
4146 }
4147
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004148 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4149 // ~(c-X) == X-c-1 == X+(-c-1)
4150 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4151 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4152 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4153 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4154 ConstantInt::get(I.getType(), 1));
4155 return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
4156 }
4157
4158 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
4159 if (Op0I->getOpcode() == Instruction::Add) {
4160 // ~(X-c) --> (-c-1)-X
4161 if (RHS->isAllOnesValue()) {
4162 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
4163 return BinaryOperator::createSub(
4164 ConstantExpr::getSub(NegOp0CI,
4165 ConstantInt::get(I.getType(), 1)),
4166 Op0I->getOperand(0));
4167 } else if (RHS->getValue().isSignBit()) {
4168 // (X + C) ^ signbit -> (X + C + signbit)
4169 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
4170 return BinaryOperator::createAdd(Op0I->getOperand(0), C);
4171
4172 }
4173 } else if (Op0I->getOpcode() == Instruction::Or) {
4174 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4175 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4176 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4177 // Anything in both C1 and C2 is known to be zero, remove it from
4178 // NewRHS.
4179 Constant *CommonBits = And(Op0CI, RHS);
4180 NewRHS = ConstantExpr::getAnd(NewRHS,
4181 ConstantExpr::getNot(CommonBits));
4182 AddToWorkList(Op0I);
4183 I.setOperand(0, Op0I->getOperand(0));
4184 I.setOperand(1, NewRHS);
4185 return &I;
4186 }
4187 }
4188 }
4189
4190 // Try to fold constant and into select arguments.
4191 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4192 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4193 return R;
4194 if (isa<PHINode>(Op0))
4195 if (Instruction *NV = FoldOpIntoPhi(I))
4196 return NV;
4197 }
4198
4199 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4200 if (X == Op1)
4201 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4202
4203 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4204 if (X == Op0)
4205 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4206
4207
4208 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4209 if (Op1I) {
4210 Value *A, *B;
4211 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4212 if (A == Op0) { // B^(B|A) == (A|B)^B
4213 Op1I->swapOperands();
4214 I.swapOperands();
4215 std::swap(Op0, Op1);
4216 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4217 I.swapOperands(); // Simplified below.
4218 std::swap(Op0, Op1);
4219 }
4220 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4221 if (Op0 == A) // A^(A^B) == B
4222 return ReplaceInstUsesWith(I, B);
4223 else if (Op0 == B) // A^(B^A) == B
4224 return ReplaceInstUsesWith(I, A);
4225 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4226 if (A == Op0) { // A^(A&B) -> A^(B&A)
4227 Op1I->swapOperands();
4228 std::swap(A, B);
4229 }
4230 if (B == Op0) { // A^(B&A) -> (B&A)^A
4231 I.swapOperands(); // Simplified below.
4232 std::swap(Op0, Op1);
4233 }
4234 }
4235 }
4236
4237 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4238 if (Op0I) {
4239 Value *A, *B;
4240 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4241 if (A == Op1) // (B|A)^B == (A|B)^B
4242 std::swap(A, B);
4243 if (B == Op1) { // (A|B)^B == A & ~B
4244 Instruction *NotB =
4245 InsertNewInstBefore(BinaryOperator::createNot(Op1, "tmp"), I);
4246 return BinaryOperator::createAnd(A, NotB);
4247 }
4248 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4249 if (Op1 == A) // (A^B)^A == B
4250 return ReplaceInstUsesWith(I, B);
4251 else if (Op1 == B) // (B^A)^A == B
4252 return ReplaceInstUsesWith(I, A);
4253 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4254 if (A == Op1) // (A&B)^A -> (B&A)^A
4255 std::swap(A, B);
4256 if (B == Op1 && // (B&A)^A == ~B & A
4257 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4258 Instruction *N =
4259 InsertNewInstBefore(BinaryOperator::createNot(A, "tmp"), I);
4260 return BinaryOperator::createAnd(N, Op1);
4261 }
4262 }
4263 }
4264
4265 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4266 if (Op0I && Op1I && Op0I->isShift() &&
4267 Op0I->getOpcode() == Op1I->getOpcode() &&
4268 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4269 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4270 Instruction *NewOp =
4271 InsertNewInstBefore(BinaryOperator::createXor(Op0I->getOperand(0),
4272 Op1I->getOperand(0),
4273 Op0I->getName()), I);
4274 return BinaryOperator::create(Op1I->getOpcode(), NewOp,
4275 Op1I->getOperand(1));
4276 }
4277
4278 if (Op0I && Op1I) {
4279 Value *A, *B, *C, *D;
4280 // (A & B)^(A | B) -> A ^ B
4281 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4282 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4283 if ((A == C && B == D) || (A == D && B == C))
4284 return BinaryOperator::createXor(A, B);
4285 }
4286 // (A | B)^(A & B) -> A ^ B
4287 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4288 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4289 if ((A == C && B == D) || (A == D && B == C))
4290 return BinaryOperator::createXor(A, B);
4291 }
4292
4293 // (A & B)^(C & D)
4294 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4295 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4296 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4297 // (X & Y)^(X & Y) -> (Y^Z) & X
4298 Value *X = 0, *Y = 0, *Z = 0;
4299 if (A == C)
4300 X = A, Y = B, Z = D;
4301 else if (A == D)
4302 X = A, Y = B, Z = C;
4303 else if (B == C)
4304 X = B, Y = A, Z = D;
4305 else if (B == D)
4306 X = B, Y = A, Z = C;
4307
4308 if (X) {
4309 Instruction *NewOp =
4310 InsertNewInstBefore(BinaryOperator::createXor(Y, Z, Op0->getName()), I);
4311 return BinaryOperator::createAnd(NewOp, X);
4312 }
4313 }
4314 }
4315
4316 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4317 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4318 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4319 return R;
4320
4321 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
4322 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
4323 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4324 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4325 const Type *SrcTy = Op0C->getOperand(0)->getType();
4326 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4327 // Only do this if the casts both really cause code to be generated.
4328 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4329 I.getType(), TD) &&
4330 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4331 I.getType(), TD)) {
4332 Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0),
4333 Op1C->getOperand(0),
4334 I.getName());
4335 InsertNewInstBefore(NewOp, I);
4336 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4337 }
4338 }
4339
4340 return Changed ? &I : 0;
4341}
4342
4343/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4344/// overflowed for this type.
4345static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4346 ConstantInt *In2, bool IsSigned = false) {
4347 Result = cast<ConstantInt>(Add(In1, In2));
4348
4349 if (IsSigned)
4350 if (In2->getValue().isNegative())
4351 return Result->getValue().sgt(In1->getValue());
4352 else
4353 return Result->getValue().slt(In1->getValue());
4354 else
4355 return Result->getValue().ult(In1->getValue());
4356}
4357
4358/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4359/// code necessary to compute the offset from the base pointer (without adding
4360/// in the base pointer). Return the result as a signed integer of intptr size.
4361static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4362 TargetData &TD = IC.getTargetData();
4363 gep_type_iterator GTI = gep_type_begin(GEP);
4364 const Type *IntPtrTy = TD.getIntPtrType();
4365 Value *Result = Constant::getNullValue(IntPtrTy);
4366
4367 // Build a mask for high order bits.
4368 unsigned IntPtrWidth = TD.getPointerSize()*8;
4369 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
4370
4371 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
4372 Value *Op = GEP->getOperand(i);
4373 uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask;
4374 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
4375 if (OpC->isZero()) continue;
4376
4377 // Handle a struct index, which adds its field offset to the pointer.
4378 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4379 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
4380
4381 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
4382 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
4383 else
4384 Result = IC.InsertNewInstBefore(
4385 BinaryOperator::createAdd(Result,
4386 ConstantInt::get(IntPtrTy, Size),
4387 GEP->getName()+".offs"), I);
4388 continue;
4389 }
4390
4391 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4392 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
4393 Scale = ConstantExpr::getMul(OC, Scale);
4394 if (Constant *RC = dyn_cast<Constant>(Result))
4395 Result = ConstantExpr::getAdd(RC, Scale);
4396 else {
4397 // Emit an add instruction.
4398 Result = IC.InsertNewInstBefore(
4399 BinaryOperator::createAdd(Result, Scale,
4400 GEP->getName()+".offs"), I);
4401 }
4402 continue;
4403 }
4404 // Convert to correct type.
4405 if (Op->getType() != IntPtrTy) {
4406 if (Constant *OpC = dyn_cast<Constant>(Op))
4407 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
4408 else
4409 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
4410 Op->getName()+".c"), I);
4411 }
4412 if (Size != 1) {
4413 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4414 if (Constant *OpC = dyn_cast<Constant>(Op))
4415 Op = ConstantExpr::getMul(OpC, Scale);
4416 else // We'll let instcombine(mul) convert this to a shl if possible.
4417 Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
4418 GEP->getName()+".idx"), I);
4419 }
4420
4421 // Emit an add instruction.
4422 if (isa<Constant>(Op) && isa<Constant>(Result))
4423 Result = ConstantExpr::getAdd(cast<Constant>(Op),
4424 cast<Constant>(Result));
4425 else
4426 Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
4427 GEP->getName()+".offs"), I);
4428 }
4429 return Result;
4430}
4431
4432/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
4433/// else. At this point we know that the GEP is on the LHS of the comparison.
4434Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
4435 ICmpInst::Predicate Cond,
4436 Instruction &I) {
4437 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
4438
4439 if (CastInst *CI = dyn_cast<CastInst>(RHS))
4440 if (isa<PointerType>(CI->getOperand(0)->getType()))
4441 RHS = CI->getOperand(0);
4442
4443 Value *PtrBase = GEPLHS->getOperand(0);
4444 if (PtrBase == RHS) {
4445 // As an optimization, we don't actually have to compute the actual value of
4446 // OFFSET if this is a icmp_eq or icmp_ne comparison, just return whether
4447 // each index is zero or not.
4448 if (Cond == ICmpInst::ICMP_EQ || Cond == ICmpInst::ICMP_NE) {
4449 Instruction *InVal = 0;
4450 gep_type_iterator GTI = gep_type_begin(GEPLHS);
4451 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
4452 bool EmitIt = true;
4453 if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
4454 if (isa<UndefValue>(C)) // undef index -> undef.
4455 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
4456 if (C->isNullValue())
4457 EmitIt = false;
4458 else if (TD->getTypeSize(GTI.getIndexedType()) == 0) {
4459 EmitIt = false; // This is indexing into a zero sized array?
4460 } else if (isa<ConstantInt>(C))
4461 return ReplaceInstUsesWith(I, // No comparison is needed here.
4462 ConstantInt::get(Type::Int1Ty,
4463 Cond == ICmpInst::ICMP_NE));
4464 }
4465
4466 if (EmitIt) {
4467 Instruction *Comp =
4468 new ICmpInst(Cond, GEPLHS->getOperand(i),
4469 Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
4470 if (InVal == 0)
4471 InVal = Comp;
4472 else {
4473 InVal = InsertNewInstBefore(InVal, I);
4474 InsertNewInstBefore(Comp, I);
4475 if (Cond == ICmpInst::ICMP_NE) // True if any are unequal
4476 InVal = BinaryOperator::createOr(InVal, Comp);
4477 else // True if all are equal
4478 InVal = BinaryOperator::createAnd(InVal, Comp);
4479 }
4480 }
4481 }
4482
4483 if (InVal)
4484 return InVal;
4485 else
4486 // No comparison is needed here, all indexes = 0
4487 ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
4488 Cond == ICmpInst::ICMP_EQ));
4489 }
4490
4491 // Only lower this if the icmp is the only user of the GEP or if we expect
4492 // the result to fold to a constant!
4493 if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
4494 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
4495 Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
4496 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
4497 Constant::getNullValue(Offset->getType()));
4498 }
4499 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
4500 // If the base pointers are different, but the indices are the same, just
4501 // compare the base pointer.
4502 if (PtrBase != GEPRHS->getOperand(0)) {
4503 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
4504 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
4505 GEPRHS->getOperand(0)->getType();
4506 if (IndicesTheSame)
4507 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
4508 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
4509 IndicesTheSame = false;
4510 break;
4511 }
4512
4513 // If all indices are the same, just compare the base pointers.
4514 if (IndicesTheSame)
4515 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
4516 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
4517
4518 // Otherwise, the base pointers are different and the indices are
4519 // different, bail out.
4520 return 0;
4521 }
4522
4523 // If one of the GEPs has all zero indices, recurse.
4524 bool AllZeros = true;
4525 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
4526 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
4527 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
4528 AllZeros = false;
4529 break;
4530 }
4531 if (AllZeros)
4532 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
4533 ICmpInst::getSwappedPredicate(Cond), I);
4534
4535 // If the other GEP has all zero indices, recurse.
4536 AllZeros = true;
4537 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
4538 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
4539 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
4540 AllZeros = false;
4541 break;
4542 }
4543 if (AllZeros)
4544 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
4545
4546 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
4547 // If the GEPs only differ by one index, compare it.
4548 unsigned NumDifferences = 0; // Keep track of # differences.
4549 unsigned DiffOperand = 0; // The operand that differs.
4550 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
4551 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
4552 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
4553 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
4554 // Irreconcilable differences.
4555 NumDifferences = 2;
4556 break;
4557 } else {
4558 if (NumDifferences++) break;
4559 DiffOperand = i;
4560 }
4561 }
4562
4563 if (NumDifferences == 0) // SAME GEP?
4564 return ReplaceInstUsesWith(I, // No comparison is needed here.
4565 ConstantInt::get(Type::Int1Ty,
Nick Lewycky2bae8722007-09-06 01:10:22 +00004566 Cond == ICmpInst::ICMP_EQ ||
4567 Cond == ICmpInst::ICMP_ULE || Cond == ICmpInst::ICMP_UGE ||
4568 Cond == ICmpInst::ICMP_SLE || Cond == ICmpInst::ICMP_SGE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004569 else if (NumDifferences == 1) {
4570 Value *LHSV = GEPLHS->getOperand(DiffOperand);
4571 Value *RHSV = GEPRHS->getOperand(DiffOperand);
4572 // Make sure we do a signed comparison here.
4573 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
4574 }
4575 }
4576
4577 // Only lower this if the icmp is the only user of the GEP or if we expect
4578 // the result to fold to a constant!
4579 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
4580 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
4581 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
4582 Value *L = EmitGEPOffset(GEPLHS, I, *this);
4583 Value *R = EmitGEPOffset(GEPRHS, I, *this);
4584 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
4585 }
4586 }
4587 return 0;
4588}
4589
4590Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
4591 bool Changed = SimplifyCompare(I);
4592 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4593
4594 // Fold trivial predicates.
4595 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
4596 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
4597 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
4598 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
4599
4600 // Simplify 'fcmp pred X, X'
4601 if (Op0 == Op1) {
4602 switch (I.getPredicate()) {
4603 default: assert(0 && "Unknown predicate!");
4604 case FCmpInst::FCMP_UEQ: // True if unordered or equal
4605 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
4606 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
4607 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
4608 case FCmpInst::FCMP_OGT: // True if ordered and greater than
4609 case FCmpInst::FCMP_OLT: // True if ordered and less than
4610 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
4611 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
4612
4613 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
4614 case FCmpInst::FCMP_ULT: // True if unordered or less than
4615 case FCmpInst::FCMP_UGT: // True if unordered or greater than
4616 case FCmpInst::FCMP_UNE: // True if unordered or not equal
4617 // Canonicalize these to be 'fcmp uno %X, 0.0'.
4618 I.setPredicate(FCmpInst::FCMP_UNO);
4619 I.setOperand(1, Constant::getNullValue(Op0->getType()));
4620 return &I;
4621
4622 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
4623 case FCmpInst::FCMP_OEQ: // True if ordered and equal
4624 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
4625 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
4626 // Canonicalize these to be 'fcmp ord %X, 0.0'.
4627 I.setPredicate(FCmpInst::FCMP_ORD);
4628 I.setOperand(1, Constant::getNullValue(Op0->getType()));
4629 return &I;
4630 }
4631 }
4632
4633 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
4634 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
4635
4636 // Handle fcmp with constant RHS
4637 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4638 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4639 switch (LHSI->getOpcode()) {
4640 case Instruction::PHI:
4641 if (Instruction *NV = FoldOpIntoPhi(I))
4642 return NV;
4643 break;
4644 case Instruction::Select:
4645 // If either operand of the select is a constant, we can fold the
4646 // comparison into the select arms, which will cause one to be
4647 // constant folded and the select turned into a bitwise or.
4648 Value *Op1 = 0, *Op2 = 0;
4649 if (LHSI->hasOneUse()) {
4650 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
4651 // Fold the known value into the constant operand.
4652 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
4653 // Insert a new FCmp of the other select operand.
4654 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
4655 LHSI->getOperand(2), RHSC,
4656 I.getName()), I);
4657 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
4658 // Fold the known value into the constant operand.
4659 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
4660 // Insert a new FCmp of the other select operand.
4661 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
4662 LHSI->getOperand(1), RHSC,
4663 I.getName()), I);
4664 }
4665 }
4666
4667 if (Op1)
4668 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
4669 break;
4670 }
4671 }
4672
4673 return Changed ? &I : 0;
4674}
4675
4676Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
4677 bool Changed = SimplifyCompare(I);
4678 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4679 const Type *Ty = Op0->getType();
4680
4681 // icmp X, X
4682 if (Op0 == Op1)
4683 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
4684 isTrueWhenEqual(I)));
4685
4686 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
4687 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
4688
4689 // icmp of GlobalValues can never equal each other as long as they aren't
4690 // external weak linkage type.
4691 if (GlobalValue *GV0 = dyn_cast<GlobalValue>(Op0))
4692 if (GlobalValue *GV1 = dyn_cast<GlobalValue>(Op1))
4693 if (!GV0->hasExternalWeakLinkage() || !GV1->hasExternalWeakLinkage())
4694 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
4695 !isTrueWhenEqual(I)));
4696
4697 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
4698 // addresses never equal each other! We already know that Op0 != Op1.
4699 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
4700 isa<ConstantPointerNull>(Op0)) &&
4701 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
4702 isa<ConstantPointerNull>(Op1)))
4703 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
4704 !isTrueWhenEqual(I)));
4705
4706 // icmp's with boolean values can always be turned into bitwise operations
4707 if (Ty == Type::Int1Ty) {
4708 switch (I.getPredicate()) {
4709 default: assert(0 && "Invalid icmp instruction!");
4710 case ICmpInst::ICMP_EQ: { // icmp eq bool %A, %B -> ~(A^B)
4711 Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
4712 InsertNewInstBefore(Xor, I);
4713 return BinaryOperator::createNot(Xor);
4714 }
4715 case ICmpInst::ICMP_NE: // icmp eq bool %A, %B -> A^B
4716 return BinaryOperator::createXor(Op0, Op1);
4717
4718 case ICmpInst::ICMP_UGT:
4719 case ICmpInst::ICMP_SGT:
4720 std::swap(Op0, Op1); // Change icmp gt -> icmp lt
4721 // FALL THROUGH
4722 case ICmpInst::ICMP_ULT:
4723 case ICmpInst::ICMP_SLT: { // icmp lt bool A, B -> ~X & Y
4724 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
4725 InsertNewInstBefore(Not, I);
4726 return BinaryOperator::createAnd(Not, Op1);
4727 }
4728 case ICmpInst::ICMP_UGE:
4729 case ICmpInst::ICMP_SGE:
4730 std::swap(Op0, Op1); // Change icmp ge -> icmp le
4731 // FALL THROUGH
4732 case ICmpInst::ICMP_ULE:
4733 case ICmpInst::ICMP_SLE: { // icmp le bool %A, %B -> ~A | B
4734 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
4735 InsertNewInstBefore(Not, I);
4736 return BinaryOperator::createOr(Not, Op1);
4737 }
4738 }
4739 }
4740
4741 // See if we are doing a comparison between a constant and an instruction that
4742 // can be folded into the comparison.
4743 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
4744 switch (I.getPredicate()) {
4745 default: break;
4746 case ICmpInst::ICMP_ULT: // A <u MIN -> FALSE
4747 if (CI->isMinValue(false))
4748 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4749 if (CI->isMaxValue(false)) // A <u MAX -> A != MAX
4750 return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1);
4751 if (isMinValuePlusOne(CI,false)) // A <u MIN+1 -> A == MIN
4752 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
4753 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
4754 if (CI->isMinValue(true))
4755 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
4756 ConstantInt::getAllOnesValue(Op0->getType()));
4757
4758 break;
4759
4760 case ICmpInst::ICMP_SLT:
4761 if (CI->isMinValue(true)) // A <s MIN -> FALSE
4762 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4763 if (CI->isMaxValue(true)) // A <s MAX -> A != MAX
4764 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4765 if (isMinValuePlusOne(CI,true)) // A <s MIN+1 -> A == MIN
4766 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
4767 break;
4768
4769 case ICmpInst::ICMP_UGT:
4770 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
4771 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4772 if (CI->isMinValue(false)) // A >u MIN -> A != MIN
4773 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4774 if (isMaxValueMinusOne(CI, false)) // A >u MAX-1 -> A == MAX
4775 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
4776
4777 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
4778 if (CI->isMaxValue(true))
4779 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
4780 ConstantInt::getNullValue(Op0->getType()));
4781 break;
4782
4783 case ICmpInst::ICMP_SGT:
4784 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
4785 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4786 if (CI->isMinValue(true)) // A >s MIN -> A != MIN
4787 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4788 if (isMaxValueMinusOne(CI, true)) // A >s MAX-1 -> A == MAX
4789 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
4790 break;
4791
4792 case ICmpInst::ICMP_ULE:
4793 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
4794 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4795 if (CI->isMinValue(false)) // A <=u MIN -> A == MIN
4796 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4797 if (isMaxValueMinusOne(CI,false)) // A <=u MAX-1 -> A != MAX
4798 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
4799 break;
4800
4801 case ICmpInst::ICMP_SLE:
4802 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
4803 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4804 if (CI->isMinValue(true)) // A <=s MIN -> A == MIN
4805 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4806 if (isMaxValueMinusOne(CI,true)) // A <=s MAX-1 -> A != MAX
4807 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
4808 break;
4809
4810 case ICmpInst::ICMP_UGE:
4811 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
4812 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4813 if (CI->isMaxValue(false)) // A >=u MAX -> A == MAX
4814 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4815 if (isMinValuePlusOne(CI,false)) // A >=u MIN-1 -> A != MIN
4816 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
4817 break;
4818
4819 case ICmpInst::ICMP_SGE:
4820 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
4821 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4822 if (CI->isMaxValue(true)) // A >=s MAX -> A == MAX
4823 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4824 if (isMinValuePlusOne(CI,true)) // A >=s MIN-1 -> A != MIN
4825 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
4826 break;
4827 }
4828
4829 // If we still have a icmp le or icmp ge instruction, turn it into the
4830 // appropriate icmp lt or icmp gt instruction. Since the border cases have
4831 // already been handled above, this requires little checking.
4832 //
4833 switch (I.getPredicate()) {
4834 default: break;
4835 case ICmpInst::ICMP_ULE:
4836 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
4837 case ICmpInst::ICMP_SLE:
4838 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
4839 case ICmpInst::ICMP_UGE:
4840 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
4841 case ICmpInst::ICMP_SGE:
4842 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
4843 }
4844
4845 // See if we can fold the comparison based on bits known to be zero or one
4846 // in the input. If this comparison is a normal comparison, it demands all
4847 // bits, if it is a sign bit comparison, it only demands the sign bit.
4848
4849 bool UnusedBit;
4850 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
4851
4852 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
4853 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4854 if (SimplifyDemandedBits(Op0,
4855 isSignBit ? APInt::getSignBit(BitWidth)
4856 : APInt::getAllOnesValue(BitWidth),
4857 KnownZero, KnownOne, 0))
4858 return &I;
4859
4860 // Given the known and unknown bits, compute a range that the LHS could be
4861 // in.
4862 if ((KnownOne | KnownZero) != 0) {
4863 // Compute the Min, Max and RHS values based on the known bits. For the
4864 // EQ and NE we use unsigned values.
4865 APInt Min(BitWidth, 0), Max(BitWidth, 0);
4866 const APInt& RHSVal = CI->getValue();
4867 if (ICmpInst::isSignedPredicate(I.getPredicate())) {
4868 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
4869 Max);
4870 } else {
4871 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
4872 Max);
4873 }
4874 switch (I.getPredicate()) { // LE/GE have been folded already.
4875 default: assert(0 && "Unknown icmp opcode!");
4876 case ICmpInst::ICMP_EQ:
4877 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
4878 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4879 break;
4880 case ICmpInst::ICMP_NE:
4881 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
4882 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4883 break;
4884 case ICmpInst::ICMP_ULT:
4885 if (Max.ult(RHSVal))
4886 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4887 if (Min.uge(RHSVal))
4888 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4889 break;
4890 case ICmpInst::ICMP_UGT:
4891 if (Min.ugt(RHSVal))
4892 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4893 if (Max.ule(RHSVal))
4894 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4895 break;
4896 case ICmpInst::ICMP_SLT:
4897 if (Max.slt(RHSVal))
4898 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4899 if (Min.sgt(RHSVal))
4900 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4901 break;
4902 case ICmpInst::ICMP_SGT:
4903 if (Min.sgt(RHSVal))
4904 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4905 if (Max.sle(RHSVal))
4906 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4907 break;
4908 }
4909 }
4910
4911 // Since the RHS is a ConstantInt (CI), if the left hand side is an
4912 // instruction, see if that instruction also has constants so that the
4913 // instruction can be folded into the icmp
4914 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4915 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
4916 return Res;
4917 }
4918
4919 // Handle icmp with constant (but not simple integer constant) RHS
4920 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4921 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4922 switch (LHSI->getOpcode()) {
4923 case Instruction::GetElementPtr:
4924 if (RHSC->isNullValue()) {
4925 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
4926 bool isAllZeros = true;
4927 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
4928 if (!isa<Constant>(LHSI->getOperand(i)) ||
4929 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
4930 isAllZeros = false;
4931 break;
4932 }
4933 if (isAllZeros)
4934 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
4935 Constant::getNullValue(LHSI->getOperand(0)->getType()));
4936 }
4937 break;
4938
4939 case Instruction::PHI:
4940 if (Instruction *NV = FoldOpIntoPhi(I))
4941 return NV;
4942 break;
4943 case Instruction::Select: {
4944 // If either operand of the select is a constant, we can fold the
4945 // comparison into the select arms, which will cause one to be
4946 // constant folded and the select turned into a bitwise or.
4947 Value *Op1 = 0, *Op2 = 0;
4948 if (LHSI->hasOneUse()) {
4949 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
4950 // Fold the known value into the constant operand.
4951 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
4952 // Insert a new ICmp of the other select operand.
4953 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
4954 LHSI->getOperand(2), RHSC,
4955 I.getName()), I);
4956 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
4957 // Fold the known value into the constant operand.
4958 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
4959 // Insert a new ICmp of the other select operand.
4960 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
4961 LHSI->getOperand(1), RHSC,
4962 I.getName()), I);
4963 }
4964 }
4965
4966 if (Op1)
4967 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
4968 break;
4969 }
4970 case Instruction::Malloc:
4971 // If we have (malloc != null), and if the malloc has a single use, we
4972 // can assume it is successful and remove the malloc.
4973 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
4974 AddToWorkList(LHSI);
4975 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
4976 !isTrueWhenEqual(I)));
4977 }
4978 break;
4979 }
4980 }
4981
4982 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
4983 if (User *GEP = dyn_castGetElementPtr(Op0))
4984 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
4985 return NI;
4986 if (User *GEP = dyn_castGetElementPtr(Op1))
4987 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
4988 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
4989 return NI;
4990
4991 // Test to see if the operands of the icmp are casted versions of other
4992 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
4993 // now.
4994 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
4995 if (isa<PointerType>(Op0->getType()) &&
4996 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
4997 // We keep moving the cast from the left operand over to the right
4998 // operand, where it can often be eliminated completely.
4999 Op0 = CI->getOperand(0);
5000
5001 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5002 // so eliminate it as well.
5003 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5004 Op1 = CI2->getOperand(0);
5005
5006 // If Op1 is a constant, we can fold the cast into the constant.
5007 if (Op0->getType() != Op1->getType())
5008 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5009 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5010 } else {
5011 // Otherwise, cast the RHS right before the icmp
5012 Op1 = InsertCastBefore(Instruction::BitCast, Op1, Op0->getType(), I);
5013 }
5014 return new ICmpInst(I.getPredicate(), Op0, Op1);
5015 }
5016 }
5017
5018 if (isa<CastInst>(Op0)) {
5019 // Handle the special case of: icmp (cast bool to X), <cst>
5020 // This comes up when you have code like
5021 // int X = A < B;
5022 // if (X) ...
5023 // For generality, we handle any zero-extension of any operand comparison
5024 // with a constant or another cast from the same type.
5025 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5026 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5027 return R;
5028 }
5029
5030 if (I.isEquality()) {
5031 Value *A, *B, *C, *D;
5032 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5033 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5034 Value *OtherVal = A == Op1 ? B : A;
5035 return new ICmpInst(I.getPredicate(), OtherVal,
5036 Constant::getNullValue(A->getType()));
5037 }
5038
5039 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5040 // A^c1 == C^c2 --> A == C^(c1^c2)
5041 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5042 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5043 if (Op1->hasOneUse()) {
5044 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
5045 Instruction *Xor = BinaryOperator::createXor(C, NC, "tmp");
5046 return new ICmpInst(I.getPredicate(), A,
5047 InsertNewInstBefore(Xor, I));
5048 }
5049
5050 // A^B == A^D -> B == D
5051 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
5052 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
5053 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
5054 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
5055 }
5056 }
5057
5058 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
5059 (A == Op0 || B == Op0)) {
5060 // A == (A^B) -> B == 0
5061 Value *OtherVal = A == Op0 ? B : A;
5062 return new ICmpInst(I.getPredicate(), OtherVal,
5063 Constant::getNullValue(A->getType()));
5064 }
5065 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
5066 // (A-B) == A -> B == 0
5067 return new ICmpInst(I.getPredicate(), B,
5068 Constant::getNullValue(B->getType()));
5069 }
5070 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
5071 // A == (A-B) -> B == 0
5072 return new ICmpInst(I.getPredicate(), B,
5073 Constant::getNullValue(B->getType()));
5074 }
5075
5076 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5077 if (Op0->hasOneUse() && Op1->hasOneUse() &&
5078 match(Op0, m_And(m_Value(A), m_Value(B))) &&
5079 match(Op1, m_And(m_Value(C), m_Value(D)))) {
5080 Value *X = 0, *Y = 0, *Z = 0;
5081
5082 if (A == C) {
5083 X = B; Y = D; Z = A;
5084 } else if (A == D) {
5085 X = B; Y = C; Z = A;
5086 } else if (B == C) {
5087 X = A; Y = D; Z = B;
5088 } else if (B == D) {
5089 X = A; Y = C; Z = B;
5090 }
5091
5092 if (X) { // Build (X^Y) & Z
5093 Op1 = InsertNewInstBefore(BinaryOperator::createXor(X, Y, "tmp"), I);
5094 Op1 = InsertNewInstBefore(BinaryOperator::createAnd(Op1, Z, "tmp"), I);
5095 I.setOperand(0, Op1);
5096 I.setOperand(1, Constant::getNullValue(Op1->getType()));
5097 return &I;
5098 }
5099 }
5100 }
5101 return Changed ? &I : 0;
5102}
5103
5104
5105/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
5106/// and CmpRHS are both known to be integer constants.
5107Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
5108 ConstantInt *DivRHS) {
5109 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
5110 const APInt &CmpRHSV = CmpRHS->getValue();
5111
5112 // FIXME: If the operand types don't match the type of the divide
5113 // then don't attempt this transform. The code below doesn't have the
5114 // logic to deal with a signed divide and an unsigned compare (and
5115 // vice versa). This is because (x /s C1) <s C2 produces different
5116 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5117 // (x /u C1) <u C2. Simply casting the operands and result won't
5118 // work. :( The if statement below tests that condition and bails
5119 // if it finds it.
5120 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
5121 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
5122 return 0;
5123 if (DivRHS->isZero())
5124 return 0; // The ProdOV computation fails on divide by zero.
5125
5126 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5127 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5128 // C2 (CI). By solving for X we can turn this into a range check
5129 // instead of computing a divide.
5130 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
5131
5132 // Determine if the product overflows by seeing if the product is
5133 // not equal to the divide. Make sure we do the same kind of divide
5134 // as in the LHS instruction that we're folding.
5135 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
5136 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
5137
5138 // Get the ICmp opcode
5139 ICmpInst::Predicate Pred = ICI.getPredicate();
5140
5141 // Figure out the interval that is being checked. For example, a comparison
5142 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
5143 // Compute this interval based on the constants involved and the signedness of
5144 // the compare/divide. This computes a half-open interval, keeping track of
5145 // whether either value in the interval overflows. After analysis each
5146 // overflow variable is set to 0 if it's corresponding bound variable is valid
5147 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
5148 int LoOverflow = 0, HiOverflow = 0;
5149 ConstantInt *LoBound = 0, *HiBound = 0;
5150
5151
5152 if (!DivIsSigned) { // udiv
5153 // e.g. X/5 op 3 --> [15, 20)
5154 LoBound = Prod;
5155 HiOverflow = LoOverflow = ProdOV;
5156 if (!HiOverflow)
5157 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
5158 } else if (DivRHS->getValue().isPositive()) { // Divisor is > 0.
5159 if (CmpRHSV == 0) { // (X / pos) op 0
5160 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
5161 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
5162 HiBound = DivRHS;
5163 } else if (CmpRHSV.isPositive()) { // (X / pos) op pos
5164 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
5165 HiOverflow = LoOverflow = ProdOV;
5166 if (!HiOverflow)
5167 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
5168 } else { // (X / pos) op neg
5169 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
5170 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
5171 LoOverflow = AddWithOverflow(LoBound, Prod,
5172 cast<ConstantInt>(DivRHSH), true) ? -1 : 0;
5173 HiBound = AddOne(Prod);
5174 HiOverflow = ProdOV ? -1 : 0;
5175 }
5176 } else { // Divisor is < 0.
5177 if (CmpRHSV == 0) { // (X / neg) op 0
5178 // e.g. X/-5 op 0 --> [-4, 5)
5179 LoBound = AddOne(DivRHS);
5180 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
5181 if (HiBound == DivRHS) { // -INTMIN = INTMIN
5182 HiOverflow = 1; // [INTMIN+1, overflow)
5183 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
5184 }
5185 } else if (CmpRHSV.isPositive()) { // (X / neg) op pos
5186 // e.g. X/-5 op 3 --> [-19, -14)
5187 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
5188 if (!LoOverflow)
5189 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS), true) ?-1:0;
5190 HiBound = AddOne(Prod);
5191 } else { // (X / neg) op neg
5192 // e.g. X/-5 op -3 --> [15, 20)
5193 LoBound = Prod;
5194 LoOverflow = HiOverflow = ProdOV ? 1 : 0;
5195 HiBound = Subtract(Prod, DivRHS);
5196 }
5197
5198 // Dividing by a negative swaps the condition. LT <-> GT
5199 Pred = ICmpInst::getSwappedPredicate(Pred);
5200 }
5201
5202 Value *X = DivI->getOperand(0);
5203 switch (Pred) {
5204 default: assert(0 && "Unhandled icmp opcode!");
5205 case ICmpInst::ICMP_EQ:
5206 if (LoOverflow && HiOverflow)
5207 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5208 else if (HiOverflow)
5209 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5210 ICmpInst::ICMP_UGE, X, LoBound);
5211 else if (LoOverflow)
5212 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5213 ICmpInst::ICMP_ULT, X, HiBound);
5214 else
5215 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
5216 case ICmpInst::ICMP_NE:
5217 if (LoOverflow && HiOverflow)
5218 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5219 else if (HiOverflow)
5220 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5221 ICmpInst::ICMP_ULT, X, LoBound);
5222 else if (LoOverflow)
5223 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5224 ICmpInst::ICMP_UGE, X, HiBound);
5225 else
5226 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
5227 case ICmpInst::ICMP_ULT:
5228 case ICmpInst::ICMP_SLT:
5229 if (LoOverflow == +1) // Low bound is greater than input range.
5230 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5231 if (LoOverflow == -1) // Low bound is less than input range.
5232 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5233 return new ICmpInst(Pred, X, LoBound);
5234 case ICmpInst::ICMP_UGT:
5235 case ICmpInst::ICMP_SGT:
5236 if (HiOverflow == +1) // High bound greater than input range.
5237 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5238 else if (HiOverflow == -1) // High bound less than input range.
5239 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5240 if (Pred == ICmpInst::ICMP_UGT)
5241 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
5242 else
5243 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
5244 }
5245}
5246
5247
5248/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
5249///
5250Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
5251 Instruction *LHSI,
5252 ConstantInt *RHS) {
5253 const APInt &RHSV = RHS->getValue();
5254
5255 switch (LHSI->getOpcode()) {
5256 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
5257 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
5258 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
5259 // fold the xor.
5260 if (ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0 ||
5261 ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue()) {
5262 Value *CompareVal = LHSI->getOperand(0);
5263
5264 // If the sign bit of the XorCST is not set, there is no change to
5265 // the operation, just stop using the Xor.
5266 if (!XorCST->getValue().isNegative()) {
5267 ICI.setOperand(0, CompareVal);
5268 AddToWorkList(LHSI);
5269 return &ICI;
5270 }
5271
5272 // Was the old condition true if the operand is positive?
5273 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
5274
5275 // If so, the new one isn't.
5276 isTrueIfPositive ^= true;
5277
5278 if (isTrueIfPositive)
5279 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
5280 else
5281 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
5282 }
5283 }
5284 break;
5285 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
5286 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
5287 LHSI->getOperand(0)->hasOneUse()) {
5288 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
5289
5290 // If the LHS is an AND of a truncating cast, we can widen the
5291 // and/compare to be the input width without changing the value
5292 // produced, eliminating a cast.
5293 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
5294 // We can do this transformation if either the AND constant does not
5295 // have its sign bit set or if it is an equality comparison.
5296 // Extending a relational comparison when we're checking the sign
5297 // bit would not work.
5298 if (Cast->hasOneUse() &&
5299 (ICI.isEquality() || AndCST->getValue().isPositive() &&
5300 RHSV.isPositive())) {
5301 uint32_t BitWidth =
5302 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
5303 APInt NewCST = AndCST->getValue();
5304 NewCST.zext(BitWidth);
5305 APInt NewCI = RHSV;
5306 NewCI.zext(BitWidth);
5307 Instruction *NewAnd =
5308 BinaryOperator::createAnd(Cast->getOperand(0),
5309 ConstantInt::get(NewCST),LHSI->getName());
5310 InsertNewInstBefore(NewAnd, ICI);
5311 return new ICmpInst(ICI.getPredicate(), NewAnd,
5312 ConstantInt::get(NewCI));
5313 }
5314 }
5315
5316 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
5317 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
5318 // happens a LOT in code produced by the C front-end, for bitfield
5319 // access.
5320 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
5321 if (Shift && !Shift->isShift())
5322 Shift = 0;
5323
5324 ConstantInt *ShAmt;
5325 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
5326 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
5327 const Type *AndTy = AndCST->getType(); // Type of the and.
5328
5329 // We can fold this as long as we can't shift unknown bits
5330 // into the mask. This can only happen with signed shift
5331 // rights, as they sign-extend.
5332 if (ShAmt) {
5333 bool CanFold = Shift->isLogicalShift();
5334 if (!CanFold) {
5335 // To test for the bad case of the signed shr, see if any
5336 // of the bits shifted in could be tested after the mask.
5337 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
5338 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
5339
5340 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
5341 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
5342 AndCST->getValue()) == 0)
5343 CanFold = true;
5344 }
5345
5346 if (CanFold) {
5347 Constant *NewCst;
5348 if (Shift->getOpcode() == Instruction::Shl)
5349 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
5350 else
5351 NewCst = ConstantExpr::getShl(RHS, ShAmt);
5352
5353 // Check to see if we are shifting out any of the bits being
5354 // compared.
5355 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
5356 // If we shifted bits out, the fold is not going to work out.
5357 // As a special case, check to see if this means that the
5358 // result is always true or false now.
5359 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
5360 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5361 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
5362 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5363 } else {
5364 ICI.setOperand(1, NewCst);
5365 Constant *NewAndCST;
5366 if (Shift->getOpcode() == Instruction::Shl)
5367 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
5368 else
5369 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
5370 LHSI->setOperand(1, NewAndCST);
5371 LHSI->setOperand(0, Shift->getOperand(0));
5372 AddToWorkList(Shift); // Shift is dead.
5373 AddUsesToWorkList(ICI);
5374 return &ICI;
5375 }
5376 }
5377 }
5378
5379 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
5380 // preferable because it allows the C<<Y expression to be hoisted out
5381 // of a loop if Y is invariant and X is not.
5382 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
5383 ICI.isEquality() && !Shift->isArithmeticShift() &&
5384 isa<Instruction>(Shift->getOperand(0))) {
5385 // Compute C << Y.
5386 Value *NS;
5387 if (Shift->getOpcode() == Instruction::LShr) {
5388 NS = BinaryOperator::createShl(AndCST,
5389 Shift->getOperand(1), "tmp");
5390 } else {
5391 // Insert a logical shift.
5392 NS = BinaryOperator::createLShr(AndCST,
5393 Shift->getOperand(1), "tmp");
5394 }
5395 InsertNewInstBefore(cast<Instruction>(NS), ICI);
5396
5397 // Compute X & (C << Y).
5398 Instruction *NewAnd =
5399 BinaryOperator::createAnd(Shift->getOperand(0), NS, LHSI->getName());
5400 InsertNewInstBefore(NewAnd, ICI);
5401
5402 ICI.setOperand(0, NewAnd);
5403 return &ICI;
5404 }
5405 }
5406 break;
5407
5408 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
5409 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
5410 if (!ShAmt) break;
5411
5412 uint32_t TypeBits = RHSV.getBitWidth();
5413
5414 // Check that the shift amount is in range. If not, don't perform
5415 // undefined shifts. When the shift is visited it will be
5416 // simplified.
5417 if (ShAmt->uge(TypeBits))
5418 break;
5419
5420 if (ICI.isEquality()) {
5421 // If we are comparing against bits always shifted out, the
5422 // comparison cannot succeed.
5423 Constant *Comp =
5424 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
5425 if (Comp != RHS) {// Comparing against a bit that we know is zero.
5426 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
5427 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
5428 return ReplaceInstUsesWith(ICI, Cst);
5429 }
5430
5431 if (LHSI->hasOneUse()) {
5432 // Otherwise strength reduce the shift into an and.
5433 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
5434 Constant *Mask =
5435 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
5436
5437 Instruction *AndI =
5438 BinaryOperator::createAnd(LHSI->getOperand(0),
5439 Mask, LHSI->getName()+".mask");
5440 Value *And = InsertNewInstBefore(AndI, ICI);
5441 return new ICmpInst(ICI.getPredicate(), And,
5442 ConstantInt::get(RHSV.lshr(ShAmtVal)));
5443 }
5444 }
5445
5446 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
5447 bool TrueIfSigned = false;
5448 if (LHSI->hasOneUse() &&
5449 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
5450 // (X << 31) <s 0 --> (X&1) != 0
5451 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
5452 (TypeBits-ShAmt->getZExtValue()-1));
5453 Instruction *AndI =
5454 BinaryOperator::createAnd(LHSI->getOperand(0),
5455 Mask, LHSI->getName()+".mask");
5456 Value *And = InsertNewInstBefore(AndI, ICI);
5457
5458 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
5459 And, Constant::getNullValue(And->getType()));
5460 }
5461 break;
5462 }
5463
5464 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
5465 case Instruction::AShr: {
5466 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
5467 if (!ShAmt) break;
5468
5469 if (ICI.isEquality()) {
5470 // Check that the shift amount is in range. If not, don't perform
5471 // undefined shifts. When the shift is visited it will be
5472 // simplified.
5473 uint32_t TypeBits = RHSV.getBitWidth();
5474 if (ShAmt->uge(TypeBits))
5475 break;
5476 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
5477
5478 // If we are comparing against bits always shifted out, the
5479 // comparison cannot succeed.
5480 APInt Comp = RHSV << ShAmtVal;
5481 if (LHSI->getOpcode() == Instruction::LShr)
5482 Comp = Comp.lshr(ShAmtVal);
5483 else
5484 Comp = Comp.ashr(ShAmtVal);
5485
5486 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
5487 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
5488 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
5489 return ReplaceInstUsesWith(ICI, Cst);
5490 }
5491
5492 if (LHSI->hasOneUse() || RHSV == 0) {
5493 // Otherwise strength reduce the shift into an and.
5494 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
5495 Constant *Mask = ConstantInt::get(Val);
5496
5497 Instruction *AndI =
5498 BinaryOperator::createAnd(LHSI->getOperand(0),
5499 Mask, LHSI->getName()+".mask");
5500 Value *And = InsertNewInstBefore(AndI, ICI);
5501 return new ICmpInst(ICI.getPredicate(), And,
5502 ConstantExpr::getShl(RHS, ShAmt));
5503 }
5504 }
5505 break;
5506 }
5507
5508 case Instruction::SDiv:
5509 case Instruction::UDiv:
5510 // Fold: icmp pred ([us]div X, C1), C2 -> range test
5511 // Fold this div into the comparison, producing a range check.
5512 // Determine, based on the divide type, what the range is being
5513 // checked. If there is an overflow on the low or high side, remember
5514 // it, otherwise compute the range [low, hi) bounding the new value.
5515 // See: InsertRangeTest above for the kinds of replacements possible.
5516 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
5517 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
5518 DivRHS))
5519 return R;
5520 break;
5521 }
5522
5523 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
5524 if (ICI.isEquality()) {
5525 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
5526
5527 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
5528 // the second operand is a constant, simplify a bit.
5529 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
5530 switch (BO->getOpcode()) {
5531 case Instruction::SRem:
5532 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
5533 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
5534 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
5535 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
5536 Instruction *NewRem =
5537 BinaryOperator::createURem(BO->getOperand(0), BO->getOperand(1),
5538 BO->getName());
5539 InsertNewInstBefore(NewRem, ICI);
5540 return new ICmpInst(ICI.getPredicate(), NewRem,
5541 Constant::getNullValue(BO->getType()));
5542 }
5543 }
5544 break;
5545 case Instruction::Add:
5546 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
5547 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5548 if (BO->hasOneUse())
5549 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
5550 Subtract(RHS, BOp1C));
5551 } else if (RHSV == 0) {
5552 // Replace ((add A, B) != 0) with (A != -B) if A or B is
5553 // efficiently invertible, or if the add has just this one use.
5554 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
5555
5556 if (Value *NegVal = dyn_castNegVal(BOp1))
5557 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
5558 else if (Value *NegVal = dyn_castNegVal(BOp0))
5559 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
5560 else if (BO->hasOneUse()) {
5561 Instruction *Neg = BinaryOperator::createNeg(BOp1);
5562 InsertNewInstBefore(Neg, ICI);
5563 Neg->takeName(BO);
5564 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
5565 }
5566 }
5567 break;
5568 case Instruction::Xor:
5569 // For the xor case, we can xor two constants together, eliminating
5570 // the explicit xor.
5571 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
5572 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
5573 ConstantExpr::getXor(RHS, BOC));
5574
5575 // FALLTHROUGH
5576 case Instruction::Sub:
5577 // Replace (([sub|xor] A, B) != 0) with (A != B)
5578 if (RHSV == 0)
5579 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
5580 BO->getOperand(1));
5581 break;
5582
5583 case Instruction::Or:
5584 // If bits are being or'd in that are not present in the constant we
5585 // are comparing against, then the comparison could never succeed!
5586 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
5587 Constant *NotCI = ConstantExpr::getNot(RHS);
5588 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
5589 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
5590 isICMP_NE));
5591 }
5592 break;
5593
5594 case Instruction::And:
5595 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5596 // If bits are being compared against that are and'd out, then the
5597 // comparison can never succeed!
5598 if ((RHSV & ~BOC->getValue()) != 0)
5599 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
5600 isICMP_NE));
5601
5602 // If we have ((X & C) == C), turn it into ((X & C) != 0).
5603 if (RHS == BOC && RHSV.isPowerOf2())
5604 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
5605 ICmpInst::ICMP_NE, LHSI,
5606 Constant::getNullValue(RHS->getType()));
5607
5608 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
5609 if (isSignBit(BOC)) {
5610 Value *X = BO->getOperand(0);
5611 Constant *Zero = Constant::getNullValue(X->getType());
5612 ICmpInst::Predicate pred = isICMP_NE ?
5613 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
5614 return new ICmpInst(pred, X, Zero);
5615 }
5616
5617 // ((X & ~7) == 0) --> X < 8
5618 if (RHSV == 0 && isHighOnes(BOC)) {
5619 Value *X = BO->getOperand(0);
5620 Constant *NegX = ConstantExpr::getNeg(BOC);
5621 ICmpInst::Predicate pred = isICMP_NE ?
5622 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
5623 return new ICmpInst(pred, X, NegX);
5624 }
5625 }
5626 default: break;
5627 }
5628 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
5629 // Handle icmp {eq|ne} <intrinsic>, intcst.
5630 if (II->getIntrinsicID() == Intrinsic::bswap) {
5631 AddToWorkList(II);
5632 ICI.setOperand(0, II->getOperand(1));
5633 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
5634 return &ICI;
5635 }
5636 }
5637 } else { // Not a ICMP_EQ/ICMP_NE
5638 // If the LHS is a cast from an integral value of the same size,
5639 // then since we know the RHS is a constant, try to simlify.
5640 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
5641 Value *CastOp = Cast->getOperand(0);
5642 const Type *SrcTy = CastOp->getType();
5643 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
5644 if (SrcTy->isInteger() &&
5645 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
5646 // If this is an unsigned comparison, try to make the comparison use
5647 // smaller constant values.
5648 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
5649 // X u< 128 => X s> -1
5650 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
5651 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
5652 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
5653 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
5654 // X u> 127 => X s< 0
5655 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
5656 Constant::getNullValue(SrcTy));
5657 }
5658 }
5659 }
5660 }
5661 return 0;
5662}
5663
5664/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
5665/// We only handle extending casts so far.
5666///
5667Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
5668 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
5669 Value *LHSCIOp = LHSCI->getOperand(0);
5670 const Type *SrcTy = LHSCIOp->getType();
5671 const Type *DestTy = LHSCI->getType();
5672 Value *RHSCIOp;
5673
5674 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
5675 // integer type is the same size as the pointer type.
5676 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
5677 getTargetData().getPointerSizeInBits() ==
5678 cast<IntegerType>(DestTy)->getBitWidth()) {
5679 Value *RHSOp = 0;
5680 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
5681 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
5682 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
5683 RHSOp = RHSC->getOperand(0);
5684 // If the pointer types don't match, insert a bitcast.
5685 if (LHSCIOp->getType() != RHSOp->getType())
5686 RHSOp = InsertCastBefore(Instruction::BitCast, RHSOp,
5687 LHSCIOp->getType(), ICI);
5688 }
5689
5690 if (RHSOp)
5691 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
5692 }
5693
5694 // The code below only handles extension cast instructions, so far.
5695 // Enforce this.
5696 if (LHSCI->getOpcode() != Instruction::ZExt &&
5697 LHSCI->getOpcode() != Instruction::SExt)
5698 return 0;
5699
5700 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
5701 bool isSignedCmp = ICI.isSignedPredicate();
5702
5703 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
5704 // Not an extension from the same type?
5705 RHSCIOp = CI->getOperand(0);
5706 if (RHSCIOp->getType() != LHSCIOp->getType())
5707 return 0;
5708
5709 // If the signedness of the two compares doesn't agree (i.e. one is a sext
5710 // and the other is a zext), then we can't handle this.
5711 if (CI->getOpcode() != LHSCI->getOpcode())
5712 return 0;
5713
5714 // Likewise, if the signedness of the [sz]exts and the compare don't match,
5715 // then we can't handle this.
5716 if (isSignedExt != isSignedCmp && !ICI.isEquality())
5717 return 0;
5718
5719 // Okay, just insert a compare of the reduced operands now!
5720 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
5721 }
5722
5723 // If we aren't dealing with a constant on the RHS, exit early
5724 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
5725 if (!CI)
5726 return 0;
5727
5728 // Compute the constant that would happen if we truncated to SrcTy then
5729 // reextended to DestTy.
5730 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
5731 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
5732
5733 // If the re-extended constant didn't change...
5734 if (Res2 == CI) {
5735 // Make sure that sign of the Cmp and the sign of the Cast are the same.
5736 // For example, we might have:
5737 // %A = sext short %X to uint
5738 // %B = icmp ugt uint %A, 1330
5739 // It is incorrect to transform this into
5740 // %B = icmp ugt short %X, 1330
5741 // because %A may have negative value.
5742 //
5743 // However, it is OK if SrcTy is bool (See cast-set.ll testcase)
5744 // OR operation is EQ/NE.
5745 if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality())
5746 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
5747 else
5748 return 0;
5749 }
5750
5751 // The re-extended constant changed so the constant cannot be represented
5752 // in the shorter type. Consequently, we cannot emit a simple comparison.
5753
5754 // First, handle some easy cases. We know the result cannot be equal at this
5755 // point so handle the ICI.isEquality() cases
5756 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
5757 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5758 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
5759 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5760
5761 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
5762 // should have been folded away previously and not enter in here.
5763 Value *Result;
5764 if (isSignedCmp) {
5765 // We're performing a signed comparison.
5766 if (cast<ConstantInt>(CI)->getValue().isNegative())
5767 Result = ConstantInt::getFalse(); // X < (small) --> false
5768 else
5769 Result = ConstantInt::getTrue(); // X < (large) --> true
5770 } else {
5771 // We're performing an unsigned comparison.
5772 if (isSignedExt) {
5773 // We're performing an unsigned comp with a sign extended value.
5774 // This is true if the input is >= 0. [aka >s -1]
5775 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
5776 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
5777 NegOne, ICI.getName()), ICI);
5778 } else {
5779 // Unsigned extend & unsigned compare -> always true.
5780 Result = ConstantInt::getTrue();
5781 }
5782 }
5783
5784 // Finally, return the value computed.
5785 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
5786 ICI.getPredicate() == ICmpInst::ICMP_SLT) {
5787 return ReplaceInstUsesWith(ICI, Result);
5788 } else {
5789 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
5790 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
5791 "ICmp should be folded!");
5792 if (Constant *CI = dyn_cast<Constant>(Result))
5793 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
5794 else
5795 return BinaryOperator::createNot(Result);
5796 }
5797}
5798
5799Instruction *InstCombiner::visitShl(BinaryOperator &I) {
5800 return commonShiftTransforms(I);
5801}
5802
5803Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
5804 return commonShiftTransforms(I);
5805}
5806
5807Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
5808 return commonShiftTransforms(I);
5809}
5810
5811Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
5812 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
5813 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5814
5815 // shl X, 0 == X and shr X, 0 == X
5816 // shl 0, X == 0 and shr 0, X == 0
5817 if (Op1 == Constant::getNullValue(Op1->getType()) ||
5818 Op0 == Constant::getNullValue(Op0->getType()))
5819 return ReplaceInstUsesWith(I, Op0);
5820
5821 if (isa<UndefValue>(Op0)) {
5822 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
5823 return ReplaceInstUsesWith(I, Op0);
5824 else // undef << X -> 0, undef >>u X -> 0
5825 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
5826 }
5827 if (isa<UndefValue>(Op1)) {
5828 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
5829 return ReplaceInstUsesWith(I, Op0);
5830 else // X << undef, X >>u undef -> 0
5831 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
5832 }
5833
5834 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
5835 if (I.getOpcode() == Instruction::AShr)
5836 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
5837 if (CSI->isAllOnesValue())
5838 return ReplaceInstUsesWith(I, CSI);
5839
5840 // Try to fold constant and into select arguments.
5841 if (isa<Constant>(Op0))
5842 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
5843 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
5844 return R;
5845
5846 // See if we can turn a signed shr into an unsigned shr.
5847 if (I.isArithmeticShift()) {
5848 if (MaskedValueIsZero(Op0,
5849 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()))) {
5850 return BinaryOperator::createLShr(Op0, Op1, I.getName());
5851 }
5852 }
5853
5854 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
5855 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
5856 return Res;
5857 return 0;
5858}
5859
5860Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
5861 BinaryOperator &I) {
5862 bool isLeftShift = I.getOpcode() == Instruction::Shl;
5863
5864 // See if we can simplify any instructions used by the instruction whose sole
5865 // purpose is to compute bits we don't care about.
5866 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
5867 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
5868 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
5869 KnownZero, KnownOne))
5870 return &I;
5871
5872 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
5873 // of a signed value.
5874 //
5875 if (Op1->uge(TypeBits)) {
5876 if (I.getOpcode() != Instruction::AShr)
5877 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
5878 else {
5879 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
5880 return &I;
5881 }
5882 }
5883
5884 // ((X*C1) << C2) == (X * (C1 << C2))
5885 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
5886 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
5887 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
5888 return BinaryOperator::createMul(BO->getOperand(0),
5889 ConstantExpr::getShl(BOOp, Op1));
5890
5891 // Try to fold constant and into select arguments.
5892 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
5893 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
5894 return R;
5895 if (isa<PHINode>(Op0))
5896 if (Instruction *NV = FoldOpIntoPhi(I))
5897 return NV;
5898
5899 if (Op0->hasOneUse()) {
5900 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
5901 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
5902 Value *V1, *V2;
5903 ConstantInt *CC;
5904 switch (Op0BO->getOpcode()) {
5905 default: break;
5906 case Instruction::Add:
5907 case Instruction::And:
5908 case Instruction::Or:
5909 case Instruction::Xor: {
5910 // These operators commute.
5911 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
5912 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
5913 match(Op0BO->getOperand(1),
5914 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
5915 Instruction *YS = BinaryOperator::createShl(
5916 Op0BO->getOperand(0), Op1,
5917 Op0BO->getName());
5918 InsertNewInstBefore(YS, I); // (Y << C)
5919 Instruction *X =
5920 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
5921 Op0BO->getOperand(1)->getName());
5922 InsertNewInstBefore(X, I); // (X + (Y << C))
5923 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
5924 return BinaryOperator::createAnd(X, ConstantInt::get(
5925 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
5926 }
5927
5928 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
5929 Value *Op0BOOp1 = Op0BO->getOperand(1);
5930 if (isLeftShift && Op0BOOp1->hasOneUse() &&
5931 match(Op0BOOp1,
5932 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
5933 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
5934 V2 == Op1) {
5935 Instruction *YS = BinaryOperator::createShl(
5936 Op0BO->getOperand(0), Op1,
5937 Op0BO->getName());
5938 InsertNewInstBefore(YS, I); // (Y << C)
5939 Instruction *XM =
5940 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
5941 V1->getName()+".mask");
5942 InsertNewInstBefore(XM, I); // X & (CC << C)
5943
5944 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
5945 }
5946 }
5947
5948 // FALL THROUGH.
5949 case Instruction::Sub: {
5950 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
5951 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
5952 match(Op0BO->getOperand(0),
5953 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
5954 Instruction *YS = BinaryOperator::createShl(
5955 Op0BO->getOperand(1), Op1,
5956 Op0BO->getName());
5957 InsertNewInstBefore(YS, I); // (Y << C)
5958 Instruction *X =
5959 BinaryOperator::create(Op0BO->getOpcode(), V1, YS,
5960 Op0BO->getOperand(0)->getName());
5961 InsertNewInstBefore(X, I); // (X + (Y << C))
5962 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
5963 return BinaryOperator::createAnd(X, ConstantInt::get(
5964 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
5965 }
5966
5967 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
5968 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
5969 match(Op0BO->getOperand(0),
5970 m_And(m_Shr(m_Value(V1), m_Value(V2)),
5971 m_ConstantInt(CC))) && V2 == Op1 &&
5972 cast<BinaryOperator>(Op0BO->getOperand(0))
5973 ->getOperand(0)->hasOneUse()) {
5974 Instruction *YS = BinaryOperator::createShl(
5975 Op0BO->getOperand(1), Op1,
5976 Op0BO->getName());
5977 InsertNewInstBefore(YS, I); // (Y << C)
5978 Instruction *XM =
5979 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
5980 V1->getName()+".mask");
5981 InsertNewInstBefore(XM, I); // X & (CC << C)
5982
5983 return BinaryOperator::create(Op0BO->getOpcode(), XM, YS);
5984 }
5985
5986 break;
5987 }
5988 }
5989
5990
5991 // If the operand is an bitwise operator with a constant RHS, and the
5992 // shift is the only use, we can pull it out of the shift.
5993 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
5994 bool isValid = true; // Valid only for And, Or, Xor
5995 bool highBitSet = false; // Transform if high bit of constant set?
5996
5997 switch (Op0BO->getOpcode()) {
5998 default: isValid = false; break; // Do not perform transform!
5999 case Instruction::Add:
6000 isValid = isLeftShift;
6001 break;
6002 case Instruction::Or:
6003 case Instruction::Xor:
6004 highBitSet = false;
6005 break;
6006 case Instruction::And:
6007 highBitSet = true;
6008 break;
6009 }
6010
6011 // If this is a signed shift right, and the high bit is modified
6012 // by the logical operation, do not perform the transformation.
6013 // The highBitSet boolean indicates the value of the high bit of
6014 // the constant which would cause it to be modified for this
6015 // operation.
6016 //
6017 if (isValid && !isLeftShift && I.getOpcode() == Instruction::AShr) {
6018 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
6019 }
6020
6021 if (isValid) {
6022 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
6023
6024 Instruction *NewShift =
6025 BinaryOperator::create(I.getOpcode(), Op0BO->getOperand(0), Op1);
6026 InsertNewInstBefore(NewShift, I);
6027 NewShift->takeName(Op0BO);
6028
6029 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
6030 NewRHS);
6031 }
6032 }
6033 }
6034 }
6035
6036 // Find out if this is a shift of a shift by a constant.
6037 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
6038 if (ShiftOp && !ShiftOp->isShift())
6039 ShiftOp = 0;
6040
6041 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
6042 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
6043 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
6044 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
6045 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
6046 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
6047 Value *X = ShiftOp->getOperand(0);
6048
6049 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
6050 if (AmtSum > TypeBits)
6051 AmtSum = TypeBits;
6052
6053 const IntegerType *Ty = cast<IntegerType>(I.getType());
6054
6055 // Check for (X << c1) << c2 and (X >> c1) >> c2
6056 if (I.getOpcode() == ShiftOp->getOpcode()) {
6057 return BinaryOperator::create(I.getOpcode(), X,
6058 ConstantInt::get(Ty, AmtSum));
6059 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
6060 I.getOpcode() == Instruction::AShr) {
6061 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
6062 return BinaryOperator::createLShr(X, ConstantInt::get(Ty, AmtSum));
6063 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
6064 I.getOpcode() == Instruction::LShr) {
6065 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6066 Instruction *Shift =
6067 BinaryOperator::createAShr(X, ConstantInt::get(Ty, AmtSum));
6068 InsertNewInstBefore(Shift, I);
6069
6070 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6071 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6072 }
6073
6074 // Okay, if we get here, one shift must be left, and the other shift must be
6075 // right. See if the amounts are equal.
6076 if (ShiftAmt1 == ShiftAmt2) {
6077 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6078 if (I.getOpcode() == Instruction::Shl) {
6079 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
6080 return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
6081 }
6082 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6083 if (I.getOpcode() == Instruction::LShr) {
6084 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
6085 return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
6086 }
6087 // We can simplify ((X << C) >>s C) into a trunc + sext.
6088 // NOTE: we could do this for any C, but that would make 'unusual' integer
6089 // types. For now, just stick to ones well-supported by the code
6090 // generators.
6091 const Type *SExtType = 0;
6092 switch (Ty->getBitWidth() - ShiftAmt1) {
6093 case 1 :
6094 case 8 :
6095 case 16 :
6096 case 32 :
6097 case 64 :
6098 case 128:
6099 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
6100 break;
6101 default: break;
6102 }
6103 if (SExtType) {
6104 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
6105 InsertNewInstBefore(NewTrunc, I);
6106 return new SExtInst(NewTrunc, Ty);
6107 }
6108 // Otherwise, we can't handle it yet.
6109 } else if (ShiftAmt1 < ShiftAmt2) {
6110 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
6111
6112 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
6113 if (I.getOpcode() == Instruction::Shl) {
6114 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6115 ShiftOp->getOpcode() == Instruction::AShr);
6116 Instruction *Shift =
6117 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6118 InsertNewInstBefore(Shift, I);
6119
6120 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
6121 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6122 }
6123
6124 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
6125 if (I.getOpcode() == Instruction::LShr) {
6126 assert(ShiftOp->getOpcode() == Instruction::Shl);
6127 Instruction *Shift =
6128 BinaryOperator::createLShr(X, ConstantInt::get(Ty, ShiftDiff));
6129 InsertNewInstBefore(Shift, I);
6130
6131 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6132 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6133 }
6134
6135 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
6136 } else {
6137 assert(ShiftAmt2 < ShiftAmt1);
6138 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
6139
6140 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
6141 if (I.getOpcode() == Instruction::Shl) {
6142 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6143 ShiftOp->getOpcode() == Instruction::AShr);
6144 Instruction *Shift =
6145 BinaryOperator::create(ShiftOp->getOpcode(), X,
6146 ConstantInt::get(Ty, ShiftDiff));
6147 InsertNewInstBefore(Shift, I);
6148
6149 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
6150 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6151 }
6152
6153 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
6154 if (I.getOpcode() == Instruction::LShr) {
6155 assert(ShiftOp->getOpcode() == Instruction::Shl);
6156 Instruction *Shift =
6157 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6158 InsertNewInstBefore(Shift, I);
6159
6160 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6161 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6162 }
6163
6164 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
6165 }
6166 }
6167 return 0;
6168}
6169
6170
6171/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
6172/// expression. If so, decompose it, returning some value X, such that Val is
6173/// X*Scale+Offset.
6174///
6175static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
6176 int &Offset) {
6177 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
6178 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
6179 Offset = CI->getZExtValue();
6180 Scale = 1;
6181 return ConstantInt::get(Type::Int32Ty, 0);
6182 } else if (Instruction *I = dyn_cast<Instruction>(Val)) {
6183 if (I->getNumOperands() == 2) {
6184 if (ConstantInt *CUI = dyn_cast<ConstantInt>(I->getOperand(1))) {
6185 if (I->getOpcode() == Instruction::Shl) {
6186 // This is a value scaled by '1 << the shift amt'.
6187 Scale = 1U << CUI->getZExtValue();
6188 Offset = 0;
6189 return I->getOperand(0);
6190 } else if (I->getOpcode() == Instruction::Mul) {
6191 // This value is scaled by 'CUI'.
6192 Scale = CUI->getZExtValue();
6193 Offset = 0;
6194 return I->getOperand(0);
6195 } else if (I->getOpcode() == Instruction::Add) {
6196 // We have X+C. Check to see if we really have (X*C2)+C1,
6197 // where C1 is divisible by C2.
6198 unsigned SubScale;
6199 Value *SubVal =
6200 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
6201 Offset += CUI->getZExtValue();
6202 if (SubScale > 1 && (Offset % SubScale == 0)) {
6203 Scale = SubScale;
6204 return SubVal;
6205 }
6206 }
6207 }
6208 }
6209 }
6210
6211 // Otherwise, we can't look past this.
6212 Scale = 1;
6213 Offset = 0;
6214 return Val;
6215}
6216
6217
6218/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
6219/// try to eliminate the cast by moving the type information into the alloc.
6220Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
6221 AllocationInst &AI) {
6222 const PointerType *PTy = cast<PointerType>(CI.getType());
6223
6224 // Remove any uses of AI that are dead.
6225 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
6226
6227 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
6228 Instruction *User = cast<Instruction>(*UI++);
6229 if (isInstructionTriviallyDead(User)) {
6230 while (UI != E && *UI == User)
6231 ++UI; // If this instruction uses AI more than once, don't break UI.
6232
6233 ++NumDeadInst;
6234 DOUT << "IC: DCE: " << *User;
6235 EraseInstFromFunction(*User);
6236 }
6237 }
6238
6239 // Get the type really allocated and the type casted to.
6240 const Type *AllocElTy = AI.getAllocatedType();
6241 const Type *CastElTy = PTy->getElementType();
6242 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
6243
6244 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
6245 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
6246 if (CastElTyAlign < AllocElTyAlign) return 0;
6247
6248 // If the allocation has multiple uses, only promote it if we are strictly
6249 // increasing the alignment of the resultant allocation. If we keep it the
6250 // same, we open the door to infinite loops of various kinds.
6251 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
6252
6253 uint64_t AllocElTySize = TD->getTypeSize(AllocElTy);
6254 uint64_t CastElTySize = TD->getTypeSize(CastElTy);
6255 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
6256
6257 // See if we can satisfy the modulus by pulling a scale out of the array
6258 // size argument.
6259 unsigned ArraySizeScale;
6260 int ArrayOffset;
6261 Value *NumElements = // See if the array size is a decomposable linear expr.
6262 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
6263
6264 // If we can now satisfy the modulus, by using a non-1 scale, we really can
6265 // do the xform.
6266 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
6267 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
6268
6269 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
6270 Value *Amt = 0;
6271 if (Scale == 1) {
6272 Amt = NumElements;
6273 } else {
6274 // If the allocation size is constant, form a constant mul expression
6275 Amt = ConstantInt::get(Type::Int32Ty, Scale);
6276 if (isa<ConstantInt>(NumElements))
6277 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
6278 // otherwise multiply the amount and the number of elements
6279 else if (Scale != 1) {
6280 Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
6281 Amt = InsertNewInstBefore(Tmp, AI);
6282 }
6283 }
6284
6285 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
6286 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
6287 Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
6288 Amt = InsertNewInstBefore(Tmp, AI);
6289 }
6290
6291 AllocationInst *New;
6292 if (isa<MallocInst>(AI))
6293 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
6294 else
6295 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
6296 InsertNewInstBefore(New, AI);
6297 New->takeName(&AI);
6298
6299 // If the allocation has multiple uses, insert a cast and change all things
6300 // that used it to use the new cast. This will also hack on CI, but it will
6301 // die soon.
6302 if (!AI.hasOneUse()) {
6303 AddUsesToWorkList(AI);
6304 // New is the allocation instruction, pointer typed. AI is the original
6305 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
6306 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
6307 InsertNewInstBefore(NewCast, AI);
6308 AI.replaceAllUsesWith(NewCast);
6309 }
6310 return ReplaceInstUsesWith(CI, New);
6311}
6312
6313/// CanEvaluateInDifferentType - Return true if we can take the specified value
6314/// and return it as type Ty without inserting any new casts and without
6315/// changing the computed value. This is used by code that tries to decide
6316/// whether promoting or shrinking integer operations to wider or smaller types
6317/// will allow us to eliminate a truncate or extend.
6318///
6319/// This is a truncation operation if Ty is smaller than V->getType(), or an
6320/// extension operation if Ty is larger.
6321static bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
Chris Lattneref70bb82007-08-02 06:11:14 +00006322 unsigned CastOpc, int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006323 // We can always evaluate constants in another type.
6324 if (isa<ConstantInt>(V))
6325 return true;
6326
6327 Instruction *I = dyn_cast<Instruction>(V);
6328 if (!I) return false;
6329
6330 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
6331
Chris Lattneref70bb82007-08-02 06:11:14 +00006332 // If this is an extension or truncate, we can often eliminate it.
6333 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6334 // If this is a cast from the destination type, we can trivially eliminate
6335 // it, and this will remove a cast overall.
6336 if (I->getOperand(0)->getType() == Ty) {
6337 // If the first operand is itself a cast, and is eliminable, do not count
6338 // this as an eliminable cast. We would prefer to eliminate those two
6339 // casts first.
6340 if (!isa<CastInst>(I->getOperand(0)))
6341 ++NumCastsRemoved;
6342 return true;
6343 }
6344 }
6345
6346 // We can't extend or shrink something that has multiple uses: doing so would
6347 // require duplicating the instruction in general, which isn't profitable.
6348 if (!I->hasOneUse()) return false;
6349
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006350 switch (I->getOpcode()) {
6351 case Instruction::Add:
6352 case Instruction::Sub:
6353 case Instruction::And:
6354 case Instruction::Or:
6355 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006356 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00006357 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
6358 NumCastsRemoved) &&
6359 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
6360 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006361
6362 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006363 // If we are truncating the result of this SHL, and if it's a shift of a
6364 // constant amount, we can always perform a SHL in a smaller type.
6365 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
6366 uint32_t BitWidth = Ty->getBitWidth();
6367 if (BitWidth < OrigTy->getBitWidth() &&
6368 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00006369 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
6370 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006371 }
6372 break;
6373 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006374 // If this is a truncate of a logical shr, we can truncate it to a smaller
6375 // lshr iff we know that the bits we would otherwise be shifting in are
6376 // already zeros.
6377 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
6378 uint32_t OrigBitWidth = OrigTy->getBitWidth();
6379 uint32_t BitWidth = Ty->getBitWidth();
6380 if (BitWidth < OrigBitWidth &&
6381 MaskedValueIsZero(I->getOperand(0),
6382 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
6383 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00006384 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
6385 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006386 }
6387 }
6388 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006389 case Instruction::ZExt:
6390 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00006391 case Instruction::Trunc:
6392 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00006393 // can safely replace it. Note that replacing it does not reduce the number
6394 // of casts in the input.
6395 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006396 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006397 break;
6398 default:
6399 // TODO: Can handle more cases here.
6400 break;
6401 }
6402
6403 return false;
6404}
6405
6406/// EvaluateInDifferentType - Given an expression that
6407/// CanEvaluateInDifferentType returns true for, actually insert the code to
6408/// evaluate the expression.
6409Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
6410 bool isSigned) {
6411 if (Constant *C = dyn_cast<Constant>(V))
6412 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
6413
6414 // Otherwise, it must be an instruction.
6415 Instruction *I = cast<Instruction>(V);
6416 Instruction *Res = 0;
6417 switch (I->getOpcode()) {
6418 case Instruction::Add:
6419 case Instruction::Sub:
6420 case Instruction::And:
6421 case Instruction::Or:
6422 case Instruction::Xor:
6423 case Instruction::AShr:
6424 case Instruction::LShr:
6425 case Instruction::Shl: {
6426 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
6427 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
6428 Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
6429 LHS, RHS, I->getName());
6430 break;
6431 }
6432 case Instruction::Trunc:
6433 case Instruction::ZExt:
6434 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006435 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00006436 // just return the source. There's no need to insert it because it is not
6437 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006438 if (I->getOperand(0)->getType() == Ty)
6439 return I->getOperand(0);
6440
Chris Lattneref70bb82007-08-02 06:11:14 +00006441 // Otherwise, must be the same type of case, so just reinsert a new one.
6442 Res = CastInst::create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
6443 Ty, I->getName());
6444 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006445 default:
6446 // TODO: Can handle more cases here.
6447 assert(0 && "Unreachable!");
6448 break;
6449 }
6450
6451 return InsertNewInstBefore(Res, *I);
6452}
6453
6454/// @brief Implement the transforms common to all CastInst visitors.
6455Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
6456 Value *Src = CI.getOperand(0);
6457
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006458 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
6459 // eliminate it now.
6460 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
6461 if (Instruction::CastOps opc =
6462 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
6463 // The first cast (CSrc) is eliminable so we need to fix up or replace
6464 // the second cast (CI). CSrc will then have a good chance of being dead.
6465 return CastInst::create(opc, CSrc->getOperand(0), CI.getType());
6466 }
6467 }
6468
6469 // If we are casting a select then fold the cast into the select
6470 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
6471 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
6472 return NV;
6473
6474 // If we are casting a PHI then fold the cast into the PHI
6475 if (isa<PHINode>(Src))
6476 if (Instruction *NV = FoldOpIntoPhi(CI))
6477 return NV;
6478
6479 return 0;
6480}
6481
6482/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
6483Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
6484 Value *Src = CI.getOperand(0);
6485
6486 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
6487 // If casting the result of a getelementptr instruction with no offset, turn
6488 // this into a cast of the original pointer!
6489 if (GEP->hasAllZeroIndices()) {
6490 // Changing the cast operand is usually not a good idea but it is safe
6491 // here because the pointer operand is being replaced with another
6492 // pointer operand so the opcode doesn't need to change.
6493 AddToWorkList(GEP);
6494 CI.setOperand(0, GEP->getOperand(0));
6495 return &CI;
6496 }
6497
6498 // If the GEP has a single use, and the base pointer is a bitcast, and the
6499 // GEP computes a constant offset, see if we can convert these three
6500 // instructions into fewer. This typically happens with unions and other
6501 // non-type-safe code.
6502 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
6503 if (GEP->hasAllConstantIndices()) {
6504 // We are guaranteed to get a constant from EmitGEPOffset.
6505 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
6506 int64_t Offset = OffsetV->getSExtValue();
6507
6508 // Get the base pointer input of the bitcast, and the type it points to.
6509 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
6510 const Type *GEPIdxTy =
6511 cast<PointerType>(OrigBase->getType())->getElementType();
6512 if (GEPIdxTy->isSized()) {
6513 SmallVector<Value*, 8> NewIndices;
6514
6515 // Start with the index over the outer type. Note that the type size
6516 // might be zero (even if the offset isn't zero) if the indexed type
6517 // is something like [0 x {int, int}]
6518 const Type *IntPtrTy = TD->getIntPtrType();
6519 int64_t FirstIdx = 0;
6520 if (int64_t TySize = TD->getTypeSize(GEPIdxTy)) {
6521 FirstIdx = Offset/TySize;
6522 Offset %= TySize;
6523
6524 // Handle silly modulus not returning values values [0..TySize).
6525 if (Offset < 0) {
6526 --FirstIdx;
6527 Offset += TySize;
6528 assert(Offset >= 0);
6529 }
6530 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
6531 }
6532
6533 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
6534
6535 // Index into the types. If we fail, set OrigBase to null.
6536 while (Offset) {
6537 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
6538 const StructLayout *SL = TD->getStructLayout(STy);
6539 if (Offset < (int64_t)SL->getSizeInBytes()) {
6540 unsigned Elt = SL->getElementContainingOffset(Offset);
6541 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
6542
6543 Offset -= SL->getElementOffset(Elt);
6544 GEPIdxTy = STy->getElementType(Elt);
6545 } else {
6546 // Otherwise, we can't index into this, bail out.
6547 Offset = 0;
6548 OrigBase = 0;
6549 }
6550 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
6551 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
6552 if (uint64_t EltSize = TD->getTypeSize(STy->getElementType())) {
6553 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
6554 Offset %= EltSize;
6555 } else {
6556 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
6557 }
6558 GEPIdxTy = STy->getElementType();
6559 } else {
6560 // Otherwise, we can't index into this, bail out.
6561 Offset = 0;
6562 OrigBase = 0;
6563 }
6564 }
6565 if (OrigBase) {
6566 // If we were able to index down into an element, create the GEP
6567 // and bitcast the result. This eliminates one bitcast, potentially
6568 // two.
David Greene393be882007-09-04 15:46:09 +00006569 Instruction *NGEP = new GetElementPtrInst(OrigBase,
6570 NewIndices.begin(),
6571 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006572 InsertNewInstBefore(NGEP, CI);
6573 NGEP->takeName(GEP);
6574
6575 if (isa<BitCastInst>(CI))
6576 return new BitCastInst(NGEP, CI.getType());
6577 assert(isa<PtrToIntInst>(CI));
6578 return new PtrToIntInst(NGEP, CI.getType());
6579 }
6580 }
6581 }
6582 }
6583 }
6584
6585 return commonCastTransforms(CI);
6586}
6587
6588
6589
6590/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
6591/// integer types. This function implements the common transforms for all those
6592/// cases.
6593/// @brief Implement the transforms common to CastInst with integer operands
6594Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
6595 if (Instruction *Result = commonCastTransforms(CI))
6596 return Result;
6597
6598 Value *Src = CI.getOperand(0);
6599 const Type *SrcTy = Src->getType();
6600 const Type *DestTy = CI.getType();
6601 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
6602 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
6603
6604 // See if we can simplify any instructions used by the LHS whose sole
6605 // purpose is to compute bits we don't care about.
6606 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
6607 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
6608 KnownZero, KnownOne))
6609 return &CI;
6610
6611 // If the source isn't an instruction or has more than one use then we
6612 // can't do anything more.
6613 Instruction *SrcI = dyn_cast<Instruction>(Src);
6614 if (!SrcI || !Src->hasOneUse())
6615 return 0;
6616
6617 // Attempt to propagate the cast into the instruction for int->int casts.
6618 int NumCastsRemoved = 0;
6619 if (!isa<BitCastInst>(CI) &&
6620 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00006621 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006622 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00006623 // eliminates the cast, so it is always a win. If this is a zero-extension,
6624 // we need to do an AND to maintain the clear top-part of the computation,
6625 // so we require that the input have eliminated at least one cast. If this
6626 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006627 // require that two casts have been eliminated.
6628 bool DoXForm;
6629 switch (CI.getOpcode()) {
6630 default:
6631 // All the others use floating point so we shouldn't actually
6632 // get here because of the check above.
6633 assert(0 && "Unknown cast type");
6634 case Instruction::Trunc:
6635 DoXForm = true;
6636 break;
6637 case Instruction::ZExt:
6638 DoXForm = NumCastsRemoved >= 1;
6639 break;
6640 case Instruction::SExt:
6641 DoXForm = NumCastsRemoved >= 2;
6642 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006643 }
6644
6645 if (DoXForm) {
6646 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
6647 CI.getOpcode() == Instruction::SExt);
6648 assert(Res->getType() == DestTy);
6649 switch (CI.getOpcode()) {
6650 default: assert(0 && "Unknown cast type!");
6651 case Instruction::Trunc:
6652 case Instruction::BitCast:
6653 // Just replace this cast with the result.
6654 return ReplaceInstUsesWith(CI, Res);
6655 case Instruction::ZExt: {
6656 // We need to emit an AND to clear the high bits.
6657 assert(SrcBitSize < DestBitSize && "Not a zext?");
6658 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
6659 SrcBitSize));
6660 return BinaryOperator::createAnd(Res, C);
6661 }
6662 case Instruction::SExt:
6663 // We need to emit a cast to truncate, then a cast to sext.
6664 return CastInst::create(Instruction::SExt,
6665 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
6666 CI), DestTy);
6667 }
6668 }
6669 }
6670
6671 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
6672 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
6673
6674 switch (SrcI->getOpcode()) {
6675 case Instruction::Add:
6676 case Instruction::Mul:
6677 case Instruction::And:
6678 case Instruction::Or:
6679 case Instruction::Xor:
6680 // If we are discarding information, rewrite.
6681 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
6682 // Don't insert two casts if they cannot be eliminated. We allow
6683 // two casts to be inserted if the sizes are the same. This could
6684 // only be converting signedness, which is a noop.
6685 if (DestBitSize == SrcBitSize ||
6686 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
6687 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
6688 Instruction::CastOps opcode = CI.getOpcode();
6689 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
6690 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
6691 return BinaryOperator::create(
6692 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
6693 }
6694 }
6695
6696 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
6697 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
6698 SrcI->getOpcode() == Instruction::Xor &&
6699 Op1 == ConstantInt::getTrue() &&
6700 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
6701 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
6702 return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1));
6703 }
6704 break;
6705 case Instruction::SDiv:
6706 case Instruction::UDiv:
6707 case Instruction::SRem:
6708 case Instruction::URem:
6709 // If we are just changing the sign, rewrite.
6710 if (DestBitSize == SrcBitSize) {
6711 // Don't insert two casts if they cannot be eliminated. We allow
6712 // two casts to be inserted if the sizes are the same. This could
6713 // only be converting signedness, which is a noop.
6714 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
6715 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
6716 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
6717 Op0, DestTy, SrcI);
6718 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
6719 Op1, DestTy, SrcI);
6720 return BinaryOperator::create(
6721 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
6722 }
6723 }
6724 break;
6725
6726 case Instruction::Shl:
6727 // Allow changing the sign of the source operand. Do not allow
6728 // changing the size of the shift, UNLESS the shift amount is a
6729 // constant. We must not change variable sized shifts to a smaller
6730 // size, because it is undefined to shift more bits out than exist
6731 // in the value.
6732 if (DestBitSize == SrcBitSize ||
6733 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
6734 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
6735 Instruction::BitCast : Instruction::Trunc);
6736 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
6737 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
6738 return BinaryOperator::createShl(Op0c, Op1c);
6739 }
6740 break;
6741 case Instruction::AShr:
6742 // If this is a signed shr, and if all bits shifted in are about to be
6743 // truncated off, turn it into an unsigned shr to allow greater
6744 // simplifications.
6745 if (DestBitSize < SrcBitSize &&
6746 isa<ConstantInt>(Op1)) {
6747 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
6748 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
6749 // Insert the new logical shift right.
6750 return BinaryOperator::createLShr(Op0, Op1);
6751 }
6752 }
6753 break;
6754 }
6755 return 0;
6756}
6757
6758Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
6759 if (Instruction *Result = commonIntCastTransforms(CI))
6760 return Result;
6761
6762 Value *Src = CI.getOperand(0);
6763 const Type *Ty = CI.getType();
6764 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
6765 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
6766
6767 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
6768 switch (SrcI->getOpcode()) {
6769 default: break;
6770 case Instruction::LShr:
6771 // We can shrink lshr to something smaller if we know the bits shifted in
6772 // are already zeros.
6773 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
6774 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
6775
6776 // Get a mask for the bits shifting in.
6777 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
6778 Value* SrcIOp0 = SrcI->getOperand(0);
6779 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
6780 if (ShAmt >= DestBitWidth) // All zeros.
6781 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
6782
6783 // Okay, we can shrink this. Truncate the input, then return a new
6784 // shift.
6785 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
6786 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
6787 Ty, CI);
6788 return BinaryOperator::createLShr(V1, V2);
6789 }
6790 } else { // This is a variable shr.
6791
6792 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
6793 // more LLVM instructions, but allows '1 << Y' to be hoisted if
6794 // loop-invariant and CSE'd.
6795 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
6796 Value *One = ConstantInt::get(SrcI->getType(), 1);
6797
6798 Value *V = InsertNewInstBefore(
6799 BinaryOperator::createShl(One, SrcI->getOperand(1),
6800 "tmp"), CI);
6801 V = InsertNewInstBefore(BinaryOperator::createAnd(V,
6802 SrcI->getOperand(0),
6803 "tmp"), CI);
6804 Value *Zero = Constant::getNullValue(V->getType());
6805 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
6806 }
6807 }
6808 break;
6809 }
6810 }
6811
6812 return 0;
6813}
6814
6815Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
6816 // If one of the common conversion will work ..
6817 if (Instruction *Result = commonIntCastTransforms(CI))
6818 return Result;
6819
6820 Value *Src = CI.getOperand(0);
6821
6822 // If this is a cast of a cast
6823 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
6824 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
6825 // types and if the sizes are just right we can convert this into a logical
6826 // 'and' which will be much cheaper than the pair of casts.
6827 if (isa<TruncInst>(CSrc)) {
6828 // Get the sizes of the types involved
6829 Value *A = CSrc->getOperand(0);
6830 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
6831 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
6832 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
6833 // If we're actually extending zero bits and the trunc is a no-op
6834 if (MidSize < DstSize && SrcSize == DstSize) {
6835 // Replace both of the casts with an And of the type mask.
6836 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
6837 Constant *AndConst = ConstantInt::get(AndValue);
6838 Instruction *And =
6839 BinaryOperator::createAnd(CSrc->getOperand(0), AndConst);
6840 // Unfortunately, if the type changed, we need to cast it back.
6841 if (And->getType() != CI.getType()) {
6842 And->setName(CSrc->getName()+".mask");
6843 InsertNewInstBefore(And, CI);
6844 And = CastInst::createIntegerCast(And, CI.getType(), false/*ZExt*/);
6845 }
6846 return And;
6847 }
6848 }
6849 }
6850
6851 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
6852 // If we are just checking for a icmp eq of a single bit and zext'ing it
6853 // to an integer, then shift the bit to the appropriate place and then
6854 // cast to integer to avoid the comparison.
6855 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
6856 const APInt &Op1CV = Op1C->getValue();
6857
6858 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
6859 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
6860 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
6861 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
6862 Value *In = ICI->getOperand(0);
6863 Value *Sh = ConstantInt::get(In->getType(),
6864 In->getType()->getPrimitiveSizeInBits()-1);
6865 In = InsertNewInstBefore(BinaryOperator::createLShr(In, Sh,
6866 In->getName()+".lobit"),
6867 CI);
6868 if (In->getType() != CI.getType())
6869 In = CastInst::createIntegerCast(In, CI.getType(),
6870 false/*ZExt*/, "tmp", &CI);
6871
6872 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
6873 Constant *One = ConstantInt::get(In->getType(), 1);
6874 In = InsertNewInstBefore(BinaryOperator::createXor(In, One,
6875 In->getName()+".not"),
6876 CI);
6877 }
6878
6879 return ReplaceInstUsesWith(CI, In);
6880 }
6881
6882
6883
6884 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
6885 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
6886 // zext (X == 1) to i32 --> X iff X has only the low bit set.
6887 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
6888 // zext (X != 0) to i32 --> X iff X has only the low bit set.
6889 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
6890 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
6891 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
6892 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
6893 // This only works for EQ and NE
6894 ICI->isEquality()) {
6895 // If Op1C some other power of two, convert:
6896 uint32_t BitWidth = Op1C->getType()->getBitWidth();
6897 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
6898 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
6899 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
6900
6901 APInt KnownZeroMask(~KnownZero);
6902 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
6903 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
6904 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
6905 // (X&4) == 2 --> false
6906 // (X&4) != 2 --> true
6907 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
6908 Res = ConstantExpr::getZExt(Res, CI.getType());
6909 return ReplaceInstUsesWith(CI, Res);
6910 }
6911
6912 uint32_t ShiftAmt = KnownZeroMask.logBase2();
6913 Value *In = ICI->getOperand(0);
6914 if (ShiftAmt) {
6915 // Perform a logical shr by shiftamt.
6916 // Insert the shift to put the result in the low bit.
6917 In = InsertNewInstBefore(
6918 BinaryOperator::createLShr(In,
6919 ConstantInt::get(In->getType(), ShiftAmt),
6920 In->getName()+".lobit"), CI);
6921 }
6922
6923 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
6924 Constant *One = ConstantInt::get(In->getType(), 1);
6925 In = BinaryOperator::createXor(In, One, "tmp");
6926 InsertNewInstBefore(cast<Instruction>(In), CI);
6927 }
6928
6929 if (CI.getType() == In->getType())
6930 return ReplaceInstUsesWith(CI, In);
6931 else
6932 return CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/);
6933 }
6934 }
6935 }
6936 }
6937 return 0;
6938}
6939
6940Instruction *InstCombiner::visitSExt(SExtInst &CI) {
6941 if (Instruction *I = commonIntCastTransforms(CI))
6942 return I;
6943
6944 Value *Src = CI.getOperand(0);
6945
6946 // sext (x <s 0) -> ashr x, 31 -> all ones if signed
6947 // sext (x >s -1) -> ashr x, 31 -> all ones if not signed
6948 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
6949 // If we are just checking for a icmp eq of a single bit and zext'ing it
6950 // to an integer, then shift the bit to the appropriate place and then
6951 // cast to integer to avoid the comparison.
6952 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
6953 const APInt &Op1CV = Op1C->getValue();
6954
6955 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
6956 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
6957 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
6958 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
6959 Value *In = ICI->getOperand(0);
6960 Value *Sh = ConstantInt::get(In->getType(),
6961 In->getType()->getPrimitiveSizeInBits()-1);
6962 In = InsertNewInstBefore(BinaryOperator::createAShr(In, Sh,
6963 In->getName()+".lobit"),
6964 CI);
6965 if (In->getType() != CI.getType())
6966 In = CastInst::createIntegerCast(In, CI.getType(),
6967 true/*SExt*/, "tmp", &CI);
6968
6969 if (ICI->getPredicate() == ICmpInst::ICMP_SGT)
6970 In = InsertNewInstBefore(BinaryOperator::createNot(In,
6971 In->getName()+".not"), CI);
6972
6973 return ReplaceInstUsesWith(CI, In);
6974 }
6975 }
6976 }
6977
6978 return 0;
6979}
6980
6981Instruction *InstCombiner::visitFPTrunc(CastInst &CI) {
6982 return commonCastTransforms(CI);
6983}
6984
6985Instruction *InstCombiner::visitFPExt(CastInst &CI) {
6986 return commonCastTransforms(CI);
6987}
6988
6989Instruction *InstCombiner::visitFPToUI(CastInst &CI) {
6990 return commonCastTransforms(CI);
6991}
6992
6993Instruction *InstCombiner::visitFPToSI(CastInst &CI) {
6994 return commonCastTransforms(CI);
6995}
6996
6997Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
6998 return commonCastTransforms(CI);
6999}
7000
7001Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
7002 return commonCastTransforms(CI);
7003}
7004
7005Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
7006 return commonPointerCastTransforms(CI);
7007}
7008
7009Instruction *InstCombiner::visitIntToPtr(CastInst &CI) {
7010 return commonCastTransforms(CI);
7011}
7012
7013Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
7014 // If the operands are integer typed then apply the integer transforms,
7015 // otherwise just apply the common ones.
7016 Value *Src = CI.getOperand(0);
7017 const Type *SrcTy = Src->getType();
7018 const Type *DestTy = CI.getType();
7019
7020 if (SrcTy->isInteger() && DestTy->isInteger()) {
7021 if (Instruction *Result = commonIntCastTransforms(CI))
7022 return Result;
7023 } else if (isa<PointerType>(SrcTy)) {
7024 if (Instruction *I = commonPointerCastTransforms(CI))
7025 return I;
7026 } else {
7027 if (Instruction *Result = commonCastTransforms(CI))
7028 return Result;
7029 }
7030
7031
7032 // Get rid of casts from one type to the same type. These are useless and can
7033 // be replaced by the operand.
7034 if (DestTy == Src->getType())
7035 return ReplaceInstUsesWith(CI, Src);
7036
7037 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
7038 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
7039 const Type *DstElTy = DstPTy->getElementType();
7040 const Type *SrcElTy = SrcPTy->getElementType();
7041
7042 // If we are casting a malloc or alloca to a pointer to a type of the same
7043 // size, rewrite the allocation instruction to allocate the "right" type.
7044 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
7045 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
7046 return V;
7047
7048 // If the source and destination are pointers, and this cast is equivalent
7049 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
7050 // This can enhance SROA and other transforms that want type-safe pointers.
7051 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
7052 unsigned NumZeros = 0;
7053 while (SrcElTy != DstElTy &&
7054 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
7055 SrcElTy->getNumContainedTypes() /* not "{}" */) {
7056 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
7057 ++NumZeros;
7058 }
7059
7060 // If we found a path from the src to dest, create the getelementptr now.
7061 if (SrcElTy == DstElTy) {
7062 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Chuck Rose III27d49792007-09-05 20:36:41 +00007063 return new GetElementPtrInst(Src, Idxs.begin(), Idxs.end(), "",
7064 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007065 }
7066 }
7067
7068 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
7069 if (SVI->hasOneUse()) {
7070 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
7071 // a bitconvert to a vector with the same # elts.
7072 if (isa<VectorType>(DestTy) &&
7073 cast<VectorType>(DestTy)->getNumElements() ==
7074 SVI->getType()->getNumElements()) {
7075 CastInst *Tmp;
7076 // If either of the operands is a cast from CI.getType(), then
7077 // evaluating the shuffle in the casted destination's type will allow
7078 // us to eliminate at least one cast.
7079 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
7080 Tmp->getOperand(0)->getType() == DestTy) ||
7081 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
7082 Tmp->getOperand(0)->getType() == DestTy)) {
7083 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
7084 SVI->getOperand(0), DestTy, &CI);
7085 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
7086 SVI->getOperand(1), DestTy, &CI);
7087 // Return a new shuffle vector. Use the same element ID's, as we
7088 // know the vector types match #elts.
7089 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
7090 }
7091 }
7092 }
7093 }
7094 return 0;
7095}
7096
7097/// GetSelectFoldableOperands - We want to turn code that looks like this:
7098/// %C = or %A, %B
7099/// %D = select %cond, %C, %A
7100/// into:
7101/// %C = select %cond, %B, 0
7102/// %D = or %A, %C
7103///
7104/// Assuming that the specified instruction is an operand to the select, return
7105/// a bitmask indicating which operands of this instruction are foldable if they
7106/// equal the other incoming value of the select.
7107///
7108static unsigned GetSelectFoldableOperands(Instruction *I) {
7109 switch (I->getOpcode()) {
7110 case Instruction::Add:
7111 case Instruction::Mul:
7112 case Instruction::And:
7113 case Instruction::Or:
7114 case Instruction::Xor:
7115 return 3; // Can fold through either operand.
7116 case Instruction::Sub: // Can only fold on the amount subtracted.
7117 case Instruction::Shl: // Can only fold on the shift amount.
7118 case Instruction::LShr:
7119 case Instruction::AShr:
7120 return 1;
7121 default:
7122 return 0; // Cannot fold
7123 }
7124}
7125
7126/// GetSelectFoldableConstant - For the same transformation as the previous
7127/// function, return the identity constant that goes into the select.
7128static Constant *GetSelectFoldableConstant(Instruction *I) {
7129 switch (I->getOpcode()) {
7130 default: assert(0 && "This cannot happen!"); abort();
7131 case Instruction::Add:
7132 case Instruction::Sub:
7133 case Instruction::Or:
7134 case Instruction::Xor:
7135 case Instruction::Shl:
7136 case Instruction::LShr:
7137 case Instruction::AShr:
7138 return Constant::getNullValue(I->getType());
7139 case Instruction::And:
7140 return Constant::getAllOnesValue(I->getType());
7141 case Instruction::Mul:
7142 return ConstantInt::get(I->getType(), 1);
7143 }
7144}
7145
7146/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
7147/// have the same opcode and only one use each. Try to simplify this.
7148Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
7149 Instruction *FI) {
7150 if (TI->getNumOperands() == 1) {
7151 // If this is a non-volatile load or a cast from the same type,
7152 // merge.
7153 if (TI->isCast()) {
7154 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
7155 return 0;
7156 } else {
7157 return 0; // unknown unary op.
7158 }
7159
7160 // Fold this by inserting a select from the input values.
7161 SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
7162 FI->getOperand(0), SI.getName()+".v");
7163 InsertNewInstBefore(NewSI, SI);
7164 return CastInst::create(Instruction::CastOps(TI->getOpcode()), NewSI,
7165 TI->getType());
7166 }
7167
7168 // Only handle binary operators here.
7169 if (!isa<BinaryOperator>(TI))
7170 return 0;
7171
7172 // Figure out if the operations have any operands in common.
7173 Value *MatchOp, *OtherOpT, *OtherOpF;
7174 bool MatchIsOpZero;
7175 if (TI->getOperand(0) == FI->getOperand(0)) {
7176 MatchOp = TI->getOperand(0);
7177 OtherOpT = TI->getOperand(1);
7178 OtherOpF = FI->getOperand(1);
7179 MatchIsOpZero = true;
7180 } else if (TI->getOperand(1) == FI->getOperand(1)) {
7181 MatchOp = TI->getOperand(1);
7182 OtherOpT = TI->getOperand(0);
7183 OtherOpF = FI->getOperand(0);
7184 MatchIsOpZero = false;
7185 } else if (!TI->isCommutative()) {
7186 return 0;
7187 } else if (TI->getOperand(0) == FI->getOperand(1)) {
7188 MatchOp = TI->getOperand(0);
7189 OtherOpT = TI->getOperand(1);
7190 OtherOpF = FI->getOperand(0);
7191 MatchIsOpZero = true;
7192 } else if (TI->getOperand(1) == FI->getOperand(0)) {
7193 MatchOp = TI->getOperand(1);
7194 OtherOpT = TI->getOperand(0);
7195 OtherOpF = FI->getOperand(1);
7196 MatchIsOpZero = true;
7197 } else {
7198 return 0;
7199 }
7200
7201 // If we reach here, they do have operations in common.
7202 SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
7203 OtherOpF, SI.getName()+".v");
7204 InsertNewInstBefore(NewSI, SI);
7205
7206 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
7207 if (MatchIsOpZero)
7208 return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
7209 else
7210 return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
7211 }
7212 assert(0 && "Shouldn't get here");
7213 return 0;
7214}
7215
7216Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
7217 Value *CondVal = SI.getCondition();
7218 Value *TrueVal = SI.getTrueValue();
7219 Value *FalseVal = SI.getFalseValue();
7220
7221 // select true, X, Y -> X
7222 // select false, X, Y -> Y
7223 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
7224 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
7225
7226 // select C, X, X -> X
7227 if (TrueVal == FalseVal)
7228 return ReplaceInstUsesWith(SI, TrueVal);
7229
7230 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
7231 return ReplaceInstUsesWith(SI, FalseVal);
7232 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
7233 return ReplaceInstUsesWith(SI, TrueVal);
7234 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
7235 if (isa<Constant>(TrueVal))
7236 return ReplaceInstUsesWith(SI, TrueVal);
7237 else
7238 return ReplaceInstUsesWith(SI, FalseVal);
7239 }
7240
7241 if (SI.getType() == Type::Int1Ty) {
7242 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
7243 if (C->getZExtValue()) {
7244 // Change: A = select B, true, C --> A = or B, C
7245 return BinaryOperator::createOr(CondVal, FalseVal);
7246 } else {
7247 // Change: A = select B, false, C --> A = and !B, C
7248 Value *NotCond =
7249 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7250 "not."+CondVal->getName()), SI);
7251 return BinaryOperator::createAnd(NotCond, FalseVal);
7252 }
7253 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
7254 if (C->getZExtValue() == false) {
7255 // Change: A = select B, C, false --> A = and B, C
7256 return BinaryOperator::createAnd(CondVal, TrueVal);
7257 } else {
7258 // Change: A = select B, C, true --> A = or !B, C
7259 Value *NotCond =
7260 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7261 "not."+CondVal->getName()), SI);
7262 return BinaryOperator::createOr(NotCond, TrueVal);
7263 }
7264 }
7265 }
7266
7267 // Selecting between two integer constants?
7268 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
7269 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
7270 // select C, 1, 0 -> zext C to int
7271 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
7272 return CastInst::create(Instruction::ZExt, CondVal, SI.getType());
7273 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
7274 // select C, 0, 1 -> zext !C to int
7275 Value *NotCond =
7276 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7277 "not."+CondVal->getName()), SI);
7278 return CastInst::create(Instruction::ZExt, NotCond, SI.getType());
7279 }
7280
7281 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
7282
7283 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
7284
7285 // (x <s 0) ? -1 : 0 -> ashr x, 31
7286 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
7287 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
7288 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
7289 // The comparison constant and the result are not neccessarily the
7290 // same width. Make an all-ones value by inserting a AShr.
7291 Value *X = IC->getOperand(0);
7292 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
7293 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
7294 Instruction *SRA = BinaryOperator::create(Instruction::AShr, X,
7295 ShAmt, "ones");
7296 InsertNewInstBefore(SRA, SI);
7297
7298 // Finally, convert to the type of the select RHS. We figure out
7299 // if this requires a SExt, Trunc or BitCast based on the sizes.
7300 Instruction::CastOps opc = Instruction::BitCast;
7301 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
7302 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
7303 if (SRASize < SISize)
7304 opc = Instruction::SExt;
7305 else if (SRASize > SISize)
7306 opc = Instruction::Trunc;
7307 return CastInst::create(opc, SRA, SI.getType());
7308 }
7309 }
7310
7311
7312 // If one of the constants is zero (we know they can't both be) and we
7313 // have an icmp instruction with zero, and we have an 'and' with the
7314 // non-constant value, eliminate this whole mess. This corresponds to
7315 // cases like this: ((X & 27) ? 27 : 0)
7316 if (TrueValC->isZero() || FalseValC->isZero())
7317 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
7318 cast<Constant>(IC->getOperand(1))->isNullValue())
7319 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
7320 if (ICA->getOpcode() == Instruction::And &&
7321 isa<ConstantInt>(ICA->getOperand(1)) &&
7322 (ICA->getOperand(1) == TrueValC ||
7323 ICA->getOperand(1) == FalseValC) &&
7324 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
7325 // Okay, now we know that everything is set up, we just don't
7326 // know whether we have a icmp_ne or icmp_eq and whether the
7327 // true or false val is the zero.
7328 bool ShouldNotVal = !TrueValC->isZero();
7329 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
7330 Value *V = ICA;
7331 if (ShouldNotVal)
7332 V = InsertNewInstBefore(BinaryOperator::create(
7333 Instruction::Xor, V, ICA->getOperand(1)), SI);
7334 return ReplaceInstUsesWith(SI, V);
7335 }
7336 }
7337 }
7338
7339 // See if we are selecting two values based on a comparison of the two values.
7340 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
7341 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
7342 // Transform (X == Y) ? X : Y -> Y
7343 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ)
7344 return ReplaceInstUsesWith(SI, FalseVal);
7345 // Transform (X != Y) ? X : Y -> X
7346 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
7347 return ReplaceInstUsesWith(SI, TrueVal);
7348 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7349
7350 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
7351 // Transform (X == Y) ? Y : X -> X
7352 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ)
7353 return ReplaceInstUsesWith(SI, FalseVal);
7354 // Transform (X != Y) ? Y : X -> Y
7355 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
7356 return ReplaceInstUsesWith(SI, TrueVal);
7357 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7358 }
7359 }
7360
7361 // See if we are selecting two values based on a comparison of the two values.
7362 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) {
7363 if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) {
7364 // Transform (X == Y) ? X : Y -> Y
7365 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
7366 return ReplaceInstUsesWith(SI, FalseVal);
7367 // Transform (X != Y) ? X : Y -> X
7368 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
7369 return ReplaceInstUsesWith(SI, TrueVal);
7370 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7371
7372 } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){
7373 // Transform (X == Y) ? Y : X -> X
7374 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
7375 return ReplaceInstUsesWith(SI, FalseVal);
7376 // Transform (X != Y) ? Y : X -> Y
7377 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
7378 return ReplaceInstUsesWith(SI, TrueVal);
7379 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7380 }
7381 }
7382
7383 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
7384 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
7385 if (TI->hasOneUse() && FI->hasOneUse()) {
7386 Instruction *AddOp = 0, *SubOp = 0;
7387
7388 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
7389 if (TI->getOpcode() == FI->getOpcode())
7390 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
7391 return IV;
7392
7393 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
7394 // even legal for FP.
7395 if (TI->getOpcode() == Instruction::Sub &&
7396 FI->getOpcode() == Instruction::Add) {
7397 AddOp = FI; SubOp = TI;
7398 } else if (FI->getOpcode() == Instruction::Sub &&
7399 TI->getOpcode() == Instruction::Add) {
7400 AddOp = TI; SubOp = FI;
7401 }
7402
7403 if (AddOp) {
7404 Value *OtherAddOp = 0;
7405 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
7406 OtherAddOp = AddOp->getOperand(1);
7407 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
7408 OtherAddOp = AddOp->getOperand(0);
7409 }
7410
7411 if (OtherAddOp) {
7412 // So at this point we know we have (Y -> OtherAddOp):
7413 // select C, (add X, Y), (sub X, Z)
7414 Value *NegVal; // Compute -Z
7415 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
7416 NegVal = ConstantExpr::getNeg(C);
7417 } else {
7418 NegVal = InsertNewInstBefore(
7419 BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
7420 }
7421
7422 Value *NewTrueOp = OtherAddOp;
7423 Value *NewFalseOp = NegVal;
7424 if (AddOp != TI)
7425 std::swap(NewTrueOp, NewFalseOp);
7426 Instruction *NewSel =
7427 new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
7428
7429 NewSel = InsertNewInstBefore(NewSel, SI);
7430 return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
7431 }
7432 }
7433 }
7434
7435 // See if we can fold the select into one of our operands.
7436 if (SI.getType()->isInteger()) {
7437 // See the comment above GetSelectFoldableOperands for a description of the
7438 // transformation we are doing here.
7439 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
7440 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
7441 !isa<Constant>(FalseVal))
7442 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
7443 unsigned OpToFold = 0;
7444 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
7445 OpToFold = 1;
7446 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
7447 OpToFold = 2;
7448 }
7449
7450 if (OpToFold) {
7451 Constant *C = GetSelectFoldableConstant(TVI);
7452 Instruction *NewSel =
7453 new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C);
7454 InsertNewInstBefore(NewSel, SI);
7455 NewSel->takeName(TVI);
7456 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
7457 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
7458 else {
7459 assert(0 && "Unknown instruction!!");
7460 }
7461 }
7462 }
7463
7464 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
7465 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
7466 !isa<Constant>(TrueVal))
7467 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
7468 unsigned OpToFold = 0;
7469 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
7470 OpToFold = 1;
7471 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
7472 OpToFold = 2;
7473 }
7474
7475 if (OpToFold) {
7476 Constant *C = GetSelectFoldableConstant(FVI);
7477 Instruction *NewSel =
7478 new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold));
7479 InsertNewInstBefore(NewSel, SI);
7480 NewSel->takeName(FVI);
7481 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
7482 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
7483 else
7484 assert(0 && "Unknown instruction!!");
7485 }
7486 }
7487 }
7488
7489 if (BinaryOperator::isNot(CondVal)) {
7490 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
7491 SI.setOperand(1, FalseVal);
7492 SI.setOperand(2, TrueVal);
7493 return &SI;
7494 }
7495
7496 return 0;
7497}
7498
Chris Lattner47cf3452007-08-09 19:05:49 +00007499/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
7500/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
7501/// and it is more than the alignment of the ultimate object, see if we can
7502/// increase the alignment of the ultimate object, making this check succeed.
7503static unsigned GetOrEnforceKnownAlignment(Value *V, TargetData *TD,
7504 unsigned PrefAlign = 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007505 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
7506 unsigned Align = GV->getAlignment();
7507 if (Align == 0 && TD)
7508 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
Chris Lattner47cf3452007-08-09 19:05:49 +00007509
7510 // If there is a large requested alignment and we can, bump up the alignment
7511 // of the global.
7512 if (PrefAlign > Align && GV->hasInitializer()) {
7513 GV->setAlignment(PrefAlign);
7514 Align = PrefAlign;
7515 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007516 return Align;
7517 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
7518 unsigned Align = AI->getAlignment();
7519 if (Align == 0 && TD) {
7520 if (isa<AllocaInst>(AI))
7521 Align = TD->getPrefTypeAlignment(AI->getType()->getElementType());
7522 else if (isa<MallocInst>(AI)) {
7523 // Malloc returns maximally aligned memory.
7524 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
7525 Align =
7526 std::max(Align,
7527 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
7528 Align =
7529 std::max(Align,
7530 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
7531 }
7532 }
Chris Lattner47cf3452007-08-09 19:05:49 +00007533
7534 // If there is a requested alignment and if this is an alloca, round up. We
7535 // don't do this for malloc, because some systems can't respect the request.
7536 if (PrefAlign > Align && isa<AllocaInst>(AI)) {
7537 AI->setAlignment(PrefAlign);
7538 Align = PrefAlign;
7539 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007540 return Align;
7541 } else if (isa<BitCastInst>(V) ||
7542 (isa<ConstantExpr>(V) &&
7543 cast<ConstantExpr>(V)->getOpcode() == Instruction::BitCast)) {
Chris Lattner47cf3452007-08-09 19:05:49 +00007544 return GetOrEnforceKnownAlignment(cast<User>(V)->getOperand(0),
7545 TD, PrefAlign);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007546 } else if (User *GEPI = dyn_castGetElementPtr(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007547 // If all indexes are zero, it is just the alignment of the base pointer.
7548 bool AllZeroOperands = true;
7549 for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
7550 if (!isa<Constant>(GEPI->getOperand(i)) ||
7551 !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
7552 AllZeroOperands = false;
7553 break;
7554 }
Chris Lattner47cf3452007-08-09 19:05:49 +00007555
7556 if (AllZeroOperands) {
7557 // Treat this like a bitcast.
7558 return GetOrEnforceKnownAlignment(GEPI->getOperand(0), TD, PrefAlign);
7559 }
7560
7561 unsigned BaseAlignment = GetOrEnforceKnownAlignment(GEPI->getOperand(0),TD);
7562 if (BaseAlignment == 0) return 0;
7563
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007564 // Otherwise, if the base alignment is >= the alignment we expect for the
7565 // base pointer type, then we know that the resultant pointer is aligned at
7566 // least as much as its type requires.
7567 if (!TD) return 0;
7568
7569 const Type *BasePtrTy = GEPI->getOperand(0)->getType();
7570 const PointerType *PtrTy = cast<PointerType>(BasePtrTy);
Lauro Ramos Venancio55da3352007-07-31 20:13:21 +00007571 unsigned Align = TD->getABITypeAlignment(PtrTy->getElementType());
7572 if (Align <= BaseAlignment) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007573 const Type *GEPTy = GEPI->getType();
7574 const PointerType *GEPPtrTy = cast<PointerType>(GEPTy);
Lauro Ramos Venancio55da3352007-07-31 20:13:21 +00007575 Align = std::min(Align, (unsigned)
7576 TD->getABITypeAlignment(GEPPtrTy->getElementType()));
7577 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007578 }
7579 return 0;
7580 }
7581 return 0;
7582}
7583
7584
7585/// visitCallInst - CallInst simplification. This mostly only handles folding
7586/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
7587/// the heavy lifting.
7588///
7589Instruction *InstCombiner::visitCallInst(CallInst &CI) {
7590 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
7591 if (!II) return visitCallSite(&CI);
7592
7593 // Intrinsics cannot occur in an invoke, so handle them here instead of in
7594 // visitCallSite.
7595 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
7596 bool Changed = false;
7597
7598 // memmove/cpy/set of zero bytes is a noop.
7599 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
7600 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
7601
7602 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
7603 if (CI->getZExtValue() == 1) {
7604 // Replace the instruction with just byte operations. We would
7605 // transform other cases to loads/stores, but we don't know if
7606 // alignment is sufficient.
7607 }
7608 }
7609
7610 // If we have a memmove and the source operation is a constant global,
7611 // then the source and dest pointers can't alias, so we can change this
7612 // into a call to memcpy.
7613 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II)) {
7614 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
7615 if (GVSrc->isConstant()) {
7616 Module *M = CI.getParent()->getParent()->getParent();
7617 const char *Name;
7618 if (CI.getCalledFunction()->getFunctionType()->getParamType(2) ==
7619 Type::Int32Ty)
7620 Name = "llvm.memcpy.i32";
7621 else
7622 Name = "llvm.memcpy.i64";
7623 Constant *MemCpy = M->getOrInsertFunction(Name,
7624 CI.getCalledFunction()->getFunctionType());
7625 CI.setOperand(0, MemCpy);
7626 Changed = true;
7627 }
7628 }
7629
7630 // If we can determine a pointer alignment that is bigger than currently
7631 // set, update the alignment.
7632 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner47cf3452007-08-09 19:05:49 +00007633 unsigned Alignment1 = GetOrEnforceKnownAlignment(MI->getOperand(1), TD);
7634 unsigned Alignment2 = GetOrEnforceKnownAlignment(MI->getOperand(2), TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007635 unsigned Align = std::min(Alignment1, Alignment2);
7636 if (MI->getAlignment()->getZExtValue() < Align) {
7637 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Align));
7638 Changed = true;
7639 }
7640 } else if (isa<MemSetInst>(MI)) {
Chris Lattner47cf3452007-08-09 19:05:49 +00007641 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest(), TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007642 if (MI->getAlignment()->getZExtValue() < Alignment) {
7643 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
7644 Changed = true;
7645 }
7646 }
7647
7648 if (Changed) return II;
7649 } else {
7650 switch (II->getIntrinsicID()) {
7651 default: break;
7652 case Intrinsic::ppc_altivec_lvx:
7653 case Intrinsic::ppc_altivec_lvxl:
7654 case Intrinsic::x86_sse_loadu_ps:
7655 case Intrinsic::x86_sse2_loadu_pd:
7656 case Intrinsic::x86_sse2_loadu_dq:
7657 // Turn PPC lvx -> load if the pointer is known aligned.
7658 // Turn X86 loadups -> load if the pointer is known aligned.
Chris Lattner47cf3452007-08-09 19:05:49 +00007659 if (GetOrEnforceKnownAlignment(II->getOperand(1), TD, 16) >= 16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007660 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1),
7661 PointerType::get(II->getType()), CI);
7662 return new LoadInst(Ptr);
7663 }
7664 break;
7665 case Intrinsic::ppc_altivec_stvx:
7666 case Intrinsic::ppc_altivec_stvxl:
7667 // Turn stvx -> store if the pointer is known aligned.
Chris Lattner47cf3452007-08-09 19:05:49 +00007668 if (GetOrEnforceKnownAlignment(II->getOperand(2), TD, 16) >= 16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007669 const Type *OpPtrTy = PointerType::get(II->getOperand(1)->getType());
7670 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(2),
7671 OpPtrTy, CI);
7672 return new StoreInst(II->getOperand(1), Ptr);
7673 }
7674 break;
7675 case Intrinsic::x86_sse_storeu_ps:
7676 case Intrinsic::x86_sse2_storeu_pd:
7677 case Intrinsic::x86_sse2_storeu_dq:
7678 case Intrinsic::x86_sse2_storel_dq:
7679 // Turn X86 storeu -> store if the pointer is known aligned.
Chris Lattner47cf3452007-08-09 19:05:49 +00007680 if (GetOrEnforceKnownAlignment(II->getOperand(1), TD, 16) >= 16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007681 const Type *OpPtrTy = PointerType::get(II->getOperand(2)->getType());
7682 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1),
7683 OpPtrTy, CI);
7684 return new StoreInst(II->getOperand(2), Ptr);
7685 }
7686 break;
7687
7688 case Intrinsic::x86_sse_cvttss2si: {
7689 // These intrinsics only demands the 0th element of its input vector. If
7690 // we can simplify the input based on that, do so now.
7691 uint64_t UndefElts;
7692 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
7693 UndefElts)) {
7694 II->setOperand(1, V);
7695 return II;
7696 }
7697 break;
7698 }
7699
7700 case Intrinsic::ppc_altivec_vperm:
7701 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
7702 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
7703 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
7704
7705 // Check that all of the elements are integer constants or undefs.
7706 bool AllEltsOk = true;
7707 for (unsigned i = 0; i != 16; ++i) {
7708 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
7709 !isa<UndefValue>(Mask->getOperand(i))) {
7710 AllEltsOk = false;
7711 break;
7712 }
7713 }
7714
7715 if (AllEltsOk) {
7716 // Cast the input vectors to byte vectors.
7717 Value *Op0 = InsertCastBefore(Instruction::BitCast,
7718 II->getOperand(1), Mask->getType(), CI);
7719 Value *Op1 = InsertCastBefore(Instruction::BitCast,
7720 II->getOperand(2), Mask->getType(), CI);
7721 Value *Result = UndefValue::get(Op0->getType());
7722
7723 // Only extract each element once.
7724 Value *ExtractedElts[32];
7725 memset(ExtractedElts, 0, sizeof(ExtractedElts));
7726
7727 for (unsigned i = 0; i != 16; ++i) {
7728 if (isa<UndefValue>(Mask->getOperand(i)))
7729 continue;
7730 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
7731 Idx &= 31; // Match the hardware behavior.
7732
7733 if (ExtractedElts[Idx] == 0) {
7734 Instruction *Elt =
7735 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
7736 InsertNewInstBefore(Elt, CI);
7737 ExtractedElts[Idx] = Elt;
7738 }
7739
7740 // Insert this value into the result vector.
7741 Result = new InsertElementInst(Result, ExtractedElts[Idx], i,"tmp");
7742 InsertNewInstBefore(cast<Instruction>(Result), CI);
7743 }
7744 return CastInst::create(Instruction::BitCast, Result, CI.getType());
7745 }
7746 }
7747 break;
7748
7749 case Intrinsic::stackrestore: {
7750 // If the save is right next to the restore, remove the restore. This can
7751 // happen when variable allocas are DCE'd.
7752 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
7753 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
7754 BasicBlock::iterator BI = SS;
7755 if (&*++BI == II)
7756 return EraseInstFromFunction(CI);
7757 }
7758 }
7759
7760 // If the stack restore is in a return/unwind block and if there are no
7761 // allocas or calls between the restore and the return, nuke the restore.
7762 TerminatorInst *TI = II->getParent()->getTerminator();
7763 if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) {
7764 BasicBlock::iterator BI = II;
7765 bool CannotRemove = false;
7766 for (++BI; &*BI != TI; ++BI) {
7767 if (isa<AllocaInst>(BI) ||
7768 (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) {
7769 CannotRemove = true;
7770 break;
7771 }
7772 }
7773 if (!CannotRemove)
7774 return EraseInstFromFunction(CI);
7775 }
7776 break;
7777 }
7778 }
7779 }
7780
7781 return visitCallSite(II);
7782}
7783
7784// InvokeInst simplification
7785//
7786Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
7787 return visitCallSite(&II);
7788}
7789
7790// visitCallSite - Improvements for call and invoke instructions.
7791//
7792Instruction *InstCombiner::visitCallSite(CallSite CS) {
7793 bool Changed = false;
7794
7795 // If the callee is a constexpr cast of a function, attempt to move the cast
7796 // to the arguments of the call/invoke.
7797 if (transformConstExprCastCall(CS)) return 0;
7798
7799 Value *Callee = CS.getCalledValue();
7800
7801 if (Function *CalleeF = dyn_cast<Function>(Callee))
7802 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
7803 Instruction *OldCall = CS.getInstruction();
7804 // If the call and callee calling conventions don't match, this call must
7805 // be unreachable, as the call is undefined.
7806 new StoreInst(ConstantInt::getTrue(),
7807 UndefValue::get(PointerType::get(Type::Int1Ty)), OldCall);
7808 if (!OldCall->use_empty())
7809 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
7810 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
7811 return EraseInstFromFunction(*OldCall);
7812 return 0;
7813 }
7814
7815 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
7816 // This instruction is not reachable, just remove it. We insert a store to
7817 // undef so that we know that this code is not reachable, despite the fact
7818 // that we can't modify the CFG here.
7819 new StoreInst(ConstantInt::getTrue(),
7820 UndefValue::get(PointerType::get(Type::Int1Ty)),
7821 CS.getInstruction());
7822
7823 if (!CS.getInstruction()->use_empty())
7824 CS.getInstruction()->
7825 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
7826
7827 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
7828 // Don't break the CFG, insert a dummy cond branch.
7829 new BranchInst(II->getNormalDest(), II->getUnwindDest(),
7830 ConstantInt::getTrue(), II);
7831 }
7832 return EraseInstFromFunction(*CS.getInstruction());
7833 }
7834
7835 const PointerType *PTy = cast<PointerType>(Callee->getType());
7836 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
7837 if (FTy->isVarArg()) {
7838 // See if we can optimize any arguments passed through the varargs area of
7839 // the call.
7840 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
7841 E = CS.arg_end(); I != E; ++I)
7842 if (CastInst *CI = dyn_cast<CastInst>(*I)) {
7843 // If this cast does not effect the value passed through the varargs
7844 // area, we can eliminate the use of the cast.
7845 Value *Op = CI->getOperand(0);
7846 if (CI->isLosslessCast()) {
7847 *I = Op;
7848 Changed = true;
7849 }
7850 }
7851 }
7852
7853 return Changed ? CS.getInstruction() : 0;
7854}
7855
7856// transformConstExprCastCall - If the callee is a constexpr cast of a function,
7857// attempt to move the cast to the arguments of the call/invoke.
7858//
7859bool InstCombiner::transformConstExprCastCall(CallSite CS) {
7860 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
7861 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
7862 if (CE->getOpcode() != Instruction::BitCast ||
7863 !isa<Function>(CE->getOperand(0)))
7864 return false;
7865 Function *Callee = cast<Function>(CE->getOperand(0));
7866 Instruction *Caller = CS.getInstruction();
7867
7868 // Okay, this is a cast from a function to a different type. Unless doing so
7869 // would cause a type conversion of one of our arguments, change this call to
7870 // be a direct call with arguments casted to the appropriate types.
7871 //
7872 const FunctionType *FT = Callee->getFunctionType();
7873 const Type *OldRetTy = Caller->getType();
7874
7875 const FunctionType *ActualFT =
7876 cast<FunctionType>(cast<PointerType>(CE->getType())->getElementType());
7877
7878 // If the parameter attributes don't match up, don't do the xform. We don't
7879 // want to lose an sret attribute or something.
7880 if (FT->getParamAttrs() != ActualFT->getParamAttrs())
7881 return false;
7882
7883 // Check to see if we are changing the return type...
7884 if (OldRetTy != FT->getReturnType()) {
7885 if (Callee->isDeclaration() && !Caller->use_empty() &&
7886 // Conversion is ok if changing from pointer to int of same size.
7887 !(isa<PointerType>(FT->getReturnType()) &&
7888 TD->getIntPtrType() == OldRetTy))
7889 return false; // Cannot transform this return value.
7890
7891 // If the callsite is an invoke instruction, and the return value is used by
7892 // a PHI node in a successor, we cannot change the return type of the call
7893 // because there is no place to put the cast instruction (without breaking
7894 // the critical edge). Bail out in this case.
7895 if (!Caller->use_empty())
7896 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
7897 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
7898 UI != E; ++UI)
7899 if (PHINode *PN = dyn_cast<PHINode>(*UI))
7900 if (PN->getParent() == II->getNormalDest() ||
7901 PN->getParent() == II->getUnwindDest())
7902 return false;
7903 }
7904
7905 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
7906 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
7907
7908 CallSite::arg_iterator AI = CS.arg_begin();
7909 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
7910 const Type *ParamTy = FT->getParamType(i);
7911 const Type *ActTy = (*AI)->getType();
7912 ConstantInt *c = dyn_cast<ConstantInt>(*AI);
7913 //Some conversions are safe even if we do not have a body.
7914 //Either we can cast directly, or we can upconvert the argument
7915 bool isConvertible = ActTy == ParamTy ||
7916 (isa<PointerType>(ParamTy) && isa<PointerType>(ActTy)) ||
7917 (ParamTy->isInteger() && ActTy->isInteger() &&
7918 ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) ||
7919 (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()
7920 && c->getValue().isStrictlyPositive());
7921 if (Callee->isDeclaration() && !isConvertible) return false;
7922
7923 // Most other conversions can be done if we have a body, even if these
7924 // lose information, e.g. int->short.
7925 // Some conversions cannot be done at all, e.g. float to pointer.
7926 // Logic here parallels CastInst::getCastOpcode (the design there
7927 // requires legality checks like this be done before calling it).
7928 if (ParamTy->isInteger()) {
7929 if (const VectorType *VActTy = dyn_cast<VectorType>(ActTy)) {
7930 if (VActTy->getBitWidth() != ParamTy->getPrimitiveSizeInBits())
7931 return false;
7932 }
7933 if (!ActTy->isInteger() && !ActTy->isFloatingPoint() &&
7934 !isa<PointerType>(ActTy))
7935 return false;
7936 } else if (ParamTy->isFloatingPoint()) {
7937 if (const VectorType *VActTy = dyn_cast<VectorType>(ActTy)) {
7938 if (VActTy->getBitWidth() != ParamTy->getPrimitiveSizeInBits())
7939 return false;
7940 }
7941 if (!ActTy->isInteger() && !ActTy->isFloatingPoint())
7942 return false;
7943 } else if (const VectorType *VParamTy = dyn_cast<VectorType>(ParamTy)) {
7944 if (const VectorType *VActTy = dyn_cast<VectorType>(ActTy)) {
7945 if (VActTy->getBitWidth() != VParamTy->getBitWidth())
7946 return false;
7947 }
7948 if (VParamTy->getBitWidth() != ActTy->getPrimitiveSizeInBits())
7949 return false;
7950 } else if (isa<PointerType>(ParamTy)) {
7951 if (!ActTy->isInteger() && !isa<PointerType>(ActTy))
7952 return false;
7953 } else {
7954 return false;
7955 }
7956 }
7957
7958 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
7959 Callee->isDeclaration())
7960 return false; // Do not delete arguments unless we have a function body...
7961
7962 // Okay, we decided that this is a safe thing to do: go ahead and start
7963 // inserting cast instructions as necessary...
7964 std::vector<Value*> Args;
7965 Args.reserve(NumActualArgs);
7966
7967 AI = CS.arg_begin();
7968 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
7969 const Type *ParamTy = FT->getParamType(i);
7970 if ((*AI)->getType() == ParamTy) {
7971 Args.push_back(*AI);
7972 } else {
7973 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
7974 false, ParamTy, false);
7975 CastInst *NewCast = CastInst::create(opcode, *AI, ParamTy, "tmp");
7976 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
7977 }
7978 }
7979
7980 // If the function takes more arguments than the call was taking, add them
7981 // now...
7982 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
7983 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
7984
7985 // If we are removing arguments to the function, emit an obnoxious warning...
7986 if (FT->getNumParams() < NumActualArgs)
7987 if (!FT->isVarArg()) {
7988 cerr << "WARNING: While resolving call to function '"
7989 << Callee->getName() << "' arguments were dropped!\n";
7990 } else {
7991 // Add all of the arguments in their promoted form to the arg list...
7992 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
7993 const Type *PTy = getPromotedType((*AI)->getType());
7994 if (PTy != (*AI)->getType()) {
7995 // Must promote to pass through va_arg area!
7996 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
7997 PTy, false);
7998 Instruction *Cast = CastInst::create(opcode, *AI, PTy, "tmp");
7999 InsertNewInstBefore(Cast, *Caller);
8000 Args.push_back(Cast);
8001 } else {
8002 Args.push_back(*AI);
8003 }
8004 }
8005 }
8006
8007 if (FT->getReturnType() == Type::VoidTy)
8008 Caller->setName(""); // Void type should not have a name.
8009
8010 Instruction *NC;
8011 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
8012 NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
David Greene8278ef52007-08-27 19:04:21 +00008013 Args.begin(), Args.end(), Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00008014 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008015 } else {
Chris Lattner03dc7d72007-08-02 16:53:43 +00008016 NC = new CallInst(Callee, Args.begin(), Args.end(),
8017 Caller->getName(), Caller);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008018 if (cast<CallInst>(Caller)->isTailCall())
8019 cast<CallInst>(NC)->setTailCall();
8020 cast<CallInst>(NC)->setCallingConv(cast<CallInst>(Caller)->getCallingConv());
8021 }
8022
8023 // Insert a cast of the return type as necessary.
8024 Value *NV = NC;
8025 if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
8026 if (NV->getType() != Type::VoidTy) {
8027 const Type *CallerTy = Caller->getType();
8028 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
8029 CallerTy, false);
8030 NV = NC = CastInst::create(opcode, NC, CallerTy, "tmp");
8031
8032 // If this is an invoke instruction, we should insert it after the first
8033 // non-phi, instruction in the normal successor block.
8034 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
8035 BasicBlock::iterator I = II->getNormalDest()->begin();
8036 while (isa<PHINode>(I)) ++I;
8037 InsertNewInstBefore(NC, *I);
8038 } else {
8039 // Otherwise, it's a call, just insert cast right after the call instr
8040 InsertNewInstBefore(NC, *Caller);
8041 }
8042 AddUsersToWorkList(*Caller);
8043 } else {
8044 NV = UndefValue::get(Caller->getType());
8045 }
8046 }
8047
8048 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
8049 Caller->replaceAllUsesWith(NV);
8050 Caller->eraseFromParent();
8051 RemoveFromWorkList(Caller);
8052 return true;
8053}
8054
8055/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
8056/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
8057/// and a single binop.
8058Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
8059 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
8060 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
8061 isa<CmpInst>(FirstInst));
8062 unsigned Opc = FirstInst->getOpcode();
8063 Value *LHSVal = FirstInst->getOperand(0);
8064 Value *RHSVal = FirstInst->getOperand(1);
8065
8066 const Type *LHSType = LHSVal->getType();
8067 const Type *RHSType = RHSVal->getType();
8068
8069 // Scan to see if all operands are the same opcode, all have one use, and all
8070 // kill their operands (i.e. the operands have one use).
8071 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
8072 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
8073 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
8074 // Verify type of the LHS matches so we don't fold cmp's of different
8075 // types or GEP's with different index types.
8076 I->getOperand(0)->getType() != LHSType ||
8077 I->getOperand(1)->getType() != RHSType)
8078 return 0;
8079
8080 // If they are CmpInst instructions, check their predicates
8081 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
8082 if (cast<CmpInst>(I)->getPredicate() !=
8083 cast<CmpInst>(FirstInst)->getPredicate())
8084 return 0;
8085
8086 // Keep track of which operand needs a phi node.
8087 if (I->getOperand(0) != LHSVal) LHSVal = 0;
8088 if (I->getOperand(1) != RHSVal) RHSVal = 0;
8089 }
8090
8091 // Otherwise, this is safe to transform, determine if it is profitable.
8092
8093 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
8094 // Indexes are often folded into load/store instructions, so we don't want to
8095 // hide them behind a phi.
8096 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
8097 return 0;
8098
8099 Value *InLHS = FirstInst->getOperand(0);
8100 Value *InRHS = FirstInst->getOperand(1);
8101 PHINode *NewLHS = 0, *NewRHS = 0;
8102 if (LHSVal == 0) {
8103 NewLHS = new PHINode(LHSType, FirstInst->getOperand(0)->getName()+".pn");
8104 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
8105 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
8106 InsertNewInstBefore(NewLHS, PN);
8107 LHSVal = NewLHS;
8108 }
8109
8110 if (RHSVal == 0) {
8111 NewRHS = new PHINode(RHSType, FirstInst->getOperand(1)->getName()+".pn");
8112 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
8113 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
8114 InsertNewInstBefore(NewRHS, PN);
8115 RHSVal = NewRHS;
8116 }
8117
8118 // Add all operands to the new PHIs.
8119 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8120 if (NewLHS) {
8121 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
8122 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
8123 }
8124 if (NewRHS) {
8125 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
8126 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
8127 }
8128 }
8129
8130 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
8131 return BinaryOperator::create(BinOp->getOpcode(), LHSVal, RHSVal);
8132 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
8133 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
8134 RHSVal);
8135 else {
8136 assert(isa<GetElementPtrInst>(FirstInst));
8137 return new GetElementPtrInst(LHSVal, RHSVal);
8138 }
8139}
8140
8141/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
8142/// of the block that defines it. This means that it must be obvious the value
8143/// of the load is not changed from the point of the load to the end of the
8144/// block it is in.
8145///
8146/// Finally, it is safe, but not profitable, to sink a load targetting a
8147/// non-address-taken alloca. Doing so will cause us to not promote the alloca
8148/// to a register.
8149static bool isSafeToSinkLoad(LoadInst *L) {
8150 BasicBlock::iterator BBI = L, E = L->getParent()->end();
8151
8152 for (++BBI; BBI != E; ++BBI)
8153 if (BBI->mayWriteToMemory())
8154 return false;
8155
8156 // Check for non-address taken alloca. If not address-taken already, it isn't
8157 // profitable to do this xform.
8158 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
8159 bool isAddressTaken = false;
8160 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
8161 UI != E; ++UI) {
8162 if (isa<LoadInst>(UI)) continue;
8163 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
8164 // If storing TO the alloca, then the address isn't taken.
8165 if (SI->getOperand(1) == AI) continue;
8166 }
8167 isAddressTaken = true;
8168 break;
8169 }
8170
8171 if (!isAddressTaken)
8172 return false;
8173 }
8174
8175 return true;
8176}
8177
8178
8179// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
8180// operator and they all are only used by the PHI, PHI together their
8181// inputs, and do the operation once, to the result of the PHI.
8182Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
8183 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
8184
8185 // Scan the instruction, looking for input operations that can be folded away.
8186 // If all input operands to the phi are the same instruction (e.g. a cast from
8187 // the same type or "+42") we can pull the operation through the PHI, reducing
8188 // code size and simplifying code.
8189 Constant *ConstantOp = 0;
8190 const Type *CastSrcTy = 0;
8191 bool isVolatile = false;
8192 if (isa<CastInst>(FirstInst)) {
8193 CastSrcTy = FirstInst->getOperand(0)->getType();
8194 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
8195 // Can fold binop, compare or shift here if the RHS is a constant,
8196 // otherwise call FoldPHIArgBinOpIntoPHI.
8197 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
8198 if (ConstantOp == 0)
8199 return FoldPHIArgBinOpIntoPHI(PN);
8200 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
8201 isVolatile = LI->isVolatile();
8202 // We can't sink the load if the loaded value could be modified between the
8203 // load and the PHI.
8204 if (LI->getParent() != PN.getIncomingBlock(0) ||
8205 !isSafeToSinkLoad(LI))
8206 return 0;
8207 } else if (isa<GetElementPtrInst>(FirstInst)) {
8208 if (FirstInst->getNumOperands() == 2)
8209 return FoldPHIArgBinOpIntoPHI(PN);
8210 // Can't handle general GEPs yet.
8211 return 0;
8212 } else {
8213 return 0; // Cannot fold this operation.
8214 }
8215
8216 // Check to see if all arguments are the same operation.
8217 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8218 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
8219 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
8220 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
8221 return 0;
8222 if (CastSrcTy) {
8223 if (I->getOperand(0)->getType() != CastSrcTy)
8224 return 0; // Cast operation must match.
8225 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8226 // We can't sink the load if the loaded value could be modified between
8227 // the load and the PHI.
8228 if (LI->isVolatile() != isVolatile ||
8229 LI->getParent() != PN.getIncomingBlock(i) ||
8230 !isSafeToSinkLoad(LI))
8231 return 0;
8232 } else if (I->getOperand(1) != ConstantOp) {
8233 return 0;
8234 }
8235 }
8236
8237 // Okay, they are all the same operation. Create a new PHI node of the
8238 // correct type, and PHI together all of the LHS's of the instructions.
8239 PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
8240 PN.getName()+".in");
8241 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
8242
8243 Value *InVal = FirstInst->getOperand(0);
8244 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
8245
8246 // Add all operands to the new PHI.
8247 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8248 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
8249 if (NewInVal != InVal)
8250 InVal = 0;
8251 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
8252 }
8253
8254 Value *PhiVal;
8255 if (InVal) {
8256 // The new PHI unions all of the same values together. This is really
8257 // common, so we handle it intelligently here for compile-time speed.
8258 PhiVal = InVal;
8259 delete NewPN;
8260 } else {
8261 InsertNewInstBefore(NewPN, PN);
8262 PhiVal = NewPN;
8263 }
8264
8265 // Insert and return the new operation.
8266 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
8267 return CastInst::create(FirstCI->getOpcode(), PhiVal, PN.getType());
8268 else if (isa<LoadInst>(FirstInst))
8269 return new LoadInst(PhiVal, "", isVolatile);
8270 else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
8271 return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
8272 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
8273 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(),
8274 PhiVal, ConstantOp);
8275 else
8276 assert(0 && "Unknown operation");
8277 return 0;
8278}
8279
8280/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
8281/// that is dead.
8282static bool DeadPHICycle(PHINode *PN,
8283 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
8284 if (PN->use_empty()) return true;
8285 if (!PN->hasOneUse()) return false;
8286
8287 // Remember this node, and if we find the cycle, return.
8288 if (!PotentiallyDeadPHIs.insert(PN))
8289 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +00008290
8291 // Don't scan crazily complex things.
8292 if (PotentiallyDeadPHIs.size() == 16)
8293 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008294
8295 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
8296 return DeadPHICycle(PU, PotentiallyDeadPHIs);
8297
8298 return false;
8299}
8300
8301// PHINode simplification
8302//
8303Instruction *InstCombiner::visitPHINode(PHINode &PN) {
8304 // If LCSSA is around, don't mess with Phi nodes
8305 if (MustPreserveLCSSA) return 0;
8306
8307 if (Value *V = PN.hasConstantValue())
8308 return ReplaceInstUsesWith(PN, V);
8309
8310 // If all PHI operands are the same operation, pull them through the PHI,
8311 // reducing code size.
8312 if (isa<Instruction>(PN.getIncomingValue(0)) &&
8313 PN.getIncomingValue(0)->hasOneUse())
8314 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
8315 return Result;
8316
8317 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
8318 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
8319 // PHI)... break the cycle.
8320 if (PN.hasOneUse()) {
8321 Instruction *PHIUser = cast<Instruction>(PN.use_back());
8322 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
8323 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
8324 PotentiallyDeadPHIs.insert(&PN);
8325 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
8326 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
8327 }
8328
8329 // If this phi has a single use, and if that use just computes a value for
8330 // the next iteration of a loop, delete the phi. This occurs with unused
8331 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
8332 // common case here is good because the only other things that catch this
8333 // are induction variable analysis (sometimes) and ADCE, which is only run
8334 // late.
8335 if (PHIUser->hasOneUse() &&
8336 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
8337 PHIUser->use_back() == &PN) {
8338 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
8339 }
8340 }
8341
8342 return 0;
8343}
8344
8345static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
8346 Instruction *InsertPoint,
8347 InstCombiner *IC) {
8348 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
8349 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
8350 // We must cast correctly to the pointer type. Ensure that we
8351 // sign extend the integer value if it is smaller as this is
8352 // used for address computation.
8353 Instruction::CastOps opcode =
8354 (VTySize < PtrSize ? Instruction::SExt :
8355 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
8356 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
8357}
8358
8359
8360Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
8361 Value *PtrOp = GEP.getOperand(0);
8362 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
8363 // If so, eliminate the noop.
8364 if (GEP.getNumOperands() == 1)
8365 return ReplaceInstUsesWith(GEP, PtrOp);
8366
8367 if (isa<UndefValue>(GEP.getOperand(0)))
8368 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
8369
8370 bool HasZeroPointerIndex = false;
8371 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
8372 HasZeroPointerIndex = C->isNullValue();
8373
8374 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
8375 return ReplaceInstUsesWith(GEP, PtrOp);
8376
8377 // Eliminate unneeded casts for indices.
8378 bool MadeChange = false;
8379
8380 gep_type_iterator GTI = gep_type_begin(GEP);
8381 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI) {
8382 if (isa<SequentialType>(*GTI)) {
8383 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
8384 if (CI->getOpcode() == Instruction::ZExt ||
8385 CI->getOpcode() == Instruction::SExt) {
8386 const Type *SrcTy = CI->getOperand(0)->getType();
8387 // We can eliminate a cast from i32 to i64 iff the target
8388 // is a 32-bit pointer target.
8389 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
8390 MadeChange = true;
8391 GEP.setOperand(i, CI->getOperand(0));
8392 }
8393 }
8394 }
8395 // If we are using a wider index than needed for this platform, shrink it
8396 // to what we need. If the incoming value needs a cast instruction,
8397 // insert it. This explicit cast can make subsequent optimizations more
8398 // obvious.
8399 Value *Op = GEP.getOperand(i);
8400 if (TD->getTypeSize(Op->getType()) > TD->getPointerSize())
8401 if (Constant *C = dyn_cast<Constant>(Op)) {
8402 GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType()));
8403 MadeChange = true;
8404 } else {
8405 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
8406 GEP);
8407 GEP.setOperand(i, Op);
8408 MadeChange = true;
8409 }
8410 }
8411 }
8412 if (MadeChange) return &GEP;
8413
8414 // If this GEP instruction doesn't move the pointer, and if the input operand
8415 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
8416 // real input to the dest type.
8417 if (GEP.hasAllZeroIndices() && isa<BitCastInst>(GEP.getOperand(0)))
8418 return new BitCastInst(cast<BitCastInst>(GEP.getOperand(0))->getOperand(0),
8419 GEP.getType());
8420
8421 // Combine Indices - If the source pointer to this getelementptr instruction
8422 // is a getelementptr instruction, combine the indices of the two
8423 // getelementptr instructions into a single instruction.
8424 //
8425 SmallVector<Value*, 8> SrcGEPOperands;
8426 if (User *Src = dyn_castGetElementPtr(PtrOp))
8427 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
8428
8429 if (!SrcGEPOperands.empty()) {
8430 // Note that if our source is a gep chain itself that we wait for that
8431 // chain to be resolved before we perform this transformation. This
8432 // avoids us creating a TON of code in some cases.
8433 //
8434 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
8435 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
8436 return 0; // Wait until our source is folded to completion.
8437
8438 SmallVector<Value*, 8> Indices;
8439
8440 // Find out whether the last index in the source GEP is a sequential idx.
8441 bool EndsWithSequential = false;
8442 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
8443 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
8444 EndsWithSequential = !isa<StructType>(*I);
8445
8446 // Can we combine the two pointer arithmetics offsets?
8447 if (EndsWithSequential) {
8448 // Replace: gep (gep %P, long B), long A, ...
8449 // With: T = long A+B; gep %P, T, ...
8450 //
8451 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
8452 if (SO1 == Constant::getNullValue(SO1->getType())) {
8453 Sum = GO1;
8454 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
8455 Sum = SO1;
8456 } else {
8457 // If they aren't the same type, convert both to an integer of the
8458 // target's pointer size.
8459 if (SO1->getType() != GO1->getType()) {
8460 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
8461 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
8462 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
8463 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
8464 } else {
8465 unsigned PS = TD->getPointerSize();
8466 if (TD->getTypeSize(SO1->getType()) == PS) {
8467 // Convert GO1 to SO1's type.
8468 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
8469
8470 } else if (TD->getTypeSize(GO1->getType()) == PS) {
8471 // Convert SO1 to GO1's type.
8472 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
8473 } else {
8474 const Type *PT = TD->getIntPtrType();
8475 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
8476 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
8477 }
8478 }
8479 }
8480 if (isa<Constant>(SO1) && isa<Constant>(GO1))
8481 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
8482 else {
8483 Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
8484 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
8485 }
8486 }
8487
8488 // Recycle the GEP we already have if possible.
8489 if (SrcGEPOperands.size() == 2) {
8490 GEP.setOperand(0, SrcGEPOperands[0]);
8491 GEP.setOperand(1, Sum);
8492 return &GEP;
8493 } else {
8494 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
8495 SrcGEPOperands.end()-1);
8496 Indices.push_back(Sum);
8497 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
8498 }
8499 } else if (isa<Constant>(*GEP.idx_begin()) &&
8500 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
8501 SrcGEPOperands.size() != 1) {
8502 // Otherwise we can do the fold if the first index of the GEP is a zero
8503 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
8504 SrcGEPOperands.end());
8505 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
8506 }
8507
8508 if (!Indices.empty())
David Greene393be882007-09-04 15:46:09 +00008509 return new GetElementPtrInst(SrcGEPOperands[0], Indices.begin(),
8510 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008511
8512 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
8513 // GEP of global variable. If all of the indices for this GEP are
8514 // constants, we can promote this to a constexpr instead of an instruction.
8515
8516 // Scan for nonconstants...
8517 SmallVector<Constant*, 8> Indices;
8518 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
8519 for (; I != E && isa<Constant>(*I); ++I)
8520 Indices.push_back(cast<Constant>(*I));
8521
8522 if (I == E) { // If they are all constants...
8523 Constant *CE = ConstantExpr::getGetElementPtr(GV,
8524 &Indices[0],Indices.size());
8525
8526 // Replace all uses of the GEP with the new constexpr...
8527 return ReplaceInstUsesWith(GEP, CE);
8528 }
8529 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
8530 if (!isa<PointerType>(X->getType())) {
8531 // Not interesting. Source pointer must be a cast from pointer.
8532 } else if (HasZeroPointerIndex) {
8533 // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
8534 // into : GEP [10 x ubyte]* X, long 0, ...
8535 //
8536 // This occurs when the program declares an array extern like "int X[];"
8537 //
8538 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
8539 const PointerType *XTy = cast<PointerType>(X->getType());
8540 if (const ArrayType *XATy =
8541 dyn_cast<ArrayType>(XTy->getElementType()))
8542 if (const ArrayType *CATy =
8543 dyn_cast<ArrayType>(CPTy->getElementType()))
8544 if (CATy->getElementType() == XATy->getElementType()) {
8545 // At this point, we know that the cast source type is a pointer
8546 // to an array of the same type as the destination pointer
8547 // array. Because the array type is never stepped over (there
8548 // is a leading zero) we can fold the cast into this GEP.
8549 GEP.setOperand(0, X);
8550 return &GEP;
8551 }
8552 } else if (GEP.getNumOperands() == 2) {
8553 // Transform things like:
8554 // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V
8555 // into: %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast
8556 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
8557 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
8558 if (isa<ArrayType>(SrcElTy) &&
8559 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
8560 TD->getTypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +00008561 Value *Idx[2];
8562 Idx[0] = Constant::getNullValue(Type::Int32Ty);
8563 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008564 Value *V = InsertNewInstBefore(
David Greene393be882007-09-04 15:46:09 +00008565 new GetElementPtrInst(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008566 // V and GEP are both pointer types --> BitCast
8567 return new BitCastInst(V, GEP.getType());
8568 }
8569
8570 // Transform things like:
8571 // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp
8572 // (where tmp = 8*tmp2) into:
8573 // getelementptr [100 x double]* %arr, int 0, int %tmp.2
8574
8575 if (isa<ArrayType>(SrcElTy) &&
8576 (ResElTy == Type::Int8Ty || ResElTy == Type::Int8Ty)) {
8577 uint64_t ArrayEltSize =
8578 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType());
8579
8580 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
8581 // allow either a mul, shift, or constant here.
8582 Value *NewIdx = 0;
8583 ConstantInt *Scale = 0;
8584 if (ArrayEltSize == 1) {
8585 NewIdx = GEP.getOperand(1);
8586 Scale = ConstantInt::get(NewIdx->getType(), 1);
8587 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
8588 NewIdx = ConstantInt::get(CI->getType(), 1);
8589 Scale = CI;
8590 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
8591 if (Inst->getOpcode() == Instruction::Shl &&
8592 isa<ConstantInt>(Inst->getOperand(1))) {
8593 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
8594 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
8595 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
8596 NewIdx = Inst->getOperand(0);
8597 } else if (Inst->getOpcode() == Instruction::Mul &&
8598 isa<ConstantInt>(Inst->getOperand(1))) {
8599 Scale = cast<ConstantInt>(Inst->getOperand(1));
8600 NewIdx = Inst->getOperand(0);
8601 }
8602 }
8603
8604 // If the index will be to exactly the right offset with the scale taken
8605 // out, perform the transformation.
8606 if (Scale && Scale->getZExtValue() % ArrayEltSize == 0) {
8607 if (isa<ConstantInt>(Scale))
8608 Scale = ConstantInt::get(Scale->getType(),
8609 Scale->getZExtValue() / ArrayEltSize);
8610 if (Scale->getZExtValue() != 1) {
8611 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
8612 true /*SExt*/);
8613 Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
8614 NewIdx = InsertNewInstBefore(Sc, GEP);
8615 }
8616
8617 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +00008618 Value *Idx[2];
8619 Idx[0] = Constant::getNullValue(Type::Int32Ty);
8620 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008621 Instruction *NewGEP =
David Greene393be882007-09-04 15:46:09 +00008622 new GetElementPtrInst(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008623 NewGEP = InsertNewInstBefore(NewGEP, GEP);
8624 // The NewGEP must be pointer typed, so must the old one -> BitCast
8625 return new BitCastInst(NewGEP, GEP.getType());
8626 }
8627 }
8628 }
8629 }
8630
8631 return 0;
8632}
8633
8634Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
8635 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
8636 if (AI.isArrayAllocation()) // Check C != 1
8637 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
8638 const Type *NewTy =
8639 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
8640 AllocationInst *New = 0;
8641
8642 // Create and insert the replacement instruction...
8643 if (isa<MallocInst>(AI))
8644 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
8645 else {
8646 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
8647 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
8648 }
8649
8650 InsertNewInstBefore(New, AI);
8651
8652 // Scan to the end of the allocation instructions, to skip over a block of
8653 // allocas if possible...
8654 //
8655 BasicBlock::iterator It = New;
8656 while (isa<AllocationInst>(*It)) ++It;
8657
8658 // Now that I is pointing to the first non-allocation-inst in the block,
8659 // insert our getelementptr instruction...
8660 //
8661 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +00008662 Value *Idx[2];
8663 Idx[0] = NullIdx;
8664 Idx[1] = NullIdx;
8665 Value *V = new GetElementPtrInst(New, Idx, Idx + 2,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008666 New->getName()+".sub", It);
8667
8668 // Now make everything use the getelementptr instead of the original
8669 // allocation.
8670 return ReplaceInstUsesWith(AI, V);
8671 } else if (isa<UndefValue>(AI.getArraySize())) {
8672 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
8673 }
8674
8675 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
8676 // Note that we only do this for alloca's, because malloc should allocate and
8677 // return a unique pointer, even for a zero byte allocation.
8678 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
8679 TD->getTypeSize(AI.getAllocatedType()) == 0)
8680 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
8681
8682 return 0;
8683}
8684
8685Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
8686 Value *Op = FI.getOperand(0);
8687
8688 // free undef -> unreachable.
8689 if (isa<UndefValue>(Op)) {
8690 // Insert a new store to null because we cannot modify the CFG here.
8691 new StoreInst(ConstantInt::getTrue(),
8692 UndefValue::get(PointerType::get(Type::Int1Ty)), &FI);
8693 return EraseInstFromFunction(FI);
8694 }
8695
8696 // If we have 'free null' delete the instruction. This can happen in stl code
8697 // when lots of inlining happens.
8698 if (isa<ConstantPointerNull>(Op))
8699 return EraseInstFromFunction(FI);
8700
8701 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
8702 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
8703 FI.setOperand(0, CI->getOperand(0));
8704 return &FI;
8705 }
8706
8707 // Change free (gep X, 0,0,0,0) into free(X)
8708 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
8709 if (GEPI->hasAllZeroIndices()) {
8710 AddToWorkList(GEPI);
8711 FI.setOperand(0, GEPI->getOperand(0));
8712 return &FI;
8713 }
8714 }
8715
8716 // Change free(malloc) into nothing, if the malloc has a single use.
8717 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
8718 if (MI->hasOneUse()) {
8719 EraseInstFromFunction(FI);
8720 return EraseInstFromFunction(*MI);
8721 }
8722
8723 return 0;
8724}
8725
8726
8727/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
8728static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) {
8729 User *CI = cast<User>(LI.getOperand(0));
8730 Value *CastOp = CI->getOperand(0);
8731
8732 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
8733 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
8734 const Type *SrcPTy = SrcTy->getElementType();
8735
8736 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
8737 isa<VectorType>(DestPTy)) {
8738 // If the source is an array, the code below will not succeed. Check to
8739 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
8740 // constants.
8741 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
8742 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
8743 if (ASrcTy->getNumElements() != 0) {
8744 Value *Idxs[2];
8745 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
8746 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
8747 SrcTy = cast<PointerType>(CastOp->getType());
8748 SrcPTy = SrcTy->getElementType();
8749 }
8750
8751 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
8752 isa<VectorType>(SrcPTy)) &&
8753 // Do not allow turning this into a load of an integer, which is then
8754 // casted to a pointer, this pessimizes pointer analysis a lot.
8755 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
8756 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
8757 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
8758
8759 // Okay, we are casting from one integer or pointer type to another of
8760 // the same size. Instead of casting the pointer before the load, cast
8761 // the result of the loaded value.
8762 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
8763 CI->getName(),
8764 LI.isVolatile()),LI);
8765 // Now cast the result of the load.
8766 return new BitCastInst(NewLoad, LI.getType());
8767 }
8768 }
8769 }
8770 return 0;
8771}
8772
8773/// isSafeToLoadUnconditionally - Return true if we know that executing a load
8774/// from this value cannot trap. If it is not obviously safe to load from the
8775/// specified pointer, we do a quick local scan of the basic block containing
8776/// ScanFrom, to determine if the address is already accessed.
8777static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
8778 // If it is an alloca or global variable, it is always safe to load from.
8779 if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
8780
8781 // Otherwise, be a little bit agressive by scanning the local block where we
8782 // want to check to see if the pointer is already being loaded or stored
8783 // from/to. If so, the previous load or store would have already trapped,
8784 // so there is no harm doing an extra load (also, CSE will later eliminate
8785 // the load entirely).
8786 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
8787
8788 while (BBI != E) {
8789 --BBI;
8790
8791 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
8792 if (LI->getOperand(0) == V) return true;
8793 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
8794 if (SI->getOperand(1) == V) return true;
8795
8796 }
8797 return false;
8798}
8799
Chris Lattner0270a112007-08-11 18:48:48 +00008800/// GetUnderlyingObject - Trace through a series of getelementptrs and bitcasts
8801/// until we find the underlying object a pointer is referring to or something
8802/// we don't understand. Note that the returned pointer may be offset from the
8803/// input, because we ignore GEP indices.
8804static Value *GetUnderlyingObject(Value *Ptr) {
8805 while (1) {
8806 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
8807 if (CE->getOpcode() == Instruction::BitCast ||
8808 CE->getOpcode() == Instruction::GetElementPtr)
8809 Ptr = CE->getOperand(0);
8810 else
8811 return Ptr;
8812 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) {
8813 Ptr = BCI->getOperand(0);
8814 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
8815 Ptr = GEP->getOperand(0);
8816 } else {
8817 return Ptr;
8818 }
8819 }
8820}
8821
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008822Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
8823 Value *Op = LI.getOperand(0);
8824
Dan Gohman5c4d0e12007-07-20 16:34:21 +00008825 // Attempt to improve the alignment.
Chris Lattner47cf3452007-08-09 19:05:49 +00008826 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op, TD);
Dan Gohman5c4d0e12007-07-20 16:34:21 +00008827 if (KnownAlign > LI.getAlignment())
8828 LI.setAlignment(KnownAlign);
8829
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008830 // load (cast X) --> cast (load X) iff safe
8831 if (isa<CastInst>(Op))
8832 if (Instruction *Res = InstCombineLoadCast(*this, LI))
8833 return Res;
8834
8835 // None of the following transforms are legal for volatile loads.
8836 if (LI.isVolatile()) return 0;
8837
8838 if (&LI.getParent()->front() != &LI) {
8839 BasicBlock::iterator BBI = &LI; --BBI;
8840 // If the instruction immediately before this is a store to the same
8841 // address, do a simple form of store->load forwarding.
8842 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
8843 if (SI->getOperand(1) == LI.getOperand(0))
8844 return ReplaceInstUsesWith(LI, SI->getOperand(0));
8845 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
8846 if (LIB->getOperand(0) == LI.getOperand(0))
8847 return ReplaceInstUsesWith(LI, LIB);
8848 }
8849
8850 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op))
8851 if (isa<ConstantPointerNull>(GEPI->getOperand(0))) {
8852 // Insert a new store to null instruction before the load to indicate
8853 // that this code is not reachable. We do this instead of inserting
8854 // an unreachable instruction directly because we cannot modify the
8855 // CFG.
8856 new StoreInst(UndefValue::get(LI.getType()),
8857 Constant::getNullValue(Op->getType()), &LI);
8858 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
8859 }
8860
8861 if (Constant *C = dyn_cast<Constant>(Op)) {
8862 // load null/undef -> undef
8863 if ((C->isNullValue() || isa<UndefValue>(C))) {
8864 // Insert a new store to null instruction before the load to indicate that
8865 // this code is not reachable. We do this instead of inserting an
8866 // unreachable instruction directly because we cannot modify the CFG.
8867 new StoreInst(UndefValue::get(LI.getType()),
8868 Constant::getNullValue(Op->getType()), &LI);
8869 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
8870 }
8871
8872 // Instcombine load (constant global) into the value loaded.
8873 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
8874 if (GV->isConstant() && !GV->isDeclaration())
8875 return ReplaceInstUsesWith(LI, GV->getInitializer());
8876
8877 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
8878 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
8879 if (CE->getOpcode() == Instruction::GetElementPtr) {
8880 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
8881 if (GV->isConstant() && !GV->isDeclaration())
8882 if (Constant *V =
8883 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
8884 return ReplaceInstUsesWith(LI, V);
8885 if (CE->getOperand(0)->isNullValue()) {
8886 // Insert a new store to null instruction before the load to indicate
8887 // that this code is not reachable. We do this instead of inserting
8888 // an unreachable instruction directly because we cannot modify the
8889 // CFG.
8890 new StoreInst(UndefValue::get(LI.getType()),
8891 Constant::getNullValue(Op->getType()), &LI);
8892 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
8893 }
8894
8895 } else if (CE->isCast()) {
8896 if (Instruction *Res = InstCombineLoadCast(*this, LI))
8897 return Res;
8898 }
8899 }
Chris Lattner0270a112007-08-11 18:48:48 +00008900
8901 // If this load comes from anywhere in a constant global, and if the global
8902 // is all undef or zero, we know what it loads.
8903 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Op))) {
8904 if (GV->isConstant() && GV->hasInitializer()) {
8905 if (GV->getInitializer()->isNullValue())
8906 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
8907 else if (isa<UndefValue>(GV->getInitializer()))
8908 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
8909 }
8910 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008911
8912 if (Op->hasOneUse()) {
8913 // Change select and PHI nodes to select values instead of addresses: this
8914 // helps alias analysis out a lot, allows many others simplifications, and
8915 // exposes redundancy in the code.
8916 //
8917 // Note that we cannot do the transformation unless we know that the
8918 // introduced loads cannot trap! Something like this is valid as long as
8919 // the condition is always false: load (select bool %C, int* null, int* %G),
8920 // but it would not be valid if we transformed it to load from null
8921 // unconditionally.
8922 //
8923 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
8924 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
8925 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
8926 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
8927 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
8928 SI->getOperand(1)->getName()+".val"), LI);
8929 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
8930 SI->getOperand(2)->getName()+".val"), LI);
8931 return new SelectInst(SI->getCondition(), V1, V2);
8932 }
8933
8934 // load (select (cond, null, P)) -> load P
8935 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
8936 if (C->isNullValue()) {
8937 LI.setOperand(0, SI->getOperand(2));
8938 return &LI;
8939 }
8940
8941 // load (select (cond, P, null)) -> load P
8942 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
8943 if (C->isNullValue()) {
8944 LI.setOperand(0, SI->getOperand(1));
8945 return &LI;
8946 }
8947 }
8948 }
8949 return 0;
8950}
8951
8952/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
8953/// when possible.
8954static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
8955 User *CI = cast<User>(SI.getOperand(1));
8956 Value *CastOp = CI->getOperand(0);
8957
8958 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
8959 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
8960 const Type *SrcPTy = SrcTy->getElementType();
8961
8962 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
8963 // If the source is an array, the code below will not succeed. Check to
8964 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
8965 // constants.
8966 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
8967 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
8968 if (ASrcTy->getNumElements() != 0) {
8969 Value* Idxs[2];
8970 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
8971 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
8972 SrcTy = cast<PointerType>(CastOp->getType());
8973 SrcPTy = SrcTy->getElementType();
8974 }
8975
8976 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
8977 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
8978 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
8979
8980 // Okay, we are casting from one integer or pointer type to another of
8981 // the same size. Instead of casting the pointer before
8982 // the store, cast the value to be stored.
8983 Value *NewCast;
8984 Value *SIOp0 = SI.getOperand(0);
8985 Instruction::CastOps opcode = Instruction::BitCast;
8986 const Type* CastSrcTy = SIOp0->getType();
8987 const Type* CastDstTy = SrcPTy;
8988 if (isa<PointerType>(CastDstTy)) {
8989 if (CastSrcTy->isInteger())
8990 opcode = Instruction::IntToPtr;
8991 } else if (isa<IntegerType>(CastDstTy)) {
8992 if (isa<PointerType>(SIOp0->getType()))
8993 opcode = Instruction::PtrToInt;
8994 }
8995 if (Constant *C = dyn_cast<Constant>(SIOp0))
8996 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
8997 else
8998 NewCast = IC.InsertNewInstBefore(
8999 CastInst::create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
9000 SI);
9001 return new StoreInst(NewCast, CastOp);
9002 }
9003 }
9004 }
9005 return 0;
9006}
9007
9008Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
9009 Value *Val = SI.getOperand(0);
9010 Value *Ptr = SI.getOperand(1);
9011
9012 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
9013 EraseInstFromFunction(SI);
9014 ++NumCombined;
9015 return 0;
9016 }
9017
9018 // If the RHS is an alloca with a single use, zapify the store, making the
9019 // alloca dead.
9020 if (Ptr->hasOneUse()) {
9021 if (isa<AllocaInst>(Ptr)) {
9022 EraseInstFromFunction(SI);
9023 ++NumCombined;
9024 return 0;
9025 }
9026
9027 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
9028 if (isa<AllocaInst>(GEP->getOperand(0)) &&
9029 GEP->getOperand(0)->hasOneUse()) {
9030 EraseInstFromFunction(SI);
9031 ++NumCombined;
9032 return 0;
9033 }
9034 }
9035
Dan Gohman5c4d0e12007-07-20 16:34:21 +00009036 // Attempt to improve the alignment.
Chris Lattner47cf3452007-08-09 19:05:49 +00009037 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr, TD);
Dan Gohman5c4d0e12007-07-20 16:34:21 +00009038 if (KnownAlign > SI.getAlignment())
9039 SI.setAlignment(KnownAlign);
9040
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009041 // Do really simple DSE, to catch cases where there are several consequtive
9042 // stores to the same location, separated by a few arithmetic operations. This
9043 // situation often occurs with bitfield accesses.
9044 BasicBlock::iterator BBI = &SI;
9045 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
9046 --ScanInsts) {
9047 --BBI;
9048
9049 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
9050 // Prev store isn't volatile, and stores to the same location?
9051 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
9052 ++NumDeadStore;
9053 ++BBI;
9054 EraseInstFromFunction(*PrevSI);
9055 continue;
9056 }
9057 break;
9058 }
9059
9060 // If this is a load, we have to stop. However, if the loaded value is from
9061 // the pointer we're loading and is producing the pointer we're storing,
9062 // then *this* store is dead (X = load P; store X -> P).
9063 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
9064 if (LI == Val && LI->getOperand(0) == Ptr) {
9065 EraseInstFromFunction(SI);
9066 ++NumCombined;
9067 return 0;
9068 }
9069 // Otherwise, this is a load from some other location. Stores before it
9070 // may not be dead.
9071 break;
9072 }
9073
9074 // Don't skip over loads or things that can modify memory.
9075 if (BBI->mayWriteToMemory())
9076 break;
9077 }
9078
9079
9080 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
9081
9082 // store X, null -> turns into 'unreachable' in SimplifyCFG
9083 if (isa<ConstantPointerNull>(Ptr)) {
9084 if (!isa<UndefValue>(Val)) {
9085 SI.setOperand(0, UndefValue::get(Val->getType()));
9086 if (Instruction *U = dyn_cast<Instruction>(Val))
9087 AddToWorkList(U); // Dropped a use.
9088 ++NumCombined;
9089 }
9090 return 0; // Do not modify these!
9091 }
9092
9093 // store undef, Ptr -> noop
9094 if (isa<UndefValue>(Val)) {
9095 EraseInstFromFunction(SI);
9096 ++NumCombined;
9097 return 0;
9098 }
9099
9100 // If the pointer destination is a cast, see if we can fold the cast into the
9101 // source instead.
9102 if (isa<CastInst>(Ptr))
9103 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
9104 return Res;
9105 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
9106 if (CE->isCast())
9107 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
9108 return Res;
9109
9110
9111 // If this store is the last instruction in the basic block, and if the block
9112 // ends with an unconditional branch, try to move it to the successor block.
9113 BBI = &SI; ++BBI;
9114 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
9115 if (BI->isUnconditional())
9116 if (SimplifyStoreAtEndOfBlock(SI))
9117 return 0; // xform done!
9118
9119 return 0;
9120}
9121
9122/// SimplifyStoreAtEndOfBlock - Turn things like:
9123/// if () { *P = v1; } else { *P = v2 }
9124/// into a phi node with a store in the successor.
9125///
9126/// Simplify things like:
9127/// *P = v1; if () { *P = v2; }
9128/// into a phi node with a store in the successor.
9129///
9130bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
9131 BasicBlock *StoreBB = SI.getParent();
9132
9133 // Check to see if the successor block has exactly two incoming edges. If
9134 // so, see if the other predecessor contains a store to the same location.
9135 // if so, insert a PHI node (if needed) and move the stores down.
9136 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
9137
9138 // Determine whether Dest has exactly two predecessors and, if so, compute
9139 // the other predecessor.
9140 pred_iterator PI = pred_begin(DestBB);
9141 BasicBlock *OtherBB = 0;
9142 if (*PI != StoreBB)
9143 OtherBB = *PI;
9144 ++PI;
9145 if (PI == pred_end(DestBB))
9146 return false;
9147
9148 if (*PI != StoreBB) {
9149 if (OtherBB)
9150 return false;
9151 OtherBB = *PI;
9152 }
9153 if (++PI != pred_end(DestBB))
9154 return false;
9155
9156
9157 // Verify that the other block ends in a branch and is not otherwise empty.
9158 BasicBlock::iterator BBI = OtherBB->getTerminator();
9159 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
9160 if (!OtherBr || BBI == OtherBB->begin())
9161 return false;
9162
9163 // If the other block ends in an unconditional branch, check for the 'if then
9164 // else' case. there is an instruction before the branch.
9165 StoreInst *OtherStore = 0;
9166 if (OtherBr->isUnconditional()) {
9167 // If this isn't a store, or isn't a store to the same location, bail out.
9168 --BBI;
9169 OtherStore = dyn_cast<StoreInst>(BBI);
9170 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
9171 return false;
9172 } else {
9173 // Otherwise, the other block ended with a conditional branch. If one of the
9174 // destinations is StoreBB, then we have the if/then case.
9175 if (OtherBr->getSuccessor(0) != StoreBB &&
9176 OtherBr->getSuccessor(1) != StoreBB)
9177 return false;
9178
9179 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
9180 // if/then triangle. See if there is a store to the same ptr as SI that
9181 // lives in OtherBB.
9182 for (;; --BBI) {
9183 // Check to see if we find the matching store.
9184 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
9185 if (OtherStore->getOperand(1) != SI.getOperand(1))
9186 return false;
9187 break;
9188 }
9189 // If we find something that may be using the stored value, or if we run
9190 // out of instructions, we can't do the xform.
9191 if (isa<LoadInst>(BBI) || BBI->mayWriteToMemory() ||
9192 BBI == OtherBB->begin())
9193 return false;
9194 }
9195
9196 // In order to eliminate the store in OtherBr, we have to
9197 // make sure nothing reads the stored value in StoreBB.
9198 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
9199 // FIXME: This should really be AA driven.
9200 if (isa<LoadInst>(I) || I->mayWriteToMemory())
9201 return false;
9202 }
9203 }
9204
9205 // Insert a PHI node now if we need it.
9206 Value *MergedVal = OtherStore->getOperand(0);
9207 if (MergedVal != SI.getOperand(0)) {
9208 PHINode *PN = new PHINode(MergedVal->getType(), "storemerge");
9209 PN->reserveOperandSpace(2);
9210 PN->addIncoming(SI.getOperand(0), SI.getParent());
9211 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
9212 MergedVal = InsertNewInstBefore(PN, DestBB->front());
9213 }
9214
9215 // Advance to a place where it is safe to insert the new store and
9216 // insert it.
9217 BBI = DestBB->begin();
9218 while (isa<PHINode>(BBI)) ++BBI;
9219 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
9220 OtherStore->isVolatile()), *BBI);
9221
9222 // Nuke the old stores.
9223 EraseInstFromFunction(SI);
9224 EraseInstFromFunction(*OtherStore);
9225 ++NumCombined;
9226 return true;
9227}
9228
9229
9230Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
9231 // Change br (not X), label True, label False to: br X, label False, True
9232 Value *X = 0;
9233 BasicBlock *TrueDest;
9234 BasicBlock *FalseDest;
9235 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
9236 !isa<Constant>(X)) {
9237 // Swap Destinations and condition...
9238 BI.setCondition(X);
9239 BI.setSuccessor(0, FalseDest);
9240 BI.setSuccessor(1, TrueDest);
9241 return &BI;
9242 }
9243
9244 // Cannonicalize fcmp_one -> fcmp_oeq
9245 FCmpInst::Predicate FPred; Value *Y;
9246 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
9247 TrueDest, FalseDest)))
9248 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
9249 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
9250 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
9251 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
9252 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
9253 NewSCC->takeName(I);
9254 // Swap Destinations and condition...
9255 BI.setCondition(NewSCC);
9256 BI.setSuccessor(0, FalseDest);
9257 BI.setSuccessor(1, TrueDest);
9258 RemoveFromWorkList(I);
9259 I->eraseFromParent();
9260 AddToWorkList(NewSCC);
9261 return &BI;
9262 }
9263
9264 // Cannonicalize icmp_ne -> icmp_eq
9265 ICmpInst::Predicate IPred;
9266 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
9267 TrueDest, FalseDest)))
9268 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
9269 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
9270 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
9271 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
9272 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
9273 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
9274 NewSCC->takeName(I);
9275 // Swap Destinations and condition...
9276 BI.setCondition(NewSCC);
9277 BI.setSuccessor(0, FalseDest);
9278 BI.setSuccessor(1, TrueDest);
9279 RemoveFromWorkList(I);
9280 I->eraseFromParent();;
9281 AddToWorkList(NewSCC);
9282 return &BI;
9283 }
9284
9285 return 0;
9286}
9287
9288Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
9289 Value *Cond = SI.getCondition();
9290 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
9291 if (I->getOpcode() == Instruction::Add)
9292 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
9293 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
9294 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
9295 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
9296 AddRHS));
9297 SI.setOperand(0, I->getOperand(0));
9298 AddToWorkList(I);
9299 return &SI;
9300 }
9301 }
9302 return 0;
9303}
9304
9305/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
9306/// is to leave as a vector operation.
9307static bool CheapToScalarize(Value *V, bool isConstant) {
9308 if (isa<ConstantAggregateZero>(V))
9309 return true;
9310 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
9311 if (isConstant) return true;
9312 // If all elts are the same, we can extract.
9313 Constant *Op0 = C->getOperand(0);
9314 for (unsigned i = 1; i < C->getNumOperands(); ++i)
9315 if (C->getOperand(i) != Op0)
9316 return false;
9317 return true;
9318 }
9319 Instruction *I = dyn_cast<Instruction>(V);
9320 if (!I) return false;
9321
9322 // Insert element gets simplified to the inserted element or is deleted if
9323 // this is constant idx extract element and its a constant idx insertelt.
9324 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
9325 isa<ConstantInt>(I->getOperand(2)))
9326 return true;
9327 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
9328 return true;
9329 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
9330 if (BO->hasOneUse() &&
9331 (CheapToScalarize(BO->getOperand(0), isConstant) ||
9332 CheapToScalarize(BO->getOperand(1), isConstant)))
9333 return true;
9334 if (CmpInst *CI = dyn_cast<CmpInst>(I))
9335 if (CI->hasOneUse() &&
9336 (CheapToScalarize(CI->getOperand(0), isConstant) ||
9337 CheapToScalarize(CI->getOperand(1), isConstant)))
9338 return true;
9339
9340 return false;
9341}
9342
9343/// Read and decode a shufflevector mask.
9344///
9345/// It turns undef elements into values that are larger than the number of
9346/// elements in the input.
9347static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
9348 unsigned NElts = SVI->getType()->getNumElements();
9349 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
9350 return std::vector<unsigned>(NElts, 0);
9351 if (isa<UndefValue>(SVI->getOperand(2)))
9352 return std::vector<unsigned>(NElts, 2*NElts);
9353
9354 std::vector<unsigned> Result;
9355 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
9356 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
9357 if (isa<UndefValue>(CP->getOperand(i)))
9358 Result.push_back(NElts*2); // undef -> 8
9359 else
9360 Result.push_back(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
9361 return Result;
9362}
9363
9364/// FindScalarElement - Given a vector and an element number, see if the scalar
9365/// value is already around as a register, for example if it were inserted then
9366/// extracted from the vector.
9367static Value *FindScalarElement(Value *V, unsigned EltNo) {
9368 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
9369 const VectorType *PTy = cast<VectorType>(V->getType());
9370 unsigned Width = PTy->getNumElements();
9371 if (EltNo >= Width) // Out of range access.
9372 return UndefValue::get(PTy->getElementType());
9373
9374 if (isa<UndefValue>(V))
9375 return UndefValue::get(PTy->getElementType());
9376 else if (isa<ConstantAggregateZero>(V))
9377 return Constant::getNullValue(PTy->getElementType());
9378 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
9379 return CP->getOperand(EltNo);
9380 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
9381 // If this is an insert to a variable element, we don't know what it is.
9382 if (!isa<ConstantInt>(III->getOperand(2)))
9383 return 0;
9384 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
9385
9386 // If this is an insert to the element we are looking for, return the
9387 // inserted value.
9388 if (EltNo == IIElt)
9389 return III->getOperand(1);
9390
9391 // Otherwise, the insertelement doesn't modify the value, recurse on its
9392 // vector input.
9393 return FindScalarElement(III->getOperand(0), EltNo);
9394 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
9395 unsigned InEl = getShuffleMask(SVI)[EltNo];
9396 if (InEl < Width)
9397 return FindScalarElement(SVI->getOperand(0), InEl);
9398 else if (InEl < Width*2)
9399 return FindScalarElement(SVI->getOperand(1), InEl - Width);
9400 else
9401 return UndefValue::get(PTy->getElementType());
9402 }
9403
9404 // Otherwise, we don't know.
9405 return 0;
9406}
9407
9408Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
9409
9410 // If vector val is undef, replace extract with scalar undef.
9411 if (isa<UndefValue>(EI.getOperand(0)))
9412 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
9413
9414 // If vector val is constant 0, replace extract with scalar 0.
9415 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
9416 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
9417
9418 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
9419 // If vector val is constant with uniform operands, replace EI
9420 // with that operand
9421 Constant *op0 = C->getOperand(0);
9422 for (unsigned i = 1; i < C->getNumOperands(); ++i)
9423 if (C->getOperand(i) != op0) {
9424 op0 = 0;
9425 break;
9426 }
9427 if (op0)
9428 return ReplaceInstUsesWith(EI, op0);
9429 }
9430
9431 // If extracting a specified index from the vector, see if we can recursively
9432 // find a previously computed scalar that was inserted into the vector.
9433 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
9434 unsigned IndexVal = IdxC->getZExtValue();
9435 unsigned VectorWidth =
9436 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
9437
9438 // If this is extracting an invalid index, turn this into undef, to avoid
9439 // crashing the code below.
9440 if (IndexVal >= VectorWidth)
9441 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
9442
9443 // This instruction only demands the single element from the input vector.
9444 // If the input vector has a single use, simplify it based on this use
9445 // property.
9446 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
9447 uint64_t UndefElts;
9448 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
9449 1 << IndexVal,
9450 UndefElts)) {
9451 EI.setOperand(0, V);
9452 return &EI;
9453 }
9454 }
9455
9456 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
9457 return ReplaceInstUsesWith(EI, Elt);
9458
9459 // If the this extractelement is directly using a bitcast from a vector of
9460 // the same number of elements, see if we can find the source element from
9461 // it. In this case, we will end up needing to bitcast the scalars.
9462 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
9463 if (const VectorType *VT =
9464 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
9465 if (VT->getNumElements() == VectorWidth)
9466 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
9467 return new BitCastInst(Elt, EI.getType());
9468 }
9469 }
9470
9471 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
9472 if (I->hasOneUse()) {
9473 // Push extractelement into predecessor operation if legal and
9474 // profitable to do so
9475 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
9476 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
9477 if (CheapToScalarize(BO, isConstantElt)) {
9478 ExtractElementInst *newEI0 =
9479 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
9480 EI.getName()+".lhs");
9481 ExtractElementInst *newEI1 =
9482 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
9483 EI.getName()+".rhs");
9484 InsertNewInstBefore(newEI0, EI);
9485 InsertNewInstBefore(newEI1, EI);
9486 return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
9487 }
9488 } else if (isa<LoadInst>(I)) {
9489 Value *Ptr = InsertCastBefore(Instruction::BitCast, I->getOperand(0),
9490 PointerType::get(EI.getType()), EI);
9491 GetElementPtrInst *GEP =
9492 new GetElementPtrInst(Ptr, EI.getOperand(1), I->getName() + ".gep");
9493 InsertNewInstBefore(GEP, EI);
9494 return new LoadInst(GEP);
9495 }
9496 }
9497 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
9498 // Extracting the inserted element?
9499 if (IE->getOperand(2) == EI.getOperand(1))
9500 return ReplaceInstUsesWith(EI, IE->getOperand(1));
9501 // If the inserted and extracted elements are constants, they must not
9502 // be the same value, extract from the pre-inserted value instead.
9503 if (isa<Constant>(IE->getOperand(2)) &&
9504 isa<Constant>(EI.getOperand(1))) {
9505 AddUsesToWorkList(EI);
9506 EI.setOperand(0, IE->getOperand(0));
9507 return &EI;
9508 }
9509 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
9510 // If this is extracting an element from a shufflevector, figure out where
9511 // it came from and extract from the appropriate input element instead.
9512 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
9513 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
9514 Value *Src;
9515 if (SrcIdx < SVI->getType()->getNumElements())
9516 Src = SVI->getOperand(0);
9517 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
9518 SrcIdx -= SVI->getType()->getNumElements();
9519 Src = SVI->getOperand(1);
9520 } else {
9521 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
9522 }
9523 return new ExtractElementInst(Src, SrcIdx);
9524 }
9525 }
9526 }
9527 return 0;
9528}
9529
9530/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
9531/// elements from either LHS or RHS, return the shuffle mask and true.
9532/// Otherwise, return false.
9533static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
9534 std::vector<Constant*> &Mask) {
9535 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
9536 "Invalid CollectSingleShuffleElements");
9537 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
9538
9539 if (isa<UndefValue>(V)) {
9540 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
9541 return true;
9542 } else if (V == LHS) {
9543 for (unsigned i = 0; i != NumElts; ++i)
9544 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
9545 return true;
9546 } else if (V == RHS) {
9547 for (unsigned i = 0; i != NumElts; ++i)
9548 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
9549 return true;
9550 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
9551 // If this is an insert of an extract from some other vector, include it.
9552 Value *VecOp = IEI->getOperand(0);
9553 Value *ScalarOp = IEI->getOperand(1);
9554 Value *IdxOp = IEI->getOperand(2);
9555
9556 if (!isa<ConstantInt>(IdxOp))
9557 return false;
9558 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
9559
9560 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
9561 // Okay, we can handle this if the vector we are insertinting into is
9562 // transitively ok.
9563 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
9564 // If so, update the mask to reflect the inserted undef.
9565 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
9566 return true;
9567 }
9568 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
9569 if (isa<ConstantInt>(EI->getOperand(1)) &&
9570 EI->getOperand(0)->getType() == V->getType()) {
9571 unsigned ExtractedIdx =
9572 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
9573
9574 // This must be extracting from either LHS or RHS.
9575 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
9576 // Okay, we can handle this if the vector we are insertinting into is
9577 // transitively ok.
9578 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
9579 // If so, update the mask to reflect the inserted value.
9580 if (EI->getOperand(0) == LHS) {
9581 Mask[InsertedIdx & (NumElts-1)] =
9582 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
9583 } else {
9584 assert(EI->getOperand(0) == RHS);
9585 Mask[InsertedIdx & (NumElts-1)] =
9586 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
9587
9588 }
9589 return true;
9590 }
9591 }
9592 }
9593 }
9594 }
9595 // TODO: Handle shufflevector here!
9596
9597 return false;
9598}
9599
9600/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
9601/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
9602/// that computes V and the LHS value of the shuffle.
9603static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
9604 Value *&RHS) {
9605 assert(isa<VectorType>(V->getType()) &&
9606 (RHS == 0 || V->getType() == RHS->getType()) &&
9607 "Invalid shuffle!");
9608 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
9609
9610 if (isa<UndefValue>(V)) {
9611 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
9612 return V;
9613 } else if (isa<ConstantAggregateZero>(V)) {
9614 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
9615 return V;
9616 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
9617 // If this is an insert of an extract from some other vector, include it.
9618 Value *VecOp = IEI->getOperand(0);
9619 Value *ScalarOp = IEI->getOperand(1);
9620 Value *IdxOp = IEI->getOperand(2);
9621
9622 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
9623 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
9624 EI->getOperand(0)->getType() == V->getType()) {
9625 unsigned ExtractedIdx =
9626 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
9627 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
9628
9629 // Either the extracted from or inserted into vector must be RHSVec,
9630 // otherwise we'd end up with a shuffle of three inputs.
9631 if (EI->getOperand(0) == RHS || RHS == 0) {
9632 RHS = EI->getOperand(0);
9633 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
9634 Mask[InsertedIdx & (NumElts-1)] =
9635 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
9636 return V;
9637 }
9638
9639 if (VecOp == RHS) {
9640 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
9641 // Everything but the extracted element is replaced with the RHS.
9642 for (unsigned i = 0; i != NumElts; ++i) {
9643 if (i != InsertedIdx)
9644 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
9645 }
9646 return V;
9647 }
9648
9649 // If this insertelement is a chain that comes from exactly these two
9650 // vectors, return the vector and the effective shuffle.
9651 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
9652 return EI->getOperand(0);
9653
9654 }
9655 }
9656 }
9657 // TODO: Handle shufflevector here!
9658
9659 // Otherwise, can't do anything fancy. Return an identity vector.
9660 for (unsigned i = 0; i != NumElts; ++i)
9661 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
9662 return V;
9663}
9664
9665Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
9666 Value *VecOp = IE.getOperand(0);
9667 Value *ScalarOp = IE.getOperand(1);
9668 Value *IdxOp = IE.getOperand(2);
9669
9670 // Inserting an undef or into an undefined place, remove this.
9671 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
9672 ReplaceInstUsesWith(IE, VecOp);
9673
9674 // If the inserted element was extracted from some other vector, and if the
9675 // indexes are constant, try to turn this into a shufflevector operation.
9676 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
9677 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
9678 EI->getOperand(0)->getType() == IE.getType()) {
9679 unsigned NumVectorElts = IE.getType()->getNumElements();
9680 unsigned ExtractedIdx =
9681 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
9682 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
9683
9684 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
9685 return ReplaceInstUsesWith(IE, VecOp);
9686
9687 if (InsertedIdx >= NumVectorElts) // Out of range insert.
9688 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
9689
9690 // If we are extracting a value from a vector, then inserting it right
9691 // back into the same place, just use the input vector.
9692 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
9693 return ReplaceInstUsesWith(IE, VecOp);
9694
9695 // We could theoretically do this for ANY input. However, doing so could
9696 // turn chains of insertelement instructions into a chain of shufflevector
9697 // instructions, and right now we do not merge shufflevectors. As such,
9698 // only do this in a situation where it is clear that there is benefit.
9699 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
9700 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
9701 // the values of VecOp, except then one read from EIOp0.
9702 // Build a new shuffle mask.
9703 std::vector<Constant*> Mask;
9704 if (isa<UndefValue>(VecOp))
9705 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
9706 else {
9707 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
9708 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
9709 NumVectorElts));
9710 }
9711 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
9712 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
9713 ConstantVector::get(Mask));
9714 }
9715
9716 // If this insertelement isn't used by some other insertelement, turn it
9717 // (and any insertelements it points to), into one big shuffle.
9718 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
9719 std::vector<Constant*> Mask;
9720 Value *RHS = 0;
9721 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
9722 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
9723 // We now have a shuffle of LHS, RHS, Mask.
9724 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
9725 }
9726 }
9727 }
9728
9729 return 0;
9730}
9731
9732
9733Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
9734 Value *LHS = SVI.getOperand(0);
9735 Value *RHS = SVI.getOperand(1);
9736 std::vector<unsigned> Mask = getShuffleMask(&SVI);
9737
9738 bool MadeChange = false;
9739
9740 // Undefined shuffle mask -> undefined value.
9741 if (isa<UndefValue>(SVI.getOperand(2)))
9742 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
9743
9744 // If we have shuffle(x, undef, mask) and any elements of mask refer to
9745 // the undef, change them to undefs.
9746 if (isa<UndefValue>(SVI.getOperand(1))) {
9747 // Scan to see if there are any references to the RHS. If so, replace them
9748 // with undef element refs and set MadeChange to true.
9749 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
9750 if (Mask[i] >= e && Mask[i] != 2*e) {
9751 Mask[i] = 2*e;
9752 MadeChange = true;
9753 }
9754 }
9755
9756 if (MadeChange) {
9757 // Remap any references to RHS to use LHS.
9758 std::vector<Constant*> Elts;
9759 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
9760 if (Mask[i] == 2*e)
9761 Elts.push_back(UndefValue::get(Type::Int32Ty));
9762 else
9763 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
9764 }
9765 SVI.setOperand(2, ConstantVector::get(Elts));
9766 }
9767 }
9768
9769 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
9770 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
9771 if (LHS == RHS || isa<UndefValue>(LHS)) {
9772 if (isa<UndefValue>(LHS) && LHS == RHS) {
9773 // shuffle(undef,undef,mask) -> undef.
9774 return ReplaceInstUsesWith(SVI, LHS);
9775 }
9776
9777 // Remap any references to RHS to use LHS.
9778 std::vector<Constant*> Elts;
9779 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
9780 if (Mask[i] >= 2*e)
9781 Elts.push_back(UndefValue::get(Type::Int32Ty));
9782 else {
9783 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
9784 (Mask[i] < e && isa<UndefValue>(LHS)))
9785 Mask[i] = 2*e; // Turn into undef.
9786 else
9787 Mask[i] &= (e-1); // Force to LHS.
9788 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
9789 }
9790 }
9791 SVI.setOperand(0, SVI.getOperand(1));
9792 SVI.setOperand(1, UndefValue::get(RHS->getType()));
9793 SVI.setOperand(2, ConstantVector::get(Elts));
9794 LHS = SVI.getOperand(0);
9795 RHS = SVI.getOperand(1);
9796 MadeChange = true;
9797 }
9798
9799 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
9800 bool isLHSID = true, isRHSID = true;
9801
9802 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
9803 if (Mask[i] >= e*2) continue; // Ignore undef values.
9804 // Is this an identity shuffle of the LHS value?
9805 isLHSID &= (Mask[i] == i);
9806
9807 // Is this an identity shuffle of the RHS value?
9808 isRHSID &= (Mask[i]-e == i);
9809 }
9810
9811 // Eliminate identity shuffles.
9812 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
9813 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
9814
9815 // If the LHS is a shufflevector itself, see if we can combine it with this
9816 // one without producing an unusual shuffle. Here we are really conservative:
9817 // we are absolutely afraid of producing a shuffle mask not in the input
9818 // program, because the code gen may not be smart enough to turn a merged
9819 // shuffle into two specific shuffles: it may produce worse code. As such,
9820 // we only merge two shuffles if the result is one of the two input shuffle
9821 // masks. In this case, merging the shuffles just removes one instruction,
9822 // which we know is safe. This is good for things like turning:
9823 // (splat(splat)) -> splat.
9824 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
9825 if (isa<UndefValue>(RHS)) {
9826 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
9827
9828 std::vector<unsigned> NewMask;
9829 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
9830 if (Mask[i] >= 2*e)
9831 NewMask.push_back(2*e);
9832 else
9833 NewMask.push_back(LHSMask[Mask[i]]);
9834
9835 // If the result mask is equal to the src shuffle or this shuffle mask, do
9836 // the replacement.
9837 if (NewMask == LHSMask || NewMask == Mask) {
9838 std::vector<Constant*> Elts;
9839 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
9840 if (NewMask[i] >= e*2) {
9841 Elts.push_back(UndefValue::get(Type::Int32Ty));
9842 } else {
9843 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
9844 }
9845 }
9846 return new ShuffleVectorInst(LHSSVI->getOperand(0),
9847 LHSSVI->getOperand(1),
9848 ConstantVector::get(Elts));
9849 }
9850 }
9851 }
9852
9853 return MadeChange ? &SVI : 0;
9854}
9855
9856
9857
9858
9859/// TryToSinkInstruction - Try to move the specified instruction from its
9860/// current block into the beginning of DestBlock, which can only happen if it's
9861/// safe to move the instruction past all of the instructions between it and the
9862/// end of its block.
9863static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
9864 assert(I->hasOneUse() && "Invariants didn't hold!");
9865
9866 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
9867 if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
9868
9869 // Do not sink alloca instructions out of the entry block.
9870 if (isa<AllocaInst>(I) && I->getParent() ==
9871 &DestBlock->getParent()->getEntryBlock())
9872 return false;
9873
9874 // We can only sink load instructions if there is nothing between the load and
9875 // the end of block that could change the value.
9876 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
9877 for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
9878 Scan != E; ++Scan)
9879 if (Scan->mayWriteToMemory())
9880 return false;
9881 }
9882
9883 BasicBlock::iterator InsertPos = DestBlock->begin();
9884 while (isa<PHINode>(InsertPos)) ++InsertPos;
9885
9886 I->moveBefore(InsertPos);
9887 ++NumSunkInst;
9888 return true;
9889}
9890
9891
9892/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
9893/// all reachable code to the worklist.
9894///
9895/// This has a couple of tricks to make the code faster and more powerful. In
9896/// particular, we constant fold and DCE instructions as we go, to avoid adding
9897/// them to the worklist (this significantly speeds up instcombine on code where
9898/// many instructions are dead or constant). Additionally, if we find a branch
9899/// whose condition is a known constant, we only visit the reachable successors.
9900///
9901static void AddReachableCodeToWorklist(BasicBlock *BB,
9902 SmallPtrSet<BasicBlock*, 64> &Visited,
9903 InstCombiner &IC,
9904 const TargetData *TD) {
9905 std::vector<BasicBlock*> Worklist;
9906 Worklist.push_back(BB);
9907
9908 while (!Worklist.empty()) {
9909 BB = Worklist.back();
9910 Worklist.pop_back();
9911
9912 // We have now visited this block! If we've already been here, ignore it.
9913 if (!Visited.insert(BB)) continue;
9914
9915 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
9916 Instruction *Inst = BBI++;
9917
9918 // DCE instruction if trivially dead.
9919 if (isInstructionTriviallyDead(Inst)) {
9920 ++NumDeadInst;
9921 DOUT << "IC: DCE: " << *Inst;
9922 Inst->eraseFromParent();
9923 continue;
9924 }
9925
9926 // ConstantProp instruction if trivially constant.
9927 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
9928 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
9929 Inst->replaceAllUsesWith(C);
9930 ++NumConstProp;
9931 Inst->eraseFromParent();
9932 continue;
9933 }
Chris Lattnere0f462d2007-07-20 22:06:41 +00009934
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009935 IC.AddToWorkList(Inst);
9936 }
9937
9938 // Recursively visit successors. If this is a branch or switch on a
9939 // constant, only visit the reachable successor.
9940 TerminatorInst *TI = BB->getTerminator();
9941 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
9942 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
9943 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
9944 Worklist.push_back(BI->getSuccessor(!CondVal));
9945 continue;
9946 }
9947 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
9948 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
9949 // See if this is an explicit destination.
9950 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
9951 if (SI->getCaseValue(i) == Cond) {
9952 Worklist.push_back(SI->getSuccessor(i));
9953 continue;
9954 }
9955
9956 // Otherwise it is the default destination.
9957 Worklist.push_back(SI->getSuccessor(0));
9958 continue;
9959 }
9960 }
9961
9962 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
9963 Worklist.push_back(TI->getSuccessor(i));
9964 }
9965}
9966
9967bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
9968 bool Changed = false;
9969 TD = &getAnalysis<TargetData>();
9970
9971 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
9972 << F.getNameStr() << "\n");
9973
9974 {
9975 // Do a depth-first traversal of the function, populate the worklist with
9976 // the reachable instructions. Ignore blocks that are not reachable. Keep
9977 // track of which blocks we visit.
9978 SmallPtrSet<BasicBlock*, 64> Visited;
9979 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
9980
9981 // Do a quick scan over the function. If we find any blocks that are
9982 // unreachable, remove any instructions inside of them. This prevents
9983 // the instcombine code from having to deal with some bad special cases.
9984 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
9985 if (!Visited.count(BB)) {
9986 Instruction *Term = BB->getTerminator();
9987 while (Term != BB->begin()) { // Remove instrs bottom-up
9988 BasicBlock::iterator I = Term; --I;
9989
9990 DOUT << "IC: DCE: " << *I;
9991 ++NumDeadInst;
9992
9993 if (!I->use_empty())
9994 I->replaceAllUsesWith(UndefValue::get(I->getType()));
9995 I->eraseFromParent();
9996 }
9997 }
9998 }
9999
10000 while (!Worklist.empty()) {
10001 Instruction *I = RemoveOneFromWorkList();
10002 if (I == 0) continue; // skip null values.
10003
10004 // Check to see if we can DCE the instruction.
10005 if (isInstructionTriviallyDead(I)) {
10006 // Add operands to the worklist.
10007 if (I->getNumOperands() < 4)
10008 AddUsesToWorkList(*I);
10009 ++NumDeadInst;
10010
10011 DOUT << "IC: DCE: " << *I;
10012
10013 I->eraseFromParent();
10014 RemoveFromWorkList(I);
10015 continue;
10016 }
10017
10018 // Instruction isn't dead, see if we can constant propagate it.
10019 if (Constant *C = ConstantFoldInstruction(I, TD)) {
10020 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
10021
10022 // Add operands to the worklist.
10023 AddUsesToWorkList(*I);
10024 ReplaceInstUsesWith(*I, C);
10025
10026 ++NumConstProp;
10027 I->eraseFromParent();
10028 RemoveFromWorkList(I);
10029 continue;
10030 }
10031
10032 // See if we can trivially sink this instruction to a successor basic block.
10033 if (I->hasOneUse()) {
10034 BasicBlock *BB = I->getParent();
10035 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
10036 if (UserParent != BB) {
10037 bool UserIsSuccessor = false;
10038 // See if the user is one of our successors.
10039 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
10040 if (*SI == UserParent) {
10041 UserIsSuccessor = true;
10042 break;
10043 }
10044
10045 // If the user is one of our immediate successors, and if that successor
10046 // only has us as a predecessors (we'd have to split the critical edge
10047 // otherwise), we can keep going.
10048 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
10049 next(pred_begin(UserParent)) == pred_end(UserParent))
10050 // Okay, the CFG is simple enough, try to sink this instruction.
10051 Changed |= TryToSinkInstruction(I, UserParent);
10052 }
10053 }
10054
10055 // Now that we have an instruction, try combining it to simplify it...
10056#ifndef NDEBUG
10057 std::string OrigI;
10058#endif
10059 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
10060 if (Instruction *Result = visit(*I)) {
10061 ++NumCombined;
10062 // Should we replace the old instruction with a new one?
10063 if (Result != I) {
10064 DOUT << "IC: Old = " << *I
10065 << " New = " << *Result;
10066
10067 // Everything uses the new instruction now.
10068 I->replaceAllUsesWith(Result);
10069
10070 // Push the new instruction and any users onto the worklist.
10071 AddToWorkList(Result);
10072 AddUsersToWorkList(*Result);
10073
10074 // Move the name to the new instruction first.
10075 Result->takeName(I);
10076
10077 // Insert the new instruction into the basic block...
10078 BasicBlock *InstParent = I->getParent();
10079 BasicBlock::iterator InsertPos = I;
10080
10081 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
10082 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
10083 ++InsertPos;
10084
10085 InstParent->getInstList().insert(InsertPos, Result);
10086
10087 // Make sure that we reprocess all operands now that we reduced their
10088 // use counts.
10089 AddUsesToWorkList(*I);
10090
10091 // Instructions can end up on the worklist more than once. Make sure
10092 // we do not process an instruction that has been deleted.
10093 RemoveFromWorkList(I);
10094
10095 // Erase the old instruction.
10096 InstParent->getInstList().erase(I);
10097 } else {
10098#ifndef NDEBUG
10099 DOUT << "IC: Mod = " << OrigI
10100 << " New = " << *I;
10101#endif
10102
10103 // If the instruction was modified, it's possible that it is now dead.
10104 // if so, remove it.
10105 if (isInstructionTriviallyDead(I)) {
10106 // Make sure we process all operands now that we are reducing their
10107 // use counts.
10108 AddUsesToWorkList(*I);
10109
10110 // Instructions may end up in the worklist more than once. Erase all
10111 // occurrences of this instruction.
10112 RemoveFromWorkList(I);
10113 I->eraseFromParent();
10114 } else {
10115 AddToWorkList(I);
10116 AddUsersToWorkList(*I);
10117 }
10118 }
10119 Changed = true;
10120 }
10121 }
10122
10123 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000010124
10125 // Do an explicit clear, this shrinks the map if needed.
10126 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010127 return Changed;
10128}
10129
10130
10131bool InstCombiner::runOnFunction(Function &F) {
10132 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
10133
10134 bool EverMadeChange = false;
10135
10136 // Iterate while there is work to do.
10137 unsigned Iteration = 0;
10138 while (DoOneIteration(F, Iteration++))
10139 EverMadeChange = true;
10140 return EverMadeChange;
10141}
10142
10143FunctionPass *llvm::createInstructionCombiningPass() {
10144 return new InstCombiner();
10145}
10146