blob: b4e683417cc370031427b97ad662c92cc0094286 [file] [log] [blame]
Nick Lewycky71502942009-07-03 19:28:36 +00001//===------------------- SSI.cpp - Creates SSI Representation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass converts a list of variables to the Static Single Information
11// form. This is a program representation described by Scott Ananian in his
12// Master Thesis: "The Static Single Information Form (1999)".
13// We are building an on-demand representation, that is, we do not convert
14// every single variable in the target function to SSI form. Rather, we receive
15// a list of target variables that must be converted. We also do not
16// completely convert a target variable to the SSI format. Instead, we only
17// change the variable in the points where new information can be attached
18// to its live range, that is, at branch points.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "ssi"
23
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Transforms/Utils/SSI.h"
Nick Lewycky6ca7f412009-07-09 15:33:14 +000026#include "llvm/ADT/Statistic.h"
Nick Lewycky71502942009-07-03 19:28:36 +000027#include "llvm/Analysis/Dominators.h"
28
29using namespace llvm;
30
31static const std::string SSI_PHI = "SSI_phi";
32static const std::string SSI_SIG = "SSI_sigma";
33
34static const unsigned UNSIGNED_INFINITE = ~0U;
35
Nick Lewycky6ca7f412009-07-09 15:33:14 +000036STATISTIC(NumSigmaInserted, "Number of sigma functions inserted");
37STATISTIC(NumPhiInserted, "Number of phi functions inserted");
38
Nick Lewycky71502942009-07-03 19:28:36 +000039void SSI::getAnalysisUsage(AnalysisUsage &AU) const {
40 AU.addRequired<DominanceFrontier>();
41 AU.addRequired<DominatorTree>();
Nick Lewycky071d84e2009-08-15 20:12:18 +000042 AU.setPreservesCFG();
Nick Lewycky71502942009-07-03 19:28:36 +000043}
44
45bool SSI::runOnFunction(Function &F) {
46 DT_ = &getAnalysis<DominatorTree>();
47 return false;
48}
49
50/// This methods creates the SSI representation for the list of values
51/// received. It will only create SSI representation if a value is used
52/// in a to decide a branch. Repeated values are created only once.
53///
54void SSI::createSSI(SmallVectorImpl<Instruction *> &value) {
55 init(value);
56
57 for (unsigned i = 0; i < num_values; ++i) {
58 if (created.insert(value[i])) {
59 needConstruction[i] = true;
60 }
61 }
62 insertSigmaFunctions(value);
63
64 // Test if there is a need to transform to SSI
65 if (needConstruction.any()) {
66 insertPhiFunctions(value);
67 renameInit(value);
68 rename(DT_->getRoot());
69 fixPhis();
70 }
71
72 clean();
73}
74
75/// Insert sigma functions (a sigma function is a phi function with one
76/// operator)
77///
78void SSI::insertSigmaFunctions(SmallVectorImpl<Instruction *> &value) {
79 for (unsigned i = 0; i < num_values; ++i) {
80 if (!needConstruction[i])
81 continue;
82
83 bool need = false;
84 for (Value::use_iterator begin = value[i]->use_begin(), end =
85 value[i]->use_end(); begin != end; ++begin) {
86 // Test if the Use of the Value is in a comparator
87 CmpInst *CI = dyn_cast<CmpInst>(begin);
88 if (CI && isUsedInTerminator(CI)) {
89 // Basic Block of the Instruction
90 BasicBlock *BB = CI->getParent();
91 // Last Instruction of the Basic Block
92 const TerminatorInst *TI = BB->getTerminator();
93
94 for (unsigned j = 0, e = TI->getNumSuccessors(); j < e; ++j) {
95 // Next Basic Block
96 BasicBlock *BB_next = TI->getSuccessor(j);
97 if (BB_next != BB &&
Nick Lewyckya10e89f2009-08-17 17:00:57 +000098 BB_next->getSinglePredecessor() != NULL &&
Nick Lewycky71502942009-07-03 19:28:36 +000099 dominateAny(BB_next, value[i])) {
100 PHINode *PN = PHINode::Create(
101 value[i]->getType(), SSI_SIG, BB_next->begin());
102 PN->addIncoming(value[i], BB);
103 sigmas.insert(std::make_pair(PN, i));
104 created.insert(PN);
105 need = true;
106 defsites[i].push_back(BB_next);
Nick Lewycky6ca7f412009-07-09 15:33:14 +0000107 ++NumSigmaInserted;
Nick Lewycky71502942009-07-03 19:28:36 +0000108 }
109 }
110 }
111 }
112 needConstruction[i] = need;
113 }
114}
115
116/// Insert phi functions when necessary
117///
118void SSI::insertPhiFunctions(SmallVectorImpl<Instruction *> &value) {
119 DominanceFrontier *DF = &getAnalysis<DominanceFrontier>();
120 for (unsigned i = 0; i < num_values; ++i) {
121 // Test if there were any sigmas for this variable
122 if (needConstruction[i]) {
123
Nick Lewycky071d84e2009-08-15 20:12:18 +0000124 SmallPtrSet<BasicBlock *, 16> BB_visited;
Nick Lewycky71502942009-07-03 19:28:36 +0000125
126 // Insert phi functions if there is any sigma function
127 while (!defsites[i].empty()) {
128
129 BasicBlock *BB = defsites[i].back();
130
131 defsites[i].pop_back();
132 DominanceFrontier::iterator DF_BB = DF->find(BB);
133
Nick Lewycky071d84e2009-08-15 20:12:18 +0000134 // The BB is unreachable. Skip it.
135 if (DF_BB == DF->end())
136 continue;
137
Nick Lewycky71502942009-07-03 19:28:36 +0000138 // Iterates through all the dominance frontier of BB
139 for (std::set<BasicBlock *>::iterator DF_BB_begin =
140 DF_BB->second.begin(), DF_BB_end = DF_BB->second.end();
141 DF_BB_begin != DF_BB_end; ++DF_BB_begin) {
142 BasicBlock *BB_dominated = *DF_BB_begin;
143
144 // Test if has not yet visited this node and if the
145 // original definition dominates this node
146 if (BB_visited.insert(BB_dominated) &&
147 DT_->properlyDominates(value_original[i], BB_dominated) &&
148 dominateAny(BB_dominated, value[i])) {
149 PHINode *PN = PHINode::Create(
150 value[i]->getType(), SSI_PHI, BB_dominated->begin());
151 phis.insert(std::make_pair(PN, i));
152 created.insert(PN);
153
154 defsites[i].push_back(BB_dominated);
Nick Lewycky6ca7f412009-07-09 15:33:14 +0000155 ++NumPhiInserted;
Nick Lewycky71502942009-07-03 19:28:36 +0000156 }
157 }
158 }
159 BB_visited.clear();
160 }
161 }
162}
163
164/// Some initialization for the rename part
165///
166void SSI::renameInit(SmallVectorImpl<Instruction *> &value) {
167 value_stack.resize(num_values);
168 for (unsigned i = 0; i < num_values; ++i) {
169 value_stack[i].push_back(value[i]);
170 }
171}
172
173/// Renames all variables in the specified BasicBlock.
174/// Only variables that need to be rename will be.
175///
176void SSI::rename(BasicBlock *BB) {
177 BitVector *defined = new BitVector(num_values, false);
178
179 // Iterate through instructions and make appropriate renaming.
180 // For SSI_PHI (b = PHI()), store b at value_stack as a new
181 // definition of the variable it represents.
182 // For SSI_SIG (b = PHI(a)), substitute a with the current
183 // value of a, present in the value_stack.
184 // Then store bin the value_stack as the new definition of a.
185 // For all other instructions (b = OP(a, c, d, ...)), we need to substitute
186 // all operands with its current value, present in value_stack.
187 for (BasicBlock::iterator begin = BB->begin(), end = BB->end();
188 begin != end; ++begin) {
189 Instruction *I = begin;
190 if (PHINode *PN = dyn_cast<PHINode>(I)) { // Treat PHI functions
191 int position;
192
193 // Treat SSI_PHI
194 if ((position = getPositionPhi(PN)) != -1) {
195 value_stack[position].push_back(PN);
196 (*defined)[position] = true;
197 }
198
199 // Treat SSI_SIG
200 else if ((position = getPositionSigma(PN)) != -1) {
201 substituteUse(I);
202 value_stack[position].push_back(PN);
203 (*defined)[position] = true;
204 }
205
206 // Treat all other PHI functions
207 else {
208 substituteUse(I);
209 }
210 }
211
212 // Treat all other functions
213 else {
214 substituteUse(I);
215 }
216 }
217
218 // This loop iterates in all BasicBlocks that are successors of the current
219 // BasicBlock. For each SSI_PHI instruction found, insert an operand.
220 // This operand is the current operand in value_stack for the variable
221 // in "position". And the BasicBlock this operand represents is the current
222 // BasicBlock.
223 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) {
224 BasicBlock *BB_succ = *SI;
225
226 for (BasicBlock::iterator begin = BB_succ->begin(),
227 notPhi = BB_succ->getFirstNonPHI(); begin != *notPhi; ++begin) {
228 Instruction *I = begin;
229 PHINode *PN;
230 int position;
231 if ((PN = dyn_cast<PHINode>(I)) && ((position
232 = getPositionPhi(PN)) != -1)) {
233 PN->addIncoming(value_stack[position].back(), BB);
234 }
235 }
236 }
237
238 // This loop calls rename on all children from this block. This time children
239 // refers to a successor block in the dominance tree.
240 DomTreeNode *DTN = DT_->getNode(BB);
241 for (DomTreeNode::iterator begin = DTN->begin(), end = DTN->end();
242 begin != end; ++begin) {
243 DomTreeNodeBase<BasicBlock> *DTN_children = *begin;
244 BasicBlock *BB_children = DTN_children->getBlock();
245 rename(BB_children);
246 }
247
248 // Now we remove all inserted definitions of a variable from the top of
249 // the stack leaving the previous one as the top.
250 if (defined->any()) {
251 for (unsigned i = 0; i < num_values; ++i) {
252 if ((*defined)[i]) {
253 value_stack[i].pop_back();
254 }
255 }
256 }
257}
258
259/// Substitute any use in this instruction for the last definition of
260/// the variable
261///
262void SSI::substituteUse(Instruction *I) {
263 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
264 Value *operand = I->getOperand(i);
265 for (unsigned j = 0; j < num_values; ++j) {
266 if (operand == value_stack[j].front() &&
267 I != value_stack[j].back()) {
268 PHINode *PN_I = dyn_cast<PHINode>(I);
269 PHINode *PN_vs = dyn_cast<PHINode>(value_stack[j].back());
270
271 // If a phi created in a BasicBlock is used as an operand of another
272 // created in the same BasicBlock, this step marks this second phi,
273 // to fix this issue later. It cannot be fixed now, because the
274 // operands of the first phi are not final yet.
275 if (PN_I && PN_vs &&
276 value_stack[j].back()->getParent() == I->getParent()) {
277
278 phisToFix.insert(PN_I);
279 }
280
281 I->setOperand(i, value_stack[j].back());
282 break;
283 }
284 }
285 }
286}
287
288/// Test if the BasicBlock BB dominates any use or definition of value.
Nick Lewycky89f43a52009-07-09 15:59:27 +0000289/// If it dominates a phi instruction that is on the same BasicBlock,
290/// that does not count.
Nick Lewycky71502942009-07-03 19:28:36 +0000291///
292bool SSI::dominateAny(BasicBlock *BB, Instruction *value) {
293 for (Value::use_iterator begin = value->use_begin(),
294 end = value->use_end(); begin != end; ++begin) {
295 Instruction *I = cast<Instruction>(*begin);
296 BasicBlock *BB_father = I->getParent();
Nick Lewycky89f43a52009-07-09 15:59:27 +0000297 if (BB == BB_father && isa<PHINode>(I))
298 continue;
Nick Lewycky71502942009-07-03 19:28:36 +0000299 if (DT_->dominates(BB, BB_father)) {
300 return true;
301 }
302 }
303 return false;
304}
305
306/// When there is a phi node that is created in a BasicBlock and it is used
307/// as an operand of another phi function used in the same BasicBlock,
308/// LLVM looks this as an error. So on the second phi, the first phi is called
309/// P and the BasicBlock it incomes is B. This P will be replaced by the value
310/// it has for BasicBlock B.
311///
312void SSI::fixPhis() {
313 for (SmallPtrSet<PHINode *, 1>::iterator begin = phisToFix.begin(),
314 end = phisToFix.end(); begin != end; ++begin) {
315 PHINode *PN = *begin;
316 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
317 PHINode *PN_father;
318 if ((PN_father = dyn_cast<PHINode>(PN->getIncomingValue(i))) &&
Nick Lewycky3417e8f2009-08-19 06:24:33 +0000319 PN->getParent() == PN_father->getParent() &&
320 !DT_->dominates(PN->getParent(), PN->getIncomingBlock(i))) {
Nick Lewycky71502942009-07-03 19:28:36 +0000321 BasicBlock *BB = PN->getIncomingBlock(i);
322 int pos = PN_father->getBasicBlockIndex(BB);
323 PN->setIncomingValue(i, PN_father->getIncomingValue(pos));
324 }
325 }
326 }
327}
328
329/// Return which variable (position on the vector of variables) this phi
330/// represents on the phis list.
331///
332unsigned SSI::getPositionPhi(PHINode *PN) {
333 DenseMap<PHINode *, unsigned>::iterator val = phis.find(PN);
334 if (val == phis.end())
335 return UNSIGNED_INFINITE;
336 else
337 return val->second;
338}
339
340/// Return which variable (position on the vector of variables) this phi
341/// represents on the sigmas list.
342///
343unsigned SSI::getPositionSigma(PHINode *PN) {
344 DenseMap<PHINode *, unsigned>::iterator val = sigmas.find(PN);
345 if (val == sigmas.end())
346 return UNSIGNED_INFINITE;
347 else
348 return val->second;
349}
350
351/// Return true if the the Comparison Instruction is an operator
352/// of the Terminator instruction of its Basic Block.
353///
354unsigned SSI::isUsedInTerminator(CmpInst *CI) {
355 TerminatorInst *TI = CI->getParent()->getTerminator();
356 if (TI->getNumOperands() == 0) {
357 return false;
358 } else if (CI == TI->getOperand(0)) {
359 return true;
360 } else {
361 return false;
362 }
363}
364
365/// Initializes
366///
367void SSI::init(SmallVectorImpl<Instruction *> &value) {
368 num_values = value.size();
369 needConstruction.resize(num_values, false);
370
371 value_original.resize(num_values);
372 defsites.resize(num_values);
373
374 for (unsigned i = 0; i < num_values; ++i) {
375 value_original[i] = value[i]->getParent();
376 defsites[i].push_back(value_original[i]);
377 }
378}
379
380/// Clean all used resources in this creation of SSI
381///
382void SSI::clean() {
383 for (unsigned i = 0; i < num_values; ++i) {
384 defsites[i].clear();
385 if (i < value_stack.size())
386 value_stack[i].clear();
387 }
388
389 phis.clear();
390 sigmas.clear();
391 phisToFix.clear();
392
393 defsites.clear();
394 value_stack.clear();
395 value_original.clear();
396 needConstruction.clear();
397}
398
399/// createSSIPass - The public interface to this file...
400///
401FunctionPass *llvm::createSSIPass() { return new SSI(); }
402
403char SSI::ID = 0;
404static RegisterPass<SSI> X("ssi", "Static Single Information Construction");
405
Nick Lewycky6ca7f412009-07-09 15:33:14 +0000406/// SSIEverything - A pass that runs createSSI on every non-void variable,
407/// intended for debugging.
408namespace {
409 struct VISIBILITY_HIDDEN SSIEverything : public FunctionPass {
410 static char ID; // Pass identification, replacement for typeid
Dan Gohman1b2d0b82009-08-11 15:15:10 +0000411 SSIEverything() : FunctionPass(&ID) {}
Nick Lewycky6ca7f412009-07-09 15:33:14 +0000412
413 bool runOnFunction(Function &F);
414
415 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
416 AU.addRequired<SSI>();
417 }
418 };
419}
420
421bool SSIEverything::runOnFunction(Function &F) {
422 SmallVector<Instruction *, 16> Insts;
423 SSI &ssi = getAnalysis<SSI>();
424
425 if (F.isDeclaration() || F.isIntrinsic()) return false;
426
427 for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B)
428 for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I)
Owen Anderson1d0be152009-08-13 21:58:54 +0000429 if (I->getType() != Type::getVoidTy(F.getContext()))
Nick Lewycky6ca7f412009-07-09 15:33:14 +0000430 Insts.push_back(I);
431
432 ssi.createSSI(Insts);
433 return true;
434}
435
436/// createSSIEverythingPass - The public interface to this file...
437///
438FunctionPass *llvm::createSSIEverythingPass() { return new SSIEverything(); }
439
440char SSIEverything::ID = 0;
441static RegisterPass<SSIEverything>
442Y("ssi-everything", "Static Single Information Construction");