Evan Cheng | 8c3fee5 | 2011-07-25 18:43:53 +0000 | [diff] [blame] | 1 | //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains small standalone helper functions and enum definitions for |
| 11 | // the X86 target useful for the compiler back-end and the MC libraries. |
| 12 | // As such, it deliberately does not include references to LLVM core |
| 13 | // code gen types, passes, etc.. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #ifndef X86BASEINFO_H |
| 18 | #define X86BASEINFO_H |
| 19 | |
| 20 | #include "X86MCTargetDesc.h" |
| 21 | #include "llvm/Support/DataTypes.h" |
| 22 | #include <cassert> |
| 23 | |
| 24 | namespace llvm { |
| 25 | |
| 26 | namespace X86 { |
| 27 | // Enums for memory operand decoding. Each memory operand is represented with |
| 28 | // a 5 operand sequence in the form: |
| 29 | // [BaseReg, ScaleAmt, IndexReg, Disp, Segment] |
| 30 | // These enums help decode this. |
| 31 | enum { |
| 32 | AddrBaseReg = 0, |
| 33 | AddrScaleAmt = 1, |
| 34 | AddrIndexReg = 2, |
| 35 | AddrDisp = 3, |
| 36 | |
| 37 | /// AddrSegmentReg - The operand # of the segment in the memory operand. |
| 38 | AddrSegmentReg = 4, |
| 39 | |
| 40 | /// AddrNumOperands - Total number of operands in a memory reference. |
| 41 | AddrNumOperands = 5 |
| 42 | }; |
| 43 | } // end namespace X86; |
| 44 | |
| 45 | |
| 46 | /// X86II - This namespace holds all of the target specific flags that |
| 47 | /// instruction info tracks. |
| 48 | /// |
| 49 | namespace X86II { |
| 50 | /// Target Operand Flag enum. |
| 51 | enum TOF { |
| 52 | //===------------------------------------------------------------------===// |
| 53 | // X86 Specific MachineOperand flags. |
| 54 | |
| 55 | MO_NO_FLAG, |
| 56 | |
| 57 | /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a |
| 58 | /// relocation of: |
| 59 | /// SYMBOL_LABEL + [. - PICBASELABEL] |
| 60 | MO_GOT_ABSOLUTE_ADDRESS, |
| 61 | |
| 62 | /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the |
| 63 | /// immediate should get the value of the symbol minus the PIC base label: |
| 64 | /// SYMBOL_LABEL - PICBASELABEL |
| 65 | MO_PIC_BASE_OFFSET, |
| 66 | |
| 67 | /// MO_GOT - On a symbol operand this indicates that the immediate is the |
| 68 | /// offset to the GOT entry for the symbol name from the base of the GOT. |
| 69 | /// |
| 70 | /// See the X86-64 ELF ABI supplement for more details. |
| 71 | /// SYMBOL_LABEL @GOT |
| 72 | MO_GOT, |
| 73 | |
| 74 | /// MO_GOTOFF - On a symbol operand this indicates that the immediate is |
| 75 | /// the offset to the location of the symbol name from the base of the GOT. |
| 76 | /// |
| 77 | /// See the X86-64 ELF ABI supplement for more details. |
| 78 | /// SYMBOL_LABEL @GOTOFF |
| 79 | MO_GOTOFF, |
| 80 | |
| 81 | /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is |
| 82 | /// offset to the GOT entry for the symbol name from the current code |
| 83 | /// location. |
| 84 | /// |
| 85 | /// See the X86-64 ELF ABI supplement for more details. |
| 86 | /// SYMBOL_LABEL @GOTPCREL |
| 87 | MO_GOTPCREL, |
| 88 | |
| 89 | /// MO_PLT - On a symbol operand this indicates that the immediate is |
| 90 | /// offset to the PLT entry of symbol name from the current code location. |
| 91 | /// |
| 92 | /// See the X86-64 ELF ABI supplement for more details. |
| 93 | /// SYMBOL_LABEL @PLT |
| 94 | MO_PLT, |
| 95 | |
| 96 | /// MO_TLSGD - On a symbol operand this indicates that the immediate is |
| 97 | /// some TLS offset. |
| 98 | /// |
| 99 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 100 | /// SYMBOL_LABEL @TLSGD |
| 101 | MO_TLSGD, |
| 102 | |
| 103 | /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is |
| 104 | /// some TLS offset. |
| 105 | /// |
| 106 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 107 | /// SYMBOL_LABEL @GOTTPOFF |
| 108 | MO_GOTTPOFF, |
| 109 | |
| 110 | /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is |
| 111 | /// some TLS offset. |
| 112 | /// |
| 113 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 114 | /// SYMBOL_LABEL @INDNTPOFF |
| 115 | MO_INDNTPOFF, |
| 116 | |
| 117 | /// MO_TPOFF - On a symbol operand this indicates that the immediate is |
| 118 | /// some TLS offset. |
| 119 | /// |
| 120 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 121 | /// SYMBOL_LABEL @TPOFF |
| 122 | MO_TPOFF, |
| 123 | |
| 124 | /// MO_NTPOFF - On a symbol operand this indicates that the immediate is |
| 125 | /// some TLS offset. |
| 126 | /// |
| 127 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 128 | /// SYMBOL_LABEL @NTPOFF |
| 129 | MO_NTPOFF, |
| 130 | |
| 131 | /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the |
| 132 | /// reference is actually to the "__imp_FOO" symbol. This is used for |
| 133 | /// dllimport linkage on windows. |
| 134 | MO_DLLIMPORT, |
| 135 | |
| 136 | /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the |
| 137 | /// reference is actually to the "FOO$stub" symbol. This is used for calls |
| 138 | /// and jumps to external functions on Tiger and earlier. |
| 139 | MO_DARWIN_STUB, |
| 140 | |
| 141 | /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the |
| 142 | /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a |
| 143 | /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. |
| 144 | MO_DARWIN_NONLAZY, |
| 145 | |
| 146 | /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates |
| 147 | /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is |
| 148 | /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. |
| 149 | MO_DARWIN_NONLAZY_PIC_BASE, |
| 150 | |
| 151 | /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this |
| 152 | /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE", |
| 153 | /// which is a PIC-base-relative reference to a hidden dyld lazy pointer |
| 154 | /// stub. |
| 155 | MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE, |
| 156 | |
| 157 | /// MO_TLVP - On a symbol operand this indicates that the immediate is |
| 158 | /// some TLS offset. |
| 159 | /// |
| 160 | /// This is the TLS offset for the Darwin TLS mechanism. |
| 161 | MO_TLVP, |
| 162 | |
| 163 | /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate |
| 164 | /// is some TLS offset from the picbase. |
| 165 | /// |
| 166 | /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. |
| 167 | MO_TLVP_PIC_BASE |
| 168 | }; |
| 169 | |
| 170 | enum { |
| 171 | //===------------------------------------------------------------------===// |
| 172 | // Instruction encodings. These are the standard/most common forms for X86 |
| 173 | // instructions. |
| 174 | // |
| 175 | |
| 176 | // PseudoFrm - This represents an instruction that is a pseudo instruction |
| 177 | // or one that has not been implemented yet. It is illegal to code generate |
| 178 | // it, but tolerated for intermediate implementation stages. |
| 179 | Pseudo = 0, |
| 180 | |
| 181 | /// Raw - This form is for instructions that don't have any operands, so |
| 182 | /// they are just a fixed opcode value, like 'leave'. |
| 183 | RawFrm = 1, |
| 184 | |
| 185 | /// AddRegFrm - This form is used for instructions like 'push r32' that have |
| 186 | /// their one register operand added to their opcode. |
| 187 | AddRegFrm = 2, |
| 188 | |
| 189 | /// MRMDestReg - This form is used for instructions that use the Mod/RM byte |
| 190 | /// to specify a destination, which in this case is a register. |
| 191 | /// |
| 192 | MRMDestReg = 3, |
| 193 | |
| 194 | /// MRMDestMem - This form is used for instructions that use the Mod/RM byte |
| 195 | /// to specify a destination, which in this case is memory. |
| 196 | /// |
| 197 | MRMDestMem = 4, |
| 198 | |
| 199 | /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte |
| 200 | /// to specify a source, which in this case is a register. |
| 201 | /// |
| 202 | MRMSrcReg = 5, |
| 203 | |
| 204 | /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte |
| 205 | /// to specify a source, which in this case is memory. |
| 206 | /// |
| 207 | MRMSrcMem = 6, |
| 208 | |
| 209 | /// MRM[0-7][rm] - These forms are used to represent instructions that use |
| 210 | /// a Mod/RM byte, and use the middle field to hold extended opcode |
| 211 | /// information. In the intel manual these are represented as /0, /1, ... |
| 212 | /// |
| 213 | |
| 214 | // First, instructions that operate on a register r/m operand... |
| 215 | MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3 |
| 216 | MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7 |
| 217 | |
| 218 | // Next, instructions that operate on a memory r/m operand... |
| 219 | MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3 |
| 220 | MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7 |
| 221 | |
| 222 | // MRMInitReg - This form is used for instructions whose source and |
| 223 | // destinations are the same register. |
| 224 | MRMInitReg = 32, |
| 225 | |
| 226 | //// MRM_C1 - A mod/rm byte of exactly 0xC1. |
| 227 | MRM_C1 = 33, |
| 228 | MRM_C2 = 34, |
| 229 | MRM_C3 = 35, |
| 230 | MRM_C4 = 36, |
| 231 | MRM_C8 = 37, |
| 232 | MRM_C9 = 38, |
| 233 | MRM_E8 = 39, |
| 234 | MRM_F0 = 40, |
| 235 | MRM_F8 = 41, |
| 236 | MRM_F9 = 42, |
| 237 | MRM_D0 = 45, |
| 238 | MRM_D1 = 46, |
| 239 | |
| 240 | /// RawFrmImm8 - This is used for the ENTER instruction, which has two |
| 241 | /// immediates, the first of which is a 16-bit immediate (specified by |
| 242 | /// the imm encoding) and the second is a 8-bit fixed value. |
| 243 | RawFrmImm8 = 43, |
| 244 | |
| 245 | /// RawFrmImm16 - This is used for CALL FAR instructions, which have two |
| 246 | /// immediates, the first of which is a 16 or 32-bit immediate (specified by |
| 247 | /// the imm encoding) and the second is a 16-bit fixed value. In the AMD |
| 248 | /// manual, this operand is described as pntr16:32 and pntr16:16 |
| 249 | RawFrmImm16 = 44, |
| 250 | |
| 251 | FormMask = 63, |
| 252 | |
| 253 | //===------------------------------------------------------------------===// |
| 254 | // Actual flags... |
| 255 | |
| 256 | // OpSize - Set if this instruction requires an operand size prefix (0x66), |
| 257 | // which most often indicates that the instruction operates on 16 bit data |
| 258 | // instead of 32 bit data. |
| 259 | OpSize = 1 << 6, |
| 260 | |
| 261 | // AsSize - Set if this instruction requires an operand size prefix (0x67), |
| 262 | // which most often indicates that the instruction address 16 bit address |
| 263 | // instead of 32 bit address (or 32 bit address in 64 bit mode). |
| 264 | AdSize = 1 << 7, |
| 265 | |
| 266 | //===------------------------------------------------------------------===// |
| 267 | // Op0Mask - There are several prefix bytes that are used to form two byte |
| 268 | // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is |
| 269 | // used to obtain the setting of this field. If no bits in this field is |
| 270 | // set, there is no prefix byte for obtaining a multibyte opcode. |
| 271 | // |
| 272 | Op0Shift = 8, |
| 273 | Op0Mask = 0x1F << Op0Shift, |
| 274 | |
| 275 | // TB - TwoByte - Set if this instruction has a two byte opcode, which |
| 276 | // starts with a 0x0F byte before the real opcode. |
| 277 | TB = 1 << Op0Shift, |
| 278 | |
| 279 | // REP - The 0xF3 prefix byte indicating repetition of the following |
| 280 | // instruction. |
| 281 | REP = 2 << Op0Shift, |
| 282 | |
| 283 | // D8-DF - These escape opcodes are used by the floating point unit. These |
| 284 | // values must remain sequential. |
| 285 | D8 = 3 << Op0Shift, D9 = 4 << Op0Shift, |
| 286 | DA = 5 << Op0Shift, DB = 6 << Op0Shift, |
| 287 | DC = 7 << Op0Shift, DD = 8 << Op0Shift, |
| 288 | DE = 9 << Op0Shift, DF = 10 << Op0Shift, |
| 289 | |
| 290 | // XS, XD - These prefix codes are for single and double precision scalar |
| 291 | // floating point operations performed in the SSE registers. |
| 292 | XD = 11 << Op0Shift, XS = 12 << Op0Shift, |
| 293 | |
| 294 | // T8, TA, A6, A7 - Prefix after the 0x0F prefix. |
| 295 | T8 = 13 << Op0Shift, TA = 14 << Op0Shift, |
| 296 | A6 = 15 << Op0Shift, A7 = 16 << Op0Shift, |
| 297 | |
| 298 | // TF - Prefix before and after 0x0F |
| 299 | TF = 17 << Op0Shift, |
| 300 | |
| 301 | //===------------------------------------------------------------------===// |
| 302 | // REX_W - REX prefixes are instruction prefixes used in 64-bit mode. |
| 303 | // They are used to specify GPRs and SSE registers, 64-bit operand size, |
| 304 | // etc. We only cares about REX.W and REX.R bits and only the former is |
| 305 | // statically determined. |
| 306 | // |
| 307 | REXShift = Op0Shift + 5, |
| 308 | REX_W = 1 << REXShift, |
| 309 | |
| 310 | //===------------------------------------------------------------------===// |
| 311 | // This three-bit field describes the size of an immediate operand. Zero is |
| 312 | // unused so that we can tell if we forgot to set a value. |
| 313 | ImmShift = REXShift + 1, |
| 314 | ImmMask = 7 << ImmShift, |
| 315 | Imm8 = 1 << ImmShift, |
| 316 | Imm8PCRel = 2 << ImmShift, |
| 317 | Imm16 = 3 << ImmShift, |
| 318 | Imm16PCRel = 4 << ImmShift, |
| 319 | Imm32 = 5 << ImmShift, |
| 320 | Imm32PCRel = 6 << ImmShift, |
| 321 | Imm64 = 7 << ImmShift, |
| 322 | |
| 323 | //===------------------------------------------------------------------===// |
| 324 | // FP Instruction Classification... Zero is non-fp instruction. |
| 325 | |
| 326 | // FPTypeMask - Mask for all of the FP types... |
| 327 | FPTypeShift = ImmShift + 3, |
| 328 | FPTypeMask = 7 << FPTypeShift, |
| 329 | |
| 330 | // NotFP - The default, set for instructions that do not use FP registers. |
| 331 | NotFP = 0 << FPTypeShift, |
| 332 | |
| 333 | // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 |
| 334 | ZeroArgFP = 1 << FPTypeShift, |
| 335 | |
| 336 | // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst |
| 337 | OneArgFP = 2 << FPTypeShift, |
| 338 | |
| 339 | // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a |
| 340 | // result back to ST(0). For example, fcos, fsqrt, etc. |
| 341 | // |
| 342 | OneArgFPRW = 3 << FPTypeShift, |
| 343 | |
| 344 | // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an |
| 345 | // explicit argument, storing the result to either ST(0) or the implicit |
| 346 | // argument. For example: fadd, fsub, fmul, etc... |
| 347 | TwoArgFP = 4 << FPTypeShift, |
| 348 | |
| 349 | // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an |
| 350 | // explicit argument, but have no destination. Example: fucom, fucomi, ... |
| 351 | CompareFP = 5 << FPTypeShift, |
| 352 | |
| 353 | // CondMovFP - "2 operand" floating point conditional move instructions. |
| 354 | CondMovFP = 6 << FPTypeShift, |
| 355 | |
| 356 | // SpecialFP - Special instruction forms. Dispatch by opcode explicitly. |
| 357 | SpecialFP = 7 << FPTypeShift, |
| 358 | |
| 359 | // Lock prefix |
| 360 | LOCKShift = FPTypeShift + 3, |
| 361 | LOCK = 1 << LOCKShift, |
| 362 | |
| 363 | // Segment override prefixes. Currently we just need ability to address |
| 364 | // stuff in gs and fs segments. |
| 365 | SegOvrShift = LOCKShift + 1, |
| 366 | SegOvrMask = 3 << SegOvrShift, |
| 367 | FS = 1 << SegOvrShift, |
| 368 | GS = 2 << SegOvrShift, |
| 369 | |
| 370 | // Execution domain for SSE instructions in bits 23, 24. |
| 371 | // 0 in bits 23-24 means normal, non-SSE instruction. |
| 372 | SSEDomainShift = SegOvrShift + 2, |
| 373 | |
| 374 | OpcodeShift = SSEDomainShift + 2, |
| 375 | |
| 376 | //===------------------------------------------------------------------===// |
| 377 | /// VEX - The opcode prefix used by AVX instructions |
| 378 | VEXShift = OpcodeShift + 8, |
| 379 | VEX = 1U << 0, |
| 380 | |
| 381 | /// VEX_W - Has a opcode specific functionality, but is used in the same |
| 382 | /// way as REX_W is for regular SSE instructions. |
| 383 | VEX_W = 1U << 1, |
| 384 | |
| 385 | /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 |
| 386 | /// address instructions in SSE are represented as 3 address ones in AVX |
| 387 | /// and the additional register is encoded in VEX_VVVV prefix. |
| 388 | VEX_4V = 1U << 2, |
| 389 | |
| 390 | /// VEX_I8IMM - Specifies that the last register used in a AVX instruction, |
| 391 | /// must be encoded in the i8 immediate field. This usually happens in |
| 392 | /// instructions with 4 operands. |
| 393 | VEX_I8IMM = 1U << 3, |
| 394 | |
| 395 | /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current |
| 396 | /// instruction uses 256-bit wide registers. This is usually auto detected |
| 397 | /// if a VR256 register is used, but some AVX instructions also have this |
| 398 | /// field marked when using a f256 memory references. |
| 399 | VEX_L = 1U << 4, |
| 400 | |
| 401 | /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the |
| 402 | /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents |
| 403 | /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction |
| 404 | /// storing a classifier in the imm8 field. To simplify our implementation, |
| 405 | /// we handle this by storeing the classifier in the opcode field and using |
| 406 | /// this flag to indicate that the encoder should do the wacky 3DNow! thing. |
| 407 | Has3DNow0F0FOpcode = 1U << 5 |
| 408 | }; |
| 409 | |
| 410 | // getBaseOpcodeFor - This function returns the "base" X86 opcode for the |
| 411 | // specified machine instruction. |
| 412 | // |
| 413 | static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) { |
| 414 | return TSFlags >> X86II::OpcodeShift; |
| 415 | } |
| 416 | |
| 417 | static inline bool hasImm(uint64_t TSFlags) { |
| 418 | return (TSFlags & X86II::ImmMask) != 0; |
| 419 | } |
| 420 | |
| 421 | /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field |
| 422 | /// of the specified instruction. |
| 423 | static inline unsigned getSizeOfImm(uint64_t TSFlags) { |
| 424 | switch (TSFlags & X86II::ImmMask) { |
| 425 | default: assert(0 && "Unknown immediate size"); |
| 426 | case X86II::Imm8: |
| 427 | case X86II::Imm8PCRel: return 1; |
| 428 | case X86II::Imm16: |
| 429 | case X86II::Imm16PCRel: return 2; |
| 430 | case X86II::Imm32: |
| 431 | case X86II::Imm32PCRel: return 4; |
| 432 | case X86II::Imm64: return 8; |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | /// isImmPCRel - Return true if the immediate of the specified instruction's |
| 437 | /// TSFlags indicates that it is pc relative. |
| 438 | static inline unsigned isImmPCRel(uint64_t TSFlags) { |
| 439 | switch (TSFlags & X86II::ImmMask) { |
| 440 | default: assert(0 && "Unknown immediate size"); |
| 441 | case X86II::Imm8PCRel: |
| 442 | case X86II::Imm16PCRel: |
| 443 | case X86II::Imm32PCRel: |
| 444 | return true; |
| 445 | case X86II::Imm8: |
| 446 | case X86II::Imm16: |
| 447 | case X86II::Imm32: |
| 448 | case X86II::Imm64: |
| 449 | return false; |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | /// getMemoryOperandNo - The function returns the MCInst operand # for the |
| 454 | /// first field of the memory operand. If the instruction doesn't have a |
| 455 | /// memory operand, this returns -1. |
| 456 | /// |
| 457 | /// Note that this ignores tied operands. If there is a tied register which |
| 458 | /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only |
| 459 | /// counted as one operand. |
| 460 | /// |
| 461 | static inline int getMemoryOperandNo(uint64_t TSFlags) { |
| 462 | switch (TSFlags & X86II::FormMask) { |
| 463 | case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form"); |
| 464 | default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!"); |
| 465 | case X86II::Pseudo: |
| 466 | case X86II::RawFrm: |
| 467 | case X86II::AddRegFrm: |
| 468 | case X86II::MRMDestReg: |
| 469 | case X86II::MRMSrcReg: |
| 470 | case X86II::RawFrmImm8: |
| 471 | case X86II::RawFrmImm16: |
| 472 | return -1; |
| 473 | case X86II::MRMDestMem: |
| 474 | return 0; |
| 475 | case X86II::MRMSrcMem: { |
| 476 | bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; |
| 477 | unsigned FirstMemOp = 1; |
| 478 | if (HasVEX_4V) |
| 479 | ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV). |
| 480 | |
| 481 | // FIXME: Maybe lea should have its own form? This is a horrible hack. |
| 482 | //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || |
| 483 | // Opcode == X86::LEA16r || Opcode == X86::LEA32r) |
| 484 | return FirstMemOp; |
| 485 | } |
| 486 | case X86II::MRM0r: case X86II::MRM1r: |
| 487 | case X86II::MRM2r: case X86II::MRM3r: |
| 488 | case X86II::MRM4r: case X86II::MRM5r: |
| 489 | case X86II::MRM6r: case X86II::MRM7r: |
| 490 | return -1; |
| 491 | case X86II::MRM0m: case X86II::MRM1m: |
| 492 | case X86II::MRM2m: case X86II::MRM3m: |
| 493 | case X86II::MRM4m: case X86II::MRM5m: |
| 494 | case X86II::MRM6m: case X86II::MRM7m: |
| 495 | return 0; |
| 496 | case X86II::MRM_C1: |
| 497 | case X86II::MRM_C2: |
| 498 | case X86II::MRM_C3: |
| 499 | case X86II::MRM_C4: |
| 500 | case X86II::MRM_C8: |
| 501 | case X86II::MRM_C9: |
| 502 | case X86II::MRM_E8: |
| 503 | case X86II::MRM_F0: |
| 504 | case X86II::MRM_F8: |
| 505 | case X86II::MRM_F9: |
| 506 | case X86II::MRM_D0: |
| 507 | case X86II::MRM_D1: |
| 508 | return -1; |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or |
| 513 | /// higher) register? e.g. r8, xmm8, xmm13, etc. |
| 514 | static inline bool isX86_64ExtendedReg(unsigned RegNo) { |
| 515 | switch (RegNo) { |
| 516 | default: break; |
| 517 | case X86::R8: case X86::R9: case X86::R10: case X86::R11: |
| 518 | case X86::R12: case X86::R13: case X86::R14: case X86::R15: |
| 519 | case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D: |
| 520 | case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D: |
| 521 | case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W: |
| 522 | case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W: |
| 523 | case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B: |
| 524 | case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B: |
| 525 | case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11: |
| 526 | case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: |
| 527 | case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11: |
| 528 | case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15: |
| 529 | case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11: |
| 530 | case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15: |
| 531 | return true; |
| 532 | } |
| 533 | return false; |
| 534 | } |
| 535 | |
| 536 | static inline bool isX86_64NonExtLowByteReg(unsigned reg) { |
| 537 | return (reg == X86::SPL || reg == X86::BPL || |
| 538 | reg == X86::SIL || reg == X86::DIL); |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | } // end namespace llvm; |
| 543 | |
| 544 | #endif |