blob: 102971b73208c98e3aa387f1e8b98a21adbab319 [file] [log] [blame]
Ahmed Bougacha171ac8c2013-08-21 07:29:02 +00001//===- MCModuleYAML.cpp - MCModule YAMLIO implementation ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines classes for handling the YAML representation of MCModule.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/MC/MCModuleYAML.h"
15#include "llvm/ADT/StringMap.h"
16#include "llvm/MC/MCAtom.h"
17#include "llvm/MC/MCFunction.h"
18#include "llvm/MC/MCInstrInfo.h"
19#include "llvm/MC/MCRegisterInfo.h"
20#include "llvm/Object/YAML.h"
21#include "llvm/Support/Allocator.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Support/YAMLTraits.h"
24#include <vector>
25
26namespace llvm {
27
28namespace {
29
30// This class is used to map opcode and register names to enum values.
31//
32// There are at least 3 obvious ways to do this:
33// 1- Generate an MII/MRI method using a tablegen StringMatcher
34// 2- Write an MII/MRI method using std::lower_bound and the assumption that
35// the enums are sorted (starting at a fixed value).
36// 3- Do the matching manually as is done here.
37//
38// Why 3?
39// 1- A StringMatcher function for thousands of entries would incur
40// a non-negligible binary size overhead.
41// 2- The lower_bound comparators would be somewhat involved and aren't
42// obviously reusable (see LessRecordRegister in llvm/TableGen/Record.h)
43// 3- This isn't actually something useful outside tests (but the same argument
44// can be made against having {MII,MRI}::getName).
45//
46// If this becomes useful outside this specific situation, feel free to do
47// the Right Thing (tm) and move the functionality to MII/MRI.
48//
49class InstrRegInfoHolder {
50 typedef StringMap<unsigned, BumpPtrAllocator> EnumValByNameTy;
51 EnumValByNameTy InstEnumValueByName;
52 EnumValByNameTy RegEnumValueByName;
53
54public:
55 const MCInstrInfo &MII;
56 const MCRegisterInfo &MRI;
57 InstrRegInfoHolder(const MCInstrInfo &MII, const MCRegisterInfo &MRI)
58 : InstEnumValueByName(NextPowerOf2(MII.getNumOpcodes())),
59 RegEnumValueByName(NextPowerOf2(MRI.getNumRegs())), MII(MII), MRI(MRI) {
60 for (int i = 0, e = MII.getNumOpcodes(); i != e; ++i)
61 InstEnumValueByName[MII.getName(i)] = i;
62 for (int i = 0, e = MRI.getNumRegs(); i != e; ++i)
63 RegEnumValueByName[MRI.getName(i)] = i;
64 }
65
66 bool matchRegister(StringRef Name, unsigned &Reg) {
67 EnumValByNameTy::const_iterator It = RegEnumValueByName.find(Name);
68 if (It == RegEnumValueByName.end())
69 return false;
70 Reg = It->getValue();
71 return true;
72 }
73 bool matchOpcode(StringRef Name, unsigned &Opc) {
74 EnumValByNameTy::const_iterator It = InstEnumValueByName.find(Name);
75 if (It == InstEnumValueByName.end())
76 return false;
77 Opc = It->getValue();
78 return true;
79 }
80};
81
82} // end unnamed namespace
83
84namespace MCModuleYAML {
85
86LLVM_YAML_STRONG_TYPEDEF(unsigned, OpcodeEnum)
87
88struct Operand {
89 MCOperand MCOp;
90};
91
92struct Inst {
93 OpcodeEnum Opcode;
94 std::vector<Operand> Operands;
95 uint64_t Size;
96};
97
98struct Atom {
99 MCAtom::AtomKind Type;
100 yaml::Hex64 StartAddress;
101 uint64_t Size;
102
103 std::vector<Inst> Insts;
104 object::yaml::BinaryRef Data;
105};
106
107struct BasicBlock {
108 yaml::Hex64 Address;
109 std::vector<yaml::Hex64> Preds;
110 std::vector<yaml::Hex64> Succs;
111};
112
113struct Function {
114 StringRef Name;
115 std::vector<BasicBlock> BasicBlocks;
116};
117
118struct Module {
119 std::vector<Atom> Atoms;
120 std::vector<Function> Functions;
121};
122
123} // end namespace MCModuleYAML
124} // end namespace llvm
125
126LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex64)
127LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::MCModuleYAML::Operand)
128LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::Inst)
129LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::Atom)
130LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::BasicBlock)
131LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::Function)
132
133namespace llvm {
134
135namespace yaml {
136
137template <> struct ScalarEnumerationTraits<MCAtom::AtomKind> {
138 static void enumeration(IO &IO, MCAtom::AtomKind &Kind);
139};
140
141template <> struct MappingTraits<MCModuleYAML::Atom> {
142 static void mapping(IO &IO, MCModuleYAML::Atom &A);
143};
144
145template <> struct MappingTraits<MCModuleYAML::Inst> {
146 static void mapping(IO &IO, MCModuleYAML::Inst &I);
147};
148
149template <> struct MappingTraits<MCModuleYAML::BasicBlock> {
150 static void mapping(IO &IO, MCModuleYAML::BasicBlock &BB);
151};
152
153template <> struct MappingTraits<MCModuleYAML::Function> {
154 static void mapping(IO &IO, MCModuleYAML::Function &Fn);
155};
156
157template <> struct MappingTraits<MCModuleYAML::Module> {
158 static void mapping(IO &IO, MCModuleYAML::Module &M);
159};
160
161template <> struct ScalarTraits<MCModuleYAML::Operand> {
162 static void output(const MCModuleYAML::Operand &, void *,
163 llvm::raw_ostream &);
164 static StringRef input(StringRef, void *, MCModuleYAML::Operand &);
165};
166
167template <> struct ScalarTraits<MCModuleYAML::OpcodeEnum> {
168 static void output(const MCModuleYAML::OpcodeEnum &, void *,
169 llvm::raw_ostream &);
170 static StringRef input(StringRef, void *, MCModuleYAML::OpcodeEnum &);
171};
172
173void ScalarEnumerationTraits<MCAtom::AtomKind>::enumeration(
174 IO &IO, MCAtom::AtomKind &Value) {
175 IO.enumCase(Value, "Text", MCAtom::TextAtom);
176 IO.enumCase(Value, "Data", MCAtom::DataAtom);
177}
178
179void MappingTraits<MCModuleYAML::Atom>::mapping(IO &IO, MCModuleYAML::Atom &A) {
180 IO.mapRequired("StartAddress", A.StartAddress);
181 IO.mapRequired("Size", A.Size);
182 IO.mapRequired("Type", A.Type);
183 if (A.Type == MCAtom::TextAtom)
184 IO.mapRequired("Content", A.Insts);
185 else if (A.Type == MCAtom::DataAtom)
186 IO.mapRequired("Content", A.Data);
187}
188
189void MappingTraits<MCModuleYAML::Inst>::mapping(IO &IO, MCModuleYAML::Inst &I) {
190 IO.mapRequired("Inst", I.Opcode);
191 IO.mapRequired("Size", I.Size);
192 IO.mapRequired("Ops", I.Operands);
193}
194
195void
196MappingTraits<MCModuleYAML::BasicBlock>::mapping(IO &IO,
197 MCModuleYAML::BasicBlock &BB) {
198 IO.mapRequired("Address", BB.Address);
199 IO.mapRequired("Preds", BB.Preds);
200 IO.mapRequired("Succs", BB.Succs);
201}
202
203void MappingTraits<MCModuleYAML::Function>::mapping(IO &IO,
204 MCModuleYAML::Function &F) {
205 IO.mapRequired("Name", F.Name);
206 IO.mapRequired("BasicBlocks", F.BasicBlocks);
207}
208
209void MappingTraits<MCModuleYAML::Module>::mapping(IO &IO,
210 MCModuleYAML::Module &M) {
211 IO.mapRequired("Atoms", M.Atoms);
212 IO.mapOptional("Functions", M.Functions);
213}
214
215void
216ScalarTraits<MCModuleYAML::Operand>::output(const MCModuleYAML::Operand &Val,
217 void *Ctx, raw_ostream &Out) {
218 InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
219
220 // FIXME: Doesn't support FPImm and expr/inst, but do these make sense?
221 if (Val.MCOp.isImm())
222 Out << "I" << Val.MCOp.getImm();
223 else if (Val.MCOp.isReg())
224 Out << "R" << IRI->MRI.getName(Val.MCOp.getReg());
225 else
226 llvm_unreachable("Trying to output invalid MCOperand!");
227}
228
229StringRef
230ScalarTraits<MCModuleYAML::Operand>::input(StringRef Scalar, void *Ctx,
231 MCModuleYAML::Operand &Val) {
232 InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
233 char Type = 0;
234 if (Scalar.size() >= 1)
235 Type = Scalar.front();
236 if (Type != 'R' && Type != 'I')
237 return "Operand must start with 'R' (register) or 'I' (immediate).";
238 if (Type == 'R') {
239 unsigned Reg;
240 if (!IRI->matchRegister(Scalar.substr(1), Reg))
241 return "Invalid register name.";
242 Val.MCOp = MCOperand::CreateReg(Reg);
243 } else if (Type == 'I') {
244 int64_t RIVal;
245 if (Scalar.substr(1).getAsInteger(10, RIVal))
246 return "Invalid immediate value.";
247 Val.MCOp = MCOperand::CreateImm(RIVal);
248 } else {
249 Val.MCOp = MCOperand();
250 }
251 return StringRef();
252}
253
254void ScalarTraits<MCModuleYAML::OpcodeEnum>::output(
255 const MCModuleYAML::OpcodeEnum &Val, void *Ctx, raw_ostream &Out) {
256 InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
257 Out << IRI->MII.getName(Val);
258}
259
260StringRef
261ScalarTraits<MCModuleYAML::OpcodeEnum>::input(StringRef Scalar, void *Ctx,
262 MCModuleYAML::OpcodeEnum &Val) {
263 InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
264 unsigned Opc;
265 if (!IRI->matchOpcode(Scalar, Opc))
266 return "Invalid instruction opcode.";
267 Val = Opc;
268 return "";
269}
270
271} // end namespace yaml
272
273namespace {
274
275class MCModule2YAML {
276 const MCModule &MCM;
277 MCModuleYAML::Module YAMLModule;
278 void dumpAtom(const MCAtom *MCA);
279 void dumpFunction(const MCFunction *MCF);
280 void dumpBasicBlock(const MCBasicBlock *MCBB);
281
282public:
283 MCModule2YAML(const MCModule &MCM);
284 MCModuleYAML::Module &getYAMLModule();
285};
286
287class YAML2MCModule {
288 MCModule &MCM;
289
290public:
291 YAML2MCModule(MCModule &MCM);
292 StringRef parse(const MCModuleYAML::Module &YAMLModule);
293};
294
295} // end unnamed namespace
296
297MCModule2YAML::MCModule2YAML(const MCModule &MCM) : MCM(MCM), YAMLModule() {
298 for (MCModule::const_atom_iterator AI = MCM.atom_begin(), AE = MCM.atom_end();
299 AI != AE; ++AI)
300 dumpAtom(*AI);
301 for (MCModule::const_func_iterator FI = MCM.func_begin(), FE = MCM.func_end();
302 FI != FE; ++FI)
303 dumpFunction(*FI);
304}
305
306void MCModule2YAML::dumpAtom(const MCAtom *MCA) {
307 YAMLModule.Atoms.resize(YAMLModule.Atoms.size() + 1);
308 MCModuleYAML::Atom &A = YAMLModule.Atoms.back();
309 A.Type = MCA->getKind();
310 A.StartAddress = MCA->getBeginAddr();
311 A.Size = MCA->getEndAddr() - MCA->getBeginAddr() + 1;
312 if (const MCTextAtom *TA = dyn_cast<MCTextAtom>(MCA)) {
313 const size_t InstCount = TA->size();
314 A.Insts.resize(InstCount);
315 for (size_t i = 0; i != InstCount; ++i) {
316 const MCDecodedInst &MCDI = TA->at(i);
317 A.Insts[i].Opcode = MCDI.Inst.getOpcode();
318 A.Insts[i].Size = MCDI.Size;
319 const unsigned OpCount = MCDI.Inst.getNumOperands();
320 A.Insts[i].Operands.resize(OpCount);
321 for (unsigned oi = 0; oi != OpCount; ++oi)
322 A.Insts[i].Operands[oi].MCOp = MCDI.Inst.getOperand(oi);
323 }
324 } else if (const MCDataAtom *DA = dyn_cast<MCDataAtom>(MCA)) {
325 A.Data = DA->getData();
326 } else {
327 llvm_unreachable("Unknown atom type.");
328 }
329}
330
331void MCModule2YAML::dumpFunction(const MCFunction *MCF) {
332 YAMLModule.Functions.resize(YAMLModule.Functions.size() + 1);
333 MCModuleYAML::Function &F = YAMLModule.Functions.back();
334 F.Name = MCF->getName();
335 for (MCFunction::const_iterator BBI = MCF->begin(), BBE = MCF->end();
336 BBI != BBE; ++BBI) {
337 const MCBasicBlock *MCBB = *BBI;
338 F.BasicBlocks.resize(F.BasicBlocks.size() + 1);
339 MCModuleYAML::BasicBlock &BB = F.BasicBlocks.back();
340 BB.Address = MCBB->getInsts()->getBeginAddr();
341 for (MCBasicBlock::pred_const_iterator PI = MCBB->pred_begin(),
342 PE = MCBB->pred_end();
343 PI != PE; ++PI)
344 BB.Preds.push_back((*PI)->getInsts()->getBeginAddr());
345 for (MCBasicBlock::succ_const_iterator SI = MCBB->succ_begin(),
346 SE = MCBB->succ_end();
347 SI != SE; ++SI)
348 BB.Succs.push_back((*SI)->getInsts()->getBeginAddr());
349 }
350}
351
352MCModuleYAML::Module &MCModule2YAML::getYAMLModule() { return YAMLModule; }
353
354YAML2MCModule::YAML2MCModule(MCModule &MCM) : MCM(MCM) {}
355
356StringRef YAML2MCModule::parse(const MCModuleYAML::Module &YAMLModule) {
357 typedef std::vector<MCModuleYAML::Atom>::const_iterator AtomIt;
358 typedef std::vector<MCModuleYAML::Inst>::const_iterator InstIt;
359 typedef std::vector<MCModuleYAML::Operand>::const_iterator OpIt;
360
361 typedef DenseMap<uint64_t, MCTextAtom *> AddrToTextAtomTy;
362 AddrToTextAtomTy TAByAddr;
363
364 for (AtomIt AI = YAMLModule.Atoms.begin(), AE = YAMLModule.Atoms.end();
365 AI != AE; ++AI) {
366 uint64_t StartAddress = AI->StartAddress;
367 if (AI->Size == 0)
368 return "Atoms can't be empty!";
369 uint64_t EndAddress = StartAddress + AI->Size - 1;
370 switch (AI->Type) {
371 case MCAtom::TextAtom: {
372 MCTextAtom *TA = MCM.createTextAtom(StartAddress, EndAddress);
373 TAByAddr[StartAddress] = TA;
374 for (InstIt II = AI->Insts.begin(), IE = AI->Insts.end(); II != IE;
375 ++II) {
376 MCInst MI;
377 MI.setOpcode(II->Opcode);
378 for (OpIt OI = II->Operands.begin(), OE = II->Operands.end(); OI != OE;
379 ++OI)
380 MI.addOperand(OI->MCOp);
381 TA->addInst(MI, II->Size);
382 }
383 break;
384 }
385 case MCAtom::DataAtom: {
386 MCDataAtom *DA = MCM.createDataAtom(StartAddress, EndAddress);
387 SmallVector<char, 64> Data;
388 raw_svector_ostream OS(Data);
389 AI->Data.writeAsBinary(OS);
390 OS.flush();
391 for (size_t i = 0, e = Data.size(); i != e; ++i)
392 DA->addData((uint8_t)Data[i]);
393 break;
394 }
395 }
396 }
397
398 typedef std::vector<MCModuleYAML::Function>::const_iterator FuncIt;
399 typedef std::vector<MCModuleYAML::BasicBlock>::const_iterator BBIt;
400 typedef std::vector<yaml::Hex64>::const_iterator AddrIt;
401 for (FuncIt FI = YAMLModule.Functions.begin(),
402 FE = YAMLModule.Functions.end();
403 FI != FE; ++FI) {
404 MCFunction *MCFN = MCM.createFunction(FI->Name);
405 for (BBIt BBI = FI->BasicBlocks.begin(), BBE = FI->BasicBlocks.end();
406 BBI != BBE; ++BBI) {
407 AddrToTextAtomTy::const_iterator It = TAByAddr.find(BBI->Address);
408 if (It == TAByAddr.end())
409 return "Basic block start address doesn't match any text atom!";
410 MCFN->createBlock(*It->second);
411 }
412 for (BBIt BBI = FI->BasicBlocks.begin(), BBE = FI->BasicBlocks.end();
413 BBI != BBE; ++BBI) {
414 MCBasicBlock *MCBB = MCFN->find(BBI->Address);
415 if (!MCBB)
416 return "Couldn't find matching basic block in function.";
417 for (AddrIt PI = BBI->Preds.begin(), PE = BBI->Preds.end(); PI != PE;
418 ++PI) {
419 MCBasicBlock *Pred = MCFN->find(*PI);
420 if (!Pred)
421 return "Couldn't find predecessor basic block.";
422 MCBB->addPredecessor(Pred);
423 }
424 for (AddrIt SI = BBI->Succs.begin(), SE = BBI->Succs.end(); SI != SE;
425 ++SI) {
426 MCBasicBlock *Succ = MCFN->find(*SI);
427 if (!Succ)
428 return "Couldn't find predecessor basic block.";
429 MCBB->addSuccessor(Succ);
430 }
431 }
432 }
433 return "";
434}
435
436StringRef mcmodule2yaml(raw_ostream &OS, const MCModule &MCM,
437 const MCInstrInfo &MII, const MCRegisterInfo &MRI) {
438 MCModule2YAML Dumper(MCM);
439 InstrRegInfoHolder IRI(MII, MRI);
440 yaml::Output YOut(OS, (void *)&IRI);
441 YOut << Dumper.getYAMLModule();
442 return "";
443}
444
Stephen Hines36b56882014-04-23 16:57:46 -0700445StringRef yaml2mcmodule(std::unique_ptr<MCModule> &MCM, StringRef YamlContent,
Ahmed Bougacha171ac8c2013-08-21 07:29:02 +0000446 const MCInstrInfo &MII, const MCRegisterInfo &MRI) {
447 MCM.reset(new MCModule);
448 YAML2MCModule Parser(*MCM);
449 MCModuleYAML::Module YAMLModule;
450 InstrRegInfoHolder IRI(MII, MRI);
451 yaml::Input YIn(YamlContent, (void *)&IRI);
452 YIn >> YAMLModule;
453 if (error_code ec = YIn.error())
454 return ec.message();
455 StringRef err = Parser.parse(YAMLModule);
456 if (!err.empty())
457 return err;
458 return "";
459}
460
461} // end namespace llvm