blob: a20d769ba3f1be76b46448caa7dd8d5282e64819 [file] [log] [blame]
Chris Lattnered7b41e2003-05-27 15:45:27 +00001//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnered7b41e2003-05-27 15:45:27 +00009//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation. This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
Chris Lattner38aec322003-09-11 16:45:55 +000013// each member (if possible). Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs. As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
Chris Lattnered7b41e2003-05-27 15:45:27 +000019//
20//===----------------------------------------------------------------------===//
21
Chris Lattner0e5f4992006-12-19 21:40:18 +000022#define DEBUG_TYPE "scalarrepl"
Chris Lattnered7b41e2003-05-27 15:45:27 +000023#include "llvm/Transforms/Scalar.h"
Chris Lattner38aec322003-09-11 16:45:55 +000024#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
Chris Lattnered7b41e2003-05-27 15:45:27 +000026#include "llvm/Function.h"
Chris Lattner79b3bd32007-04-25 06:40:51 +000027#include "llvm/GlobalVariable.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Chris Lattner372dda82007-03-05 07:52:57 +000029#include "llvm/IntrinsicInst.h"
Owen Andersonfa5cbd62009-07-03 19:42:02 +000030#include "llvm/LLVMContext.h"
Chris Lattner72eaa0e2010-09-01 23:09:27 +000031#include "llvm/Module.h"
Chris Lattner372dda82007-03-05 07:52:57 +000032#include "llvm/Pass.h"
Chris Lattner38aec322003-09-11 16:45:55 +000033#include "llvm/Analysis/Dominators.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Transforms/Utils/PromoteMemToReg.h"
Devang Patel4afc90d2009-02-10 07:00:59 +000036#include "llvm/Transforms/Utils/Local.h"
Chris Lattnera9be1df2010-11-18 06:26:49 +000037#include "llvm/Support/CallSite.h"
Chris Lattner95255282006-06-28 23:17:24 +000038#include "llvm/Support/Debug.h"
Torok Edwin7d696d82009-07-11 13:10:19 +000039#include "llvm/Support/ErrorHandling.h"
Chris Lattnera1888942005-12-12 07:19:13 +000040#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner65a65022009-02-03 19:41:50 +000041#include "llvm/Support/IRBuilder.h"
Chris Lattnera1888942005-12-12 07:19:13 +000042#include "llvm/Support/MathExtras.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000043#include "llvm/Support/raw_ostream.h"
Chris Lattner1ccd1852007-02-12 22:56:41 +000044#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000045#include "llvm/ADT/Statistic.h"
Chris Lattnerd8664732003-12-02 17:43:55 +000046using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000047
Chris Lattner0e5f4992006-12-19 21:40:18 +000048STATISTIC(NumReplaced, "Number of allocas broken up");
49STATISTIC(NumPromoted, "Number of allocas promoted");
50STATISTIC(NumConverted, "Number of aggregates converted to scalar");
Chris Lattner79b3bd32007-04-25 06:40:51 +000051STATISTIC(NumGlobals, "Number of allocas copied from constant global");
Chris Lattnered7b41e2003-05-27 15:45:27 +000052
Chris Lattner0e5f4992006-12-19 21:40:18 +000053namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000054 struct SROA : public FunctionPass {
Nick Lewyckyecd94c82007-05-06 13:37:16 +000055 static char ID; // Pass identification, replacement for typeid
Owen Anderson90c579d2010-08-06 18:33:48 +000056 explicit SROA(signed T = -1) : FunctionPass(ID) {
Owen Anderson081c34b2010-10-19 17:21:58 +000057 initializeSROAPass(*PassRegistry::getPassRegistry());
Devang Patelff366852007-07-09 21:19:23 +000058 if (T == -1)
Chris Lattnerb0e71ed2007-08-02 21:33:36 +000059 SRThreshold = 128;
Devang Patelff366852007-07-09 21:19:23 +000060 else
61 SRThreshold = T;
62 }
Devang Patel794fd752007-05-01 21:15:47 +000063
Chris Lattnered7b41e2003-05-27 15:45:27 +000064 bool runOnFunction(Function &F);
65
Chris Lattner38aec322003-09-11 16:45:55 +000066 bool performScalarRepl(Function &F);
67 bool performPromotion(Function &F);
68
Chris Lattnera15854c2003-08-31 00:45:13 +000069 // getAnalysisUsage - This pass does not require any passes, but we know it
70 // will not alter the CFG, so say so.
71 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Devang Patel326821e2007-06-07 21:57:03 +000072 AU.addRequired<DominatorTree>();
Chris Lattner38aec322003-09-11 16:45:55 +000073 AU.addRequired<DominanceFrontier>();
Chris Lattnera15854c2003-08-31 00:45:13 +000074 AU.setPreservesCFG();
75 }
76
Chris Lattnered7b41e2003-05-27 15:45:27 +000077 private:
Chris Lattner56c38522009-01-07 06:34:28 +000078 TargetData *TD;
79
Bob Wilsonb742def2009-12-18 20:14:40 +000080 /// DeadInsts - Keep track of instructions we have made dead, so that
81 /// we can remove them after we are done working.
82 SmallVector<Value*, 32> DeadInsts;
83
Chris Lattner39a1c042007-05-30 06:11:23 +000084 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
85 /// information about the uses. All these fields are initialized to false
86 /// and set to true when something is learned.
87 struct AllocaInfo {
88 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
89 bool isUnsafe : 1;
90
Chris Lattner39a1c042007-05-30 06:11:23 +000091 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
92 bool isMemCpySrc : 1;
93
Zhou Sheng33b0b8d2007-07-06 06:01:16 +000094 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
Chris Lattner39a1c042007-05-30 06:11:23 +000095 bool isMemCpyDst : 1;
96
97 AllocaInfo()
Victor Hernandez6c146ee2010-01-21 23:05:53 +000098 : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false) {}
Chris Lattner39a1c042007-05-30 06:11:23 +000099 };
100
Devang Patelff366852007-07-09 21:19:23 +0000101 unsigned SRThreshold;
102
Chris Lattner39a1c042007-05-30 06:11:23 +0000103 void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
104
Victor Hernandez6c146ee2010-01-21 23:05:53 +0000105 bool isSafeAllocaToScalarRepl(AllocaInst *AI);
Chris Lattner39a1c042007-05-30 06:11:23 +0000106
Bob Wilsonb742def2009-12-18 20:14:40 +0000107 void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
Bob Wilson3c3af5d2009-12-21 18:39:47 +0000108 AllocaInfo &Info);
Bob Wilsonb742def2009-12-18 20:14:40 +0000109 void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
Bob Wilson3c3af5d2009-12-21 18:39:47 +0000110 AllocaInfo &Info);
111 void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
112 const Type *MemOpType, bool isStore, AllocaInfo &Info);
Bob Wilsonb742def2009-12-18 20:14:40 +0000113 bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
Bob Wilsone88728d2009-12-19 06:53:17 +0000114 uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
115 const Type *&IdxTy);
Chris Lattner39a1c042007-05-30 06:11:23 +0000116
Victor Hernandez7b929da2009-10-23 21:09:37 +0000117 void DoScalarReplacement(AllocaInst *AI,
118 std::vector<AllocaInst*> &WorkList);
Bob Wilsonb742def2009-12-18 20:14:40 +0000119 void DeleteDeadInstructions();
Chris Lattner3126f1c2010-08-18 02:37:06 +0000120
Bob Wilsonb742def2009-12-18 20:14:40 +0000121 void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
122 SmallVector<AllocaInst*, 32> &NewElts);
123 void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
124 SmallVector<AllocaInst*, 32> &NewElts);
125 void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
126 SmallVector<AllocaInst*, 32> &NewElts);
127 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Victor Hernandez7b929da2009-10-23 21:09:37 +0000128 AllocaInst *AI,
Chris Lattnerd93afec2009-01-07 07:18:45 +0000129 SmallVector<AllocaInst*, 32> &NewElts);
Victor Hernandez7b929da2009-10-23 21:09:37 +0000130 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
Chris Lattnerd2fa7812009-01-07 08:11:13 +0000131 SmallVector<AllocaInst*, 32> &NewElts);
Victor Hernandez7b929da2009-10-23 21:09:37 +0000132 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Chris Lattner6e733d32009-01-28 20:16:43 +0000133 SmallVector<AllocaInst*, 32> &NewElts);
Chris Lattnerd93afec2009-01-07 07:18:45 +0000134
Chris Lattner31d80102010-04-15 21:59:20 +0000135 static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
Chris Lattnered7b41e2003-05-27 15:45:27 +0000136 };
Chris Lattnered7b41e2003-05-27 15:45:27 +0000137}
138
Dan Gohman844731a2008-05-13 00:00:25 +0000139char SROA::ID = 0;
Owen Anderson2ab36d32010-10-12 19:48:12 +0000140INITIALIZE_PASS_BEGIN(SROA, "scalarrepl",
141 "Scalar Replacement of Aggregates", false, false)
142INITIALIZE_PASS_DEPENDENCY(DominatorTree)
143INITIALIZE_PASS_DEPENDENCY(DominanceFrontier)
144INITIALIZE_PASS_END(SROA, "scalarrepl",
Owen Andersonce665bd2010-10-07 22:25:06 +0000145 "Scalar Replacement of Aggregates", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000146
Brian Gaeked0fde302003-11-11 22:41:34 +0000147// Public interface to the ScalarReplAggregates pass
Devang Patelff366852007-07-09 21:19:23 +0000148FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
149 return new SROA(Threshold);
150}
Chris Lattnered7b41e2003-05-27 15:45:27 +0000151
152
Chris Lattner4cc576b2010-04-16 00:24:57 +0000153//===----------------------------------------------------------------------===//
154// Convert To Scalar Optimization.
155//===----------------------------------------------------------------------===//
156
157namespace {
Chris Lattnera001b662010-04-16 00:38:19 +0000158/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
159/// optimization, which scans the uses of an alloca and determines if it can
160/// rewrite it in terms of a single new alloca that can be mem2reg'd.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000161class ConvertToScalarInfo {
162 /// AllocaSize - The size of the alloca being considered.
163 unsigned AllocaSize;
164 const TargetData &TD;
165
Chris Lattnera0bada72010-04-16 02:32:17 +0000166 /// IsNotTrivial - This is set to true if there is some access to the object
Chris Lattnera001b662010-04-16 00:38:19 +0000167 /// which means that mem2reg can't promote it.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000168 bool IsNotTrivial;
Chris Lattnera001b662010-04-16 00:38:19 +0000169
170 /// VectorTy - This tracks the type that we should promote the vector to if
171 /// it is possible to turn it into a vector. This starts out null, and if it
172 /// isn't possible to turn into a vector type, it gets set to VoidTy.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000173 const Type *VectorTy;
Chris Lattnera001b662010-04-16 00:38:19 +0000174
175 /// HadAVector - True if there is at least one vector access to the alloca.
176 /// We don't want to turn random arrays into vectors and use vector element
177 /// insert/extract, but if there are element accesses to something that is
178 /// also declared as a vector, we do want to promote to a vector.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000179 bool HadAVector;
180
181public:
182 explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
183 : AllocaSize(Size), TD(td) {
184 IsNotTrivial = false;
185 VectorTy = 0;
186 HadAVector = false;
187 }
188
Chris Lattnera001b662010-04-16 00:38:19 +0000189 AllocaInst *TryConvert(AllocaInst *AI);
Chris Lattner4cc576b2010-04-16 00:24:57 +0000190
191private:
192 bool CanConvertToScalar(Value *V, uint64_t Offset);
193 void MergeInType(const Type *In, uint64_t Offset);
194 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
195
196 Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
197 uint64_t Offset, IRBuilder<> &Builder);
198 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
199 uint64_t Offset, IRBuilder<> &Builder);
200};
201} // end anonymous namespace.
202
Chris Lattner91abace2010-09-01 05:14:33 +0000203
204/// IsVerbotenVectorType - Return true if this is a vector type ScalarRepl isn't
205/// allowed to form. We do this to avoid MMX types, which is a complete hack,
206/// but is required until the backend is fixed.
Chris Lattner72eaa0e2010-09-01 23:09:27 +0000207static bool IsVerbotenVectorType(const VectorType *VTy, const Instruction *I) {
208 StringRef Triple(I->getParent()->getParent()->getParent()->getTargetTriple());
209 if (!Triple.startswith("i386") &&
210 !Triple.startswith("x86_64"))
211 return false;
212
Chris Lattner91abace2010-09-01 05:14:33 +0000213 // Reject all the MMX vector types.
214 switch (VTy->getNumElements()) {
215 default: return false;
216 case 1: return VTy->getElementType()->isIntegerTy(64);
217 case 2: return VTy->getElementType()->isIntegerTy(32);
218 case 4: return VTy->getElementType()->isIntegerTy(16);
219 case 8: return VTy->getElementType()->isIntegerTy(8);
220 }
221}
222
223
Chris Lattnera001b662010-04-16 00:38:19 +0000224/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
225/// rewrite it to be a new alloca which is mem2reg'able. This returns the new
226/// alloca if possible or null if not.
227AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
228 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
229 // out.
230 if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
231 return 0;
232
233 // If we were able to find a vector type that can handle this with
234 // insert/extract elements, and if there was at least one use that had
235 // a vector type, promote this to a vector. We don't want to promote
236 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
237 // we just get a lot of insert/extracts. If at least one vector is
238 // involved, then we probably really do have a union of vector/array.
239 const Type *NewTy;
Chris Lattner91abace2010-09-01 05:14:33 +0000240 if (VectorTy && VectorTy->isVectorTy() && HadAVector &&
Chris Lattner72eaa0e2010-09-01 23:09:27 +0000241 !IsVerbotenVectorType(cast<VectorType>(VectorTy), AI)) {
Chris Lattnera001b662010-04-16 00:38:19 +0000242 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
243 << *VectorTy << '\n');
244 NewTy = VectorTy; // Use the vector type.
245 } else {
246 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
247 // Create and insert the integer alloca.
248 NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
249 }
250 AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
251 ConvertUsesToScalar(AI, NewAI, 0);
252 return NewAI;
253}
254
255/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
256/// so far at the offset specified by Offset (which is specified in bytes).
Chris Lattner4cc576b2010-04-16 00:24:57 +0000257///
258/// There are two cases we handle here:
259/// 1) A union of vector types of the same size and potentially its elements.
260/// Here we turn element accesses into insert/extract element operations.
261/// This promotes a <4 x float> with a store of float to the third element
262/// into a <4 x float> that uses insert element.
263/// 2) A fully general blob of memory, which we turn into some (potentially
264/// large) integer type with extract and insert operations where the loads
Chris Lattnera001b662010-04-16 00:38:19 +0000265/// and stores would mutate the memory. We mark this by setting VectorTy
266/// to VoidTy.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000267void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
Chris Lattnera001b662010-04-16 00:38:19 +0000268 // If we already decided to turn this into a blob of integer memory, there is
269 // nothing to be done.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000270 if (VectorTy && VectorTy->isVoidTy())
271 return;
272
273 // If this could be contributing to a vector, analyze it.
274
275 // If the In type is a vector that is the same size as the alloca, see if it
276 // matches the existing VecTy.
277 if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
Chris Lattnera001b662010-04-16 00:38:19 +0000278 // Remember if we saw a vector type.
279 HadAVector = true;
280
Chris Lattner4cc576b2010-04-16 00:24:57 +0000281 if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
282 // If we're storing/loading a vector of the right size, allow it as a
283 // vector. If this the first vector we see, remember the type so that
Chris Lattnera001b662010-04-16 00:38:19 +0000284 // we know the element size. If this is a subsequent access, ignore it
285 // even if it is a differing type but the same size. Worst case we can
286 // bitcast the resultant vectors.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000287 if (VectorTy == 0)
288 VectorTy = VInTy;
289 return;
290 }
291 } else if (In->isFloatTy() || In->isDoubleTy() ||
292 (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
293 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
294 // If we're accessing something that could be an element of a vector, see
295 // if the implied vector agrees with what we already have and if Offset is
296 // compatible with it.
297 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
298 if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
299 (VectorTy == 0 ||
300 cast<VectorType>(VectorTy)->getElementType()
301 ->getPrimitiveSizeInBits()/8 == EltSize)) {
302 if (VectorTy == 0)
303 VectorTy = VectorType::get(In, AllocaSize/EltSize);
304 return;
305 }
306 }
307
308 // Otherwise, we have a case that we can't handle with an optimized vector
309 // form. We can still turn this into a large integer.
310 VectorTy = Type::getVoidTy(In->getContext());
311}
312
313/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
314/// its accesses to a single vector type, return true and set VecTy to
315/// the new type. If we could convert the alloca into a single promotable
316/// integer, return true but set VecTy to VoidTy. Further, if the use is not a
317/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
318/// is the current offset from the base of the alloca being analyzed.
319///
320/// If we see at least one access to the value that is as a vector type, set the
321/// SawVec flag.
322bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
323 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
324 Instruction *User = cast<Instruction>(*UI);
325
326 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
327 // Don't break volatile loads.
328 if (LI->isVolatile())
329 return false;
Dale Johannesen0488fb62010-09-30 23:57:10 +0000330 // Don't touch MMX operations.
331 if (LI->getType()->isX86_MMXTy())
332 return false;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000333 MergeInType(LI->getType(), Offset);
334 continue;
335 }
336
337 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
338 // Storing the pointer, not into the value?
339 if (SI->getOperand(0) == V || SI->isVolatile()) return false;
Dale Johannesen0488fb62010-09-30 23:57:10 +0000340 // Don't touch MMX operations.
341 if (SI->getOperand(0)->getType()->isX86_MMXTy())
342 return false;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000343 MergeInType(SI->getOperand(0)->getType(), Offset);
344 continue;
345 }
346
347 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
Chris Lattnera001b662010-04-16 00:38:19 +0000348 IsNotTrivial = true; // Can't be mem2reg'd.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000349 if (!CanConvertToScalar(BCI, Offset))
350 return false;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000351 continue;
352 }
353
354 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
355 // If this is a GEP with a variable indices, we can't handle it.
356 if (!GEP->hasAllConstantIndices())
357 return false;
358
359 // Compute the offset that this GEP adds to the pointer.
360 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
361 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
362 &Indices[0], Indices.size());
363 // See if all uses can be converted.
364 if (!CanConvertToScalar(GEP, Offset+GEPOffset))
365 return false;
Chris Lattnera001b662010-04-16 00:38:19 +0000366 IsNotTrivial = true; // Can't be mem2reg'd.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000367 continue;
368 }
369
370 // If this is a constant sized memset of a constant value (e.g. 0) we can
371 // handle it.
372 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
373 // Store of constant value and constant size.
Chris Lattnera001b662010-04-16 00:38:19 +0000374 if (!isa<ConstantInt>(MSI->getValue()) ||
375 !isa<ConstantInt>(MSI->getLength()))
376 return false;
377 IsNotTrivial = true; // Can't be mem2reg'd.
378 continue;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000379 }
380
381 // If this is a memcpy or memmove into or out of the whole allocation, we
382 // can handle it like a load or store of the scalar type.
383 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
Chris Lattnera001b662010-04-16 00:38:19 +0000384 ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
385 if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
386 return false;
387
388 IsNotTrivial = true; // Can't be mem2reg'd.
389 continue;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000390 }
391
392 // Otherwise, we cannot handle this!
393 return false;
394 }
395
396 return true;
397}
398
399/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
400/// directly. This happens when we are converting an "integer union" to a
401/// single integer scalar, or when we are converting a "vector union" to a
402/// vector with insert/extractelement instructions.
403///
404/// Offset is an offset from the original alloca, in bits that need to be
405/// shifted to the right. By the end of this, there should be no uses of Ptr.
406void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
407 uint64_t Offset) {
408 while (!Ptr->use_empty()) {
409 Instruction *User = cast<Instruction>(Ptr->use_back());
410
411 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
412 ConvertUsesToScalar(CI, NewAI, Offset);
413 CI->eraseFromParent();
414 continue;
415 }
416
417 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
418 // Compute the offset that this GEP adds to the pointer.
419 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
420 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
421 &Indices[0], Indices.size());
422 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
423 GEP->eraseFromParent();
424 continue;
425 }
426
427 IRBuilder<> Builder(User->getParent(), User);
428
429 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
430 // The load is a bit extract from NewAI shifted right by Offset bits.
431 Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
432 Value *NewLoadVal
433 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
434 LI->replaceAllUsesWith(NewLoadVal);
435 LI->eraseFromParent();
436 continue;
437 }
438
439 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
440 assert(SI->getOperand(0) != Ptr && "Consistency error!");
441 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
442 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
443 Builder);
444 Builder.CreateStore(New, NewAI);
445 SI->eraseFromParent();
446
447 // If the load we just inserted is now dead, then the inserted store
448 // overwrote the entire thing.
449 if (Old->use_empty())
450 Old->eraseFromParent();
451 continue;
452 }
453
454 // If this is a constant sized memset of a constant value (e.g. 0) we can
455 // transform it into a store of the expanded constant value.
456 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
457 assert(MSI->getRawDest() == Ptr && "Consistency error!");
458 unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
459 if (NumBytes != 0) {
460 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
461
462 // Compute the value replicated the right number of times.
463 APInt APVal(NumBytes*8, Val);
464
465 // Splat the value if non-zero.
466 if (Val)
467 for (unsigned i = 1; i != NumBytes; ++i)
468 APVal |= APVal << 8;
469
470 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
471 Value *New = ConvertScalar_InsertValue(
472 ConstantInt::get(User->getContext(), APVal),
473 Old, Offset, Builder);
474 Builder.CreateStore(New, NewAI);
475
476 // If the load we just inserted is now dead, then the memset overwrote
477 // the entire thing.
478 if (Old->use_empty())
479 Old->eraseFromParent();
480 }
481 MSI->eraseFromParent();
482 continue;
483 }
484
485 // If this is a memcpy or memmove into or out of the whole allocation, we
486 // can handle it like a load or store of the scalar type.
487 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
488 assert(Offset == 0 && "must be store to start of alloca");
489
490 // If the source and destination are both to the same alloca, then this is
491 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
492 // as appropriate.
493 AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject(0));
494
495 if (MTI->getSource()->getUnderlyingObject(0) != OrigAI) {
496 // Dest must be OrigAI, change this to be a load from the original
497 // pointer (bitcasted), then a store to our new alloca.
498 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
499 Value *SrcPtr = MTI->getSource();
500 SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
501
502 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
503 SrcVal->setAlignment(MTI->getAlignment());
504 Builder.CreateStore(SrcVal, NewAI);
505 } else if (MTI->getDest()->getUnderlyingObject(0) != OrigAI) {
506 // Src must be OrigAI, change this to be a load from NewAI then a store
507 // through the original dest pointer (bitcasted).
508 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
509 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
510
511 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
512 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
513 NewStore->setAlignment(MTI->getAlignment());
514 } else {
515 // Noop transfer. Src == Dst
516 }
517
518 MTI->eraseFromParent();
519 continue;
520 }
521
522 llvm_unreachable("Unsupported operation!");
523 }
524}
525
526/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
527/// or vector value FromVal, extracting the bits from the offset specified by
528/// Offset. This returns the value, which is of type ToType.
529///
530/// This happens when we are converting an "integer union" to a single
531/// integer scalar, or when we are converting a "vector union" to a vector with
532/// insert/extractelement instructions.
533///
534/// Offset is an offset from the original alloca, in bits that need to be
535/// shifted to the right.
536Value *ConvertToScalarInfo::
537ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
538 uint64_t Offset, IRBuilder<> &Builder) {
539 // If the load is of the whole new alloca, no conversion is needed.
540 if (FromVal->getType() == ToType && Offset == 0)
541 return FromVal;
542
543 // If the result alloca is a vector type, this is either an element
544 // access or a bitcast to another vector type of the same size.
545 if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
546 if (ToType->isVectorTy())
547 return Builder.CreateBitCast(FromVal, ToType, "tmp");
548
549 // Otherwise it must be an element access.
550 unsigned Elt = 0;
551 if (Offset) {
552 unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
553 Elt = Offset/EltSize;
554 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
555 }
556 // Return the element extracted out of it.
557 Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
558 Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
559 if (V->getType() != ToType)
560 V = Builder.CreateBitCast(V, ToType, "tmp");
561 return V;
562 }
563
564 // If ToType is a first class aggregate, extract out each of the pieces and
565 // use insertvalue's to form the FCA.
566 if (const StructType *ST = dyn_cast<StructType>(ToType)) {
567 const StructLayout &Layout = *TD.getStructLayout(ST);
568 Value *Res = UndefValue::get(ST);
569 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
570 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
571 Offset+Layout.getElementOffsetInBits(i),
572 Builder);
573 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
574 }
575 return Res;
576 }
577
578 if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
579 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
580 Value *Res = UndefValue::get(AT);
581 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
582 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
583 Offset+i*EltSize, Builder);
584 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
585 }
586 return Res;
587 }
588
589 // Otherwise, this must be a union that was converted to an integer value.
590 const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
591
592 // If this is a big-endian system and the load is narrower than the
593 // full alloca type, we need to do a shift to get the right bits.
594 int ShAmt = 0;
595 if (TD.isBigEndian()) {
596 // On big-endian machines, the lowest bit is stored at the bit offset
597 // from the pointer given by getTypeStoreSizeInBits. This matters for
598 // integers with a bitwidth that is not a multiple of 8.
599 ShAmt = TD.getTypeStoreSizeInBits(NTy) -
600 TD.getTypeStoreSizeInBits(ToType) - Offset;
601 } else {
602 ShAmt = Offset;
603 }
604
605 // Note: we support negative bitwidths (with shl) which are not defined.
606 // We do this to support (f.e.) loads off the end of a structure where
607 // only some bits are used.
608 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
609 FromVal = Builder.CreateLShr(FromVal,
610 ConstantInt::get(FromVal->getType(),
611 ShAmt), "tmp");
612 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
613 FromVal = Builder.CreateShl(FromVal,
614 ConstantInt::get(FromVal->getType(),
615 -ShAmt), "tmp");
616
617 // Finally, unconditionally truncate the integer to the right width.
618 unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
619 if (LIBitWidth < NTy->getBitWidth())
620 FromVal =
621 Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
622 LIBitWidth), "tmp");
623 else if (LIBitWidth > NTy->getBitWidth())
624 FromVal =
625 Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
626 LIBitWidth), "tmp");
627
628 // If the result is an integer, this is a trunc or bitcast.
629 if (ToType->isIntegerTy()) {
630 // Should be done.
631 } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
632 // Just do a bitcast, we know the sizes match up.
633 FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
634 } else {
635 // Otherwise must be a pointer.
636 FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
637 }
638 assert(FromVal->getType() == ToType && "Didn't convert right?");
639 return FromVal;
640}
641
642/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
643/// or vector value "Old" at the offset specified by Offset.
644///
645/// This happens when we are converting an "integer union" to a
646/// single integer scalar, or when we are converting a "vector union" to a
647/// vector with insert/extractelement instructions.
648///
649/// Offset is an offset from the original alloca, in bits that need to be
650/// shifted to the right.
651Value *ConvertToScalarInfo::
652ConvertScalar_InsertValue(Value *SV, Value *Old,
653 uint64_t Offset, IRBuilder<> &Builder) {
654 // Convert the stored type to the actual type, shift it left to insert
655 // then 'or' into place.
656 const Type *AllocaType = Old->getType();
657 LLVMContext &Context = Old->getContext();
658
659 if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
660 uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
661 uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
662
663 // Changing the whole vector with memset or with an access of a different
664 // vector type?
665 if (ValSize == VecSize)
666 return Builder.CreateBitCast(SV, AllocaType, "tmp");
667
668 uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
669
670 // Must be an element insertion.
671 unsigned Elt = Offset/EltSize;
672
673 if (SV->getType() != VTy->getElementType())
674 SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
675
676 SV = Builder.CreateInsertElement(Old, SV,
677 ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
678 "tmp");
679 return SV;
680 }
681
682 // If SV is a first-class aggregate value, insert each value recursively.
683 if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
684 const StructLayout &Layout = *TD.getStructLayout(ST);
685 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
686 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
687 Old = ConvertScalar_InsertValue(Elt, Old,
688 Offset+Layout.getElementOffsetInBits(i),
689 Builder);
690 }
691 return Old;
692 }
693
694 if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
695 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
696 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
697 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
698 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
699 }
700 return Old;
701 }
702
703 // If SV is a float, convert it to the appropriate integer type.
704 // If it is a pointer, do the same.
705 unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
706 unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
707 unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
708 unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
709 if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
710 SV = Builder.CreateBitCast(SV,
711 IntegerType::get(SV->getContext(),SrcWidth), "tmp");
712 else if (SV->getType()->isPointerTy())
713 SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
714
715 // Zero extend or truncate the value if needed.
716 if (SV->getType() != AllocaType) {
717 if (SV->getType()->getPrimitiveSizeInBits() <
718 AllocaType->getPrimitiveSizeInBits())
719 SV = Builder.CreateZExt(SV, AllocaType, "tmp");
720 else {
721 // Truncation may be needed if storing more than the alloca can hold
722 // (undefined behavior).
723 SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
724 SrcWidth = DestWidth;
725 SrcStoreWidth = DestStoreWidth;
726 }
727 }
728
729 // If this is a big-endian system and the store is narrower than the
730 // full alloca type, we need to do a shift to get the right bits.
731 int ShAmt = 0;
732 if (TD.isBigEndian()) {
733 // On big-endian machines, the lowest bit is stored at the bit offset
734 // from the pointer given by getTypeStoreSizeInBits. This matters for
735 // integers with a bitwidth that is not a multiple of 8.
736 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
737 } else {
738 ShAmt = Offset;
739 }
740
741 // Note: we support negative bitwidths (with shr) which are not defined.
742 // We do this to support (f.e.) stores off the end of a structure where
743 // only some bits in the structure are set.
744 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
745 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
746 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
747 ShAmt), "tmp");
748 Mask <<= ShAmt;
749 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
750 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
751 -ShAmt), "tmp");
752 Mask = Mask.lshr(-ShAmt);
753 }
754
755 // Mask out the bits we are about to insert from the old value, and or
756 // in the new bits.
757 if (SrcWidth != DestWidth) {
758 assert(DestWidth > SrcWidth);
759 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
760 SV = Builder.CreateOr(Old, SV, "ins");
761 }
762 return SV;
763}
764
765
766//===----------------------------------------------------------------------===//
767// SRoA Driver
768//===----------------------------------------------------------------------===//
769
770
Chris Lattnered7b41e2003-05-27 15:45:27 +0000771bool SROA::runOnFunction(Function &F) {
Dan Gohmane4af1cf2009-08-19 18:22:18 +0000772 TD = getAnalysisIfAvailable<TargetData>();
773
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +0000774 bool Changed = performPromotion(F);
Dan Gohmane4af1cf2009-08-19 18:22:18 +0000775
776 // FIXME: ScalarRepl currently depends on TargetData more than it
777 // theoretically needs to. It should be refactored in order to support
778 // target-independent IR. Until this is done, just skip the actual
779 // scalar-replacement portion of this pass.
780 if (!TD) return Changed;
781
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +0000782 while (1) {
783 bool LocalChange = performScalarRepl(F);
784 if (!LocalChange) break; // No need to repromote if no scalarrepl
785 Changed = true;
786 LocalChange = performPromotion(F);
787 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
788 }
Chris Lattner38aec322003-09-11 16:45:55 +0000789
790 return Changed;
791}
792
793
794bool SROA::performPromotion(Function &F) {
795 std::vector<AllocaInst*> Allocas;
Devang Patel326821e2007-06-07 21:57:03 +0000796 DominatorTree &DT = getAnalysis<DominatorTree>();
Chris Lattner43f820d2003-10-05 21:20:13 +0000797 DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
Chris Lattner38aec322003-09-11 16:45:55 +0000798
Chris Lattner02a3be02003-09-20 14:39:18 +0000799 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
Chris Lattner38aec322003-09-11 16:45:55 +0000800
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +0000801 bool Changed = false;
Misha Brukmanfd939082005-04-21 23:48:37 +0000802
Chris Lattner38aec322003-09-11 16:45:55 +0000803 while (1) {
804 Allocas.clear();
805
806 // Find allocas that are safe to promote, by looking at all instructions in
807 // the entry node
808 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
809 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
Devang Patel41968df2007-04-25 17:15:20 +0000810 if (isAllocaPromotable(AI))
Chris Lattner38aec322003-09-11 16:45:55 +0000811 Allocas.push_back(AI);
812
813 if (Allocas.empty()) break;
814
Nick Lewyckyce2c51b2009-11-23 03:50:44 +0000815 PromoteMemToReg(Allocas, DT, DF);
Chris Lattner38aec322003-09-11 16:45:55 +0000816 NumPromoted += Allocas.size();
817 Changed = true;
818 }
819
820 return Changed;
821}
822
Chris Lattner4cc576b2010-04-16 00:24:57 +0000823
Bob Wilson3992feb2010-02-03 17:23:56 +0000824/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
825/// SROA. It must be a struct or array type with a small number of elements.
826static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
827 const Type *T = AI->getAllocatedType();
828 // Do not promote any struct into more than 32 separate vars.
Chris Lattner963a97f2008-06-22 17:46:21 +0000829 if (const StructType *ST = dyn_cast<StructType>(T))
Bob Wilson3992feb2010-02-03 17:23:56 +0000830 return ST->getNumElements() <= 32;
831 // Arrays are much less likely to be safe for SROA; only consider
832 // them if they are very small.
833 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
834 return AT->getNumElements() <= 8;
835 return false;
Chris Lattner963a97f2008-06-22 17:46:21 +0000836}
837
Chris Lattnerc4472072010-04-15 23:50:26 +0000838
Chris Lattner38aec322003-09-11 16:45:55 +0000839// performScalarRepl - This algorithm is a simple worklist driven algorithm,
840// which runs on all of the malloc/alloca instructions in the function, removing
841// them if they are only used by getelementptr instructions.
842//
843bool SROA::performScalarRepl(Function &F) {
Victor Hernandez7b929da2009-10-23 21:09:37 +0000844 std::vector<AllocaInst*> WorkList;
Chris Lattnered7b41e2003-05-27 15:45:27 +0000845
Chris Lattner31d80102010-04-15 21:59:20 +0000846 // Scan the entry basic block, adding allocas to the worklist.
Chris Lattner02a3be02003-09-20 14:39:18 +0000847 BasicBlock &BB = F.getEntryBlock();
Chris Lattnered7b41e2003-05-27 15:45:27 +0000848 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
Victor Hernandez7b929da2009-10-23 21:09:37 +0000849 if (AllocaInst *A = dyn_cast<AllocaInst>(I))
Chris Lattnered7b41e2003-05-27 15:45:27 +0000850 WorkList.push_back(A);
851
852 // Process the worklist
853 bool Changed = false;
854 while (!WorkList.empty()) {
Victor Hernandez7b929da2009-10-23 21:09:37 +0000855 AllocaInst *AI = WorkList.back();
Chris Lattnered7b41e2003-05-27 15:45:27 +0000856 WorkList.pop_back();
Chris Lattnera1888942005-12-12 07:19:13 +0000857
Chris Lattneradd2bd72006-12-22 23:14:42 +0000858 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
859 // with unused elements.
860 if (AI->use_empty()) {
861 AI->eraseFromParent();
Chris Lattnerc4472072010-04-15 23:50:26 +0000862 Changed = true;
Chris Lattneradd2bd72006-12-22 23:14:42 +0000863 continue;
864 }
Chris Lattner7809ecd2009-02-03 01:30:09 +0000865
866 // If this alloca is impossible for us to promote, reject it early.
867 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
868 continue;
Chris Lattner79b3bd32007-04-25 06:40:51 +0000869
870 // Check to see if this allocation is only modified by a memcpy/memmove from
871 // a constant global. If this is the case, we can change all users to use
872 // the constant global instead. This is commonly produced by the CFE by
873 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
874 // is only subsequently read.
Chris Lattner31d80102010-04-15 21:59:20 +0000875 if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
David Greene504c7d82010-01-05 01:27:09 +0000876 DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
877 DEBUG(dbgs() << " memcpy = " << *TheCopy << '\n');
Chris Lattner31d80102010-04-15 21:59:20 +0000878 Constant *TheSrc = cast<Constant>(TheCopy->getSource());
Owen Andersonbaf3c402009-07-29 18:55:55 +0000879 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
Chris Lattner79b3bd32007-04-25 06:40:51 +0000880 TheCopy->eraseFromParent(); // Don't mutate the global.
881 AI->eraseFromParent();
882 ++NumGlobals;
883 Changed = true;
884 continue;
885 }
Chris Lattner15c82772009-02-02 20:44:45 +0000886
Chris Lattner7809ecd2009-02-03 01:30:09 +0000887 // Check to see if we can perform the core SROA transformation. We cannot
888 // transform the allocation instruction if it is an array allocation
889 // (allocations OF arrays are ok though), and an allocation of a scalar
890 // value cannot be decomposed at all.
Duncan Sands777d2302009-05-09 07:06:46 +0000891 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
Bill Wendling5a377cb2009-03-03 12:12:58 +0000892
Nick Lewyckyd3aa25e2009-08-17 05:37:31 +0000893 // Do not promote [0 x %struct].
894 if (AllocaSize == 0) continue;
Chris Lattner31d80102010-04-15 21:59:20 +0000895
896 // Do not promote any struct whose size is too big.
897 if (AllocaSize > SRThreshold) continue;
898
Bob Wilson3992feb2010-02-03 17:23:56 +0000899 // If the alloca looks like a good candidate for scalar replacement, and if
900 // all its users can be transformed, then split up the aggregate into its
901 // separate elements.
902 if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
903 DoScalarReplacement(AI, WorkList);
904 Changed = true;
905 continue;
906 }
907
Chris Lattner6e733d32009-01-28 20:16:43 +0000908 // If we can turn this aggregate value (potentially with casts) into a
909 // simple scalar value that can be mem2reg'd into a register value.
Chris Lattner2e0d5f82009-01-31 02:28:54 +0000910 // IsNotTrivial tracks whether this is something that mem2reg could have
911 // promoted itself. If so, we don't want to transform it needlessly. Note
912 // that we can't just check based on the type: the alloca may be of an i32
913 // but that has pointer arithmetic to set byte 3 of it or something.
Chris Lattner593375d2010-04-16 00:20:00 +0000914 if (AllocaInst *NewAI =
915 ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
Chris Lattner7809ecd2009-02-03 01:30:09 +0000916 NewAI->takeName(AI);
917 AI->eraseFromParent();
918 ++NumConverted;
919 Changed = true;
920 continue;
Chris Lattner593375d2010-04-16 00:20:00 +0000921 }
Chris Lattner6e733d32009-01-28 20:16:43 +0000922
Chris Lattner7809ecd2009-02-03 01:30:09 +0000923 // Otherwise, couldn't process this alloca.
Chris Lattnered7b41e2003-05-27 15:45:27 +0000924 }
925
926 return Changed;
927}
Chris Lattner5e062a12003-05-30 04:15:41 +0000928
Chris Lattnera10b29b2007-04-25 05:02:56 +0000929/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
930/// predicate, do SROA now.
Victor Hernandez7b929da2009-10-23 21:09:37 +0000931void SROA::DoScalarReplacement(AllocaInst *AI,
932 std::vector<AllocaInst*> &WorkList) {
David Greene504c7d82010-01-05 01:27:09 +0000933 DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
Chris Lattnera10b29b2007-04-25 05:02:56 +0000934 SmallVector<AllocaInst*, 32> ElementAllocas;
935 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
936 ElementAllocas.reserve(ST->getNumContainedTypes());
937 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
Owen Anderson50dead02009-07-15 23:53:25 +0000938 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
Chris Lattnera10b29b2007-04-25 05:02:56 +0000939 AI->getAlignment(),
Daniel Dunbarfe09b202009-07-30 17:37:43 +0000940 AI->getName() + "." + Twine(i), AI);
Chris Lattnera10b29b2007-04-25 05:02:56 +0000941 ElementAllocas.push_back(NA);
942 WorkList.push_back(NA); // Add to worklist for recursive processing
943 }
944 } else {
945 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
946 ElementAllocas.reserve(AT->getNumElements());
947 const Type *ElTy = AT->getElementType();
948 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Owen Anderson50dead02009-07-15 23:53:25 +0000949 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
Daniel Dunbarfe09b202009-07-30 17:37:43 +0000950 AI->getName() + "." + Twine(i), AI);
Chris Lattnera10b29b2007-04-25 05:02:56 +0000951 ElementAllocas.push_back(NA);
952 WorkList.push_back(NA); // Add to worklist for recursive processing
953 }
954 }
955
Bob Wilsonb742def2009-12-18 20:14:40 +0000956 // Now that we have created the new alloca instructions, rewrite all the
957 // uses of the old alloca.
958 RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
Chris Lattnera59adc42009-12-14 05:11:02 +0000959
Bob Wilsonb742def2009-12-18 20:14:40 +0000960 // Now erase any instructions that were made dead while rewriting the alloca.
961 DeleteDeadInstructions();
Bob Wilson39c88a62009-12-17 18:34:24 +0000962 AI->eraseFromParent();
Bob Wilsonb742def2009-12-18 20:14:40 +0000963
Dan Gohmanfe601042010-06-22 15:08:57 +0000964 ++NumReplaced;
Chris Lattnera10b29b2007-04-25 05:02:56 +0000965}
Chris Lattnera59adc42009-12-14 05:11:02 +0000966
Bob Wilsonb742def2009-12-18 20:14:40 +0000967/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
968/// recursively including all their operands that become trivially dead.
969void SROA::DeleteDeadInstructions() {
970 while (!DeadInsts.empty()) {
971 Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
Chris Lattnera59adc42009-12-14 05:11:02 +0000972
Bob Wilsonb742def2009-12-18 20:14:40 +0000973 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
974 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
975 // Zero out the operand and see if it becomes trivially dead.
976 // (But, don't add allocas to the dead instruction list -- they are
977 // already on the worklist and will be deleted separately.)
978 *OI = 0;
979 if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
980 DeadInsts.push_back(U);
Chris Lattnera59adc42009-12-14 05:11:02 +0000981 }
Bob Wilsonb742def2009-12-18 20:14:40 +0000982
983 I->eraseFromParent();
Chris Lattnera59adc42009-12-14 05:11:02 +0000984 }
Chris Lattnera59adc42009-12-14 05:11:02 +0000985}
Bob Wilsonb742def2009-12-18 20:14:40 +0000986
Bob Wilsonb742def2009-12-18 20:14:40 +0000987/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
988/// performing scalar replacement of alloca AI. The results are flagged in
Bob Wilson3c3af5d2009-12-21 18:39:47 +0000989/// the Info parameter. Offset indicates the position within AI that is
990/// referenced by this instruction.
Bob Wilsonb742def2009-12-18 20:14:40 +0000991void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
Bob Wilson3c3af5d2009-12-21 18:39:47 +0000992 AllocaInfo &Info) {
Bob Wilsonb742def2009-12-18 20:14:40 +0000993 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
994 Instruction *User = cast<Instruction>(*UI);
Chris Lattnerbe883a22003-11-25 21:09:18 +0000995
Bob Wilsonb742def2009-12-18 20:14:40 +0000996 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
Bob Wilson3c3af5d2009-12-21 18:39:47 +0000997 isSafeForScalarRepl(BC, AI, Offset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +0000998 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +0000999 uint64_t GEPOffset = Offset;
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001000 isSafeGEP(GEPI, AI, GEPOffset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001001 if (!Info.isUnsafe)
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001002 isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
Gabor Greif19101c72010-06-28 11:20:42 +00001003 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001004 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1005 if (Length)
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001006 isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
Gabor Greifa6aac4c2010-07-16 09:38:02 +00001007 UI.getOperandNo() == 0, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001008 else
1009 MarkUnsafe(Info);
1010 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1011 if (!LI->isVolatile()) {
1012 const Type *LIType = LI->getType();
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001013 isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
Bob Wilsonb742def2009-12-18 20:14:40 +00001014 LIType, false, Info);
1015 } else
1016 MarkUnsafe(Info);
1017 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1018 // Store is ok if storing INTO the pointer, not storing the pointer
1019 if (!SI->isVolatile() && SI->getOperand(0) != I) {
1020 const Type *SIType = SI->getOperand(0)->getType();
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001021 isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
Bob Wilsonb742def2009-12-18 20:14:40 +00001022 SIType, true, Info);
1023 } else
1024 MarkUnsafe(Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001025 } else {
1026 DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
1027 MarkUnsafe(Info);
1028 }
1029 if (Info.isUnsafe) return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001030 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001031}
Bob Wilson39c88a62009-12-17 18:34:24 +00001032
Bob Wilsonb742def2009-12-18 20:14:40 +00001033/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1034/// replacement. It is safe when all the indices are constant, in-bounds
1035/// references, and when the resulting offset corresponds to an element within
1036/// the alloca type. The results are flagged in the Info parameter. Upon
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001037/// return, Offset is adjusted as specified by the GEP indices.
Bob Wilsonb742def2009-12-18 20:14:40 +00001038void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001039 uint64_t &Offset, AllocaInfo &Info) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001040 gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1041 if (GEPIt == E)
1042 return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001043
Chris Lattner88e6dc82008-08-23 05:21:06 +00001044 // Walk through the GEP type indices, checking the types that this indexes
1045 // into.
Bob Wilsonb742def2009-12-18 20:14:40 +00001046 for (; GEPIt != E; ++GEPIt) {
Chris Lattner88e6dc82008-08-23 05:21:06 +00001047 // Ignore struct elements, no extra checking needed for these.
Duncan Sands1df98592010-02-16 11:11:14 +00001048 if ((*GEPIt)->isStructTy())
Chris Lattner88e6dc82008-08-23 05:21:06 +00001049 continue;
Matthijs Kooijman5fac55f2008-10-06 16:23:31 +00001050
Bob Wilsonb742def2009-12-18 20:14:40 +00001051 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1052 if (!IdxVal)
1053 return MarkUnsafe(Info);
Chris Lattner88e6dc82008-08-23 05:21:06 +00001054 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001055
Bob Wilsonf27a4cd2009-12-22 06:57:14 +00001056 // Compute the offset due to this GEP and check if the alloca has a
1057 // component element at that offset.
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001058 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1059 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1060 &Indices[0], Indices.size());
Bob Wilsonb742def2009-12-18 20:14:40 +00001061 if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
1062 MarkUnsafe(Info);
Chris Lattner5e062a12003-05-30 04:15:41 +00001063}
1064
Bob Wilsonb742def2009-12-18 20:14:40 +00001065/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1066/// alloca or has an offset and size that corresponds to a component element
1067/// within it. The offset checked here may have been formed from a GEP with a
1068/// pointer bitcasted to a different type.
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001069void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
Bob Wilsonb742def2009-12-18 20:14:40 +00001070 const Type *MemOpType, bool isStore,
1071 AllocaInfo &Info) {
1072 // Check if this is a load/store of the entire alloca.
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001073 if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001074 bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
1075 // This is safe for MemIntrinsics (where MemOpType is 0), integer types
1076 // (which are essentially the same as the MemIntrinsics, especially with
1077 // regard to copying padding between elements), or references using the
1078 // aggregate type of the alloca.
Duncan Sands1df98592010-02-16 11:11:14 +00001079 if (!MemOpType || MemOpType->isIntegerTy() || UsesAggregateType) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001080 if (!UsesAggregateType) {
1081 if (isStore)
1082 Info.isMemCpyDst = true;
1083 else
1084 Info.isMemCpySrc = true;
1085 }
1086 return;
1087 }
1088 }
1089 // Check if the offset/size correspond to a component within the alloca type.
1090 const Type *T = AI->getAllocatedType();
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001091 if (TypeHasComponent(T, Offset, MemSize))
Bob Wilsonb742def2009-12-18 20:14:40 +00001092 return;
1093
1094 return MarkUnsafe(Info);
1095}
1096
1097/// TypeHasComponent - Return true if T has a component type with the
1098/// specified offset and size. If Size is zero, do not check the size.
1099bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1100 const Type *EltTy;
1101 uint64_t EltSize;
1102 if (const StructType *ST = dyn_cast<StructType>(T)) {
1103 const StructLayout *Layout = TD->getStructLayout(ST);
1104 unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1105 EltTy = ST->getContainedType(EltIdx);
1106 EltSize = TD->getTypeAllocSize(EltTy);
1107 Offset -= Layout->getElementOffset(EltIdx);
1108 } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1109 EltTy = AT->getElementType();
1110 EltSize = TD->getTypeAllocSize(EltTy);
Bob Wilsonf27a4cd2009-12-22 06:57:14 +00001111 if (Offset >= AT->getNumElements() * EltSize)
1112 return false;
Bob Wilsonb742def2009-12-18 20:14:40 +00001113 Offset %= EltSize;
1114 } else {
1115 return false;
1116 }
1117 if (Offset == 0 && (Size == 0 || EltSize == Size))
1118 return true;
1119 // Check if the component spans multiple elements.
1120 if (Offset + Size > EltSize)
1121 return false;
1122 return TypeHasComponent(EltTy, Offset, Size);
1123}
1124
1125/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1126/// the instruction I, which references it, to use the separate elements.
1127/// Offset indicates the position within AI that is referenced by this
1128/// instruction.
1129void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1130 SmallVector<AllocaInst*, 32> &NewElts) {
1131 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1132 Instruction *User = cast<Instruction>(*UI);
1133
1134 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1135 RewriteBitCast(BC, AI, Offset, NewElts);
1136 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1137 RewriteGEP(GEPI, AI, Offset, NewElts);
1138 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1139 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1140 uint64_t MemSize = Length->getZExtValue();
1141 if (Offset == 0 &&
1142 MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1143 RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
Bob Wilsone88728d2009-12-19 06:53:17 +00001144 // Otherwise the intrinsic can only touch a single element and the
1145 // address operand will be updated, so nothing else needs to be done.
Bob Wilsonb742def2009-12-18 20:14:40 +00001146 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1147 const Type *LIType = LI->getType();
1148 if (LIType == AI->getAllocatedType()) {
1149 // Replace:
1150 // %res = load { i32, i32 }* %alloc
1151 // with:
1152 // %load.0 = load i32* %alloc.0
1153 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1154 // %load.1 = load i32* %alloc.1
1155 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1156 // (Also works for arrays instead of structs)
1157 Value *Insert = UndefValue::get(LIType);
1158 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1159 Value *Load = new LoadInst(NewElts[i], "load", LI);
1160 Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1161 }
1162 LI->replaceAllUsesWith(Insert);
1163 DeadInsts.push_back(LI);
Duncan Sands1df98592010-02-16 11:11:14 +00001164 } else if (LIType->isIntegerTy() &&
Bob Wilsonb742def2009-12-18 20:14:40 +00001165 TD->getTypeAllocSize(LIType) ==
1166 TD->getTypeAllocSize(AI->getAllocatedType())) {
1167 // If this is a load of the entire alloca to an integer, rewrite it.
1168 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1169 }
1170 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1171 Value *Val = SI->getOperand(0);
1172 const Type *SIType = Val->getType();
1173 if (SIType == AI->getAllocatedType()) {
1174 // Replace:
1175 // store { i32, i32 } %val, { i32, i32 }* %alloc
1176 // with:
1177 // %val.0 = extractvalue { i32, i32 } %val, 0
1178 // store i32 %val.0, i32* %alloc.0
1179 // %val.1 = extractvalue { i32, i32 } %val, 1
1180 // store i32 %val.1, i32* %alloc.1
1181 // (Also works for arrays instead of structs)
1182 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1183 Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1184 new StoreInst(Extract, NewElts[i], SI);
1185 }
1186 DeadInsts.push_back(SI);
Duncan Sands1df98592010-02-16 11:11:14 +00001187 } else if (SIType->isIntegerTy() &&
Bob Wilsonb742def2009-12-18 20:14:40 +00001188 TD->getTypeAllocSize(SIType) ==
1189 TD->getTypeAllocSize(AI->getAllocatedType())) {
1190 // If this is a store of the entire alloca from an integer, rewrite it.
1191 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1192 }
1193 }
Bob Wilson39c88a62009-12-17 18:34:24 +00001194 }
1195}
1196
Bob Wilsonb742def2009-12-18 20:14:40 +00001197/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1198/// and recursively continue updating all of its uses.
1199void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1200 SmallVector<AllocaInst*, 32> &NewElts) {
1201 RewriteForScalarRepl(BC, AI, Offset, NewElts);
1202 if (BC->getOperand(0) != AI)
1203 return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001204
Bob Wilsonb742def2009-12-18 20:14:40 +00001205 // The bitcast references the original alloca. Replace its uses with
1206 // references to the first new element alloca.
1207 Instruction *Val = NewElts[0];
1208 if (Val->getType() != BC->getDestTy()) {
1209 Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1210 Val->takeName(BC);
Daniel Dunbarfca55c82009-12-16 10:56:17 +00001211 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001212 BC->replaceAllUsesWith(Val);
1213 DeadInsts.push_back(BC);
Daniel Dunbarfca55c82009-12-16 10:56:17 +00001214}
1215
Bob Wilsonb742def2009-12-18 20:14:40 +00001216/// FindElementAndOffset - Return the index of the element containing Offset
1217/// within the specified type, which must be either a struct or an array.
1218/// Sets T to the type of the element and Offset to the offset within that
Bob Wilsone88728d2009-12-19 06:53:17 +00001219/// element. IdxTy is set to the type of the index result to be used in a
1220/// GEP instruction.
1221uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1222 const Type *&IdxTy) {
1223 uint64_t Idx = 0;
Bob Wilsonb742def2009-12-18 20:14:40 +00001224 if (const StructType *ST = dyn_cast<StructType>(T)) {
1225 const StructLayout *Layout = TD->getStructLayout(ST);
1226 Idx = Layout->getElementContainingOffset(Offset);
1227 T = ST->getContainedType(Idx);
1228 Offset -= Layout->getElementOffset(Idx);
Bob Wilsone88728d2009-12-19 06:53:17 +00001229 IdxTy = Type::getInt32Ty(T->getContext());
1230 return Idx;
Chris Lattnera59adc42009-12-14 05:11:02 +00001231 }
Bob Wilsone88728d2009-12-19 06:53:17 +00001232 const ArrayType *AT = cast<ArrayType>(T);
1233 T = AT->getElementType();
1234 uint64_t EltSize = TD->getTypeAllocSize(T);
1235 Idx = Offset / EltSize;
1236 Offset -= Idx * EltSize;
1237 IdxTy = Type::getInt64Ty(T->getContext());
Bob Wilsonb742def2009-12-18 20:14:40 +00001238 return Idx;
1239}
1240
1241/// RewriteGEP - Check if this GEP instruction moves the pointer across
1242/// elements of the alloca that are being split apart, and if so, rewrite
1243/// the GEP to be relative to the new element.
1244void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1245 SmallVector<AllocaInst*, 32> &NewElts) {
1246 uint64_t OldOffset = Offset;
1247 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1248 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1249 &Indices[0], Indices.size());
1250
1251 RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1252
1253 const Type *T = AI->getAllocatedType();
Bob Wilsone88728d2009-12-19 06:53:17 +00001254 const Type *IdxTy;
1255 uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
Bob Wilsonb742def2009-12-18 20:14:40 +00001256 if (GEPI->getOperand(0) == AI)
Bob Wilsone88728d2009-12-19 06:53:17 +00001257 OldIdx = ~0ULL; // Force the GEP to be rewritten.
Bob Wilsonb742def2009-12-18 20:14:40 +00001258
1259 T = AI->getAllocatedType();
1260 uint64_t EltOffset = Offset;
Bob Wilsone88728d2009-12-19 06:53:17 +00001261 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
Bob Wilsonb742def2009-12-18 20:14:40 +00001262
1263 // If this GEP does not move the pointer across elements of the alloca
1264 // being split, then it does not needs to be rewritten.
1265 if (Idx == OldIdx)
1266 return;
1267
1268 const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1269 SmallVector<Value*, 8> NewArgs;
1270 NewArgs.push_back(Constant::getNullValue(i32Ty));
1271 while (EltOffset != 0) {
Bob Wilsone88728d2009-12-19 06:53:17 +00001272 uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1273 NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
Bob Wilsonb742def2009-12-18 20:14:40 +00001274 }
1275 Instruction *Val = NewElts[Idx];
1276 if (NewArgs.size() > 1) {
1277 Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1278 NewArgs.end(), "", GEPI);
1279 Val->takeName(GEPI);
1280 }
1281 if (Val->getType() != GEPI->getType())
Benjamin Kramer2d64ca02010-01-27 19:46:52 +00001282 Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
Bob Wilsonb742def2009-12-18 20:14:40 +00001283 GEPI->replaceAllUsesWith(Val);
1284 DeadInsts.push_back(GEPI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001285}
1286
1287/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1288/// Rewrite it to copy or set the elements of the scalarized memory.
Bob Wilsonb742def2009-12-18 20:14:40 +00001289void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Victor Hernandez7b929da2009-10-23 21:09:37 +00001290 AllocaInst *AI,
Chris Lattnerd93afec2009-01-07 07:18:45 +00001291 SmallVector<AllocaInst*, 32> &NewElts) {
Chris Lattnerd93afec2009-01-07 07:18:45 +00001292 // If this is a memcpy/memmove, construct the other pointer as the
Chris Lattner88fe1ad2009-03-04 19:23:25 +00001293 // appropriate type. The "Other" pointer is the pointer that goes to memory
1294 // that doesn't have anything to do with the alloca that we are promoting. For
1295 // memset, this Value* stays null.
Chris Lattnerd93afec2009-01-07 07:18:45 +00001296 Value *OtherPtr = 0;
Chris Lattnerdfe964c2009-03-08 03:59:00 +00001297 unsigned MemAlignment = MI->getAlignment();
Chris Lattner3ce5e882009-03-08 03:37:16 +00001298 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
Bob Wilsonb742def2009-12-18 20:14:40 +00001299 if (Inst == MTI->getRawDest())
Chris Lattner3ce5e882009-03-08 03:37:16 +00001300 OtherPtr = MTI->getRawSource();
Chris Lattnerd93afec2009-01-07 07:18:45 +00001301 else {
Bob Wilsonb742def2009-12-18 20:14:40 +00001302 assert(Inst == MTI->getRawSource());
Chris Lattner3ce5e882009-03-08 03:37:16 +00001303 OtherPtr = MTI->getRawDest();
Chris Lattnerd93afec2009-01-07 07:18:45 +00001304 }
1305 }
Bob Wilson78c50b82009-12-08 18:22:03 +00001306
Chris Lattnerd93afec2009-01-07 07:18:45 +00001307 // If there is an other pointer, we want to convert it to the same pointer
1308 // type as AI has, so we can GEP through it safely.
1309 if (OtherPtr) {
Chris Lattner0238f8c2010-07-08 00:27:05 +00001310 unsigned AddrSpace =
1311 cast<PointerType>(OtherPtr->getType())->getAddressSpace();
Bob Wilsonb742def2009-12-18 20:14:40 +00001312
1313 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
1314 // optimization, but it's also required to detect the corner case where
1315 // both pointer operands are referencing the same memory, and where
1316 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
1317 // function is only called for mem intrinsics that access the whole
1318 // aggregate, so non-zero GEPs are not an issue here.)
Chris Lattner0238f8c2010-07-08 00:27:05 +00001319 OtherPtr = OtherPtr->stripPointerCasts();
1320
Bob Wilsona756b1d2010-01-19 04:32:48 +00001321 // Copying the alloca to itself is a no-op: just delete it.
1322 if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1323 // This code will run twice for a no-op memcpy -- once for each operand.
1324 // Put only one reference to MI on the DeadInsts list.
1325 for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1326 E = DeadInsts.end(); I != E; ++I)
1327 if (*I == MI) return;
1328 DeadInsts.push_back(MI);
Bob Wilsonb742def2009-12-18 20:14:40 +00001329 return;
Bob Wilsona756b1d2010-01-19 04:32:48 +00001330 }
Chris Lattner372dda82007-03-05 07:52:57 +00001331
Chris Lattnerd93afec2009-01-07 07:18:45 +00001332 // If the pointer is not the right type, insert a bitcast to the right
1333 // type.
Chris Lattner0238f8c2010-07-08 00:27:05 +00001334 const Type *NewTy =
1335 PointerType::get(AI->getType()->getElementType(), AddrSpace);
1336
1337 if (OtherPtr->getType() != NewTy)
1338 OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001339 }
1340
1341 // Process each element of the aggregate.
Gabor Greifa9b23132010-04-20 13:13:04 +00001342 Value *TheFn = MI->getCalledValue();
Chris Lattnerd93afec2009-01-07 07:18:45 +00001343 const Type *BytePtrTy = MI->getRawDest()->getType();
Bob Wilsonb742def2009-12-18 20:14:40 +00001344 bool SROADest = MI->getRawDest() == Inst;
Chris Lattnerd93afec2009-01-07 07:18:45 +00001345
Owen Anderson1d0be152009-08-13 21:58:54 +00001346 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
Chris Lattnerd93afec2009-01-07 07:18:45 +00001347
1348 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1349 // If this is a memcpy/memmove, emit a GEP of the other element address.
1350 Value *OtherElt = 0;
Chris Lattner1541e0f2009-03-04 19:20:50 +00001351 unsigned OtherEltAlign = MemAlignment;
1352
Bob Wilsona756b1d2010-01-19 04:32:48 +00001353 if (OtherPtr) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001354 Value *Idx[2] = { Zero,
1355 ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
Bob Wilsonb742def2009-12-18 20:14:40 +00001356 OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
Benjamin Kramer2d64ca02010-01-27 19:46:52 +00001357 OtherPtr->getName()+"."+Twine(i),
Bob Wilsonb742def2009-12-18 20:14:40 +00001358 MI);
Chris Lattner1541e0f2009-03-04 19:20:50 +00001359 uint64_t EltOffset;
1360 const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
Chris Lattnerd55c1c12010-04-16 01:05:38 +00001361 const Type *OtherTy = OtherPtrTy->getElementType();
1362 if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
Chris Lattner1541e0f2009-03-04 19:20:50 +00001363 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1364 } else {
Chris Lattnerd55c1c12010-04-16 01:05:38 +00001365 const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00001366 EltOffset = TD->getTypeAllocSize(EltTy)*i;
Chris Lattner1541e0f2009-03-04 19:20:50 +00001367 }
1368
1369 // The alignment of the other pointer is the guaranteed alignment of the
1370 // element, which is affected by both the known alignment of the whole
1371 // mem intrinsic and the alignment of the element. If the alignment of
1372 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1373 // known alignment is just 4 bytes.
1374 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
Chris Lattnerc14d3ca2007-03-08 06:36:54 +00001375 }
Chris Lattnerd93afec2009-01-07 07:18:45 +00001376
1377 Value *EltPtr = NewElts[i];
Chris Lattner1541e0f2009-03-04 19:20:50 +00001378 const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
Chris Lattnerd93afec2009-01-07 07:18:45 +00001379
1380 // If we got down to a scalar, insert a load or store as appropriate.
1381 if (EltTy->isSingleValueType()) {
Chris Lattner3ce5e882009-03-08 03:37:16 +00001382 if (isa<MemTransferInst>(MI)) {
Chris Lattner1541e0f2009-03-04 19:20:50 +00001383 if (SROADest) {
1384 // From Other to Alloca.
1385 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
1386 new StoreInst(Elt, EltPtr, MI);
1387 } else {
1388 // From Alloca to Other.
1389 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
1390 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
1391 }
Chris Lattnerd93afec2009-01-07 07:18:45 +00001392 continue;
1393 }
1394 assert(isa<MemSetInst>(MI));
1395
1396 // If the stored element is zero (common case), just store a null
1397 // constant.
1398 Constant *StoreVal;
Gabor Greif6f14c8c2010-06-30 09:16:16 +00001399 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
Chris Lattnerd93afec2009-01-07 07:18:45 +00001400 if (CI->isZero()) {
Owen Andersona7235ea2009-07-31 20:28:14 +00001401 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
Chris Lattnerd93afec2009-01-07 07:18:45 +00001402 } else {
1403 // If EltTy is a vector type, get the element type.
Dan Gohman44118f02009-06-16 00:20:26 +00001404 const Type *ValTy = EltTy->getScalarType();
1405
Chris Lattnerd93afec2009-01-07 07:18:45 +00001406 // Construct an integer with the right value.
1407 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
1408 APInt OneVal(EltSize, CI->getZExtValue());
1409 APInt TotalVal(OneVal);
1410 // Set each byte.
1411 for (unsigned i = 0; 8*i < EltSize; ++i) {
1412 TotalVal = TotalVal.shl(8);
1413 TotalVal |= OneVal;
1414 }
1415
1416 // Convert the integer value to the appropriate type.
Chris Lattnerd55c1c12010-04-16 01:05:38 +00001417 StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
Duncan Sands1df98592010-02-16 11:11:14 +00001418 if (ValTy->isPointerTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +00001419 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001420 else if (ValTy->isFloatingPointTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +00001421 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001422 assert(StoreVal->getType() == ValTy && "Type mismatch!");
1423
1424 // If the requested value was a vector constant, create it.
1425 if (EltTy != ValTy) {
1426 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
1427 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
Owen Andersonaf7ec972009-07-28 21:19:26 +00001428 StoreVal = ConstantVector::get(&Elts[0], NumElts);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001429 }
1430 }
1431 new StoreInst(StoreVal, EltPtr, MI);
1432 continue;
1433 }
1434 // Otherwise, if we're storing a byte variable, use a memset call for
1435 // this element.
1436 }
1437
1438 // Cast the element pointer to BytePtrTy.
1439 if (EltPtr->getType() != BytePtrTy)
Benjamin Kramer2d64ca02010-01-27 19:46:52 +00001440 EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getName(), MI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001441
1442 // Cast the other pointer (if we have one) to BytePtrTy.
Mon P Wang20adc9d2010-04-04 03:10:48 +00001443 if (OtherElt && OtherElt->getType() != BytePtrTy) {
1444 // Preserve address space of OtherElt
1445 const PointerType* OtherPTy = cast<PointerType>(OtherElt->getType());
1446 const PointerType* PTy = cast<PointerType>(BytePtrTy);
1447 if (OtherPTy->getElementType() != PTy->getElementType()) {
1448 Type *NewOtherPTy = PointerType::get(PTy->getElementType(),
1449 OtherPTy->getAddressSpace());
1450 OtherElt = new BitCastInst(OtherElt, NewOtherPTy,
Benjamin Krameraf812352010-10-16 11:28:23 +00001451 OtherElt->getName(), MI);
Mon P Wang20adc9d2010-04-04 03:10:48 +00001452 }
1453 }
Chris Lattnerd93afec2009-01-07 07:18:45 +00001454
Duncan Sands777d2302009-05-09 07:06:46 +00001455 unsigned EltSize = TD->getTypeAllocSize(EltTy);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001456
1457 // Finally, insert the meminst for this element.
Chris Lattner3ce5e882009-03-08 03:37:16 +00001458 if (isa<MemTransferInst>(MI)) {
Chris Lattnerd93afec2009-01-07 07:18:45 +00001459 Value *Ops[] = {
1460 SROADest ? EltPtr : OtherElt, // Dest ptr
1461 SROADest ? OtherElt : EltPtr, // Src ptr
Gabor Greif6f14c8c2010-06-30 09:16:16 +00001462 ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
Owen Anderson1d0be152009-08-13 21:58:54 +00001463 // Align
Mon P Wang20adc9d2010-04-04 03:10:48 +00001464 ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign),
1465 MI->getVolatileCst()
Chris Lattnerd93afec2009-01-07 07:18:45 +00001466 };
Mon P Wang20adc9d2010-04-04 03:10:48 +00001467 // In case we fold the address space overloaded memcpy of A to B
1468 // with memcpy of B to C, change the function to be a memcpy of A to C.
1469 const Type *Tys[] = { Ops[0]->getType(), Ops[1]->getType(),
1470 Ops[2]->getType() };
1471 Module *M = MI->getParent()->getParent()->getParent();
1472 TheFn = Intrinsic::getDeclaration(M, MI->getIntrinsicID(), Tys, 3);
1473 CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001474 } else {
1475 assert(isa<MemSetInst>(MI));
1476 Value *Ops[] = {
Gabor Greif6f14c8c2010-06-30 09:16:16 +00001477 EltPtr, MI->getArgOperand(1), // Dest, Value,
1478 ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
Mon P Wang20adc9d2010-04-04 03:10:48 +00001479 Zero, // Align
1480 ConstantInt::get(Type::getInt1Ty(MI->getContext()), 0) // isVolatile
Chris Lattnerd93afec2009-01-07 07:18:45 +00001481 };
Mon P Wang20adc9d2010-04-04 03:10:48 +00001482 const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
1483 Module *M = MI->getParent()->getParent()->getParent();
1484 TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
1485 CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001486 }
Chris Lattner372dda82007-03-05 07:52:57 +00001487 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001488 DeadInsts.push_back(MI);
Chris Lattner372dda82007-03-05 07:52:57 +00001489}
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001490
Bob Wilson39fdd692009-12-04 21:57:37 +00001491/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001492/// overwrites the entire allocation. Extract out the pieces of the stored
1493/// integer and store them individually.
Victor Hernandez7b929da2009-10-23 21:09:37 +00001494void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001495 SmallVector<AllocaInst*, 32> &NewElts){
1496 // Extract each element out of the integer according to its structure offset
1497 // and store the element value to the individual alloca.
1498 Value *SrcVal = SI->getOperand(0);
Bob Wilsonb742def2009-12-18 20:14:40 +00001499 const Type *AllocaEltTy = AI->getAllocatedType();
Duncan Sands777d2302009-05-09 07:06:46 +00001500 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001501
Eli Friedman41b33f42009-06-01 09:14:32 +00001502 // Handle tail padding by extending the operand
1503 if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
Owen Andersonfa5cbd62009-07-03 19:42:02 +00001504 SrcVal = new ZExtInst(SrcVal,
Owen Anderson1d0be152009-08-13 21:58:54 +00001505 IntegerType::get(SI->getContext(), AllocaSizeBits),
1506 "", SI);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001507
David Greene504c7d82010-01-05 01:27:09 +00001508 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
Nick Lewycky59136252009-09-15 07:08:25 +00001509 << '\n');
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001510
1511 // There are two forms here: AI could be an array or struct. Both cases
1512 // have different ways to compute the element offset.
1513 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1514 const StructLayout *Layout = TD->getStructLayout(EltSTy);
1515
1516 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1517 // Get the number of bits to shift SrcVal to get the value.
1518 const Type *FieldTy = EltSTy->getElementType(i);
1519 uint64_t Shift = Layout->getElementOffsetInBits(i);
1520
1521 if (TD->isBigEndian())
Duncan Sands777d2302009-05-09 07:06:46 +00001522 Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001523
1524 Value *EltVal = SrcVal;
1525 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00001526 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001527 EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1528 "sroa.store.elt", SI);
1529 }
1530
1531 // Truncate down to an integer of the right size.
1532 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
Chris Lattner583dd602009-01-09 18:18:43 +00001533
1534 // Ignore zero sized fields like {}, they obviously contain no data.
1535 if (FieldSizeBits == 0) continue;
1536
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001537 if (FieldSizeBits != AllocaSizeBits)
Owen Andersonfa5cbd62009-07-03 19:42:02 +00001538 EltVal = new TruncInst(EltVal,
Owen Anderson1d0be152009-08-13 21:58:54 +00001539 IntegerType::get(SI->getContext(), FieldSizeBits),
1540 "", SI);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001541 Value *DestField = NewElts[i];
1542 if (EltVal->getType() == FieldTy) {
1543 // Storing to an integer field of this size, just do it.
Duncan Sands1df98592010-02-16 11:11:14 +00001544 } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001545 // Bitcast to the right element type (for fp/vector values).
1546 EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
1547 } else {
1548 // Otherwise, bitcast the dest pointer (for aggregates).
1549 DestField = new BitCastInst(DestField,
Owen Andersondebcb012009-07-29 22:17:13 +00001550 PointerType::getUnqual(EltVal->getType()),
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001551 "", SI);
1552 }
1553 new StoreInst(EltVal, DestField, SI);
1554 }
1555
1556 } else {
1557 const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1558 const Type *ArrayEltTy = ATy->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00001559 uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001560 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1561
1562 uint64_t Shift;
1563
1564 if (TD->isBigEndian())
1565 Shift = AllocaSizeBits-ElementOffset;
1566 else
1567 Shift = 0;
1568
1569 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
Chris Lattner583dd602009-01-09 18:18:43 +00001570 // Ignore zero sized fields like {}, they obviously contain no data.
1571 if (ElementSizeBits == 0) continue;
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001572
1573 Value *EltVal = SrcVal;
1574 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00001575 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001576 EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1577 "sroa.store.elt", SI);
1578 }
1579
1580 // Truncate down to an integer of the right size.
1581 if (ElementSizeBits != AllocaSizeBits)
Owen Andersonfa5cbd62009-07-03 19:42:02 +00001582 EltVal = new TruncInst(EltVal,
Owen Anderson1d0be152009-08-13 21:58:54 +00001583 IntegerType::get(SI->getContext(),
1584 ElementSizeBits),"",SI);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001585 Value *DestField = NewElts[i];
1586 if (EltVal->getType() == ArrayEltTy) {
1587 // Storing to an integer field of this size, just do it.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001588 } else if (ArrayEltTy->isFloatingPointTy() ||
Duncan Sands1df98592010-02-16 11:11:14 +00001589 ArrayEltTy->isVectorTy()) {
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001590 // Bitcast to the right element type (for fp/vector values).
1591 EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1592 } else {
1593 // Otherwise, bitcast the dest pointer (for aggregates).
1594 DestField = new BitCastInst(DestField,
Owen Andersondebcb012009-07-29 22:17:13 +00001595 PointerType::getUnqual(EltVal->getType()),
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001596 "", SI);
1597 }
1598 new StoreInst(EltVal, DestField, SI);
1599
1600 if (TD->isBigEndian())
1601 Shift -= ElementOffset;
1602 else
1603 Shift += ElementOffset;
1604 }
1605 }
1606
Bob Wilsonb742def2009-12-18 20:14:40 +00001607 DeadInsts.push_back(SI);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00001608}
1609
Bob Wilson39fdd692009-12-04 21:57:37 +00001610/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00001611/// an integer. Load the individual pieces to form the aggregate value.
Victor Hernandez7b929da2009-10-23 21:09:37 +00001612void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00001613 SmallVector<AllocaInst*, 32> &NewElts) {
1614 // Extract each element out of the NewElts according to its structure offset
1615 // and form the result value.
Bob Wilsonb742def2009-12-18 20:14:40 +00001616 const Type *AllocaEltTy = AI->getAllocatedType();
Duncan Sands777d2302009-05-09 07:06:46 +00001617 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00001618
David Greene504c7d82010-01-05 01:27:09 +00001619 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
Nick Lewycky59136252009-09-15 07:08:25 +00001620 << '\n');
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00001621
1622 // There are two forms here: AI could be an array or struct. Both cases
1623 // have different ways to compute the element offset.
1624 const StructLayout *Layout = 0;
1625 uint64_t ArrayEltBitOffset = 0;
1626 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1627 Layout = TD->getStructLayout(EltSTy);
1628 } else {
1629 const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00001630 ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00001631 }
Owen Andersone922c022009-07-22 00:24:57 +00001632
Owen Andersone922c022009-07-22 00:24:57 +00001633 Value *ResultVal =
Owen Anderson1d0be152009-08-13 21:58:54 +00001634 Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00001635
1636 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1637 // Load the value from the alloca. If the NewElt is an aggregate, cast
1638 // the pointer to an integer of the same size before doing the load.
1639 Value *SrcField = NewElts[i];
1640 const Type *FieldTy =
1641 cast<PointerType>(SrcField->getType())->getElementType();
Chris Lattner583dd602009-01-09 18:18:43 +00001642 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1643
1644 // Ignore zero sized fields like {}, they obviously contain no data.
1645 if (FieldSizeBits == 0) continue;
1646
Owen Anderson1d0be152009-08-13 21:58:54 +00001647 const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1648 FieldSizeBits);
Duncan Sands1df98592010-02-16 11:11:14 +00001649 if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
1650 !FieldTy->isVectorTy())
Owen Andersonfa5cbd62009-07-03 19:42:02 +00001651 SrcField = new BitCastInst(SrcField,
Owen Andersondebcb012009-07-29 22:17:13 +00001652 PointerType::getUnqual(FieldIntTy),
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00001653 "", LI);
1654 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1655
1656 // If SrcField is a fp or vector of the right size but that isn't an
1657 // integer type, bitcast to an integer so we can shift it.
1658 if (SrcField->getType() != FieldIntTy)
1659 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1660
1661 // Zero extend the field to be the same size as the final alloca so that
1662 // we can shift and insert it.
1663 if (SrcField->getType() != ResultVal->getType())
1664 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1665
1666 // Determine the number of bits to shift SrcField.
1667 uint64_t Shift;
1668 if (Layout) // Struct case.
1669 Shift = Layout->getElementOffsetInBits(i);
1670 else // Array case.
1671 Shift = i*ArrayEltBitOffset;
1672
1673 if (TD->isBigEndian())
1674 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1675
1676 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00001677 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00001678 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1679 }
1680
Chris Lattner14952472010-06-27 07:58:26 +00001681 // Don't create an 'or x, 0' on the first iteration.
1682 if (!isa<Constant>(ResultVal) ||
1683 !cast<Constant>(ResultVal)->isNullValue())
1684 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1685 else
1686 ResultVal = SrcField;
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00001687 }
Eli Friedman41b33f42009-06-01 09:14:32 +00001688
1689 // Handle tail padding by truncating the result
1690 if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1691 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1692
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00001693 LI->replaceAllUsesWith(ResultVal);
Bob Wilsonb742def2009-12-18 20:14:40 +00001694 DeadInsts.push_back(LI);
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00001695}
1696
Duncan Sands3cb36502007-11-04 14:43:57 +00001697/// HasPadding - Return true if the specified type has any structure or
1698/// alignment padding, false otherwise.
Duncan Sandsa0fcc082008-06-04 08:21:45 +00001699static bool HasPadding(const Type *Ty, const TargetData &TD) {
Chris Lattner91abace2010-09-01 05:14:33 +00001700 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
1701 return HasPadding(ATy->getElementType(), TD);
1702
1703 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
1704 return HasPadding(VTy->getElementType(), TD);
1705
Chris Lattner39a1c042007-05-30 06:11:23 +00001706 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1707 const StructLayout *SL = TD.getStructLayout(STy);
1708 unsigned PrevFieldBitOffset = 0;
1709 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Duncan Sands3cb36502007-11-04 14:43:57 +00001710 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1711
Chris Lattner39a1c042007-05-30 06:11:23 +00001712 // Padding in sub-elements?
Duncan Sandsa0fcc082008-06-04 08:21:45 +00001713 if (HasPadding(STy->getElementType(i), TD))
Chris Lattner39a1c042007-05-30 06:11:23 +00001714 return true;
Duncan Sands3cb36502007-11-04 14:43:57 +00001715
Chris Lattner39a1c042007-05-30 06:11:23 +00001716 // Check to see if there is any padding between this element and the
1717 // previous one.
1718 if (i) {
Duncan Sands3cb36502007-11-04 14:43:57 +00001719 unsigned PrevFieldEnd =
Chris Lattner39a1c042007-05-30 06:11:23 +00001720 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1721 if (PrevFieldEnd < FieldBitOffset)
1722 return true;
1723 }
Duncan Sands3cb36502007-11-04 14:43:57 +00001724
Chris Lattner39a1c042007-05-30 06:11:23 +00001725 PrevFieldBitOffset = FieldBitOffset;
1726 }
Duncan Sands3cb36502007-11-04 14:43:57 +00001727
Chris Lattner39a1c042007-05-30 06:11:23 +00001728 // Check for tail padding.
1729 if (unsigned EltCount = STy->getNumElements()) {
1730 unsigned PrevFieldEnd = PrevFieldBitOffset +
1731 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
Duncan Sands3cb36502007-11-04 14:43:57 +00001732 if (PrevFieldEnd < SL->getSizeInBits())
Chris Lattner39a1c042007-05-30 06:11:23 +00001733 return true;
1734 }
Chris Lattner39a1c042007-05-30 06:11:23 +00001735 }
Chris Lattner91abace2010-09-01 05:14:33 +00001736
Duncan Sands777d2302009-05-09 07:06:46 +00001737 return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
Chris Lattner39a1c042007-05-30 06:11:23 +00001738}
Chris Lattner372dda82007-03-05 07:52:57 +00001739
Chris Lattnerf5990ed2004-11-14 04:24:28 +00001740/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1741/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
1742/// or 1 if safe after canonicalization has been performed.
Victor Hernandez6c146ee2010-01-21 23:05:53 +00001743bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
Chris Lattner5e062a12003-05-30 04:15:41 +00001744 // Loop over the use list of the alloca. We can only transform it if all of
1745 // the users are safe to transform.
Chris Lattner39a1c042007-05-30 06:11:23 +00001746 AllocaInfo Info;
1747
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001748 isSafeForScalarRepl(AI, AI, 0, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001749 if (Info.isUnsafe) {
David Greene504c7d82010-01-05 01:27:09 +00001750 DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
Victor Hernandez6c146ee2010-01-21 23:05:53 +00001751 return false;
Chris Lattnerf5990ed2004-11-14 04:24:28 +00001752 }
Chris Lattner39a1c042007-05-30 06:11:23 +00001753
1754 // Okay, we know all the users are promotable. If the aggregate is a memcpy
1755 // source and destination, we have to be careful. In particular, the memcpy
1756 // could be moving around elements that live in structure padding of the LLVM
1757 // types, but may actually be used. In these cases, we refuse to promote the
1758 // struct.
1759 if (Info.isMemCpySrc && Info.isMemCpyDst &&
Bob Wilsonb742def2009-12-18 20:14:40 +00001760 HasPadding(AI->getAllocatedType(), *TD))
Victor Hernandez6c146ee2010-01-21 23:05:53 +00001761 return false;
Duncan Sands3cb36502007-11-04 14:43:57 +00001762
Victor Hernandez6c146ee2010-01-21 23:05:53 +00001763 return true;
Chris Lattner5e062a12003-05-30 04:15:41 +00001764}
Chris Lattnera1888942005-12-12 07:19:13 +00001765
Chris Lattner800de312008-02-29 07:03:13 +00001766
Chris Lattner79b3bd32007-04-25 06:40:51 +00001767
1768/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1769/// some part of a constant global variable. This intentionally only accepts
1770/// constant expressions because we don't can't rewrite arbitrary instructions.
1771static bool PointsToConstantGlobal(Value *V) {
1772 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1773 return GV->isConstant();
1774 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1775 if (CE->getOpcode() == Instruction::BitCast ||
1776 CE->getOpcode() == Instruction::GetElementPtr)
1777 return PointsToConstantGlobal(CE->getOperand(0));
1778 return false;
1779}
1780
1781/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1782/// pointer to an alloca. Ignore any reads of the pointer, return false if we
1783/// see any stores or other unknown uses. If we see pointer arithmetic, keep
1784/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1785/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
1786/// the alloca, and if the source pointer is a pointer to a constant global, we
1787/// can optimize this.
Chris Lattner31d80102010-04-15 21:59:20 +00001788static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
Chris Lattner79b3bd32007-04-25 06:40:51 +00001789 bool isOffset) {
1790 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
Gabor Greif8a8a4352010-04-06 19:32:30 +00001791 User *U = cast<Instruction>(*UI);
1792
Chris Lattner2e618492010-11-18 06:20:47 +00001793 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
Chris Lattner6e733d32009-01-28 20:16:43 +00001794 // Ignore non-volatile loads, they are always ok.
Chris Lattner2e618492010-11-18 06:20:47 +00001795 if (LI->isVolatile()) return false;
1796 continue;
1797 }
Chris Lattner6e733d32009-01-28 20:16:43 +00001798
Gabor Greif8a8a4352010-04-06 19:32:30 +00001799 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
Chris Lattner79b3bd32007-04-25 06:40:51 +00001800 // If uses of the bitcast are ok, we are ok.
1801 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1802 return false;
1803 continue;
1804 }
Gabor Greif8a8a4352010-04-06 19:32:30 +00001805 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
Chris Lattner79b3bd32007-04-25 06:40:51 +00001806 // If the GEP has all zero indices, it doesn't offset the pointer. If it
1807 // doesn't, it does.
1808 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1809 isOffset || !GEP->hasAllZeroIndices()))
1810 return false;
1811 continue;
1812 }
1813
Chris Lattner62480652010-11-18 06:41:51 +00001814 if (CallSite CS = U) {
1815 // If this is a readonly/readnone call site, then we know it is just a
1816 // load and we can ignore it.
Chris Lattnera9be1df2010-11-18 06:26:49 +00001817 if (CS.onlyReadsMemory())
1818 continue;
Chris Lattner62480652010-11-18 06:41:51 +00001819
1820 // If this is being passed as a byval argument, the caller is making a
1821 // copy, so it is only a read of the alloca.
1822 unsigned ArgNo = CS.getArgumentNo(UI);
1823 if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
1824 continue;
1825 }
Chris Lattnera9be1df2010-11-18 06:26:49 +00001826
Chris Lattner79b3bd32007-04-25 06:40:51 +00001827 // If this is isn't our memcpy/memmove, reject it as something we can't
1828 // handle.
Chris Lattner31d80102010-04-15 21:59:20 +00001829 MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
1830 if (MI == 0)
Chris Lattner79b3bd32007-04-25 06:40:51 +00001831 return false;
Chris Lattner2e618492010-11-18 06:20:47 +00001832
1833 // If the transfer is using the alloca as a source of the transfer, then
Chris Lattner2e29ebd2010-11-18 07:32:33 +00001834 // ignore it since it is a load (unless the transfer is volatile).
Chris Lattner2e618492010-11-18 06:20:47 +00001835 if (UI.getOperandNo() == 1) {
1836 if (MI->isVolatile()) return false;
1837 continue;
1838 }
Chris Lattner79b3bd32007-04-25 06:40:51 +00001839
1840 // If we already have seen a copy, reject the second one.
1841 if (TheCopy) return false;
1842
1843 // If the pointer has been offset from the start of the alloca, we can't
1844 // safely handle this.
1845 if (isOffset) return false;
1846
1847 // If the memintrinsic isn't using the alloca as the dest, reject it.
Gabor Greifa6aac4c2010-07-16 09:38:02 +00001848 if (UI.getOperandNo() != 0) return false;
Chris Lattner79b3bd32007-04-25 06:40:51 +00001849
Chris Lattner79b3bd32007-04-25 06:40:51 +00001850 // If the source of the memcpy/move is not a constant global, reject it.
Chris Lattner31d80102010-04-15 21:59:20 +00001851 if (!PointsToConstantGlobal(MI->getSource()))
Chris Lattner79b3bd32007-04-25 06:40:51 +00001852 return false;
1853
1854 // Otherwise, the transform is safe. Remember the copy instruction.
1855 TheCopy = MI;
1856 }
1857 return true;
1858}
1859
1860/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1861/// modified by a copy from a constant global. If we can prove this, we can
1862/// replace any uses of the alloca with uses of the global directly.
Chris Lattner31d80102010-04-15 21:59:20 +00001863MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1864 MemTransferInst *TheCopy = 0;
Chris Lattner79b3bd32007-04-25 06:40:51 +00001865 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1866 return TheCopy;
1867 return 0;
1868}