blob: cb90bdc912a364c203adacb52d7823f00f0ec109 [file] [log] [blame]
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a simple pass that applies a variety of small
11// optimizations for calls to specific well-known function calls (e.g. runtime
12// library functions). For example, a call to the function "exit(3)" that
13// occurs within the main() function can be transformed into a simple "return 3"
14// instruction. Any optimization that takes this form (replace call to library
15// function with simpler code that provides the same result) belongs in this
16// file.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "simplify-libcalls"
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Support/IRBuilder.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/StringMap.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Compiler.h"
Chris Lattner56b4f2b2008-05-01 06:39:12 +000031#include "llvm/Support/Debug.h"
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000032#include "llvm/Config/config.h"
33using namespace llvm;
34
35STATISTIC(NumSimplified, "Number of library calls simplified");
36
37//===----------------------------------------------------------------------===//
38// Optimizer Base Class
39//===----------------------------------------------------------------------===//
40
41/// This class is the abstract base class for the set of optimizations that
42/// corresponds to one library call.
43namespace {
44class VISIBILITY_HIDDEN LibCallOptimization {
45protected:
46 Function *Caller;
47 const TargetData *TD;
48public:
49 LibCallOptimization() { }
50 virtual ~LibCallOptimization() {}
51
52 /// CallOptimizer - This pure virtual method is implemented by base classes to
53 /// do various optimizations. If this returns null then no transformation was
54 /// performed. If it returns CI, then it transformed the call and CI is to be
55 /// deleted. If it returns something else, replace CI with the new value and
56 /// delete CI.
57 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) =0;
58
59 Value *OptimizeCall(CallInst *CI, const TargetData &TD, IRBuilder &B) {
60 Caller = CI->getParent()->getParent();
61 this->TD = &TD;
62 return CallOptimizer(CI->getCalledFunction(), CI, B);
63 }
64
65 /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
66 Value *CastToCStr(Value *V, IRBuilder &B);
67
68 /// EmitStrLen - Emit a call to the strlen function to the builder, for the
69 /// specified pointer. Ptr is required to be some pointer type, and the
70 /// return value has 'intptr_t' type.
71 Value *EmitStrLen(Value *Ptr, IRBuilder &B);
72
73 /// EmitMemCpy - Emit a call to the memcpy function to the builder. This
74 /// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
75 Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len,
76 unsigned Align, IRBuilder &B);
77
78 /// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
79 /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
80 Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder &B);
81
82 /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
83 /// 'floor'). This function is known to take a single of type matching 'Op'
84 /// and returns one value with the same type. If 'Op' is a long double, 'l'
85 /// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
86 Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder &B);
87
88 /// EmitPutChar - Emit a call to the putchar function. This assumes that Char
89 /// is an integer.
90 void EmitPutChar(Value *Char, IRBuilder &B);
91
92 /// EmitPutS - Emit a call to the puts function. This assumes that Str is
93 /// some pointer.
94 void EmitPutS(Value *Str, IRBuilder &B);
95
96 /// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
97 /// an i32, and File is a pointer to FILE.
98 void EmitFPutC(Value *Char, Value *File, IRBuilder &B);
99
100 /// EmitFPutS - Emit a call to the puts function. Str is required to be a
101 /// pointer and File is a pointer to FILE.
102 void EmitFPutS(Value *Str, Value *File, IRBuilder &B);
103
104 /// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
105 /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
106 void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder &B);
107
108};
109} // End anonymous namespace.
110
111/// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
112Value *LibCallOptimization::CastToCStr(Value *V, IRBuilder &B) {
113 return B.CreateBitCast(V, PointerType::getUnqual(Type::Int8Ty), "cstr");
114}
115
116/// EmitStrLen - Emit a call to the strlen function to the builder, for the
117/// specified pointer. This always returns an integer value of size intptr_t.
118Value *LibCallOptimization::EmitStrLen(Value *Ptr, IRBuilder &B) {
119 Module *M = Caller->getParent();
120 Constant *StrLen =M->getOrInsertFunction("strlen", TD->getIntPtrType(),
121 PointerType::getUnqual(Type::Int8Ty),
122 NULL);
123 return B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
124}
125
126/// EmitMemCpy - Emit a call to the memcpy function to the builder. This always
127/// expects that the size has type 'intptr_t' and Dst/Src are pointers.
128Value *LibCallOptimization::EmitMemCpy(Value *Dst, Value *Src, Value *Len,
129 unsigned Align, IRBuilder &B) {
130 Module *M = Caller->getParent();
131 Intrinsic::ID IID = TD->getIntPtrType() == Type::Int32Ty ?
132 Intrinsic::memcpy_i32 : Intrinsic::memcpy_i64;
133 Value *MemCpy = Intrinsic::getDeclaration(M, IID);
134 return B.CreateCall4(MemCpy, CastToCStr(Dst, B), CastToCStr(Src, B), Len,
135 ConstantInt::get(Type::Int32Ty, Align));
136}
137
138/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
139/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
140Value *LibCallOptimization::EmitMemChr(Value *Ptr, Value *Val,
141 Value *Len, IRBuilder &B) {
142 Module *M = Caller->getParent();
143 Value *MemChr = M->getOrInsertFunction("memchr",
144 PointerType::getUnqual(Type::Int8Ty),
145 PointerType::getUnqual(Type::Int8Ty),
146 Type::Int32Ty, TD->getIntPtrType(),
147 NULL);
148 return B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
149}
150
151/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
152/// 'floor'). This function is known to take a single of type matching 'Op' and
153/// returns one value with the same type. If 'Op' is a long double, 'l' is
154/// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
155Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name,
156 IRBuilder &B) {
157 char NameBuffer[20];
158 if (Op->getType() != Type::DoubleTy) {
159 // If we need to add a suffix, copy into NameBuffer.
160 unsigned NameLen = strlen(Name);
161 assert(NameLen < sizeof(NameBuffer)-2);
162 memcpy(NameBuffer, Name, NameLen);
163 if (Op->getType() == Type::FloatTy)
164 NameBuffer[NameLen] = 'f'; // floorf
165 else
166 NameBuffer[NameLen] = 'l'; // floorl
167 NameBuffer[NameLen+1] = 0;
168 Name = NameBuffer;
169 }
170
171 Module *M = Caller->getParent();
172 Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
173 Op->getType(), NULL);
174 return B.CreateCall(Callee, Op, Name);
175}
176
177/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
178/// is an integer.
179void LibCallOptimization::EmitPutChar(Value *Char, IRBuilder &B) {
180 Module *M = Caller->getParent();
181 Value *F = M->getOrInsertFunction("putchar", Type::Int32Ty,
182 Type::Int32Ty, NULL);
183 B.CreateCall(F, B.CreateIntCast(Char, Type::Int32Ty, "chari"), "putchar");
184}
185
186/// EmitPutS - Emit a call to the puts function. This assumes that Str is
187/// some pointer.
188void LibCallOptimization::EmitPutS(Value *Str, IRBuilder &B) {
189 Module *M = Caller->getParent();
190 Value *F = M->getOrInsertFunction("puts", Type::Int32Ty,
191 PointerType::getUnqual(Type::Int8Ty), NULL);
192 B.CreateCall(F, CastToCStr(Str, B), "puts");
193}
194
195/// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
196/// an integer and File is a pointer to FILE.
197void LibCallOptimization::EmitFPutC(Value *Char, Value *File, IRBuilder &B) {
198 Module *M = Caller->getParent();
199 Constant *F = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
200 File->getType(), NULL);
201 Char = B.CreateIntCast(Char, Type::Int32Ty, "chari");
202 B.CreateCall2(F, Char, File, "fputc");
203}
204
205/// EmitFPutS - Emit a call to the puts function. Str is required to be a
206/// pointer and File is a pointer to FILE.
207void LibCallOptimization::EmitFPutS(Value *Str, Value *File, IRBuilder &B) {
208 Module *M = Caller->getParent();
209 Constant *F = M->getOrInsertFunction("fputs", Type::Int32Ty,
210 PointerType::getUnqual(Type::Int8Ty),
211 File->getType(), NULL);
212 B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
213}
214
215/// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
216/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
217void LibCallOptimization::EmitFWrite(Value *Ptr, Value *Size, Value *File,
218 IRBuilder &B) {
219 Module *M = Caller->getParent();
220 Constant *F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
221 PointerType::getUnqual(Type::Int8Ty),
222 TD->getIntPtrType(), TD->getIntPtrType(),
223 File->getType(), NULL);
224 B.CreateCall4(F, CastToCStr(Ptr, B), Size,
225 ConstantInt::get(TD->getIntPtrType(), 1), File);
226}
227
228//===----------------------------------------------------------------------===//
229// Helper Functions
230//===----------------------------------------------------------------------===//
231
232/// GetConstantStringInfo - This function computes the length of a
233/// null-terminated C string pointed to by V. If successful, it returns true
234/// and returns the string in Str. If unsuccessful, it returns false.
235static bool GetConstantStringInfo(Value *V, std::string &Str) {
236 // Look bitcast instructions.
237 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
238 return GetConstantStringInfo(BCI->getOperand(0), Str);
239
240 // If the value is not a GEP instruction nor a constant expression with a
241 // GEP instruction, then return false because ConstantArray can't occur
242 // any other way
243 User *GEP = 0;
244 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
245 GEP = GEPI;
246 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
247 if (CE->getOpcode() != Instruction::GetElementPtr)
248 return false;
249 GEP = CE;
250 } else {
251 return false;
252 }
253
254 // Make sure the GEP has exactly three arguments.
255 if (GEP->getNumOperands() != 3)
256 return false;
257
258 // Check to make sure that the first operand of the GEP is an integer and
259 // has value 0 so that we are sure we're indexing into the initializer.
260 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
261 if (!Idx->isZero())
262 return false;
263 } else
264 return false;
265
266 // If the second index isn't a ConstantInt, then this is a variable index
267 // into the array. If this occurs, we can't say anything meaningful about
268 // the string.
269 uint64_t StartIdx = 0;
270 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
271 StartIdx = CI->getZExtValue();
272 else
273 return false;
274
275 // The GEP instruction, constant or instruction, must reference a global
276 // variable that is a constant and is initialized. The referenced constant
277 // initializer is the array that we'll use for optimization.
278 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
279 if (!GV || !GV->isConstant() || !GV->hasInitializer())
280 return false;
281 Constant *GlobalInit = GV->getInitializer();
282
283 // Handle the ConstantAggregateZero case
284 if (isa<ConstantAggregateZero>(GlobalInit)) {
285 // This is a degenerate case. The initializer is constant zero so the
286 // length of the string must be zero.
287 Str.clear();
288 return true;
289 }
290
291 // Must be a Constant Array
292 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
293 if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
294 return false;
295
296 // Get the number of elements in the array
297 uint64_t NumElts = Array->getType()->getNumElements();
298
299 // Traverse the constant array from StartIdx (derived above) which is
300 // the place the GEP refers to in the array.
301 for (unsigned i = StartIdx; i < NumElts; ++i) {
302 Constant *Elt = Array->getOperand(i);
303 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
304 if (!CI) // This array isn't suitable, non-int initializer.
305 return false;
306 if (CI->isZero())
307 return true; // we found end of string, success!
308 Str += (char)CI->getZExtValue();
309 }
310
311 return false; // The array isn't null terminated.
312}
313
314/// GetStringLengthH - If we can compute the length of the string pointed to by
315/// the specified pointer, return 'len+1'. If we can't, return 0.
316static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
317 // Look through noop bitcast instructions.
318 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
319 return GetStringLengthH(BCI->getOperand(0), PHIs);
320
321 // If this is a PHI node, there are two cases: either we have already seen it
322 // or we haven't.
323 if (PHINode *PN = dyn_cast<PHINode>(V)) {
324 if (!PHIs.insert(PN))
325 return ~0ULL; // already in the set.
326
327 // If it was new, see if all the input strings are the same length.
328 uint64_t LenSoFar = ~0ULL;
329 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
330 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
331 if (Len == 0) return 0; // Unknown length -> unknown.
332
333 if (Len == ~0ULL) continue;
334
335 if (Len != LenSoFar && LenSoFar != ~0ULL)
336 return 0; // Disagree -> unknown.
337 LenSoFar = Len;
338 }
339
340 // Success, all agree.
341 return LenSoFar;
342 }
343
344 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
345 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
346 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
347 if (Len1 == 0) return 0;
348 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
349 if (Len2 == 0) return 0;
350 if (Len1 == ~0ULL) return Len2;
351 if (Len2 == ~0ULL) return Len1;
352 if (Len1 != Len2) return 0;
353 return Len1;
354 }
355
356 // If the value is not a GEP instruction nor a constant expression with a
357 // GEP instruction, then return unknown.
358 User *GEP = 0;
359 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
360 GEP = GEPI;
361 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
362 if (CE->getOpcode() != Instruction::GetElementPtr)
363 return 0;
364 GEP = CE;
365 } else {
366 return 0;
367 }
368
369 // Make sure the GEP has exactly three arguments.
370 if (GEP->getNumOperands() != 3)
371 return 0;
372
373 // Check to make sure that the first operand of the GEP is an integer and
374 // has value 0 so that we are sure we're indexing into the initializer.
375 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
376 if (!Idx->isZero())
377 return 0;
378 } else
379 return 0;
380
381 // If the second index isn't a ConstantInt, then this is a variable index
382 // into the array. If this occurs, we can't say anything meaningful about
383 // the string.
384 uint64_t StartIdx = 0;
385 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
386 StartIdx = CI->getZExtValue();
387 else
388 return 0;
389
390 // The GEP instruction, constant or instruction, must reference a global
391 // variable that is a constant and is initialized. The referenced constant
392 // initializer is the array that we'll use for optimization.
393 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
394 if (!GV || !GV->isConstant() || !GV->hasInitializer())
395 return 0;
396 Constant *GlobalInit = GV->getInitializer();
397
398 // Handle the ConstantAggregateZero case, which is a degenerate case. The
399 // initializer is constant zero so the length of the string must be zero.
400 if (isa<ConstantAggregateZero>(GlobalInit))
401 return 1; // Len = 0 offset by 1.
402
403 // Must be a Constant Array
404 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
405 if (!Array || Array->getType()->getElementType() != Type::Int8Ty)
406 return false;
407
408 // Get the number of elements in the array
409 uint64_t NumElts = Array->getType()->getNumElements();
410
411 // Traverse the constant array from StartIdx (derived above) which is
412 // the place the GEP refers to in the array.
413 for (unsigned i = StartIdx; i != NumElts; ++i) {
414 Constant *Elt = Array->getOperand(i);
415 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
416 if (!CI) // This array isn't suitable, non-int initializer.
417 return 0;
418 if (CI->isZero())
419 return i-StartIdx+1; // We found end of string, success!
420 }
421
422 return 0; // The array isn't null terminated, conservatively return 'unknown'.
423}
424
425/// GetStringLength - If we can compute the length of the string pointed to by
426/// the specified pointer, return 'len+1'. If we can't, return 0.
427static uint64_t GetStringLength(Value *V) {
428 if (!isa<PointerType>(V->getType())) return 0;
429
430 SmallPtrSet<PHINode*, 32> PHIs;
431 uint64_t Len = GetStringLengthH(V, PHIs);
432 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
433 // an empty string as a length.
434 return Len == ~0ULL ? 1 : Len;
435}
436
437/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
438/// value is equal or not-equal to zero.
439static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
440 for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
441 UI != E; ++UI) {
442 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
443 if (IC->isEquality())
444 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
445 if (C->isNullValue())
446 continue;
447 // Unknown instruction.
448 return false;
449 }
450 return true;
451}
452
453//===----------------------------------------------------------------------===//
454// Miscellaneous LibCall Optimizations
455//===----------------------------------------------------------------------===//
456
Bill Wendlingac178222008-05-05 21:37:59 +0000457namespace {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000458//===---------------------------------------===//
459// 'exit' Optimizations
460
461/// ExitOpt - int main() { exit(4); } --> int main() { return 4; }
462struct VISIBILITY_HIDDEN ExitOpt : public LibCallOptimization {
463 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
464 // Verify we have a reasonable prototype for exit.
465 if (Callee->arg_size() == 0 || !CI->use_empty())
466 return 0;
467
468 // Verify the caller is main, and that the result type of main matches the
469 // argument type of exit.
470 if (!Caller->isName("main") || !Caller->hasExternalLinkage() ||
471 Caller->getReturnType() != CI->getOperand(1)->getType())
472 return 0;
473
474 TerminatorInst *OldTI = CI->getParent()->getTerminator();
475
476 // Create the return after the call.
477 ReturnInst *RI = B.CreateRet(CI->getOperand(1));
478
479 // Drop all successor phi node entries.
480 for (unsigned i = 0, e = OldTI->getNumSuccessors(); i != e; ++i)
481 OldTI->getSuccessor(i)->removePredecessor(CI->getParent());
482
483 // Erase all instructions from after our return instruction until the end of
484 // the block.
485 BasicBlock::iterator FirstDead = RI; ++FirstDead;
486 CI->getParent()->getInstList().erase(FirstDead, CI->getParent()->end());
487 return CI;
488 }
489};
490
491//===----------------------------------------------------------------------===//
492// String and Memory LibCall Optimizations
493//===----------------------------------------------------------------------===//
494
495//===---------------------------------------===//
496// 'strcat' Optimizations
497
498struct VISIBILITY_HIDDEN StrCatOpt : public LibCallOptimization {
499 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
500 // Verify the "strcat" function prototype.
501 const FunctionType *FT = Callee->getFunctionType();
502 if (FT->getNumParams() != 2 ||
503 FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
504 FT->getParamType(0) != FT->getReturnType() ||
505 FT->getParamType(1) != FT->getReturnType())
506 return 0;
507
508 // Extract some information from the instruction
509 Value *Dst = CI->getOperand(1);
510 Value *Src = CI->getOperand(2);
511
512 // See if we can get the length of the input string.
513 uint64_t Len = GetStringLength(Src);
Chris Lattner56b4f2b2008-05-01 06:39:12 +0000514 if (Len == 0) return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000515 --Len; // Unbias length.
516
517 // Handle the simple, do-nothing case: strcat(x, "") -> x
518 if (Len == 0)
519 return Dst;
520
521 // We need to find the end of the destination string. That's where the
522 // memory is to be moved to. We just generate a call to strlen.
523 Value *DstLen = EmitStrLen(Dst, B);
524
525 // Now that we have the destination's length, we must index into the
526 // destination's pointer to get the actual memcpy destination (end of
527 // the string .. we're concatenating).
528 Dst = B.CreateGEP(Dst, DstLen, "endptr");
529
530 // We have enough information to now generate the memcpy call to do the
531 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
532 EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len+1), 1, B);
533 return Dst;
534 }
535};
536
537//===---------------------------------------===//
538// 'strchr' Optimizations
539
540struct VISIBILITY_HIDDEN StrChrOpt : public LibCallOptimization {
541 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
542 // Verify the "strchr" function prototype.
543 const FunctionType *FT = Callee->getFunctionType();
544 if (FT->getNumParams() != 2 ||
545 FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
546 FT->getParamType(0) != FT->getReturnType())
547 return 0;
548
549 Value *SrcStr = CI->getOperand(1);
550
551 // If the second operand is non-constant, see if we can compute the length
552 // of the input string and turn this into memchr.
553 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getOperand(2));
554 if (CharC == 0) {
555 uint64_t Len = GetStringLength(SrcStr);
556 if (Len == 0 || FT->getParamType(1) != Type::Int32Ty) // memchr needs i32.
557 return 0;
558
559 return EmitMemChr(SrcStr, CI->getOperand(2), // include nul.
560 ConstantInt::get(TD->getIntPtrType(), Len), B);
561 }
562
563 // Otherwise, the character is a constant, see if the first argument is
564 // a string literal. If so, we can constant fold.
565 std::string Str;
566 if (!GetConstantStringInfo(SrcStr, Str))
Chris Lattner56b4f2b2008-05-01 06:39:12 +0000567 return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000568
569 // strchr can find the nul character.
570 Str += '\0';
571 char CharValue = CharC->getSExtValue();
572
573 // Compute the offset.
574 uint64_t i = 0;
575 while (1) {
576 if (i == Str.size()) // Didn't find the char. strchr returns null.
577 return Constant::getNullValue(CI->getType());
578 // Did we find our match?
579 if (Str[i] == CharValue)
580 break;
581 ++i;
582 }
583
584 // strchr(s+n,c) -> gep(s+n+i,c)
585 Value *Idx = ConstantInt::get(Type::Int64Ty, i);
586 return B.CreateGEP(SrcStr, Idx, "strchr");
587 }
588};
589
590//===---------------------------------------===//
591// 'strcmp' Optimizations
592
593struct VISIBILITY_HIDDEN StrCmpOpt : public LibCallOptimization {
594 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
595 // Verify the "strcmp" function prototype.
596 const FunctionType *FT = Callee->getFunctionType();
597 if (FT->getNumParams() != 2 || FT->getReturnType() != Type::Int32Ty ||
598 FT->getParamType(0) != FT->getParamType(1) ||
599 FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
600 return 0;
601
602 Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
603 if (Str1P == Str2P) // strcmp(x,x) -> 0
604 return ConstantInt::get(CI->getType(), 0);
605
606 std::string Str1, Str2;
607 bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
608 bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
609
610 if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
611 return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
612
613 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
614 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
615
616 // strcmp(x, y) -> cnst (if both x and y are constant strings)
617 if (HasStr1 && HasStr2)
618 return ConstantInt::get(CI->getType(), strcmp(Str1.c_str(),Str2.c_str()));
619 return 0;
620 }
621};
622
623//===---------------------------------------===//
624// 'strncmp' Optimizations
625
626struct VISIBILITY_HIDDEN StrNCmpOpt : public LibCallOptimization {
627 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
628 // Verify the "strncmp" function prototype.
629 const FunctionType *FT = Callee->getFunctionType();
630 if (FT->getNumParams() != 3 || FT->getReturnType() != Type::Int32Ty ||
631 FT->getParamType(0) != FT->getParamType(1) ||
632 FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
633 !isa<IntegerType>(FT->getParamType(2)))
634 return 0;
635
636 Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
637 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
638 return ConstantInt::get(CI->getType(), 0);
639
640 // Get the length argument if it is constant.
641 uint64_t Length;
642 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
643 Length = LengthArg->getZExtValue();
644 else
645 return 0;
646
647 if (Length == 0) // strncmp(x,y,0) -> 0
648 return ConstantInt::get(CI->getType(), 0);
649
650 std::string Str1, Str2;
651 bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
652 bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
653
654 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> *x
655 return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
656
657 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
658 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
659
660 // strncmp(x, y) -> cnst (if both x and y are constant strings)
661 if (HasStr1 && HasStr2)
662 return ConstantInt::get(CI->getType(),
663 strncmp(Str1.c_str(), Str2.c_str(), Length));
664 return 0;
665 }
666};
667
668
669//===---------------------------------------===//
670// 'strcpy' Optimizations
671
672struct VISIBILITY_HIDDEN StrCpyOpt : public LibCallOptimization {
673 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
674 // Verify the "strcpy" function prototype.
675 const FunctionType *FT = Callee->getFunctionType();
676 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
677 FT->getParamType(0) != FT->getParamType(1) ||
678 FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
679 return 0;
680
681 Value *Dst = CI->getOperand(1), *Src = CI->getOperand(2);
682 if (Dst == Src) // strcpy(x,x) -> x
683 return Src;
684
685 // See if we can get the length of the input string.
686 uint64_t Len = GetStringLength(Src);
Chris Lattner56b4f2b2008-05-01 06:39:12 +0000687 if (Len == 0) return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000688
689 // We have enough information to now generate the memcpy call to do the
690 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
691 EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len), 1, B);
692 return Dst;
693 }
694};
695
696
697
698//===---------------------------------------===//
699// 'strlen' Optimizations
700
701struct VISIBILITY_HIDDEN StrLenOpt : public LibCallOptimization {
702 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
703 const FunctionType *FT = Callee->getFunctionType();
704 if (FT->getNumParams() != 1 ||
705 FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
706 !isa<IntegerType>(FT->getReturnType()))
707 return 0;
708
709 Value *Src = CI->getOperand(1);
710
711 // Constant folding: strlen("xyz") -> 3
712 if (uint64_t Len = GetStringLength(Src))
713 return ConstantInt::get(CI->getType(), Len-1);
714
715 // Handle strlen(p) != 0.
716 if (!IsOnlyUsedInZeroEqualityComparison(CI)) return 0;
717
718 // strlen(x) != 0 --> *x != 0
719 // strlen(x) == 0 --> *x == 0
720 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
721 }
722};
723
724//===---------------------------------------===//
725// 'memcmp' Optimizations
726
727struct VISIBILITY_HIDDEN MemCmpOpt : public LibCallOptimization {
728 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
729 const FunctionType *FT = Callee->getFunctionType();
730 if (FT->getNumParams() != 3 || !isa<PointerType>(FT->getParamType(0)) ||
731 !isa<PointerType>(FT->getParamType(1)) ||
732 FT->getReturnType() != Type::Int32Ty)
733 return 0;
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000734
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000735 Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000736
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000737 if (LHS == RHS) // memcmp(s,s,x) -> 0
738 return Constant::getNullValue(CI->getType());
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000739
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000740 // Make sure we have a constant length.
741 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
Chris Lattner56b4f2b2008-05-01 06:39:12 +0000742 if (!LenC) return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000743 uint64_t Len = LenC->getZExtValue();
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000744
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000745 if (Len == 0) // memcmp(s1,s2,0) -> 0
746 return Constant::getNullValue(CI->getType());
747
748 if (Len == 1) { // memcmp(S1,S2,1) -> *LHS - *RHS
749 Value *LHSV = B.CreateLoad(CastToCStr(LHS, B), "lhsv");
750 Value *RHSV = B.CreateLoad(CastToCStr(RHS, B), "rhsv");
751 return B.CreateZExt(B.CreateSub(LHSV, RHSV, "chardiff"), CI->getType());
752 }
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000753
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000754 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS ^ *(short*)RHS) != 0
755 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS ^ *(int*)RHS) != 0
756 if ((Len == 2 || Len == 4) && IsOnlyUsedInZeroEqualityComparison(CI)) {
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000757 const Type *PTy = PointerType::getUnqual(Len == 2 ?
758 Type::Int16Ty : Type::Int32Ty);
759 LHS = B.CreateBitCast(LHS, PTy, "tmp");
760 RHS = B.CreateBitCast(RHS, PTy, "tmp");
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000761 LoadInst *LHSV = B.CreateLoad(LHS, "lhsv");
762 LoadInst *RHSV = B.CreateLoad(RHS, "rhsv");
763 LHSV->setAlignment(1); RHSV->setAlignment(1); // Unaligned loads.
764 return B.CreateZExt(B.CreateXor(LHSV, RHSV, "shortdiff"), CI->getType());
765 }
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000766
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000767 return 0;
768 }
769};
770
771//===---------------------------------------===//
772// 'memcpy' Optimizations
773
774struct VISIBILITY_HIDDEN MemCpyOpt : public LibCallOptimization {
775 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
776 const FunctionType *FT = Callee->getFunctionType();
777 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
778 !isa<PointerType>(FT->getParamType(0)) ||
779 !isa<PointerType>(FT->getParamType(1)) ||
780 FT->getParamType(2) != TD->getIntPtrType())
781 return 0;
782
783 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
784 EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
785 return CI->getOperand(1);
786 }
787};
788
789//===----------------------------------------------------------------------===//
790// Math Library Optimizations
791//===----------------------------------------------------------------------===//
792
793//===---------------------------------------===//
794// 'pow*' Optimizations
795
796struct VISIBILITY_HIDDEN PowOpt : public LibCallOptimization {
797 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
798 const FunctionType *FT = Callee->getFunctionType();
799 // Just make sure this has 2 arguments of the same FP type, which match the
800 // result type.
801 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
802 FT->getParamType(0) != FT->getParamType(1) ||
803 !FT->getParamType(0)->isFloatingPoint())
804 return 0;
805
806 Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2);
807 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
808 if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
809 return Op1C;
810 if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
811 return EmitUnaryFloatFnCall(Op2, "exp2", B);
812 }
813
814 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
815 if (Op2C == 0) return 0;
816
817 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
818 return ConstantFP::get(CI->getType(), 1.0);
819
820 if (Op2C->isExactlyValue(0.5)) {
821 // FIXME: This is not safe for -0.0 and -inf. This can only be done when
822 // 'unsafe' math optimizations are allowed.
823 // x pow(x, 0.5) sqrt(x)
824 // ---------------------------------------------
825 // -0.0 +0.0 -0.0
826 // -inf +inf NaN
827#if 0
828 // pow(x, 0.5) -> sqrt(x)
829 return B.CreateCall(get_sqrt(), Op1, "sqrt");
830#endif
831 }
832
833 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
834 return Op1;
835 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
836 return B.CreateMul(Op1, Op1, "pow2");
837 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
838 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
839 return 0;
840 }
841};
842
843//===---------------------------------------===//
Chris Lattnere818f772008-05-02 18:43:35 +0000844// 'exp2' Optimizations
845
846struct VISIBILITY_HIDDEN Exp2Opt : public LibCallOptimization {
847 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
848 const FunctionType *FT = Callee->getFunctionType();
849 // Just make sure this has 1 argument of FP type, which matches the
850 // result type.
851 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
852 !FT->getParamType(0)->isFloatingPoint())
853 return 0;
854
855 Value *Op = CI->getOperand(1);
856 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
857 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
858 Value *LdExpArg = 0;
859 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
860 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
861 LdExpArg = B.CreateSExt(OpC->getOperand(0), Type::Int32Ty, "tmp");
862 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
863 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
864 LdExpArg = B.CreateZExt(OpC->getOperand(0), Type::Int32Ty, "tmp");
865 }
866
867 if (LdExpArg) {
868 const char *Name;
869 if (Op->getType() == Type::FloatTy)
870 Name = "ldexpf";
871 else if (Op->getType() == Type::DoubleTy)
872 Name = "ldexp";
873 else
874 Name = "ldexpl";
875
876 Constant *One = ConstantFP::get(APFloat(1.0f));
877 if (Op->getType() != Type::FloatTy)
878 One = ConstantExpr::getFPExtend(One, Op->getType());
879
880 Module *M = Caller->getParent();
881 Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
882 Op->getType(), Type::Int32Ty,NULL);
883 return B.CreateCall2(Callee, One, LdExpArg);
884 }
885 return 0;
886 }
887};
888
889
890//===---------------------------------------===//
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000891// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
892
893struct VISIBILITY_HIDDEN UnaryDoubleFPOpt : public LibCallOptimization {
894 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
895 const FunctionType *FT = Callee->getFunctionType();
896 if (FT->getNumParams() != 1 || FT->getReturnType() != Type::DoubleTy ||
897 FT->getParamType(0) != Type::DoubleTy)
898 return 0;
899
900 // If this is something like 'floor((double)floatval)', convert to floorf.
901 FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1));
902 if (Cast == 0 || Cast->getOperand(0)->getType() != Type::FloatTy)
903 return 0;
904
905 // floor((double)floatval) -> (double)floorf(floatval)
906 Value *V = Cast->getOperand(0);
907 V = EmitUnaryFloatFnCall(V, Callee->getNameStart(), B);
908 return B.CreateFPExt(V, Type::DoubleTy);
909 }
910};
911
912//===----------------------------------------------------------------------===//
913// Integer Optimizations
914//===----------------------------------------------------------------------===//
915
916//===---------------------------------------===//
917// 'ffs*' Optimizations
918
919struct VISIBILITY_HIDDEN FFSOpt : public LibCallOptimization {
920 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
921 const FunctionType *FT = Callee->getFunctionType();
922 // Just make sure this has 2 arguments of the same FP type, which match the
923 // result type.
924 if (FT->getNumParams() != 1 || FT->getReturnType() != Type::Int32Ty ||
925 !isa<IntegerType>(FT->getParamType(0)))
926 return 0;
927
928 Value *Op = CI->getOperand(1);
929
930 // Constant fold.
931 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
932 if (CI->getValue() == 0) // ffs(0) -> 0.
933 return Constant::getNullValue(CI->getType());
934 return ConstantInt::get(Type::Int32Ty, // ffs(c) -> cttz(c)+1
935 CI->getValue().countTrailingZeros()+1);
936 }
937
938 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
939 const Type *ArgType = Op->getType();
940 Value *F = Intrinsic::getDeclaration(Callee->getParent(),
941 Intrinsic::cttz, &ArgType, 1);
942 Value *V = B.CreateCall(F, Op, "cttz");
943 V = B.CreateAdd(V, ConstantInt::get(Type::Int32Ty, 1), "tmp");
944 V = B.CreateIntCast(V, Type::Int32Ty, false, "tmp");
945
946 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
947 return B.CreateSelect(Cond, V, ConstantInt::get(Type::Int32Ty, 0));
948 }
949};
950
951//===---------------------------------------===//
952// 'isdigit' Optimizations
953
954struct VISIBILITY_HIDDEN IsDigitOpt : public LibCallOptimization {
955 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
956 const FunctionType *FT = Callee->getFunctionType();
957 // We require integer(i32)
958 if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
959 FT->getParamType(0) != Type::Int32Ty)
960 return 0;
961
962 // isdigit(c) -> (c-'0') <u 10
963 Value *Op = CI->getOperand(1);
964 Op = B.CreateSub(Op, ConstantInt::get(Type::Int32Ty, '0'), "isdigittmp");
965 Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 10), "isdigit");
966 return B.CreateZExt(Op, CI->getType());
967 }
968};
969
970//===---------------------------------------===//
971// 'isascii' Optimizations
972
973struct VISIBILITY_HIDDEN IsAsciiOpt : public LibCallOptimization {
974 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
975 const FunctionType *FT = Callee->getFunctionType();
976 // We require integer(i32)
977 if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
978 FT->getParamType(0) != Type::Int32Ty)
979 return 0;
980
981 // isascii(c) -> c <u 128
982 Value *Op = CI->getOperand(1);
983 Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 128), "isascii");
984 return B.CreateZExt(Op, CI->getType());
985 }
986};
987
988//===---------------------------------------===//
989// 'toascii' Optimizations
990
991struct VISIBILITY_HIDDEN ToAsciiOpt : public LibCallOptimization {
992 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
993 const FunctionType *FT = Callee->getFunctionType();
994 // We require i32(i32)
995 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
996 FT->getParamType(0) != Type::Int32Ty)
997 return 0;
998
999 // isascii(c) -> c & 0x7f
1000 return B.CreateAnd(CI->getOperand(1), ConstantInt::get(CI->getType(),0x7F));
1001 }
1002};
1003
1004//===----------------------------------------------------------------------===//
1005// Formatting and IO Optimizations
1006//===----------------------------------------------------------------------===//
1007
1008//===---------------------------------------===//
1009// 'printf' Optimizations
1010
1011struct VISIBILITY_HIDDEN PrintFOpt : public LibCallOptimization {
1012 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
1013 // Require one fixed pointer argument and an integer/void result.
1014 const FunctionType *FT = Callee->getFunctionType();
1015 if (FT->getNumParams() < 1 || !isa<PointerType>(FT->getParamType(0)) ||
1016 !(isa<IntegerType>(FT->getReturnType()) ||
1017 FT->getReturnType() == Type::VoidTy))
1018 return 0;
1019
1020 // Check for a fixed format string.
1021 std::string FormatStr;
1022 if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001023 return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001024
1025 // Empty format string -> noop.
1026 if (FormatStr.empty()) // Tolerate printf's declared void.
1027 return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 0);
1028
1029 // printf("x") -> putchar('x'), even for '%'.
1030 if (FormatStr.size() == 1) {
1031 EmitPutChar(ConstantInt::get(Type::Int32Ty, FormatStr[0]), B);
1032 return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 1);
1033 }
1034
1035 // printf("foo\n") --> puts("foo")
1036 if (FormatStr[FormatStr.size()-1] == '\n' &&
1037 FormatStr.find('%') == std::string::npos) { // no format characters.
1038 // Create a string literal with no \n on it. We expect the constant merge
1039 // pass to be run after this pass, to merge duplicate strings.
1040 FormatStr.erase(FormatStr.end()-1);
1041 Constant *C = ConstantArray::get(FormatStr, true);
1042 C = new GlobalVariable(C->getType(), true,GlobalVariable::InternalLinkage,
1043 C, "str", Callee->getParent());
1044 EmitPutS(C, B);
1045 return CI->use_empty() ? (Value*)CI :
1046 ConstantInt::get(CI->getType(), FormatStr.size()+1);
1047 }
1048
1049 // Optimize specific format strings.
1050 // printf("%c", chr) --> putchar(*(i8*)dst)
1051 if (FormatStr == "%c" && CI->getNumOperands() > 2 &&
1052 isa<IntegerType>(CI->getOperand(2)->getType())) {
1053 EmitPutChar(CI->getOperand(2), B);
1054 return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 1);
1055 }
1056
1057 // printf("%s\n", str) --> puts(str)
1058 if (FormatStr == "%s\n" && CI->getNumOperands() > 2 &&
1059 isa<PointerType>(CI->getOperand(2)->getType()) &&
1060 CI->use_empty()) {
1061 EmitPutS(CI->getOperand(2), B);
1062 return CI;
1063 }
1064 return 0;
1065 }
1066};
1067
1068//===---------------------------------------===//
1069// 'sprintf' Optimizations
1070
1071struct VISIBILITY_HIDDEN SPrintFOpt : public LibCallOptimization {
1072 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
1073 // Require two fixed pointer arguments and an integer result.
1074 const FunctionType *FT = Callee->getFunctionType();
1075 if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
1076 !isa<PointerType>(FT->getParamType(1)) ||
1077 !isa<IntegerType>(FT->getReturnType()))
1078 return 0;
1079
1080 // Check for a fixed format string.
1081 std::string FormatStr;
1082 if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001083 return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001084
1085 // If we just have a format string (nothing else crazy) transform it.
1086 if (CI->getNumOperands() == 3) {
1087 // Make sure there's no % in the constant array. We could try to handle
1088 // %% -> % in the future if we cared.
1089 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1090 if (FormatStr[i] == '%')
1091 return 0; // we found a format specifier, bail out.
1092
1093 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1094 EmitMemCpy(CI->getOperand(1), CI->getOperand(2), // Copy the nul byte.
1095 ConstantInt::get(TD->getIntPtrType(), FormatStr.size()+1),1,B);
1096 return ConstantInt::get(CI->getType(), FormatStr.size());
1097 }
1098
1099 // The remaining optimizations require the format string to be "%s" or "%c"
1100 // and have an extra operand.
1101 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
1102 return 0;
1103
1104 // Decode the second character of the format string.
1105 if (FormatStr[1] == 'c') {
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001106 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001107 if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
1108 Value *V = B.CreateTrunc(CI->getOperand(3), Type::Int8Ty, "char");
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001109 Value *Ptr = CastToCStr(CI->getOperand(1), B);
1110 B.CreateStore(V, Ptr);
1111 Ptr = B.CreateGEP(Ptr, ConstantInt::get(Type::Int32Ty, 1), "nul");
1112 B.CreateStore(Constant::getNullValue(Type::Int8Ty), Ptr);
1113
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001114 return ConstantInt::get(CI->getType(), 1);
1115 }
1116
1117 if (FormatStr[1] == 's') {
1118 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1119 if (!isa<PointerType>(CI->getOperand(3)->getType())) return 0;
1120
1121 Value *Len = EmitStrLen(CI->getOperand(3), B);
1122 Value *IncLen = B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1),
1123 "leninc");
1124 EmitMemCpy(CI->getOperand(1), CI->getOperand(3), IncLen, 1, B);
1125
1126 // The sprintf result is the unincremented number of bytes in the string.
1127 return B.CreateIntCast(Len, CI->getType(), false);
1128 }
1129 return 0;
1130 }
1131};
1132
1133//===---------------------------------------===//
1134// 'fwrite' Optimizations
1135
1136struct VISIBILITY_HIDDEN FWriteOpt : public LibCallOptimization {
1137 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
1138 // Require a pointer, an integer, an integer, a pointer, returning integer.
1139 const FunctionType *FT = Callee->getFunctionType();
1140 if (FT->getNumParams() != 4 || !isa<PointerType>(FT->getParamType(0)) ||
1141 !isa<IntegerType>(FT->getParamType(1)) ||
1142 !isa<IntegerType>(FT->getParamType(2)) ||
1143 !isa<PointerType>(FT->getParamType(3)) ||
1144 !isa<IntegerType>(FT->getReturnType()))
1145 return 0;
1146
1147 // Get the element size and count.
1148 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getOperand(2));
1149 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getOperand(3));
1150 if (!SizeC || !CountC) return 0;
1151 uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
1152
1153 // If this is writing zero records, remove the call (it's a noop).
1154 if (Bytes == 0)
1155 return ConstantInt::get(CI->getType(), 0);
1156
1157 // If this is writing one byte, turn it into fputc.
1158 if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1159 Value *Char = B.CreateLoad(CastToCStr(CI->getOperand(1), B), "char");
1160 EmitFPutC(Char, CI->getOperand(4), B);
1161 return ConstantInt::get(CI->getType(), 1);
1162 }
1163
1164 return 0;
1165 }
1166};
1167
1168//===---------------------------------------===//
1169// 'fputs' Optimizations
1170
1171struct VISIBILITY_HIDDEN FPutsOpt : public LibCallOptimization {
1172 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
1173 // Require two pointers. Also, we can't optimize if return value is used.
1174 const FunctionType *FT = Callee->getFunctionType();
1175 if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
1176 !isa<PointerType>(FT->getParamType(1)) ||
1177 !CI->use_empty())
1178 return 0;
1179
1180 // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1181 uint64_t Len = GetStringLength(CI->getOperand(1));
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001182 if (!Len) return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001183 EmitFWrite(CI->getOperand(1), ConstantInt::get(TD->getIntPtrType(), Len-1),
1184 CI->getOperand(2), B);
1185 return CI; // Known to have no uses (see above).
1186 }
1187};
1188
1189//===---------------------------------------===//
1190// 'fprintf' Optimizations
1191
1192struct VISIBILITY_HIDDEN FPrintFOpt : public LibCallOptimization {
1193 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
1194 // Require two fixed paramters as pointers and integer result.
1195 const FunctionType *FT = Callee->getFunctionType();
1196 if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
1197 !isa<PointerType>(FT->getParamType(1)) ||
1198 !isa<IntegerType>(FT->getReturnType()))
1199 return 0;
1200
1201 // All the optimizations depend on the format string.
1202 std::string FormatStr;
1203 if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001204 return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001205
1206 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1207 if (CI->getNumOperands() == 3) {
1208 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1209 if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001210 return 0; // We found a format specifier.
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001211
1212 EmitFWrite(CI->getOperand(2), ConstantInt::get(TD->getIntPtrType(),
1213 FormatStr.size()),
1214 CI->getOperand(1), B);
1215 return ConstantInt::get(CI->getType(), FormatStr.size());
1216 }
1217
1218 // The remaining optimizations require the format string to be "%s" or "%c"
1219 // and have an extra operand.
1220 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
1221 return 0;
1222
1223 // Decode the second character of the format string.
1224 if (FormatStr[1] == 'c') {
1225 // fprintf(F, "%c", chr) --> *(i8*)dst = chr
1226 if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
1227 EmitFPutC(CI->getOperand(3), CI->getOperand(1), B);
1228 return ConstantInt::get(CI->getType(), 1);
1229 }
1230
1231 if (FormatStr[1] == 's') {
1232 // fprintf(F, "%s", str) -> fputs(str, F)
1233 if (!isa<PointerType>(CI->getOperand(3)->getType()) || !CI->use_empty())
1234 return 0;
1235 EmitFPutS(CI->getOperand(3), CI->getOperand(1), B);
1236 return CI;
1237 }
1238 return 0;
1239 }
1240};
1241
Bill Wendlingac178222008-05-05 21:37:59 +00001242} // end anonymous namespace.
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001243
1244//===----------------------------------------------------------------------===//
1245// SimplifyLibCalls Pass Implementation
1246//===----------------------------------------------------------------------===//
1247
1248namespace {
1249 /// This pass optimizes well known library functions from libc and libm.
1250 ///
1251 class VISIBILITY_HIDDEN SimplifyLibCalls : public FunctionPass {
1252 StringMap<LibCallOptimization*> Optimizations;
1253 // Miscellaneous LibCall Optimizations
1254 ExitOpt Exit;
1255 // String and Memory LibCall Optimizations
1256 StrCatOpt StrCat; StrChrOpt StrChr; StrCmpOpt StrCmp; StrNCmpOpt StrNCmp;
1257 StrCpyOpt StrCpy; StrLenOpt StrLen; MemCmpOpt MemCmp; MemCpyOpt MemCpy;
1258 // Math Library Optimizations
Chris Lattnere818f772008-05-02 18:43:35 +00001259 PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001260 // Integer Optimizations
1261 FFSOpt FFS; IsDigitOpt IsDigit; IsAsciiOpt IsAscii; ToAsciiOpt ToAscii;
1262 // Formatting and IO Optimizations
1263 SPrintFOpt SPrintF; PrintFOpt PrintF;
1264 FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
1265 public:
1266 static char ID; // Pass identification
1267 SimplifyLibCalls() : FunctionPass((intptr_t)&ID) {}
1268
1269 void InitOptimizations();
1270 bool runOnFunction(Function &F);
1271
1272 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1273 AU.addRequired<TargetData>();
1274 }
1275 };
1276 char SimplifyLibCalls::ID = 0;
1277} // end anonymous namespace.
1278
1279static RegisterPass<SimplifyLibCalls>
1280X("simplify-libcalls", "Simplify well-known library calls");
1281
1282// Public interface to the Simplify LibCalls pass.
1283FunctionPass *llvm::createSimplifyLibCallsPass() {
1284 return new SimplifyLibCalls();
1285}
1286
1287/// Optimizations - Populate the Optimizations map with all the optimizations
1288/// we know.
1289void SimplifyLibCalls::InitOptimizations() {
1290 // Miscellaneous LibCall Optimizations
1291 Optimizations["exit"] = &Exit;
1292
1293 // String and Memory LibCall Optimizations
1294 Optimizations["strcat"] = &StrCat;
1295 Optimizations["strchr"] = &StrChr;
1296 Optimizations["strcmp"] = &StrCmp;
1297 Optimizations["strncmp"] = &StrNCmp;
1298 Optimizations["strcpy"] = &StrCpy;
1299 Optimizations["strlen"] = &StrLen;
1300 Optimizations["memcmp"] = &MemCmp;
1301 Optimizations["memcpy"] = &MemCpy;
1302
1303 // Math Library Optimizations
1304 Optimizations["powf"] = &Pow;
1305 Optimizations["pow"] = &Pow;
1306 Optimizations["powl"] = &Pow;
Chris Lattnere818f772008-05-02 18:43:35 +00001307 Optimizations["exp2l"] = &Exp2;
1308 Optimizations["exp2"] = &Exp2;
1309 Optimizations["exp2f"] = &Exp2;
1310
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001311#ifdef HAVE_FLOORF
1312 Optimizations["floor"] = &UnaryDoubleFP;
1313#endif
1314#ifdef HAVE_CEILF
1315 Optimizations["ceil"] = &UnaryDoubleFP;
1316#endif
1317#ifdef HAVE_ROUNDF
1318 Optimizations["round"] = &UnaryDoubleFP;
1319#endif
1320#ifdef HAVE_RINTF
1321 Optimizations["rint"] = &UnaryDoubleFP;
1322#endif
1323#ifdef HAVE_NEARBYINTF
1324 Optimizations["nearbyint"] = &UnaryDoubleFP;
1325#endif
1326
1327 // Integer Optimizations
1328 Optimizations["ffs"] = &FFS;
1329 Optimizations["ffsl"] = &FFS;
1330 Optimizations["ffsll"] = &FFS;
1331 Optimizations["isdigit"] = &IsDigit;
1332 Optimizations["isascii"] = &IsAscii;
1333 Optimizations["toascii"] = &ToAscii;
1334
1335 // Formatting and IO Optimizations
1336 Optimizations["sprintf"] = &SPrintF;
1337 Optimizations["printf"] = &PrintF;
1338 Optimizations["fwrite"] = &FWrite;
1339 Optimizations["fputs"] = &FPuts;
1340 Optimizations["fprintf"] = &FPrintF;
1341}
1342
1343
1344/// runOnFunction - Top level algorithm.
1345///
1346bool SimplifyLibCalls::runOnFunction(Function &F) {
1347 if (Optimizations.empty())
1348 InitOptimizations();
1349
1350 const TargetData &TD = getAnalysis<TargetData>();
1351
1352 IRBuilder Builder;
1353
1354 bool Changed = false;
1355 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1356 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
1357 // Ignore non-calls.
1358 CallInst *CI = dyn_cast<CallInst>(I++);
1359 if (!CI) continue;
1360
1361 // Ignore indirect calls and calls to non-external functions.
1362 Function *Callee = CI->getCalledFunction();
1363 if (Callee == 0 || !Callee->isDeclaration() ||
1364 !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
1365 continue;
1366
1367 // Ignore unknown calls.
1368 const char *CalleeName = Callee->getNameStart();
1369 StringMap<LibCallOptimization*>::iterator OMI =
1370 Optimizations.find(CalleeName, CalleeName+Callee->getNameLen());
1371 if (OMI == Optimizations.end()) continue;
1372
1373 // Set the builder to the instruction after the call.
1374 Builder.SetInsertPoint(BB, I);
1375
1376 // Try to optimize this call.
1377 Value *Result = OMI->second->OptimizeCall(CI, TD, Builder);
1378 if (Result == 0) continue;
1379
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001380 DEBUG(DOUT << "SimplifyLibCalls simplified: " << *CI;
1381 DOUT << " into: " << *Result << "\n");
1382
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001383 // Something changed!
1384 Changed = true;
1385 ++NumSimplified;
1386
1387 // Inspect the instruction after the call (which was potentially just
1388 // added) next.
1389 I = CI; ++I;
1390
1391 if (CI != Result && !CI->use_empty()) {
1392 CI->replaceAllUsesWith(Result);
1393 if (!Result->hasName())
1394 Result->takeName(CI);
1395 }
1396 CI->eraseFromParent();
1397 }
1398 }
1399 return Changed;
1400}
1401
1402
1403// TODO:
1404// Additional cases that we need to add to this file:
1405//
1406// cbrt:
1407// * cbrt(expN(X)) -> expN(x/3)
1408// * cbrt(sqrt(x)) -> pow(x,1/6)
1409// * cbrt(sqrt(x)) -> pow(x,1/9)
1410//
1411// cos, cosf, cosl:
1412// * cos(-x) -> cos(x)
1413//
1414// exp, expf, expl:
1415// * exp(log(x)) -> x
1416//
1417// log, logf, logl:
1418// * log(exp(x)) -> x
1419// * log(x**y) -> y*log(x)
1420// * log(exp(y)) -> y*log(e)
1421// * log(exp2(y)) -> y*log(2)
1422// * log(exp10(y)) -> y*log(10)
1423// * log(sqrt(x)) -> 0.5*log(x)
1424// * log(pow(x,y)) -> y*log(x)
1425//
1426// lround, lroundf, lroundl:
1427// * lround(cnst) -> cnst'
1428//
1429// memcmp:
1430// * memcmp(x,y,l) -> cnst
1431// (if all arguments are constant and strlen(x) <= l and strlen(y) <= l)
1432//
1433// memmove:
1434// * memmove(d,s,l,a) -> memcpy(d,s,l,a)
1435// (if s is a global constant array)
1436//
1437// pow, powf, powl:
1438// * pow(exp(x),y) -> exp(x*y)
1439// * pow(sqrt(x),y) -> pow(x,y*0.5)
1440// * pow(pow(x,y),z)-> pow(x,y*z)
1441//
1442// puts:
1443// * puts("") -> putchar("\n")
1444//
1445// round, roundf, roundl:
1446// * round(cnst) -> cnst'
1447//
1448// signbit:
1449// * signbit(cnst) -> cnst'
1450// * signbit(nncst) -> 0 (if pstv is a non-negative constant)
1451//
1452// sqrt, sqrtf, sqrtl:
1453// * sqrt(expN(x)) -> expN(x*0.5)
1454// * sqrt(Nroot(x)) -> pow(x,1/(2*N))
1455// * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
1456//
1457// stpcpy:
1458// * stpcpy(str, "literal") ->
1459// llvm.memcpy(str,"literal",strlen("literal")+1,1)
1460// strrchr:
1461// * strrchr(s,c) -> reverse_offset_of_in(c,s)
1462// (if c is a constant integer and s is a constant string)
1463// * strrchr(s1,0) -> strchr(s1,0)
1464//
1465// strncat:
1466// * strncat(x,y,0) -> x
1467// * strncat(x,y,0) -> x (if strlen(y) = 0)
1468// * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y))
1469//
1470// strncpy:
1471// * strncpy(d,s,0) -> d
1472// * strncpy(d,s,l) -> memcpy(d,s,l,1)
1473// (if s and l are constants)
1474//
1475// strpbrk:
1476// * strpbrk(s,a) -> offset_in_for(s,a)
1477// (if s and a are both constant strings)
1478// * strpbrk(s,"") -> 0
1479// * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
1480//
1481// strspn, strcspn:
1482// * strspn(s,a) -> const_int (if both args are constant)
1483// * strspn("",a) -> 0
1484// * strspn(s,"") -> 0
1485// * strcspn(s,a) -> const_int (if both args are constant)
1486// * strcspn("",a) -> 0
1487// * strcspn(s,"") -> strlen(a)
1488//
1489// strstr:
1490// * strstr(x,x) -> x
1491// * strstr(s1,s2) -> offset_of_s2_in(s1)
1492// (if s1 and s2 are constant strings)
1493//
1494// tan, tanf, tanl:
1495// * tan(atan(x)) -> x
1496//
1497// trunc, truncf, truncl:
1498// * trunc(cnst) -> cnst'
1499//
1500//