blob: 8b2d026fbde676be33368b1c3b38f67bc672fa25 [file] [log] [blame]
Evan Cheng8c3fee52011-07-25 18:43:53 +00001//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains small standalone helper functions and enum definitions for
11// the X86 target useful for the compiler back-end and the MC libraries.
12// As such, it deliberately does not include references to LLVM core
13// code gen types, passes, etc..
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef X86BASEINFO_H
18#define X86BASEINFO_H
19
20#include "X86MCTargetDesc.h"
21#include "llvm/Support/DataTypes.h"
22#include <cassert>
23
24namespace llvm {
25
26namespace X86 {
27 // Enums for memory operand decoding. Each memory operand is represented with
28 // a 5 operand sequence in the form:
29 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30 // These enums help decode this.
31 enum {
32 AddrBaseReg = 0,
33 AddrScaleAmt = 1,
34 AddrIndexReg = 2,
35 AddrDisp = 3,
36
37 /// AddrSegmentReg - The operand # of the segment in the memory operand.
38 AddrSegmentReg = 4,
39
40 /// AddrNumOperands - Total number of operands in a memory reference.
41 AddrNumOperands = 5
42 };
43} // end namespace X86;
44
45
46/// X86II - This namespace holds all of the target specific flags that
47/// instruction info tracks.
48///
49namespace X86II {
50 /// Target Operand Flag enum.
51 enum TOF {
52 //===------------------------------------------------------------------===//
53 // X86 Specific MachineOperand flags.
54
55 MO_NO_FLAG,
56
57 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
58 /// relocation of:
59 /// SYMBOL_LABEL + [. - PICBASELABEL]
60 MO_GOT_ABSOLUTE_ADDRESS,
61
62 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
63 /// immediate should get the value of the symbol minus the PIC base label:
64 /// SYMBOL_LABEL - PICBASELABEL
65 MO_PIC_BASE_OFFSET,
66
67 /// MO_GOT - On a symbol operand this indicates that the immediate is the
68 /// offset to the GOT entry for the symbol name from the base of the GOT.
69 ///
70 /// See the X86-64 ELF ABI supplement for more details.
71 /// SYMBOL_LABEL @GOT
72 MO_GOT,
73
74 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
75 /// the offset to the location of the symbol name from the base of the GOT.
76 ///
77 /// See the X86-64 ELF ABI supplement for more details.
78 /// SYMBOL_LABEL @GOTOFF
79 MO_GOTOFF,
80
81 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
82 /// offset to the GOT entry for the symbol name from the current code
83 /// location.
84 ///
85 /// See the X86-64 ELF ABI supplement for more details.
86 /// SYMBOL_LABEL @GOTPCREL
87 MO_GOTPCREL,
88
89 /// MO_PLT - On a symbol operand this indicates that the immediate is
90 /// offset to the PLT entry of symbol name from the current code location.
91 ///
92 /// See the X86-64 ELF ABI supplement for more details.
93 /// SYMBOL_LABEL @PLT
94 MO_PLT,
95
96 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
97 /// some TLS offset.
98 ///
99 /// See 'ELF Handling for Thread-Local Storage' for more details.
100 /// SYMBOL_LABEL @TLSGD
101 MO_TLSGD,
102
103 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
104 /// some TLS offset.
105 ///
106 /// See 'ELF Handling for Thread-Local Storage' for more details.
107 /// SYMBOL_LABEL @GOTTPOFF
108 MO_GOTTPOFF,
109
110 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
111 /// some TLS offset.
112 ///
113 /// See 'ELF Handling for Thread-Local Storage' for more details.
114 /// SYMBOL_LABEL @INDNTPOFF
115 MO_INDNTPOFF,
116
117 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
118 /// some TLS offset.
119 ///
120 /// See 'ELF Handling for Thread-Local Storage' for more details.
121 /// SYMBOL_LABEL @TPOFF
122 MO_TPOFF,
123
124 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
125 /// some TLS offset.
126 ///
127 /// See 'ELF Handling for Thread-Local Storage' for more details.
128 /// SYMBOL_LABEL @NTPOFF
129 MO_NTPOFF,
130
131 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
132 /// reference is actually to the "__imp_FOO" symbol. This is used for
133 /// dllimport linkage on windows.
134 MO_DLLIMPORT,
135
136 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
137 /// reference is actually to the "FOO$stub" symbol. This is used for calls
138 /// and jumps to external functions on Tiger and earlier.
139 MO_DARWIN_STUB,
140
141 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
142 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
143 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
144 MO_DARWIN_NONLAZY,
145
146 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
147 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
148 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
149 MO_DARWIN_NONLAZY_PIC_BASE,
150
151 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
152 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
153 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
154 /// stub.
155 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
156
157 /// MO_TLVP - On a symbol operand this indicates that the immediate is
158 /// some TLS offset.
159 ///
160 /// This is the TLS offset for the Darwin TLS mechanism.
161 MO_TLVP,
162
163 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
164 /// is some TLS offset from the picbase.
165 ///
166 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
167 MO_TLVP_PIC_BASE
168 };
169
170 enum {
171 //===------------------------------------------------------------------===//
172 // Instruction encodings. These are the standard/most common forms for X86
173 // instructions.
174 //
175
176 // PseudoFrm - This represents an instruction that is a pseudo instruction
177 // or one that has not been implemented yet. It is illegal to code generate
178 // it, but tolerated for intermediate implementation stages.
179 Pseudo = 0,
180
181 /// Raw - This form is for instructions that don't have any operands, so
182 /// they are just a fixed opcode value, like 'leave'.
183 RawFrm = 1,
184
185 /// AddRegFrm - This form is used for instructions like 'push r32' that have
186 /// their one register operand added to their opcode.
187 AddRegFrm = 2,
188
189 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
190 /// to specify a destination, which in this case is a register.
191 ///
192 MRMDestReg = 3,
193
194 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
195 /// to specify a destination, which in this case is memory.
196 ///
197 MRMDestMem = 4,
198
199 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
200 /// to specify a source, which in this case is a register.
201 ///
202 MRMSrcReg = 5,
203
204 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
205 /// to specify a source, which in this case is memory.
206 ///
207 MRMSrcMem = 6,
208
209 /// MRM[0-7][rm] - These forms are used to represent instructions that use
210 /// a Mod/RM byte, and use the middle field to hold extended opcode
211 /// information. In the intel manual these are represented as /0, /1, ...
212 ///
213
214 // First, instructions that operate on a register r/m operand...
215 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
216 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
217
218 // Next, instructions that operate on a memory r/m operand...
219 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
220 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
221
222 // MRMInitReg - This form is used for instructions whose source and
223 // destinations are the same register.
224 MRMInitReg = 32,
225
226 //// MRM_C1 - A mod/rm byte of exactly 0xC1.
227 MRM_C1 = 33,
228 MRM_C2 = 34,
229 MRM_C3 = 35,
230 MRM_C4 = 36,
231 MRM_C8 = 37,
232 MRM_C9 = 38,
233 MRM_E8 = 39,
234 MRM_F0 = 40,
235 MRM_F8 = 41,
236 MRM_F9 = 42,
237 MRM_D0 = 45,
238 MRM_D1 = 46,
239
240 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
241 /// immediates, the first of which is a 16-bit immediate (specified by
242 /// the imm encoding) and the second is a 8-bit fixed value.
243 RawFrmImm8 = 43,
244
245 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
246 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
247 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
248 /// manual, this operand is described as pntr16:32 and pntr16:16
249 RawFrmImm16 = 44,
250
251 FormMask = 63,
252
253 //===------------------------------------------------------------------===//
254 // Actual flags...
255
256 // OpSize - Set if this instruction requires an operand size prefix (0x66),
257 // which most often indicates that the instruction operates on 16 bit data
258 // instead of 32 bit data.
259 OpSize = 1 << 6,
260
261 // AsSize - Set if this instruction requires an operand size prefix (0x67),
262 // which most often indicates that the instruction address 16 bit address
263 // instead of 32 bit address (or 32 bit address in 64 bit mode).
264 AdSize = 1 << 7,
265
266 //===------------------------------------------------------------------===//
267 // Op0Mask - There are several prefix bytes that are used to form two byte
268 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
269 // used to obtain the setting of this field. If no bits in this field is
270 // set, there is no prefix byte for obtaining a multibyte opcode.
271 //
272 Op0Shift = 8,
273 Op0Mask = 0x1F << Op0Shift,
274
275 // TB - TwoByte - Set if this instruction has a two byte opcode, which
276 // starts with a 0x0F byte before the real opcode.
277 TB = 1 << Op0Shift,
278
279 // REP - The 0xF3 prefix byte indicating repetition of the following
280 // instruction.
281 REP = 2 << Op0Shift,
282
283 // D8-DF - These escape opcodes are used by the floating point unit. These
284 // values must remain sequential.
285 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
286 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
287 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
288 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
289
290 // XS, XD - These prefix codes are for single and double precision scalar
291 // floating point operations performed in the SSE registers.
292 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
293
294 // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
295 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
296 A6 = 15 << Op0Shift, A7 = 16 << Op0Shift,
297
298 // TF - Prefix before and after 0x0F
299 TF = 17 << Op0Shift,
300
301 //===------------------------------------------------------------------===//
302 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
303 // They are used to specify GPRs and SSE registers, 64-bit operand size,
304 // etc. We only cares about REX.W and REX.R bits and only the former is
305 // statically determined.
306 //
307 REXShift = Op0Shift + 5,
308 REX_W = 1 << REXShift,
309
310 //===------------------------------------------------------------------===//
311 // This three-bit field describes the size of an immediate operand. Zero is
312 // unused so that we can tell if we forgot to set a value.
313 ImmShift = REXShift + 1,
314 ImmMask = 7 << ImmShift,
315 Imm8 = 1 << ImmShift,
316 Imm8PCRel = 2 << ImmShift,
317 Imm16 = 3 << ImmShift,
318 Imm16PCRel = 4 << ImmShift,
319 Imm32 = 5 << ImmShift,
320 Imm32PCRel = 6 << ImmShift,
321 Imm64 = 7 << ImmShift,
322
323 //===------------------------------------------------------------------===//
324 // FP Instruction Classification... Zero is non-fp instruction.
325
326 // FPTypeMask - Mask for all of the FP types...
327 FPTypeShift = ImmShift + 3,
328 FPTypeMask = 7 << FPTypeShift,
329
330 // NotFP - The default, set for instructions that do not use FP registers.
331 NotFP = 0 << FPTypeShift,
332
333 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
334 ZeroArgFP = 1 << FPTypeShift,
335
336 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
337 OneArgFP = 2 << FPTypeShift,
338
339 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
340 // result back to ST(0). For example, fcos, fsqrt, etc.
341 //
342 OneArgFPRW = 3 << FPTypeShift,
343
344 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
345 // explicit argument, storing the result to either ST(0) or the implicit
346 // argument. For example: fadd, fsub, fmul, etc...
347 TwoArgFP = 4 << FPTypeShift,
348
349 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
350 // explicit argument, but have no destination. Example: fucom, fucomi, ...
351 CompareFP = 5 << FPTypeShift,
352
353 // CondMovFP - "2 operand" floating point conditional move instructions.
354 CondMovFP = 6 << FPTypeShift,
355
356 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
357 SpecialFP = 7 << FPTypeShift,
358
359 // Lock prefix
360 LOCKShift = FPTypeShift + 3,
361 LOCK = 1 << LOCKShift,
362
363 // Segment override prefixes. Currently we just need ability to address
364 // stuff in gs and fs segments.
365 SegOvrShift = LOCKShift + 1,
366 SegOvrMask = 3 << SegOvrShift,
367 FS = 1 << SegOvrShift,
368 GS = 2 << SegOvrShift,
369
370 // Execution domain for SSE instructions in bits 23, 24.
371 // 0 in bits 23-24 means normal, non-SSE instruction.
372 SSEDomainShift = SegOvrShift + 2,
373
374 OpcodeShift = SSEDomainShift + 2,
375
376 //===------------------------------------------------------------------===//
377 /// VEX - The opcode prefix used by AVX instructions
378 VEXShift = OpcodeShift + 8,
379 VEX = 1U << 0,
380
381 /// VEX_W - Has a opcode specific functionality, but is used in the same
382 /// way as REX_W is for regular SSE instructions.
383 VEX_W = 1U << 1,
384
385 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
386 /// address instructions in SSE are represented as 3 address ones in AVX
387 /// and the additional register is encoded in VEX_VVVV prefix.
388 VEX_4V = 1U << 2,
389
390 /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
391 /// must be encoded in the i8 immediate field. This usually happens in
392 /// instructions with 4 operands.
393 VEX_I8IMM = 1U << 3,
394
395 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
396 /// instruction uses 256-bit wide registers. This is usually auto detected
397 /// if a VR256 register is used, but some AVX instructions also have this
398 /// field marked when using a f256 memory references.
399 VEX_L = 1U << 4,
400
401 /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
402 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
403 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
404 /// storing a classifier in the imm8 field. To simplify our implementation,
405 /// we handle this by storeing the classifier in the opcode field and using
406 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
407 Has3DNow0F0FOpcode = 1U << 5
408 };
409
410 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
411 // specified machine instruction.
412 //
413 static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
414 return TSFlags >> X86II::OpcodeShift;
415 }
416
417 static inline bool hasImm(uint64_t TSFlags) {
418 return (TSFlags & X86II::ImmMask) != 0;
419 }
420
421 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
422 /// of the specified instruction.
423 static inline unsigned getSizeOfImm(uint64_t TSFlags) {
424 switch (TSFlags & X86II::ImmMask) {
425 default: assert(0 && "Unknown immediate size");
426 case X86II::Imm8:
427 case X86II::Imm8PCRel: return 1;
428 case X86II::Imm16:
429 case X86II::Imm16PCRel: return 2;
430 case X86II::Imm32:
431 case X86II::Imm32PCRel: return 4;
432 case X86II::Imm64: return 8;
433 }
434 }
435
436 /// isImmPCRel - Return true if the immediate of the specified instruction's
437 /// TSFlags indicates that it is pc relative.
438 static inline unsigned isImmPCRel(uint64_t TSFlags) {
439 switch (TSFlags & X86II::ImmMask) {
440 default: assert(0 && "Unknown immediate size");
441 case X86II::Imm8PCRel:
442 case X86II::Imm16PCRel:
443 case X86II::Imm32PCRel:
444 return true;
445 case X86II::Imm8:
446 case X86II::Imm16:
447 case X86II::Imm32:
448 case X86II::Imm64:
449 return false;
450 }
451 }
452
453 /// getMemoryOperandNo - The function returns the MCInst operand # for the
454 /// first field of the memory operand. If the instruction doesn't have a
455 /// memory operand, this returns -1.
456 ///
457 /// Note that this ignores tied operands. If there is a tied register which
458 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
459 /// counted as one operand.
460 ///
461 static inline int getMemoryOperandNo(uint64_t TSFlags) {
462 switch (TSFlags & X86II::FormMask) {
463 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form");
464 default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
465 case X86II::Pseudo:
466 case X86II::RawFrm:
467 case X86II::AddRegFrm:
468 case X86II::MRMDestReg:
469 case X86II::MRMSrcReg:
470 case X86II::RawFrmImm8:
471 case X86II::RawFrmImm16:
472 return -1;
473 case X86II::MRMDestMem:
474 return 0;
475 case X86II::MRMSrcMem: {
476 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
477 unsigned FirstMemOp = 1;
478 if (HasVEX_4V)
479 ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
480
481 // FIXME: Maybe lea should have its own form? This is a horrible hack.
482 //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
483 // Opcode == X86::LEA16r || Opcode == X86::LEA32r)
484 return FirstMemOp;
485 }
486 case X86II::MRM0r: case X86II::MRM1r:
487 case X86II::MRM2r: case X86II::MRM3r:
488 case X86II::MRM4r: case X86II::MRM5r:
489 case X86II::MRM6r: case X86II::MRM7r:
490 return -1;
491 case X86II::MRM0m: case X86II::MRM1m:
492 case X86II::MRM2m: case X86II::MRM3m:
493 case X86II::MRM4m: case X86II::MRM5m:
494 case X86II::MRM6m: case X86II::MRM7m:
495 return 0;
496 case X86II::MRM_C1:
497 case X86II::MRM_C2:
498 case X86II::MRM_C3:
499 case X86II::MRM_C4:
500 case X86II::MRM_C8:
501 case X86II::MRM_C9:
502 case X86II::MRM_E8:
503 case X86II::MRM_F0:
504 case X86II::MRM_F8:
505 case X86II::MRM_F9:
506 case X86II::MRM_D0:
507 case X86II::MRM_D1:
508 return -1;
509 }
510 }
511
512 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
513 /// higher) register? e.g. r8, xmm8, xmm13, etc.
514 static inline bool isX86_64ExtendedReg(unsigned RegNo) {
515 switch (RegNo) {
516 default: break;
517 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
518 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
519 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
520 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
521 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
522 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
523 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
524 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
525 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
526 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
527 case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11:
528 case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
529 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
530 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
531 return true;
532 }
533 return false;
534 }
535
536 static inline bool isX86_64NonExtLowByteReg(unsigned reg) {
537 return (reg == X86::SPL || reg == X86::BPL ||
538 reg == X86::SIL || reg == X86::DIL);
539 }
540}
541
542} // end namespace llvm;
543
544#endif