Chris Lattner | 753a2b4 | 2010-01-05 07:32:13 +0000 | [diff] [blame] | 1 | //===- InstCombineCalls.cpp -----------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the visitCall and visitInvoke functions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "InstCombine.h" |
| 15 | #include "llvm/IntrinsicInst.h" |
| 16 | #include "llvm/Support/CallSite.h" |
| 17 | #include "llvm/Target/TargetData.h" |
| 18 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 19 | using namespace llvm; |
| 20 | |
| 21 | /// getPromotedType - Return the specified type promoted as it would be to pass |
| 22 | /// though a va_arg area. |
| 23 | static const Type *getPromotedType(const Type *Ty) { |
| 24 | if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { |
| 25 | if (ITy->getBitWidth() < 32) |
| 26 | return Type::getInt32Ty(Ty->getContext()); |
| 27 | } |
| 28 | return Ty; |
| 29 | } |
| 30 | |
| 31 | /// EnforceKnownAlignment - If the specified pointer points to an object that |
| 32 | /// we control, modify the object's alignment to PrefAlign. This isn't |
| 33 | /// often possible though. If alignment is important, a more reliable approach |
| 34 | /// is to simply align all global variables and allocation instructions to |
| 35 | /// their preferred alignment from the beginning. |
| 36 | /// |
| 37 | static unsigned EnforceKnownAlignment(Value *V, |
| 38 | unsigned Align, unsigned PrefAlign) { |
| 39 | |
| 40 | User *U = dyn_cast<User>(V); |
| 41 | if (!U) return Align; |
| 42 | |
| 43 | switch (Operator::getOpcode(U)) { |
| 44 | default: break; |
| 45 | case Instruction::BitCast: |
| 46 | return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); |
| 47 | case Instruction::GetElementPtr: { |
| 48 | // If all indexes are zero, it is just the alignment of the base pointer. |
| 49 | bool AllZeroOperands = true; |
| 50 | for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i) |
| 51 | if (!isa<Constant>(*i) || |
| 52 | !cast<Constant>(*i)->isNullValue()) { |
| 53 | AllZeroOperands = false; |
| 54 | break; |
| 55 | } |
| 56 | |
| 57 | if (AllZeroOperands) { |
| 58 | // Treat this like a bitcast. |
| 59 | return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); |
| 60 | } |
| 61 | break; |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| 66 | // If there is a large requested alignment and we can, bump up the alignment |
| 67 | // of the global. |
| 68 | if (!GV->isDeclaration()) { |
| 69 | if (GV->getAlignment() >= PrefAlign) |
| 70 | Align = GV->getAlignment(); |
| 71 | else { |
| 72 | GV->setAlignment(PrefAlign); |
| 73 | Align = PrefAlign; |
| 74 | } |
| 75 | } |
| 76 | } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| 77 | // If there is a requested alignment and if this is an alloca, round up. |
| 78 | if (AI->getAlignment() >= PrefAlign) |
| 79 | Align = AI->getAlignment(); |
| 80 | else { |
| 81 | AI->setAlignment(PrefAlign); |
| 82 | Align = PrefAlign; |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | return Align; |
| 87 | } |
| 88 | |
| 89 | /// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that |
| 90 | /// we can determine, return it, otherwise return 0. If PrefAlign is specified, |
| 91 | /// and it is more than the alignment of the ultimate object, see if we can |
| 92 | /// increase the alignment of the ultimate object, making this check succeed. |
| 93 | unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V, |
| 94 | unsigned PrefAlign) { |
| 95 | unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) : |
| 96 | sizeof(PrefAlign) * CHAR_BIT; |
| 97 | APInt Mask = APInt::getAllOnesValue(BitWidth); |
| 98 | APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); |
| 99 | ComputeMaskedBits(V, Mask, KnownZero, KnownOne); |
| 100 | unsigned TrailZ = KnownZero.countTrailingOnes(); |
| 101 | unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); |
| 102 | |
| 103 | if (PrefAlign > Align) |
| 104 | Align = EnforceKnownAlignment(V, Align, PrefAlign); |
| 105 | |
| 106 | // We don't need to make any adjustment. |
| 107 | return Align; |
| 108 | } |
| 109 | |
| 110 | Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) { |
| 111 | unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1)); |
| 112 | unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2)); |
| 113 | unsigned MinAlign = std::min(DstAlign, SrcAlign); |
| 114 | unsigned CopyAlign = MI->getAlignment(); |
| 115 | |
| 116 | if (CopyAlign < MinAlign) { |
| 117 | MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), |
| 118 | MinAlign, false)); |
| 119 | return MI; |
| 120 | } |
| 121 | |
| 122 | // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with |
| 123 | // load/store. |
| 124 | ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3)); |
| 125 | if (MemOpLength == 0) return 0; |
| 126 | |
| 127 | // Source and destination pointer types are always "i8*" for intrinsic. See |
| 128 | // if the size is something we can handle with a single primitive load/store. |
| 129 | // A single load+store correctly handles overlapping memory in the memmove |
| 130 | // case. |
| 131 | unsigned Size = MemOpLength->getZExtValue(); |
| 132 | if (Size == 0) return MI; // Delete this mem transfer. |
| 133 | |
| 134 | if (Size > 8 || (Size&(Size-1))) |
| 135 | return 0; // If not 1/2/4/8 bytes, exit. |
| 136 | |
| 137 | // Use an integer load+store unless we can find something better. |
| 138 | Type *NewPtrTy = |
| 139 | PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3)); |
| 140 | |
| 141 | // Memcpy forces the use of i8* for the source and destination. That means |
| 142 | // that if you're using memcpy to move one double around, you'll get a cast |
| 143 | // from double* to i8*. We'd much rather use a double load+store rather than |
| 144 | // an i64 load+store, here because this improves the odds that the source or |
| 145 | // dest address will be promotable. See if we can find a better type than the |
| 146 | // integer datatype. |
| 147 | Value *StrippedDest = MI->getOperand(1)->stripPointerCasts(); |
| 148 | if (StrippedDest != MI->getOperand(1)) { |
| 149 | const Type *SrcETy = cast<PointerType>(StrippedDest->getType()) |
| 150 | ->getElementType(); |
| 151 | if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) { |
| 152 | // The SrcETy might be something like {{{double}}} or [1 x double]. Rip |
| 153 | // down through these levels if so. |
| 154 | while (!SrcETy->isSingleValueType()) { |
| 155 | if (const StructType *STy = dyn_cast<StructType>(SrcETy)) { |
| 156 | if (STy->getNumElements() == 1) |
| 157 | SrcETy = STy->getElementType(0); |
| 158 | else |
| 159 | break; |
| 160 | } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) { |
| 161 | if (ATy->getNumElements() == 1) |
| 162 | SrcETy = ATy->getElementType(); |
| 163 | else |
| 164 | break; |
| 165 | } else |
| 166 | break; |
| 167 | } |
| 168 | |
| 169 | if (SrcETy->isSingleValueType()) |
| 170 | NewPtrTy = PointerType::getUnqual(SrcETy); |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | |
| 175 | // If the memcpy/memmove provides better alignment info than we can |
| 176 | // infer, use it. |
| 177 | SrcAlign = std::max(SrcAlign, CopyAlign); |
| 178 | DstAlign = std::max(DstAlign, CopyAlign); |
| 179 | |
| 180 | Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy); |
| 181 | Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy); |
| 182 | Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign); |
| 183 | InsertNewInstBefore(L, *MI); |
| 184 | InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI); |
| 185 | |
| 186 | // Set the size of the copy to 0, it will be deleted on the next iteration. |
| 187 | MI->setOperand(3, Constant::getNullValue(MemOpLength->getType())); |
| 188 | return MI; |
| 189 | } |
| 190 | |
| 191 | Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) { |
| 192 | unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest()); |
| 193 | if (MI->getAlignment() < Alignment) { |
| 194 | MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), |
| 195 | Alignment, false)); |
| 196 | return MI; |
| 197 | } |
| 198 | |
| 199 | // Extract the length and alignment and fill if they are constant. |
| 200 | ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); |
| 201 | ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); |
Benjamin Kramer | 8c65f6e | 2010-01-05 21:05:54 +0000 | [diff] [blame] | 202 | if (!LenC || !FillC || !FillC->getType()->isInteger(8)) |
Chris Lattner | 753a2b4 | 2010-01-05 07:32:13 +0000 | [diff] [blame] | 203 | return 0; |
| 204 | uint64_t Len = LenC->getZExtValue(); |
| 205 | Alignment = MI->getAlignment(); |
| 206 | |
| 207 | // If the length is zero, this is a no-op |
| 208 | if (Len == 0) return MI; // memset(d,c,0,a) -> noop |
| 209 | |
| 210 | // memset(s,c,n) -> store s, c (for n=1,2,4,8) |
| 211 | if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { |
| 212 | const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. |
| 213 | |
| 214 | Value *Dest = MI->getDest(); |
| 215 | Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy)); |
| 216 | |
| 217 | // Alignment 0 is identity for alignment 1 for memset, but not store. |
| 218 | if (Alignment == 0) Alignment = 1; |
| 219 | |
| 220 | // Extract the fill value and store. |
| 221 | uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; |
| 222 | InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), |
| 223 | Dest, false, Alignment), *MI); |
| 224 | |
| 225 | // Set the size of the copy to 0, it will be deleted on the next iteration. |
| 226 | MI->setLength(Constant::getNullValue(LenC->getType())); |
| 227 | return MI; |
| 228 | } |
| 229 | |
| 230 | return 0; |
| 231 | } |
| 232 | |
| 233 | |
| 234 | /// visitCallInst - CallInst simplification. This mostly only handles folding |
| 235 | /// of intrinsic instructions. For normal calls, it allows visitCallSite to do |
| 236 | /// the heavy lifting. |
| 237 | /// |
| 238 | Instruction *InstCombiner::visitCallInst(CallInst &CI) { |
| 239 | if (isFreeCall(&CI)) |
| 240 | return visitFree(CI); |
| 241 | |
| 242 | // If the caller function is nounwind, mark the call as nounwind, even if the |
| 243 | // callee isn't. |
| 244 | if (CI.getParent()->getParent()->doesNotThrow() && |
| 245 | !CI.doesNotThrow()) { |
| 246 | CI.setDoesNotThrow(); |
| 247 | return &CI; |
| 248 | } |
| 249 | |
| 250 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); |
| 251 | if (!II) return visitCallSite(&CI); |
| 252 | |
| 253 | // Intrinsics cannot occur in an invoke, so handle them here instead of in |
| 254 | // visitCallSite. |
| 255 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) { |
| 256 | bool Changed = false; |
| 257 | |
| 258 | // memmove/cpy/set of zero bytes is a noop. |
| 259 | if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { |
| 260 | if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); |
| 261 | |
| 262 | if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) |
| 263 | if (CI->getZExtValue() == 1) { |
| 264 | // Replace the instruction with just byte operations. We would |
| 265 | // transform other cases to loads/stores, but we don't know if |
| 266 | // alignment is sufficient. |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | // If we have a memmove and the source operation is a constant global, |
| 271 | // then the source and dest pointers can't alias, so we can change this |
| 272 | // into a call to memcpy. |
| 273 | if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) { |
| 274 | if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) |
| 275 | if (GVSrc->isConstant()) { |
| 276 | Module *M = CI.getParent()->getParent()->getParent(); |
| 277 | Intrinsic::ID MemCpyID = Intrinsic::memcpy; |
| 278 | const Type *Tys[1]; |
| 279 | Tys[0] = CI.getOperand(3)->getType(); |
| 280 | CI.setOperand(0, |
| 281 | Intrinsic::getDeclaration(M, MemCpyID, Tys, 1)); |
| 282 | Changed = true; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { |
| 287 | // memmove(x,x,size) -> noop. |
| 288 | if (MTI->getSource() == MTI->getDest()) |
| 289 | return EraseInstFromFunction(CI); |
| 290 | } |
| 291 | |
| 292 | // If we can determine a pointer alignment that is bigger than currently |
| 293 | // set, update the alignment. |
| 294 | if (isa<MemTransferInst>(MI)) { |
| 295 | if (Instruction *I = SimplifyMemTransfer(MI)) |
| 296 | return I; |
| 297 | } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) { |
| 298 | if (Instruction *I = SimplifyMemSet(MSI)) |
| 299 | return I; |
| 300 | } |
| 301 | |
| 302 | if (Changed) return II; |
| 303 | } |
| 304 | |
| 305 | switch (II->getIntrinsicID()) { |
| 306 | default: break; |
| 307 | case Intrinsic::bswap: |
| 308 | // bswap(bswap(x)) -> x |
| 309 | if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1))) |
| 310 | if (Operand->getIntrinsicID() == Intrinsic::bswap) |
| 311 | return ReplaceInstUsesWith(CI, Operand->getOperand(1)); |
| 312 | |
| 313 | // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) |
| 314 | if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) { |
| 315 | if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0))) |
| 316 | if (Operand->getIntrinsicID() == Intrinsic::bswap) { |
| 317 | unsigned C = Operand->getType()->getPrimitiveSizeInBits() - |
| 318 | TI->getType()->getPrimitiveSizeInBits(); |
| 319 | Value *CV = ConstantInt::get(Operand->getType(), C); |
| 320 | Value *V = Builder->CreateLShr(Operand->getOperand(1), CV); |
| 321 | return new TruncInst(V, TI->getType()); |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | break; |
| 326 | case Intrinsic::powi: |
| 327 | if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) { |
| 328 | // powi(x, 0) -> 1.0 |
| 329 | if (Power->isZero()) |
| 330 | return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0)); |
| 331 | // powi(x, 1) -> x |
| 332 | if (Power->isOne()) |
| 333 | return ReplaceInstUsesWith(CI, II->getOperand(1)); |
| 334 | // powi(x, -1) -> 1/x |
| 335 | if (Power->isAllOnesValue()) |
| 336 | return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), |
| 337 | II->getOperand(1)); |
| 338 | } |
| 339 | break; |
| 340 | case Intrinsic::cttz: { |
| 341 | // If all bits below the first known one are known zero, |
| 342 | // this value is constant. |
| 343 | const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType()); |
| 344 | uint32_t BitWidth = IT->getBitWidth(); |
| 345 | APInt KnownZero(BitWidth, 0); |
| 346 | APInt KnownOne(BitWidth, 0); |
| 347 | ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth), |
| 348 | KnownZero, KnownOne); |
| 349 | unsigned TrailingZeros = KnownOne.countTrailingZeros(); |
| 350 | APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros)); |
| 351 | if ((Mask & KnownZero) == Mask) |
| 352 | return ReplaceInstUsesWith(CI, ConstantInt::get(IT, |
| 353 | APInt(BitWidth, TrailingZeros))); |
| 354 | |
| 355 | } |
| 356 | break; |
| 357 | case Intrinsic::ctlz: { |
| 358 | // If all bits above the first known one are known zero, |
| 359 | // this value is constant. |
| 360 | const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType()); |
| 361 | uint32_t BitWidth = IT->getBitWidth(); |
| 362 | APInt KnownZero(BitWidth, 0); |
| 363 | APInt KnownOne(BitWidth, 0); |
| 364 | ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth), |
| 365 | KnownZero, KnownOne); |
| 366 | unsigned LeadingZeros = KnownOne.countLeadingZeros(); |
| 367 | APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros)); |
| 368 | if ((Mask & KnownZero) == Mask) |
| 369 | return ReplaceInstUsesWith(CI, ConstantInt::get(IT, |
| 370 | APInt(BitWidth, LeadingZeros))); |
| 371 | |
| 372 | } |
| 373 | break; |
| 374 | case Intrinsic::uadd_with_overflow: { |
| 375 | Value *LHS = II->getOperand(1), *RHS = II->getOperand(2); |
| 376 | const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType()); |
| 377 | uint32_t BitWidth = IT->getBitWidth(); |
| 378 | APInt Mask = APInt::getSignBit(BitWidth); |
| 379 | APInt LHSKnownZero(BitWidth, 0); |
| 380 | APInt LHSKnownOne(BitWidth, 0); |
| 381 | ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); |
| 382 | bool LHSKnownNegative = LHSKnownOne[BitWidth - 1]; |
| 383 | bool LHSKnownPositive = LHSKnownZero[BitWidth - 1]; |
| 384 | |
| 385 | if (LHSKnownNegative || LHSKnownPositive) { |
| 386 | APInt RHSKnownZero(BitWidth, 0); |
| 387 | APInt RHSKnownOne(BitWidth, 0); |
| 388 | ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); |
| 389 | bool RHSKnownNegative = RHSKnownOne[BitWidth - 1]; |
| 390 | bool RHSKnownPositive = RHSKnownZero[BitWidth - 1]; |
| 391 | if (LHSKnownNegative && RHSKnownNegative) { |
| 392 | // The sign bit is set in both cases: this MUST overflow. |
| 393 | // Create a simple add instruction, and insert it into the struct. |
| 394 | Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI); |
| 395 | Worklist.Add(Add); |
| 396 | Constant *V[] = { |
| 397 | UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext()) |
| 398 | }; |
| 399 | Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); |
| 400 | return InsertValueInst::Create(Struct, Add, 0); |
| 401 | } |
| 402 | |
| 403 | if (LHSKnownPositive && RHSKnownPositive) { |
| 404 | // The sign bit is clear in both cases: this CANNOT overflow. |
| 405 | // Create a simple add instruction, and insert it into the struct. |
| 406 | Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI); |
| 407 | Worklist.Add(Add); |
| 408 | Constant *V[] = { |
| 409 | UndefValue::get(LHS->getType()), |
| 410 | ConstantInt::getFalse(II->getContext()) |
| 411 | }; |
| 412 | Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); |
| 413 | return InsertValueInst::Create(Struct, Add, 0); |
| 414 | } |
| 415 | } |
| 416 | } |
| 417 | // FALL THROUGH uadd into sadd |
| 418 | case Intrinsic::sadd_with_overflow: |
| 419 | // Canonicalize constants into the RHS. |
| 420 | if (isa<Constant>(II->getOperand(1)) && |
| 421 | !isa<Constant>(II->getOperand(2))) { |
| 422 | Value *LHS = II->getOperand(1); |
| 423 | II->setOperand(1, II->getOperand(2)); |
| 424 | II->setOperand(2, LHS); |
| 425 | return II; |
| 426 | } |
| 427 | |
| 428 | // X + undef -> undef |
| 429 | if (isa<UndefValue>(II->getOperand(2))) |
| 430 | return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); |
| 431 | |
| 432 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) { |
| 433 | // X + 0 -> {X, false} |
| 434 | if (RHS->isZero()) { |
| 435 | Constant *V[] = { |
| 436 | UndefValue::get(II->getOperand(0)->getType()), |
| 437 | ConstantInt::getFalse(II->getContext()) |
| 438 | }; |
| 439 | Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); |
| 440 | return InsertValueInst::Create(Struct, II->getOperand(1), 0); |
| 441 | } |
| 442 | } |
| 443 | break; |
| 444 | case Intrinsic::usub_with_overflow: |
| 445 | case Intrinsic::ssub_with_overflow: |
| 446 | // undef - X -> undef |
| 447 | // X - undef -> undef |
| 448 | if (isa<UndefValue>(II->getOperand(1)) || |
| 449 | isa<UndefValue>(II->getOperand(2))) |
| 450 | return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); |
| 451 | |
| 452 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) { |
| 453 | // X - 0 -> {X, false} |
| 454 | if (RHS->isZero()) { |
| 455 | Constant *V[] = { |
| 456 | UndefValue::get(II->getOperand(1)->getType()), |
| 457 | ConstantInt::getFalse(II->getContext()) |
| 458 | }; |
| 459 | Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); |
| 460 | return InsertValueInst::Create(Struct, II->getOperand(1), 0); |
| 461 | } |
| 462 | } |
| 463 | break; |
| 464 | case Intrinsic::umul_with_overflow: |
| 465 | case Intrinsic::smul_with_overflow: |
| 466 | // Canonicalize constants into the RHS. |
| 467 | if (isa<Constant>(II->getOperand(1)) && |
| 468 | !isa<Constant>(II->getOperand(2))) { |
| 469 | Value *LHS = II->getOperand(1); |
| 470 | II->setOperand(1, II->getOperand(2)); |
| 471 | II->setOperand(2, LHS); |
| 472 | return II; |
| 473 | } |
| 474 | |
| 475 | // X * undef -> undef |
| 476 | if (isa<UndefValue>(II->getOperand(2))) |
| 477 | return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); |
| 478 | |
| 479 | if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) { |
| 480 | // X*0 -> {0, false} |
| 481 | if (RHSI->isZero()) |
| 482 | return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType())); |
| 483 | |
| 484 | // X * 1 -> {X, false} |
| 485 | if (RHSI->equalsInt(1)) { |
| 486 | Constant *V[] = { |
| 487 | UndefValue::get(II->getOperand(1)->getType()), |
| 488 | ConstantInt::getFalse(II->getContext()) |
| 489 | }; |
| 490 | Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); |
| 491 | return InsertValueInst::Create(Struct, II->getOperand(1), 0); |
| 492 | } |
| 493 | } |
| 494 | break; |
| 495 | case Intrinsic::ppc_altivec_lvx: |
| 496 | case Intrinsic::ppc_altivec_lvxl: |
| 497 | case Intrinsic::x86_sse_loadu_ps: |
| 498 | case Intrinsic::x86_sse2_loadu_pd: |
| 499 | case Intrinsic::x86_sse2_loadu_dq: |
| 500 | // Turn PPC lvx -> load if the pointer is known aligned. |
| 501 | // Turn X86 loadups -> load if the pointer is known aligned. |
| 502 | if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { |
| 503 | Value *Ptr = Builder->CreateBitCast(II->getOperand(1), |
| 504 | PointerType::getUnqual(II->getType())); |
| 505 | return new LoadInst(Ptr); |
| 506 | } |
| 507 | break; |
| 508 | case Intrinsic::ppc_altivec_stvx: |
| 509 | case Intrinsic::ppc_altivec_stvxl: |
| 510 | // Turn stvx -> store if the pointer is known aligned. |
| 511 | if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) { |
| 512 | const Type *OpPtrTy = |
| 513 | PointerType::getUnqual(II->getOperand(1)->getType()); |
| 514 | Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy); |
| 515 | return new StoreInst(II->getOperand(1), Ptr); |
| 516 | } |
| 517 | break; |
| 518 | case Intrinsic::x86_sse_storeu_ps: |
| 519 | case Intrinsic::x86_sse2_storeu_pd: |
| 520 | case Intrinsic::x86_sse2_storeu_dq: |
| 521 | // Turn X86 storeu -> store if the pointer is known aligned. |
| 522 | if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { |
| 523 | const Type *OpPtrTy = |
| 524 | PointerType::getUnqual(II->getOperand(2)->getType()); |
| 525 | Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy); |
| 526 | return new StoreInst(II->getOperand(2), Ptr); |
| 527 | } |
| 528 | break; |
| 529 | |
| 530 | case Intrinsic::x86_sse_cvttss2si: { |
| 531 | // These intrinsics only demands the 0th element of its input vector. If |
| 532 | // we can simplify the input based on that, do so now. |
| 533 | unsigned VWidth = |
| 534 | cast<VectorType>(II->getOperand(1)->getType())->getNumElements(); |
| 535 | APInt DemandedElts(VWidth, 1); |
| 536 | APInt UndefElts(VWidth, 0); |
| 537 | if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, |
| 538 | UndefElts)) { |
| 539 | II->setOperand(1, V); |
| 540 | return II; |
| 541 | } |
| 542 | break; |
| 543 | } |
| 544 | |
| 545 | case Intrinsic::ppc_altivec_vperm: |
| 546 | // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. |
| 547 | if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) { |
| 548 | assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!"); |
| 549 | |
| 550 | // Check that all of the elements are integer constants or undefs. |
| 551 | bool AllEltsOk = true; |
| 552 | for (unsigned i = 0; i != 16; ++i) { |
| 553 | if (!isa<ConstantInt>(Mask->getOperand(i)) && |
| 554 | !isa<UndefValue>(Mask->getOperand(i))) { |
| 555 | AllEltsOk = false; |
| 556 | break; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | if (AllEltsOk) { |
| 561 | // Cast the input vectors to byte vectors. |
| 562 | Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType()); |
| 563 | Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType()); |
| 564 | Value *Result = UndefValue::get(Op0->getType()); |
| 565 | |
| 566 | // Only extract each element once. |
| 567 | Value *ExtractedElts[32]; |
| 568 | memset(ExtractedElts, 0, sizeof(ExtractedElts)); |
| 569 | |
| 570 | for (unsigned i = 0; i != 16; ++i) { |
| 571 | if (isa<UndefValue>(Mask->getOperand(i))) |
| 572 | continue; |
| 573 | unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue(); |
| 574 | Idx &= 31; // Match the hardware behavior. |
| 575 | |
| 576 | if (ExtractedElts[Idx] == 0) { |
| 577 | ExtractedElts[Idx] = |
| 578 | Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1, |
| 579 | ConstantInt::get(Type::getInt32Ty(II->getContext()), |
| 580 | Idx&15, false), "tmp"); |
| 581 | } |
| 582 | |
| 583 | // Insert this value into the result vector. |
| 584 | Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx], |
| 585 | ConstantInt::get(Type::getInt32Ty(II->getContext()), |
| 586 | i, false), "tmp"); |
| 587 | } |
| 588 | return CastInst::Create(Instruction::BitCast, Result, CI.getType()); |
| 589 | } |
| 590 | } |
| 591 | break; |
| 592 | |
| 593 | case Intrinsic::stackrestore: { |
| 594 | // If the save is right next to the restore, remove the restore. This can |
| 595 | // happen when variable allocas are DCE'd. |
| 596 | if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) { |
| 597 | if (SS->getIntrinsicID() == Intrinsic::stacksave) { |
| 598 | BasicBlock::iterator BI = SS; |
| 599 | if (&*++BI == II) |
| 600 | return EraseInstFromFunction(CI); |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | // Scan down this block to see if there is another stack restore in the |
| 605 | // same block without an intervening call/alloca. |
| 606 | BasicBlock::iterator BI = II; |
| 607 | TerminatorInst *TI = II->getParent()->getTerminator(); |
| 608 | bool CannotRemove = false; |
| 609 | for (++BI; &*BI != TI; ++BI) { |
| 610 | if (isa<AllocaInst>(BI) || isMalloc(BI)) { |
| 611 | CannotRemove = true; |
| 612 | break; |
| 613 | } |
| 614 | if (CallInst *BCI = dyn_cast<CallInst>(BI)) { |
| 615 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) { |
| 616 | // If there is a stackrestore below this one, remove this one. |
| 617 | if (II->getIntrinsicID() == Intrinsic::stackrestore) |
| 618 | return EraseInstFromFunction(CI); |
| 619 | // Otherwise, ignore the intrinsic. |
| 620 | } else { |
| 621 | // If we found a non-intrinsic call, we can't remove the stack |
| 622 | // restore. |
| 623 | CannotRemove = true; |
| 624 | break; |
| 625 | } |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | // If the stack restore is in a return/unwind block and if there are no |
| 630 | // allocas or calls between the restore and the return, nuke the restore. |
| 631 | if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI))) |
| 632 | return EraseInstFromFunction(CI); |
| 633 | break; |
| 634 | } |
Eric Christopher | 1300632 | 2010-01-06 20:04:44 +0000 | [diff] [blame] | 635 | case Intrinsic::objectsize: { |
Eric Christopher | 36664bf | 2010-01-29 21:16:24 +0000 | [diff] [blame^] | 636 | ConstantInt *Const = cast<ConstantInt>(II->getOperand(2)); |
| 637 | const Type *Ty = CI.getType(); |
Eric Christopher | 1300632 | 2010-01-06 20:04:44 +0000 | [diff] [blame] | 638 | |
Eric Christopher | 36664bf | 2010-01-29 21:16:24 +0000 | [diff] [blame^] | 639 | // 0 is maximum number of bytes left, 1 is minimum number of bytes left. |
| 640 | // TODO: actually add these values, the current return values are "don't |
| 641 | // know". |
| 642 | if (Const->getZExtValue() == 0) |
| 643 | return ReplaceInstUsesWith(CI, Constant::getAllOnesValue(Ty)); |
| 644 | else |
| 645 | return ReplaceInstUsesWith(CI, ConstantInt::get(Ty, 0)); |
Eric Christopher | 1300632 | 2010-01-06 20:04:44 +0000 | [diff] [blame] | 646 | } |
Chris Lattner | 753a2b4 | 2010-01-05 07:32:13 +0000 | [diff] [blame] | 647 | } |
| 648 | |
| 649 | return visitCallSite(II); |
| 650 | } |
| 651 | |
| 652 | // InvokeInst simplification |
| 653 | // |
| 654 | Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { |
| 655 | return visitCallSite(&II); |
| 656 | } |
| 657 | |
| 658 | /// isSafeToEliminateVarargsCast - If this cast does not affect the value |
| 659 | /// passed through the varargs area, we can eliminate the use of the cast. |
| 660 | static bool isSafeToEliminateVarargsCast(const CallSite CS, |
| 661 | const CastInst * const CI, |
| 662 | const TargetData * const TD, |
| 663 | const int ix) { |
| 664 | if (!CI->isLosslessCast()) |
| 665 | return false; |
| 666 | |
| 667 | // The size of ByVal arguments is derived from the type, so we |
| 668 | // can't change to a type with a different size. If the size were |
| 669 | // passed explicitly we could avoid this check. |
| 670 | if (!CS.paramHasAttr(ix, Attribute::ByVal)) |
| 671 | return true; |
| 672 | |
| 673 | const Type* SrcTy = |
| 674 | cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); |
| 675 | const Type* DstTy = cast<PointerType>(CI->getType())->getElementType(); |
| 676 | if (!SrcTy->isSized() || !DstTy->isSized()) |
| 677 | return false; |
| 678 | if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy)) |
| 679 | return false; |
| 680 | return true; |
| 681 | } |
| 682 | |
| 683 | // visitCallSite - Improvements for call and invoke instructions. |
| 684 | // |
| 685 | Instruction *InstCombiner::visitCallSite(CallSite CS) { |
| 686 | bool Changed = false; |
| 687 | |
| 688 | // If the callee is a constexpr cast of a function, attempt to move the cast |
| 689 | // to the arguments of the call/invoke. |
| 690 | if (transformConstExprCastCall(CS)) return 0; |
| 691 | |
| 692 | Value *Callee = CS.getCalledValue(); |
| 693 | |
| 694 | if (Function *CalleeF = dyn_cast<Function>(Callee)) |
| 695 | if (CalleeF->getCallingConv() != CS.getCallingConv()) { |
| 696 | Instruction *OldCall = CS.getInstruction(); |
| 697 | // If the call and callee calling conventions don't match, this call must |
| 698 | // be unreachable, as the call is undefined. |
| 699 | new StoreInst(ConstantInt::getTrue(Callee->getContext()), |
| 700 | UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), |
| 701 | OldCall); |
| 702 | // If OldCall dues not return void then replaceAllUsesWith undef. |
| 703 | // This allows ValueHandlers and custom metadata to adjust itself. |
| 704 | if (!OldCall->getType()->isVoidTy()) |
| 705 | OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType())); |
| 706 | if (isa<CallInst>(OldCall)) // Not worth removing an invoke here. |
| 707 | return EraseInstFromFunction(*OldCall); |
| 708 | return 0; |
| 709 | } |
| 710 | |
| 711 | if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { |
| 712 | // This instruction is not reachable, just remove it. We insert a store to |
| 713 | // undef so that we know that this code is not reachable, despite the fact |
| 714 | // that we can't modify the CFG here. |
| 715 | new StoreInst(ConstantInt::getTrue(Callee->getContext()), |
| 716 | UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), |
| 717 | CS.getInstruction()); |
| 718 | |
| 719 | // If CS dues not return void then replaceAllUsesWith undef. |
| 720 | // This allows ValueHandlers and custom metadata to adjust itself. |
| 721 | if (!CS.getInstruction()->getType()->isVoidTy()) |
| 722 | CS.getInstruction()-> |
| 723 | replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType())); |
| 724 | |
| 725 | if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { |
| 726 | // Don't break the CFG, insert a dummy cond branch. |
| 727 | BranchInst::Create(II->getNormalDest(), II->getUnwindDest(), |
| 728 | ConstantInt::getTrue(Callee->getContext()), II); |
| 729 | } |
| 730 | return EraseInstFromFunction(*CS.getInstruction()); |
| 731 | } |
| 732 | |
| 733 | if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee)) |
| 734 | if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0))) |
| 735 | if (In->getIntrinsicID() == Intrinsic::init_trampoline) |
| 736 | return transformCallThroughTrampoline(CS); |
| 737 | |
| 738 | const PointerType *PTy = cast<PointerType>(Callee->getType()); |
| 739 | const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| 740 | if (FTy->isVarArg()) { |
| 741 | int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1); |
| 742 | // See if we can optimize any arguments passed through the varargs area of |
| 743 | // the call. |
| 744 | for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(), |
| 745 | E = CS.arg_end(); I != E; ++I, ++ix) { |
| 746 | CastInst *CI = dyn_cast<CastInst>(*I); |
| 747 | if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) { |
| 748 | *I = CI->getOperand(0); |
| 749 | Changed = true; |
| 750 | } |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) { |
| 755 | // Inline asm calls cannot throw - mark them 'nounwind'. |
| 756 | CS.setDoesNotThrow(); |
| 757 | Changed = true; |
| 758 | } |
| 759 | |
| 760 | return Changed ? CS.getInstruction() : 0; |
| 761 | } |
| 762 | |
| 763 | // transformConstExprCastCall - If the callee is a constexpr cast of a function, |
| 764 | // attempt to move the cast to the arguments of the call/invoke. |
| 765 | // |
| 766 | bool InstCombiner::transformConstExprCastCall(CallSite CS) { |
| 767 | if (!isa<ConstantExpr>(CS.getCalledValue())) return false; |
| 768 | ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue()); |
| 769 | if (CE->getOpcode() != Instruction::BitCast || |
| 770 | !isa<Function>(CE->getOperand(0))) |
| 771 | return false; |
| 772 | Function *Callee = cast<Function>(CE->getOperand(0)); |
| 773 | Instruction *Caller = CS.getInstruction(); |
| 774 | const AttrListPtr &CallerPAL = CS.getAttributes(); |
| 775 | |
| 776 | // Okay, this is a cast from a function to a different type. Unless doing so |
| 777 | // would cause a type conversion of one of our arguments, change this call to |
| 778 | // be a direct call with arguments casted to the appropriate types. |
| 779 | // |
| 780 | const FunctionType *FT = Callee->getFunctionType(); |
| 781 | const Type *OldRetTy = Caller->getType(); |
| 782 | const Type *NewRetTy = FT->getReturnType(); |
| 783 | |
| 784 | if (isa<StructType>(NewRetTy)) |
| 785 | return false; // TODO: Handle multiple return values. |
| 786 | |
| 787 | // Check to see if we are changing the return type... |
| 788 | if (OldRetTy != NewRetTy) { |
| 789 | if (Callee->isDeclaration() && |
| 790 | // Conversion is ok if changing from one pointer type to another or from |
| 791 | // a pointer to an integer of the same size. |
| 792 | !((isa<PointerType>(OldRetTy) || !TD || |
| 793 | OldRetTy == TD->getIntPtrType(Caller->getContext())) && |
| 794 | (isa<PointerType>(NewRetTy) || !TD || |
| 795 | NewRetTy == TD->getIntPtrType(Caller->getContext())))) |
| 796 | return false; // Cannot transform this return value. |
| 797 | |
| 798 | if (!Caller->use_empty() && |
| 799 | // void -> non-void is handled specially |
| 800 | !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy)) |
| 801 | return false; // Cannot transform this return value. |
| 802 | |
| 803 | if (!CallerPAL.isEmpty() && !Caller->use_empty()) { |
| 804 | Attributes RAttrs = CallerPAL.getRetAttributes(); |
| 805 | if (RAttrs & Attribute::typeIncompatible(NewRetTy)) |
| 806 | return false; // Attribute not compatible with transformed value. |
| 807 | } |
| 808 | |
| 809 | // If the callsite is an invoke instruction, and the return value is used by |
| 810 | // a PHI node in a successor, we cannot change the return type of the call |
| 811 | // because there is no place to put the cast instruction (without breaking |
| 812 | // the critical edge). Bail out in this case. |
| 813 | if (!Caller->use_empty()) |
| 814 | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) |
| 815 | for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); |
| 816 | UI != E; ++UI) |
| 817 | if (PHINode *PN = dyn_cast<PHINode>(*UI)) |
| 818 | if (PN->getParent() == II->getNormalDest() || |
| 819 | PN->getParent() == II->getUnwindDest()) |
| 820 | return false; |
| 821 | } |
| 822 | |
| 823 | unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); |
| 824 | unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); |
| 825 | |
| 826 | CallSite::arg_iterator AI = CS.arg_begin(); |
| 827 | for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { |
| 828 | const Type *ParamTy = FT->getParamType(i); |
| 829 | const Type *ActTy = (*AI)->getType(); |
| 830 | |
| 831 | if (!CastInst::isCastable(ActTy, ParamTy)) |
| 832 | return false; // Cannot transform this parameter value. |
| 833 | |
| 834 | if (CallerPAL.getParamAttributes(i + 1) |
| 835 | & Attribute::typeIncompatible(ParamTy)) |
| 836 | return false; // Attribute not compatible with transformed value. |
| 837 | |
| 838 | // Converting from one pointer type to another or between a pointer and an |
| 839 | // integer of the same size is safe even if we do not have a body. |
| 840 | bool isConvertible = ActTy == ParamTy || |
| 841 | (TD && ((isa<PointerType>(ParamTy) || |
| 842 | ParamTy == TD->getIntPtrType(Caller->getContext())) && |
| 843 | (isa<PointerType>(ActTy) || |
| 844 | ActTy == TD->getIntPtrType(Caller->getContext())))); |
| 845 | if (Callee->isDeclaration() && !isConvertible) return false; |
| 846 | } |
| 847 | |
| 848 | if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() && |
| 849 | Callee->isDeclaration()) |
| 850 | return false; // Do not delete arguments unless we have a function body. |
| 851 | |
| 852 | if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && |
| 853 | !CallerPAL.isEmpty()) |
| 854 | // In this case we have more arguments than the new function type, but we |
| 855 | // won't be dropping them. Check that these extra arguments have attributes |
| 856 | // that are compatible with being a vararg call argument. |
| 857 | for (unsigned i = CallerPAL.getNumSlots(); i; --i) { |
| 858 | if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams()) |
| 859 | break; |
| 860 | Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs; |
| 861 | if (PAttrs & Attribute::VarArgsIncompatible) |
| 862 | return false; |
| 863 | } |
| 864 | |
| 865 | // Okay, we decided that this is a safe thing to do: go ahead and start |
| 866 | // inserting cast instructions as necessary... |
| 867 | std::vector<Value*> Args; |
| 868 | Args.reserve(NumActualArgs); |
| 869 | SmallVector<AttributeWithIndex, 8> attrVec; |
| 870 | attrVec.reserve(NumCommonArgs); |
| 871 | |
| 872 | // Get any return attributes. |
| 873 | Attributes RAttrs = CallerPAL.getRetAttributes(); |
| 874 | |
| 875 | // If the return value is not being used, the type may not be compatible |
| 876 | // with the existing attributes. Wipe out any problematic attributes. |
| 877 | RAttrs &= ~Attribute::typeIncompatible(NewRetTy); |
| 878 | |
| 879 | // Add the new return attributes. |
| 880 | if (RAttrs) |
| 881 | attrVec.push_back(AttributeWithIndex::get(0, RAttrs)); |
| 882 | |
| 883 | AI = CS.arg_begin(); |
| 884 | for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { |
| 885 | const Type *ParamTy = FT->getParamType(i); |
| 886 | if ((*AI)->getType() == ParamTy) { |
| 887 | Args.push_back(*AI); |
| 888 | } else { |
| 889 | Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, |
| 890 | false, ParamTy, false); |
| 891 | Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp")); |
| 892 | } |
| 893 | |
| 894 | // Add any parameter attributes. |
| 895 | if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) |
| 896 | attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); |
| 897 | } |
| 898 | |
| 899 | // If the function takes more arguments than the call was taking, add them |
| 900 | // now. |
| 901 | for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) |
| 902 | Args.push_back(Constant::getNullValue(FT->getParamType(i))); |
| 903 | |
| 904 | // If we are removing arguments to the function, emit an obnoxious warning. |
| 905 | if (FT->getNumParams() < NumActualArgs) { |
| 906 | if (!FT->isVarArg()) { |
| 907 | errs() << "WARNING: While resolving call to function '" |
| 908 | << Callee->getName() << "' arguments were dropped!\n"; |
| 909 | } else { |
| 910 | // Add all of the arguments in their promoted form to the arg list. |
| 911 | for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { |
| 912 | const Type *PTy = getPromotedType((*AI)->getType()); |
| 913 | if (PTy != (*AI)->getType()) { |
| 914 | // Must promote to pass through va_arg area! |
| 915 | Instruction::CastOps opcode = |
| 916 | CastInst::getCastOpcode(*AI, false, PTy, false); |
| 917 | Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp")); |
| 918 | } else { |
| 919 | Args.push_back(*AI); |
| 920 | } |
| 921 | |
| 922 | // Add any parameter attributes. |
| 923 | if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) |
| 924 | attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); |
| 925 | } |
| 926 | } |
| 927 | } |
| 928 | |
| 929 | if (Attributes FnAttrs = CallerPAL.getFnAttributes()) |
| 930 | attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); |
| 931 | |
| 932 | if (NewRetTy->isVoidTy()) |
| 933 | Caller->setName(""); // Void type should not have a name. |
| 934 | |
| 935 | const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(), |
| 936 | attrVec.end()); |
| 937 | |
| 938 | Instruction *NC; |
| 939 | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { |
| 940 | NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(), |
| 941 | Args.begin(), Args.end(), |
| 942 | Caller->getName(), Caller); |
| 943 | cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv()); |
| 944 | cast<InvokeInst>(NC)->setAttributes(NewCallerPAL); |
| 945 | } else { |
| 946 | NC = CallInst::Create(Callee, Args.begin(), Args.end(), |
| 947 | Caller->getName(), Caller); |
| 948 | CallInst *CI = cast<CallInst>(Caller); |
| 949 | if (CI->isTailCall()) |
| 950 | cast<CallInst>(NC)->setTailCall(); |
| 951 | cast<CallInst>(NC)->setCallingConv(CI->getCallingConv()); |
| 952 | cast<CallInst>(NC)->setAttributes(NewCallerPAL); |
| 953 | } |
| 954 | |
| 955 | // Insert a cast of the return type as necessary. |
| 956 | Value *NV = NC; |
| 957 | if (OldRetTy != NV->getType() && !Caller->use_empty()) { |
| 958 | if (!NV->getType()->isVoidTy()) { |
| 959 | Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, |
| 960 | OldRetTy, false); |
| 961 | NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp"); |
| 962 | |
| 963 | // If this is an invoke instruction, we should insert it after the first |
| 964 | // non-phi, instruction in the normal successor block. |
| 965 | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { |
| 966 | BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI(); |
| 967 | InsertNewInstBefore(NC, *I); |
| 968 | } else { |
| 969 | // Otherwise, it's a call, just insert cast right after the call instr |
| 970 | InsertNewInstBefore(NC, *Caller); |
| 971 | } |
| 972 | Worklist.AddUsersToWorkList(*Caller); |
| 973 | } else { |
| 974 | NV = UndefValue::get(Caller->getType()); |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | |
| 979 | if (!Caller->use_empty()) |
| 980 | Caller->replaceAllUsesWith(NV); |
| 981 | |
| 982 | EraseInstFromFunction(*Caller); |
| 983 | return true; |
| 984 | } |
| 985 | |
| 986 | // transformCallThroughTrampoline - Turn a call to a function created by the |
| 987 | // init_trampoline intrinsic into a direct call to the underlying function. |
| 988 | // |
| 989 | Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) { |
| 990 | Value *Callee = CS.getCalledValue(); |
| 991 | const PointerType *PTy = cast<PointerType>(Callee->getType()); |
| 992 | const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| 993 | const AttrListPtr &Attrs = CS.getAttributes(); |
| 994 | |
| 995 | // If the call already has the 'nest' attribute somewhere then give up - |
| 996 | // otherwise 'nest' would occur twice after splicing in the chain. |
| 997 | if (Attrs.hasAttrSomewhere(Attribute::Nest)) |
| 998 | return 0; |
| 999 | |
| 1000 | IntrinsicInst *Tramp = |
| 1001 | cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0)); |
| 1002 | |
| 1003 | Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts()); |
| 1004 | const PointerType *NestFPTy = cast<PointerType>(NestF->getType()); |
| 1005 | const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType()); |
| 1006 | |
| 1007 | const AttrListPtr &NestAttrs = NestF->getAttributes(); |
| 1008 | if (!NestAttrs.isEmpty()) { |
| 1009 | unsigned NestIdx = 1; |
| 1010 | const Type *NestTy = 0; |
| 1011 | Attributes NestAttr = Attribute::None; |
| 1012 | |
| 1013 | // Look for a parameter marked with the 'nest' attribute. |
| 1014 | for (FunctionType::param_iterator I = NestFTy->param_begin(), |
| 1015 | E = NestFTy->param_end(); I != E; ++NestIdx, ++I) |
| 1016 | if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) { |
| 1017 | // Record the parameter type and any other attributes. |
| 1018 | NestTy = *I; |
| 1019 | NestAttr = NestAttrs.getParamAttributes(NestIdx); |
| 1020 | break; |
| 1021 | } |
| 1022 | |
| 1023 | if (NestTy) { |
| 1024 | Instruction *Caller = CS.getInstruction(); |
| 1025 | std::vector<Value*> NewArgs; |
| 1026 | NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1); |
| 1027 | |
| 1028 | SmallVector<AttributeWithIndex, 8> NewAttrs; |
| 1029 | NewAttrs.reserve(Attrs.getNumSlots() + 1); |
| 1030 | |
| 1031 | // Insert the nest argument into the call argument list, which may |
| 1032 | // mean appending it. Likewise for attributes. |
| 1033 | |
| 1034 | // Add any result attributes. |
| 1035 | if (Attributes Attr = Attrs.getRetAttributes()) |
| 1036 | NewAttrs.push_back(AttributeWithIndex::get(0, Attr)); |
| 1037 | |
| 1038 | { |
| 1039 | unsigned Idx = 1; |
| 1040 | CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); |
| 1041 | do { |
| 1042 | if (Idx == NestIdx) { |
| 1043 | // Add the chain argument and attributes. |
| 1044 | Value *NestVal = Tramp->getOperand(3); |
| 1045 | if (NestVal->getType() != NestTy) |
| 1046 | NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller); |
| 1047 | NewArgs.push_back(NestVal); |
| 1048 | NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr)); |
| 1049 | } |
| 1050 | |
| 1051 | if (I == E) |
| 1052 | break; |
| 1053 | |
| 1054 | // Add the original argument and attributes. |
| 1055 | NewArgs.push_back(*I); |
| 1056 | if (Attributes Attr = Attrs.getParamAttributes(Idx)) |
| 1057 | NewAttrs.push_back |
| 1058 | (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr)); |
| 1059 | |
| 1060 | ++Idx, ++I; |
| 1061 | } while (1); |
| 1062 | } |
| 1063 | |
| 1064 | // Add any function attributes. |
| 1065 | if (Attributes Attr = Attrs.getFnAttributes()) |
| 1066 | NewAttrs.push_back(AttributeWithIndex::get(~0, Attr)); |
| 1067 | |
| 1068 | // The trampoline may have been bitcast to a bogus type (FTy). |
| 1069 | // Handle this by synthesizing a new function type, equal to FTy |
| 1070 | // with the chain parameter inserted. |
| 1071 | |
| 1072 | std::vector<const Type*> NewTypes; |
| 1073 | NewTypes.reserve(FTy->getNumParams()+1); |
| 1074 | |
| 1075 | // Insert the chain's type into the list of parameter types, which may |
| 1076 | // mean appending it. |
| 1077 | { |
| 1078 | unsigned Idx = 1; |
| 1079 | FunctionType::param_iterator I = FTy->param_begin(), |
| 1080 | E = FTy->param_end(); |
| 1081 | |
| 1082 | do { |
| 1083 | if (Idx == NestIdx) |
| 1084 | // Add the chain's type. |
| 1085 | NewTypes.push_back(NestTy); |
| 1086 | |
| 1087 | if (I == E) |
| 1088 | break; |
| 1089 | |
| 1090 | // Add the original type. |
| 1091 | NewTypes.push_back(*I); |
| 1092 | |
| 1093 | ++Idx, ++I; |
| 1094 | } while (1); |
| 1095 | } |
| 1096 | |
| 1097 | // Replace the trampoline call with a direct call. Let the generic |
| 1098 | // code sort out any function type mismatches. |
| 1099 | FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, |
| 1100 | FTy->isVarArg()); |
| 1101 | Constant *NewCallee = |
| 1102 | NestF->getType() == PointerType::getUnqual(NewFTy) ? |
| 1103 | NestF : ConstantExpr::getBitCast(NestF, |
| 1104 | PointerType::getUnqual(NewFTy)); |
| 1105 | const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(), |
| 1106 | NewAttrs.end()); |
| 1107 | |
| 1108 | Instruction *NewCaller; |
| 1109 | if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { |
| 1110 | NewCaller = InvokeInst::Create(NewCallee, |
| 1111 | II->getNormalDest(), II->getUnwindDest(), |
| 1112 | NewArgs.begin(), NewArgs.end(), |
| 1113 | Caller->getName(), Caller); |
| 1114 | cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); |
| 1115 | cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); |
| 1116 | } else { |
| 1117 | NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(), |
| 1118 | Caller->getName(), Caller); |
| 1119 | if (cast<CallInst>(Caller)->isTailCall()) |
| 1120 | cast<CallInst>(NewCaller)->setTailCall(); |
| 1121 | cast<CallInst>(NewCaller)-> |
| 1122 | setCallingConv(cast<CallInst>(Caller)->getCallingConv()); |
| 1123 | cast<CallInst>(NewCaller)->setAttributes(NewPAL); |
| 1124 | } |
| 1125 | if (!Caller->getType()->isVoidTy()) |
| 1126 | Caller->replaceAllUsesWith(NewCaller); |
| 1127 | Caller->eraseFromParent(); |
| 1128 | Worklist.Remove(Caller); |
| 1129 | return 0; |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | // Replace the trampoline call with a direct call. Since there is no 'nest' |
| 1134 | // parameter, there is no need to adjust the argument list. Let the generic |
| 1135 | // code sort out any function type mismatches. |
| 1136 | Constant *NewCallee = |
| 1137 | NestF->getType() == PTy ? NestF : |
| 1138 | ConstantExpr::getBitCast(NestF, PTy); |
| 1139 | CS.setCalledFunction(NewCallee); |
| 1140 | return CS.getInstruction(); |
| 1141 | } |
| 1142 | |