blob: 4f1cfd622f057ec6d8426c2454319e4e2ae9a1d3 [file] [log] [blame]
Owen Andersona723d1e2008-04-09 08:23:16 +00001//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs various transformations related to eliminating memcpy
11// calls, or transforming sets of stores into memset's.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "memcpyopt"
16#include "llvm/Transforms/Scalar.h"
Owen Andersona723d1e2008-04-09 08:23:16 +000017#include "llvm/IntrinsicInst.h"
18#include "llvm/Instructions.h"
Owen Andersonfa5cbd62009-07-03 19:42:02 +000019#include "llvm/LLVMContext.h"
Owen Andersona723d1e2008-04-09 08:23:16 +000020#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/MemoryDependenceAnalysis.h"
Owen Andersona723d1e2008-04-09 08:23:16 +000025#include "llvm/Support/Debug.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000027#include "llvm/Support/raw_ostream.h"
Owen Andersona723d1e2008-04-09 08:23:16 +000028#include "llvm/Target/TargetData.h"
29#include <list>
30using namespace llvm;
31
32STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
33STATISTIC(NumMemSetInfer, "Number of memsets inferred");
Duncan Sands05cd03b2009-09-03 13:37:16 +000034STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
Owen Andersona723d1e2008-04-09 08:23:16 +000035
Owen Andersona723d1e2008-04-09 08:23:16 +000036/// isBytewiseValue - If the specified value can be set by repeating the same
37/// byte in memory, return the i8 value that it is represented with. This is
38/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
39/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
40/// byte store (e.g. i16 0x1234), return null.
Chris Lattnercf0fe8d2009-10-05 05:54:46 +000041static Value *isBytewiseValue(Value *V) {
42 LLVMContext &Context = V->getContext();
43
Owen Andersona723d1e2008-04-09 08:23:16 +000044 // All byte-wide stores are splatable, even of arbitrary variables.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +000045 if (V->getType()->isIntegerTy(8)) return V;
Owen Andersona723d1e2008-04-09 08:23:16 +000046
47 // Constant float and double values can be handled as integer values if the
48 // corresponding integer value is "byteable". An important case is 0.0.
49 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
Chris Lattnercf0fe8d2009-10-05 05:54:46 +000050 if (CFP->getType()->isFloatTy())
Owen Anderson1d0be152009-08-13 21:58:54 +000051 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(Context));
Chris Lattnercf0fe8d2009-10-05 05:54:46 +000052 if (CFP->getType()->isDoubleTy())
Owen Anderson1d0be152009-08-13 21:58:54 +000053 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(Context));
Owen Andersona723d1e2008-04-09 08:23:16 +000054 // Don't handle long double formats, which have strange constraints.
55 }
56
57 // We can handle constant integers that are power of two in size and a
58 // multiple of 8 bits.
59 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
60 unsigned Width = CI->getBitWidth();
61 if (isPowerOf2_32(Width) && Width > 8) {
62 // We can handle this value if the recursive binary decomposition is the
63 // same at all levels.
64 APInt Val = CI->getValue();
65 APInt Val2;
66 while (Val.getBitWidth() != 8) {
67 unsigned NextWidth = Val.getBitWidth()/2;
68 Val2 = Val.lshr(NextWidth);
69 Val2.trunc(Val.getBitWidth()/2);
70 Val.trunc(Val.getBitWidth()/2);
71
72 // If the top/bottom halves aren't the same, reject it.
73 if (Val != Val2)
74 return 0;
75 }
Owen Andersoneed707b2009-07-24 23:12:02 +000076 return ConstantInt::get(Context, Val);
Owen Andersona723d1e2008-04-09 08:23:16 +000077 }
78 }
79
80 // Conceptually, we could handle things like:
81 // %a = zext i8 %X to i16
82 // %b = shl i16 %a, 8
83 // %c = or i16 %a, %b
84 // but until there is an example that actually needs this, it doesn't seem
85 // worth worrying about.
86 return 0;
87}
88
89static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
90 bool &VariableIdxFound, TargetData &TD) {
91 // Skip over the first indices.
92 gep_type_iterator GTI = gep_type_begin(GEP);
93 for (unsigned i = 1; i != Idx; ++i, ++GTI)
94 /*skip along*/;
95
96 // Compute the offset implied by the rest of the indices.
97 int64_t Offset = 0;
98 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
99 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
100 if (OpC == 0)
101 return VariableIdxFound = true;
102 if (OpC->isZero()) continue; // No offset.
103
104 // Handle struct indices, which add their field offset to the pointer.
105 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
106 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
107 continue;
108 }
109
110 // Otherwise, we have a sequential type like an array or vector. Multiply
111 // the index by the ElementSize.
Duncan Sands777d2302009-05-09 07:06:46 +0000112 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
Owen Andersona723d1e2008-04-09 08:23:16 +0000113 Offset += Size*OpC->getSExtValue();
114 }
115
116 return Offset;
117}
118
119/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
120/// constant offset, and return that constant offset. For example, Ptr1 might
121/// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
122static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
123 TargetData &TD) {
124 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
125 // base. After that base, they may have some number of common (and
126 // potentially variable) indices. After that they handle some constant
127 // offset, which determines their offset from each other. At this point, we
128 // handle no other case.
129 GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
130 GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
131 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
132 return false;
133
134 // Skip any common indices and track the GEP types.
135 unsigned Idx = 1;
136 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
137 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
138 break;
139
140 bool VariableIdxFound = false;
141 int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
142 int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
143 if (VariableIdxFound) return false;
144
145 Offset = Offset2-Offset1;
146 return true;
147}
148
149
150/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
151/// This allows us to analyze stores like:
152/// store 0 -> P+1
153/// store 0 -> P+0
154/// store 0 -> P+3
155/// store 0 -> P+2
156/// which sometimes happens with stores to arrays of structs etc. When we see
157/// the first store, we make a range [1, 2). The second store extends the range
158/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
159/// two ranges into [0, 3) which is memset'able.
160namespace {
161struct MemsetRange {
162 // Start/End - A semi range that describes the span that this range covers.
163 // The range is closed at the start and open at the end: [Start, End).
164 int64_t Start, End;
165
166 /// StartPtr - The getelementptr instruction that points to the start of the
167 /// range.
168 Value *StartPtr;
169
170 /// Alignment - The known alignment of the first store.
171 unsigned Alignment;
172
173 /// TheStores - The actual stores that make up this range.
174 SmallVector<StoreInst*, 16> TheStores;
175
176 bool isProfitableToUseMemset(const TargetData &TD) const;
177
178};
179} // end anon namespace
180
181bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
182 // If we found more than 8 stores to merge or 64 bytes, use memset.
183 if (TheStores.size() >= 8 || End-Start >= 64) return true;
184
185 // Assume that the code generator is capable of merging pairs of stores
186 // together if it wants to.
187 if (TheStores.size() <= 2) return false;
188
189 // If we have fewer than 8 stores, it can still be worthwhile to do this.
190 // For example, merging 4 i8 stores into an i32 store is useful almost always.
191 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
192 // memset will be split into 2 32-bit stores anyway) and doing so can
193 // pessimize the llvm optimizer.
194 //
195 // Since we don't have perfect knowledge here, make some assumptions: assume
196 // the maximum GPR width is the same size as the pointer size and assume that
197 // this width can be stored. If so, check to see whether we will end up
198 // actually reducing the number of stores used.
199 unsigned Bytes = unsigned(End-Start);
200 unsigned NumPointerStores = Bytes/TD.getPointerSize();
201
202 // Assume the remaining bytes if any are done a byte at a time.
203 unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
204
205 // If we will reduce the # stores (according to this heuristic), do the
206 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
207 // etc.
208 return TheStores.size() > NumPointerStores+NumByteStores;
209}
210
211
212namespace {
213class MemsetRanges {
214 /// Ranges - A sorted list of the memset ranges. We use std::list here
215 /// because each element is relatively large and expensive to copy.
216 std::list<MemsetRange> Ranges;
217 typedef std::list<MemsetRange>::iterator range_iterator;
218 TargetData &TD;
219public:
220 MemsetRanges(TargetData &td) : TD(td) {}
221
222 typedef std::list<MemsetRange>::const_iterator const_iterator;
223 const_iterator begin() const { return Ranges.begin(); }
224 const_iterator end() const { return Ranges.end(); }
225 bool empty() const { return Ranges.empty(); }
226
227 void addStore(int64_t OffsetFromFirst, StoreInst *SI);
228};
229
230} // end anon namespace
231
232
233/// addStore - Add a new store to the MemsetRanges data structure. This adds a
234/// new range for the specified store at the specified offset, merging into
235/// existing ranges as appropriate.
236void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
237 int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
238
239 // Do a linear search of the ranges to see if this can be joined and/or to
240 // find the insertion point in the list. We keep the ranges sorted for
241 // simplicity here. This is a linear search of a linked list, which is ugly,
242 // however the number of ranges is limited, so this won't get crazy slow.
243 range_iterator I = Ranges.begin(), E = Ranges.end();
244
245 while (I != E && Start > I->End)
246 ++I;
247
248 // We now know that I == E, in which case we didn't find anything to merge
249 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
250 // to insert a new range. Handle this now.
251 if (I == E || End < I->Start) {
252 MemsetRange &R = *Ranges.insert(I, MemsetRange());
253 R.Start = Start;
254 R.End = End;
255 R.StartPtr = SI->getPointerOperand();
256 R.Alignment = SI->getAlignment();
257 R.TheStores.push_back(SI);
258 return;
259 }
260
261 // This store overlaps with I, add it.
262 I->TheStores.push_back(SI);
263
264 // At this point, we may have an interval that completely contains our store.
265 // If so, just add it to the interval and return.
266 if (I->Start <= Start && I->End >= End)
267 return;
268
269 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
270 // but is not entirely contained within the range.
271
272 // See if the range extends the start of the range. In this case, it couldn't
273 // possibly cause it to join the prior range, because otherwise we would have
274 // stopped on *it*.
275 if (Start < I->Start) {
276 I->Start = Start;
277 I->StartPtr = SI->getPointerOperand();
Dan Gohman264d2452009-09-14 23:39:10 +0000278 I->Alignment = SI->getAlignment();
Owen Andersona723d1e2008-04-09 08:23:16 +0000279 }
280
281 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
282 // is in or right at the end of I), and that End >= I->Start. Extend I out to
283 // End.
284 if (End > I->End) {
285 I->End = End;
Nick Lewycky9c0f1462009-03-19 05:51:39 +0000286 range_iterator NextI = I;
Owen Andersona723d1e2008-04-09 08:23:16 +0000287 while (++NextI != E && End >= NextI->Start) {
288 // Merge the range in.
289 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
290 if (NextI->End > I->End)
291 I->End = NextI->End;
292 Ranges.erase(NextI);
293 NextI = I;
294 }
295 }
296}
297
298//===----------------------------------------------------------------------===//
299// MemCpyOpt Pass
300//===----------------------------------------------------------------------===//
301
302namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +0000303 class MemCpyOpt : public FunctionPass {
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000304 MemoryDependenceAnalysis *MD;
Owen Andersona723d1e2008-04-09 08:23:16 +0000305 bool runOnFunction(Function &F);
306 public:
307 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +0000308 MemCpyOpt() : FunctionPass(ID) {
309 initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000310 MD = 0;
Owen Anderson081c34b2010-10-19 17:21:58 +0000311 }
Owen Andersona723d1e2008-04-09 08:23:16 +0000312
313 private:
314 // This transformation requires dominator postdominator info
315 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
316 AU.setPreservesCFG();
317 AU.addRequired<DominatorTree>();
318 AU.addRequired<MemoryDependenceAnalysis>();
319 AU.addRequired<AliasAnalysis>();
Owen Andersona723d1e2008-04-09 08:23:16 +0000320 AU.addPreserved<AliasAnalysis>();
321 AU.addPreserved<MemoryDependenceAnalysis>();
Owen Andersona723d1e2008-04-09 08:23:16 +0000322 }
323
324 // Helper fuctions
Chris Lattner61c6ba82009-09-01 17:09:55 +0000325 bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
326 bool processMemCpy(MemCpyInst *M);
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000327 bool processMemMove(MemMoveInst *M);
Owen Anderson65491212010-10-15 22:52:12 +0000328 bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
329 uint64_t cpyLen, CallInst *C);
Chris Lattner43f8e432010-11-18 07:02:37 +0000330 bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
331 uint64_t MSize);
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000332 bool processByValArgument(CallSite CS, unsigned ArgNo);
Owen Andersona723d1e2008-04-09 08:23:16 +0000333 bool iterateOnFunction(Function &F);
334 };
335
336 char MemCpyOpt::ID = 0;
337}
338
339// createMemCpyOptPass - The public interface to this file...
340FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
341
Owen Anderson2ab36d32010-10-12 19:48:12 +0000342INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
343 false, false)
344INITIALIZE_PASS_DEPENDENCY(DominatorTree)
345INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
346INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
347INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
348 false, false)
Owen Andersona723d1e2008-04-09 08:23:16 +0000349
Owen Andersona723d1e2008-04-09 08:23:16 +0000350/// processStore - When GVN is scanning forward over instructions, we look for
351/// some other patterns to fold away. In particular, this looks for stores to
352/// neighboring locations of memory. If it sees enough consequtive ones
353/// (currently 4) it attempts to merge them together into a memcpy/memset.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000354bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000355 if (SI->isVolatile()) return false;
356
Owen Anderson65491212010-10-15 22:52:12 +0000357 TargetData *TD = getAnalysisIfAvailable<TargetData>();
358 if (!TD) return false;
359
360 // Detect cases where we're performing call slot forwarding, but
361 // happen to be using a load-store pair to implement it, rather than
362 // a memcpy.
363 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
364 if (!LI->isVolatile() && LI->hasOneUse()) {
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000365 MemDepResult dep = MD->getDependency(LI);
Owen Anderson65491212010-10-15 22:52:12 +0000366 CallInst *C = 0;
367 if (dep.isClobber() && !isa<MemCpyInst>(dep.getInst()))
368 C = dyn_cast<CallInst>(dep.getInst());
369
370 if (C) {
371 bool changed = performCallSlotOptzn(LI,
372 SI->getPointerOperand()->stripPointerCasts(),
373 LI->getPointerOperand()->stripPointerCasts(),
374 TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
375 if (changed) {
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000376 MD->removeInstruction(SI);
Owen Anderson65491212010-10-15 22:52:12 +0000377 SI->eraseFromParent();
378 LI->eraseFromParent();
379 ++NumMemCpyInstr;
380 return true;
381 }
382 }
383 }
384 }
385
Chris Lattnerff1e98c2009-09-08 00:27:14 +0000386 LLVMContext &Context = SI->getContext();
387
Owen Andersona723d1e2008-04-09 08:23:16 +0000388 // There are two cases that are interesting for this code to handle: memcpy
389 // and memset. Right now we only handle memset.
390
391 // Ensure that the value being stored is something that can be memset'able a
392 // byte at a time like "0" or "-1" or any width, as well as things like
393 // 0xA0A0A0A0 and 0.0.
Chris Lattnercf0fe8d2009-10-05 05:54:46 +0000394 Value *ByteVal = isBytewiseValue(SI->getOperand(0));
Owen Andersona723d1e2008-04-09 08:23:16 +0000395 if (!ByteVal)
396 return false;
397
Owen Andersona723d1e2008-04-09 08:23:16 +0000398 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
Dan Gohmana195b7f2009-07-28 00:37:06 +0000399 Module *M = SI->getParent()->getParent()->getParent();
Owen Andersona723d1e2008-04-09 08:23:16 +0000400
401 // Okay, so we now have a single store that can be splatable. Scan to find
402 // all subsequent stores of the same value to offset from the same pointer.
403 // Join these together into ranges, so we can decide whether contiguous blocks
404 // are stored.
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000405 MemsetRanges Ranges(*TD);
Owen Andersona723d1e2008-04-09 08:23:16 +0000406
407 Value *StartPtr = SI->getPointerOperand();
408
409 BasicBlock::iterator BI = SI;
410 for (++BI; !isa<TerminatorInst>(BI); ++BI) {
411 if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
412 // If the call is readnone, ignore it, otherwise bail out. We don't even
413 // allow readonly here because we don't want something like:
414 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
Gabor Greifa292b2f2010-07-27 16:44:23 +0000415 if (AA.getModRefBehavior(CallSite(BI)) ==
Owen Andersona723d1e2008-04-09 08:23:16 +0000416 AliasAnalysis::DoesNotAccessMemory)
417 continue;
418
419 // TODO: If this is a memset, try to join it in.
420
421 break;
422 } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
423 break;
424
425 // If this is a non-store instruction it is fine, ignore it.
426 StoreInst *NextStore = dyn_cast<StoreInst>(BI);
427 if (NextStore == 0) continue;
428
429 // If this is a store, see if we can merge it in.
430 if (NextStore->isVolatile()) break;
431
432 // Check to see if this stored value is of the same byte-splattable value.
Chris Lattnercf0fe8d2009-10-05 05:54:46 +0000433 if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
Owen Andersona723d1e2008-04-09 08:23:16 +0000434 break;
435
436 // Check to see if this store is to a constant offset from the start ptr.
437 int64_t Offset;
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000438 if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
Owen Andersona723d1e2008-04-09 08:23:16 +0000439 break;
440
441 Ranges.addStore(Offset, NextStore);
442 }
443
444 // If we have no ranges, then we just had a single store with nothing that
445 // could be merged in. This is a very common case of course.
446 if (Ranges.empty())
447 return false;
448
449 // If we had at least one store that could be merged in, add the starting
450 // store as well. We try to avoid this unless there is at least something
451 // interesting as a small compile-time optimization.
452 Ranges.addStore(0, SI);
Owen Andersona723d1e2008-04-09 08:23:16 +0000453
Owen Andersona723d1e2008-04-09 08:23:16 +0000454
455 // Now that we have full information about ranges, loop over the ranges and
456 // emit memset's for anything big enough to be worthwhile.
457 bool MadeChange = false;
458 for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
459 I != E; ++I) {
460 const MemsetRange &Range = *I;
461
462 if (Range.TheStores.size() == 1) continue;
463
464 // If it is profitable to lower this range to memset, do so now.
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000465 if (!Range.isProfitableToUseMemset(*TD))
Owen Andersona723d1e2008-04-09 08:23:16 +0000466 continue;
467
468 // Otherwise, we do want to transform this! Create a new memset. We put
469 // the memset right before the first instruction that isn't part of this
470 // memset block. This ensure that the memset is dominated by any addressing
471 // instruction needed by the start of the block.
472 BasicBlock::iterator InsertPt = BI;
Mon P Wang20adc9d2010-04-04 03:10:48 +0000473
Owen Andersona723d1e2008-04-09 08:23:16 +0000474 // Get the starting pointer of the block.
475 StartPtr = Range.StartPtr;
Mon P Wang20adc9d2010-04-04 03:10:48 +0000476
477 // Determine alignment
478 unsigned Alignment = Range.Alignment;
479 if (Alignment == 0) {
480 const Type *EltType =
481 cast<PointerType>(StartPtr->getType())->getElementType();
482 Alignment = TD->getABITypeAlignment(EltType);
483 }
484
Owen Andersona723d1e2008-04-09 08:23:16 +0000485 // Cast the start ptr to be i8* as memset requires.
Mon P Wang20adc9d2010-04-04 03:10:48 +0000486 const PointerType* StartPTy = cast<PointerType>(StartPtr->getType());
487 const PointerType *i8Ptr = Type::getInt8PtrTy(Context,
488 StartPTy->getAddressSpace());
489 if (StartPTy!= i8Ptr)
Daniel Dunbar460f6562009-07-26 09:48:23 +0000490 StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
Owen Andersona723d1e2008-04-09 08:23:16 +0000491 InsertPt);
Mon P Wang20adc9d2010-04-04 03:10:48 +0000492
Owen Andersona723d1e2008-04-09 08:23:16 +0000493 Value *Ops[] = {
494 StartPtr, ByteVal, // Start, value
Owen Andersone922c022009-07-22 00:24:57 +0000495 // size
Chris Lattnerff1e98c2009-09-08 00:27:14 +0000496 ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start),
Owen Andersone922c022009-07-22 00:24:57 +0000497 // align
Mon P Wang20adc9d2010-04-04 03:10:48 +0000498 ConstantInt::get(Type::getInt32Ty(Context), Alignment),
499 // volatile
Benjamin Kramerf601d6d2010-11-20 18:43:35 +0000500 ConstantInt::getFalse(Context),
Owen Andersona723d1e2008-04-09 08:23:16 +0000501 };
Mon P Wang20adc9d2010-04-04 03:10:48 +0000502 const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
503
504 Function *MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
505
506 Value *C = CallInst::Create(MemSetF, Ops, Ops+5, "", InsertPt);
David Greenecb33fd12010-01-05 01:27:47 +0000507 DEBUG(dbgs() << "Replace stores:\n";
Owen Andersona723d1e2008-04-09 08:23:16 +0000508 for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000509 dbgs() << *Range.TheStores[i] << '\n';
510 dbgs() << "With: " << *C << '\n'); C=C;
Owen Andersona723d1e2008-04-09 08:23:16 +0000511
Owen Andersona8bd6582008-04-21 07:45:10 +0000512 // Don't invalidate the iterator
513 BBI = BI;
514
Owen Andersona723d1e2008-04-09 08:23:16 +0000515 // Zap all the stores.
Chris Lattnerff1e98c2009-09-08 00:27:14 +0000516 for (SmallVector<StoreInst*, 16>::const_iterator
517 SI = Range.TheStores.begin(),
Owen Andersona8bd6582008-04-21 07:45:10 +0000518 SE = Range.TheStores.end(); SI != SE; ++SI)
519 (*SI)->eraseFromParent();
Owen Andersona723d1e2008-04-09 08:23:16 +0000520 ++NumMemSetInfer;
521 MadeChange = true;
522 }
523
524 return MadeChange;
525}
526
527
528/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
529/// and checks for the possibility of a call slot optimization by having
530/// the call write its result directly into the destination of the memcpy.
Owen Anderson65491212010-10-15 22:52:12 +0000531bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
532 Value *cpyDest, Value *cpySrc,
533 uint64_t cpyLen, CallInst *C) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000534 // The general transformation to keep in mind is
535 //
536 // call @func(..., src, ...)
537 // memcpy(dest, src, ...)
538 //
539 // ->
540 //
541 // memcpy(dest, src, ...)
542 // call @func(..., dest, ...)
543 //
544 // Since moving the memcpy is technically awkward, we additionally check that
545 // src only holds uninitialized values at the moment of the call, meaning that
546 // the memcpy can be discarded rather than moved.
547
548 // Deliberately get the source and destination with bitcasts stripped away,
549 // because we'll need to do type comparisons based on the underlying type.
Gabor Greif7d3056b2010-07-28 22:50:26 +0000550 CallSite CS(C);
Owen Andersona723d1e2008-04-09 08:23:16 +0000551
Owen Andersona723d1e2008-04-09 08:23:16 +0000552 // Require that src be an alloca. This simplifies the reasoning considerably.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000553 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
Owen Andersona723d1e2008-04-09 08:23:16 +0000554 if (!srcAlloca)
555 return false;
556
557 // Check that all of src is copied to dest.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000558 TargetData *TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000559 if (!TD) return false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000560
Chris Lattner61c6ba82009-09-01 17:09:55 +0000561 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
Owen Andersona723d1e2008-04-09 08:23:16 +0000562 if (!srcArraySize)
563 return false;
564
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000565 uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
Owen Andersona723d1e2008-04-09 08:23:16 +0000566 srcArraySize->getZExtValue();
567
Owen Anderson65491212010-10-15 22:52:12 +0000568 if (cpyLen < srcSize)
Owen Andersona723d1e2008-04-09 08:23:16 +0000569 return false;
570
571 // Check that accessing the first srcSize bytes of dest will not cause a
572 // trap. Otherwise the transform is invalid since it might cause a trap
573 // to occur earlier than it otherwise would.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000574 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000575 // The destination is an alloca. Check it is larger than srcSize.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000576 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
Owen Andersona723d1e2008-04-09 08:23:16 +0000577 if (!destArraySize)
578 return false;
579
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000580 uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
Owen Andersona723d1e2008-04-09 08:23:16 +0000581 destArraySize->getZExtValue();
582
583 if (destSize < srcSize)
584 return false;
Chris Lattner61c6ba82009-09-01 17:09:55 +0000585 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000586 // If the destination is an sret parameter then only accesses that are
587 // outside of the returned struct type can trap.
588 if (!A->hasStructRetAttr())
589 return false;
590
Chris Lattner61c6ba82009-09-01 17:09:55 +0000591 const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000592 uint64_t destSize = TD->getTypeAllocSize(StructTy);
Owen Andersona723d1e2008-04-09 08:23:16 +0000593
594 if (destSize < srcSize)
595 return false;
596 } else {
597 return false;
598 }
599
600 // Check that src is not accessed except via the call and the memcpy. This
601 // guarantees that it holds only undefined values when passed in (so the final
602 // memcpy can be dropped), that it is not read or written between the call and
603 // the memcpy, and that writing beyond the end of it is undefined.
604 SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
605 srcAlloca->use_end());
606 while (!srcUseList.empty()) {
Dan Gohman321a8132010-01-05 16:27:25 +0000607 User *UI = srcUseList.pop_back_val();
Owen Andersona723d1e2008-04-09 08:23:16 +0000608
Owen Anderson009e4f72008-06-01 22:26:26 +0000609 if (isa<BitCastInst>(UI)) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000610 for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
611 I != E; ++I)
612 srcUseList.push_back(*I);
Chris Lattner61c6ba82009-09-01 17:09:55 +0000613 } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
Owen Anderson009e4f72008-06-01 22:26:26 +0000614 if (G->hasAllZeroIndices())
615 for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
616 I != E; ++I)
617 srcUseList.push_back(*I);
618 else
619 return false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000620 } else if (UI != C && UI != cpy) {
621 return false;
622 }
623 }
624
625 // Since we're changing the parameter to the callsite, we need to make sure
626 // that what would be the new parameter dominates the callsite.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000627 DominatorTree &DT = getAnalysis<DominatorTree>();
628 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
Owen Andersona723d1e2008-04-09 08:23:16 +0000629 if (!DT.dominates(cpyDestInst, C))
630 return false;
631
632 // In addition to knowing that the call does not access src in some
633 // unexpected manner, for example via a global, which we deduce from
634 // the use analysis, we also need to know that it does not sneakily
635 // access dest. We rely on AA to figure this out for us.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000636 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
Owen Anderson65491212010-10-15 22:52:12 +0000637 if (AA.getModRefInfo(C, cpyDest, srcSize) !=
Owen Andersona723d1e2008-04-09 08:23:16 +0000638 AliasAnalysis::NoModRef)
639 return false;
640
641 // All the checks have passed, so do the transformation.
Owen Anderson12cb36c2008-06-01 21:52:16 +0000642 bool changedArgument = false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000643 for (unsigned i = 0; i < CS.arg_size(); ++i)
Owen Anderson009e4f72008-06-01 22:26:26 +0000644 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000645 if (cpySrc->getType() != cpyDest->getType())
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000646 cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
Owen Andersona723d1e2008-04-09 08:23:16 +0000647 cpyDest->getName(), C);
Owen Anderson12cb36c2008-06-01 21:52:16 +0000648 changedArgument = true;
Chris Lattner61c6ba82009-09-01 17:09:55 +0000649 if (CS.getArgument(i)->getType() == cpyDest->getType())
Owen Anderson009e4f72008-06-01 22:26:26 +0000650 CS.setArgument(i, cpyDest);
Chris Lattner61c6ba82009-09-01 17:09:55 +0000651 else
652 CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
653 CS.getArgument(i)->getType(), cpyDest->getName(), C));
Owen Andersona723d1e2008-04-09 08:23:16 +0000654 }
655
Owen Anderson12cb36c2008-06-01 21:52:16 +0000656 if (!changedArgument)
657 return false;
658
Owen Andersona723d1e2008-04-09 08:23:16 +0000659 // Drop any cached information about the call, because we may have changed
660 // its dependence information by changing its parameter.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000661 MD->removeInstruction(C);
Owen Andersona723d1e2008-04-09 08:23:16 +0000662
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000663 // Remove the memcpy.
664 MD->removeInstruction(cpy);
Dan Gohmanfe601042010-06-22 15:08:57 +0000665 ++NumMemCpyInstr;
Owen Andersona723d1e2008-04-09 08:23:16 +0000666
667 return true;
668}
669
Chris Lattner43f8e432010-11-18 07:02:37 +0000670/// processMemCpyMemCpyDependence - We've found that the (upward scanning)
671/// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to
672/// copy from MDep's input if we can. MSize is the size of M's copy.
673///
674bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
675 uint64_t MSize) {
676 // We can only transforms memcpy's where the dest of one is the source of the
677 // other.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000678 if (M->getSource() != MDep->getDest() || MDep->isVolatile())
Chris Lattner43f8e432010-11-18 07:02:37 +0000679 return false;
680
681 // Second, the length of the memcpy's must be the same, or the preceeding one
682 // must be larger than the following one.
683 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
684 if (!C1) return false;
685
686 uint64_t DepSize = C1->getValue().getZExtValue();
Chris Lattner43f8e432010-11-18 07:02:37 +0000687 if (DepSize < MSize)
688 return false;
689
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000690 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
Chris Lattner5a7aeaa2010-11-18 08:00:57 +0000691
692 // If the dest of the second might alias the source of the first, then the
693 // source and dest might overlap. We still want to eliminate the intermediate
694 // value, but we have to generate a memmove instead of memcpy.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000695 Intrinsic::ID ResultFn = Intrinsic::memcpy;
Chris Lattner12f70852010-11-18 07:39:57 +0000696 if (!AA.isNoAlias(M->getRawDest(), MSize, MDep->getRawSource(), DepSize))
Chris Lattner5a7aeaa2010-11-18 08:00:57 +0000697 ResultFn = Intrinsic::memmove;
Chris Lattner43f8e432010-11-18 07:02:37 +0000698
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000699 // If all checks passed, then we can transform M.
Chris Lattner245b7f62010-11-18 07:38:43 +0000700 const Type *ArgTys[3] = {
701 M->getRawDest()->getType(),
Chris Lattner43f8e432010-11-18 07:02:37 +0000702 MDep->getRawSource()->getType(),
Chris Lattner245b7f62010-11-18 07:38:43 +0000703 M->getLength()->getType()
704 };
Chris Lattner43f8e432010-11-18 07:02:37 +0000705 Function *MemCpyFun =
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000706 Intrinsic::getDeclaration(MDep->getParent()->getParent()->getParent(),
Chris Lattner5a7aeaa2010-11-18 08:00:57 +0000707 ResultFn, ArgTys, 3);
Chris Lattner43f8e432010-11-18 07:02:37 +0000708
709 // Make sure to use the lesser of the alignment of the source and the dest
710 // since we're changing where we're reading from, but don't want to increase
711 // the alignment past what can be read from or written to.
712 // TODO: Is this worth it if we're creating a less aligned memcpy? For
713 // example we could be moving from movaps -> movq on x86.
Chris Lattnerd528be62010-11-18 08:07:09 +0000714 unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
Chris Lattner43f8e432010-11-18 07:02:37 +0000715 Value *Args[5] = {
Chris Lattnerd528be62010-11-18 08:07:09 +0000716 M->getRawDest(),
717 MDep->getRawSource(),
718 M->getLength(),
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000719 ConstantInt::get(Type::getInt32Ty(MemCpyFun->getContext()), Align),
Chris Lattnerd528be62010-11-18 08:07:09 +0000720 M->getVolatileCst()
Chris Lattner43f8e432010-11-18 07:02:37 +0000721 };
722 CallInst *C = CallInst::Create(MemCpyFun, Args, Args+5, "", M);
723
724
Chris Lattnerd528be62010-11-18 08:07:09 +0000725 // Verify that the copied-from memory doesn't change in between the two
726 // transfers. For example, in:
727 // memcpy(a <- b)
728 // *b = 42;
729 // memcpy(c <- a)
730 // It would be invalid to transform the second memcpy into memcpy(c <- b).
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000731 //
732 // TODO: If the code between M and MDep is transparent to the destination "c",
733 // then we could still perform the xform by moving M up to the first memcpy.
734 MemDepResult NewDep = MD->getDependency(C);
Chris Lattnerd528be62010-11-18 08:07:09 +0000735 if (!NewDep.isClobber() || NewDep.getInst() != MDep) {
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000736 MD->removeInstruction(C);
Chris Lattnerd528be62010-11-18 08:07:09 +0000737 C->eraseFromParent();
738 return false;
Chris Lattner43f8e432010-11-18 07:02:37 +0000739 }
Chris Lattnerd528be62010-11-18 08:07:09 +0000740
741 // Otherwise we're good! Nuke the instruction we're replacing.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000742 MD->removeInstruction(M);
Chris Lattnerd528be62010-11-18 08:07:09 +0000743 M->eraseFromParent();
744 ++NumMemCpyInstr;
745 return true;
Chris Lattner43f8e432010-11-18 07:02:37 +0000746}
747
748
Gabor Greif7d3056b2010-07-28 22:50:26 +0000749/// processMemCpy - perform simplification of memcpy's. If we have memcpy A
750/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
751/// B to be a memcpy from X to Z (or potentially a memmove, depending on
752/// circumstances). This allows later passes to remove the first memcpy
753/// altogether.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000754bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000755 // We can only optimize statically-sized memcpy's that are non-volatile.
756 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
757 if (CopySize == 0 || M->isVolatile()) return false;
Owen Anderson65491212010-10-15 22:52:12 +0000758
Owen Andersona8bd6582008-04-21 07:45:10 +0000759 // The are two possible optimizations we can do for memcpy:
Chris Lattner61c6ba82009-09-01 17:09:55 +0000760 // a) memcpy-memcpy xform which exposes redundance for DSE.
761 // b) call-memcpy xform for return slot optimization.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000762 MemDepResult DepInfo = MD->getDependency(M);
763 if (!DepInfo.isClobber())
Owen Andersona8bd6582008-04-21 07:45:10 +0000764 return false;
Owen Andersona8bd6582008-04-21 07:45:10 +0000765
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000766 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()))
767 return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
Owen Andersona723d1e2008-04-09 08:23:16 +0000768
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000769 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
Chris Lattner43f8e432010-11-18 07:02:37 +0000770 bool changed = performCallSlotOptzn(M, M->getDest(), M->getSource(),
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000771 CopySize->getZExtValue(), C);
Chris Lattner43f8e432010-11-18 07:02:37 +0000772 if (changed) M->eraseFromParent();
773 return changed;
Owen Andersona723d1e2008-04-09 08:23:16 +0000774 }
Owen Anderson02e99882008-04-29 21:51:00 +0000775 return false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000776}
777
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000778/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
779/// are guaranteed not to alias.
780bool MemCpyOpt::processMemMove(MemMoveInst *M) {
781 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
782
783 // If the memmove is a constant size, use it for the alias query, this allows
784 // us to optimize things like: memmove(P, P+64, 64);
Dan Gohman3da848b2010-10-19 22:54:46 +0000785 uint64_t MemMoveSize = AliasAnalysis::UnknownSize;
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000786 if (ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength()))
787 MemMoveSize = Len->getZExtValue();
788
789 // See if the pointers alias.
790 if (AA.alias(M->getRawDest(), MemMoveSize, M->getRawSource(), MemMoveSize) !=
791 AliasAnalysis::NoAlias)
792 return false;
793
David Greenecb33fd12010-01-05 01:27:47 +0000794 DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000795
796 // If not, then we know we can transform this.
797 Module *Mod = M->getParent()->getParent()->getParent();
Mon P Wang20adc9d2010-04-04 03:10:48 +0000798 const Type *ArgTys[3] = { M->getRawDest()->getType(),
799 M->getRawSource()->getType(),
800 M->getLength()->getType() };
Gabor Greifa3997812010-07-22 10:37:47 +0000801 M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
802 ArgTys, 3));
Duncan Sands05cd03b2009-09-03 13:37:16 +0000803
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000804 // MemDep may have over conservative information about this instruction, just
805 // conservatively flush it from the cache.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000806 MD->removeInstruction(M);
Duncan Sands05cd03b2009-09-03 13:37:16 +0000807
808 ++NumMoveToCpy;
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000809 return true;
810}
811
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000812/// processByValArgument - This is called on every byval argument in call sites.
813bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
814 TargetData *TD = getAnalysisIfAvailable<TargetData>();
815 if (!TD) return false;
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000816
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000817 Value *ByValArg = CS.getArgument(ArgNo);
818
819 // MemDep doesn't have a way to do a local query with a memory location.
820 // Instead, just insert a load and ask for its dependences.
821 LoadInst *TmpLoad = new LoadInst(ByValArg, "", CS.getInstruction());
822 MemDepResult DepInfo = MD->getDependency(TmpLoad);
823
824 MD->removeInstruction(TmpLoad);
825 TmpLoad->eraseFromParent();
826
827 if (!DepInfo.isClobber())
828 return false;
829
830 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
831 // a memcpy, see if we can byval from the source of the memcpy instead of the
832 // result.
833 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
834 if (MDep == 0 || MDep->isVolatile() ||
835 ByValArg->stripPointerCasts() != MDep->getDest())
836 return false;
837
838 // The length of the memcpy must be larger or equal to the size of the byval.
839 // must be larger than the following one.
840 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
841 if (C1 == 0 ||
842 C1->getValue().getZExtValue() < TD->getTypeAllocSize(ByValArg->getType()))
843 return false;
844
845 // Get the alignment of the byval. If it is greater than the memcpy, then we
846 // can't do the substitution. If the call doesn't specify the alignment, then
847 // it is some target specific value that we can't know.
848 unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
849 if (ByValAlign == 0 || MDep->getAlignment() < ByValAlign)
850 return false;
851
852 // Verify that the copied-from memory doesn't change in between the memcpy and
853 // the byval call.
854 // memcpy(a <- b)
855 // *b = 42;
856 // foo(*a)
857 // It would be invalid to transform the second memcpy into foo(*b).
858 Value *TmpCast = MDep->getSource();
859 if (MDep->getSource()->getType() != ByValArg->getType())
860 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
861 "tmpcast", CS.getInstruction());
862 Value *TmpVal =
863 UndefValue::get(cast<PointerType>(TmpCast->getType())->getElementType());
864 Instruction *TmpStore = new StoreInst(TmpVal, TmpCast, false,
865 CS.getInstruction());
866 DepInfo = MD->getDependency(TmpStore);
867 bool isUnsafe = !DepInfo.isClobber() || DepInfo.getInst() != MDep;
868 MD->removeInstruction(TmpStore);
869 TmpStore->eraseFromParent();
870
871 if (isUnsafe) {
872 // Clean up the inserted cast instruction.
873 if (TmpCast != MDep->getSource())
874 cast<Instruction>(TmpCast)->eraseFromParent();
875 return false;
876 }
877
878 DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
879 << " " << *MDep << "\n"
880 << " " << *CS.getInstruction() << "\n");
881
882 // Otherwise we're good! Update the byval argument.
883 CS.setArgument(ArgNo, TmpCast);
884 ++NumMemCpyInstr;
885 return true;
886}
887
888/// iterateOnFunction - Executes one iteration of MemCpyOpt.
Owen Andersona723d1e2008-04-09 08:23:16 +0000889bool MemCpyOpt::iterateOnFunction(Function &F) {
Chris Lattner61c6ba82009-09-01 17:09:55 +0000890 bool MadeChange = false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000891
Chris Lattner61c6ba82009-09-01 17:09:55 +0000892 // Walk all instruction in the function.
Owen Andersona8bd6582008-04-21 07:45:10 +0000893 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000894 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
Chris Lattner61c6ba82009-09-01 17:09:55 +0000895 // Avoid invalidating the iterator.
896 Instruction *I = BI++;
Owen Andersona8bd6582008-04-21 07:45:10 +0000897
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000898 bool RepeatInstruction = false;
899
Owen Andersona8bd6582008-04-21 07:45:10 +0000900 if (StoreInst *SI = dyn_cast<StoreInst>(I))
Chris Lattner61c6ba82009-09-01 17:09:55 +0000901 MadeChange |= processStore(SI, BI);
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000902 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) {
903 RepeatInstruction = processMemCpy(M);
904 } else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) {
905 RepeatInstruction = processMemMove(M);
906 } else if (CallSite CS = (Value*)I) {
907 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
908 if (CS.paramHasAttr(i+1, Attribute::ByVal))
909 MadeChange |= processByValArgument(CS, i);
910 }
911
912 // Reprocess the instruction if desired.
913 if (RepeatInstruction) {
914 --BI;
915 MadeChange = true;
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000916 }
Owen Andersona723d1e2008-04-09 08:23:16 +0000917 }
918 }
919
Chris Lattner61c6ba82009-09-01 17:09:55 +0000920 return MadeChange;
Owen Andersona723d1e2008-04-09 08:23:16 +0000921}
Chris Lattner61c6ba82009-09-01 17:09:55 +0000922
923// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
924// function.
925//
926bool MemCpyOpt::runOnFunction(Function &F) {
927 bool MadeChange = false;
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000928 MD = &getAnalysis<MemoryDependenceAnalysis>();
Chris Lattner61c6ba82009-09-01 17:09:55 +0000929 while (1) {
930 if (!iterateOnFunction(F))
931 break;
932 MadeChange = true;
933 }
934
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000935 MD = 0;
Chris Lattner61c6ba82009-09-01 17:09:55 +0000936 return MadeChange;
937}
938
939
940