Vikram S. Adve | 37866b3 | 2001-08-28 23:06:49 +0000 | [diff] [blame^] | 1 | /* -*-C++-*- |
| 2 | **************************************************************************** |
| 3 | * File: |
| 4 | * SchedPriorities.h |
| 5 | * |
| 6 | * Purpose: |
| 7 | * Encapsulate heuristics for instruction scheduling. |
| 8 | * |
| 9 | * Strategy: |
| 10 | * Priority ordering rules: |
| 11 | * (1) Max delay, which is the order of the heap S.candsAsHeap. |
| 12 | * (2) Instruction that frees up a register. |
| 13 | * (3) Instruction that has the maximum number of dependent instructions. |
| 14 | * Note that rules 2 and 3 are only used if issue conflicts prevent |
| 15 | * choosing a higher priority instruction by rule 1. |
| 16 | * |
| 17 | * History: |
| 18 | * 7/30/01 - Vikram Adve - Created |
| 19 | ***************************************************************************/ |
| 20 | |
| 21 | //************************** System Include Files **************************/ |
| 22 | |
| 23 | #include <hash_map> |
| 24 | #include <vector> |
| 25 | #include <algorithm> |
| 26 | #include <sys/types.h> |
| 27 | |
| 28 | //*************************** User Include Files ***************************/ |
| 29 | |
| 30 | #include "llvm/Method.h" |
| 31 | #include "llvm/CodeGen/MachineInstr.h" |
| 32 | #include "llvm/CodeGen/InstrScheduling.h" |
| 33 | #include "llvm/CodeGen/SchedPriorities.h" |
| 34 | |
| 35 | //************************* Forward Declarations ***************************/ |
| 36 | |
| 37 | |
| 38 | /*ctor*/ |
| 39 | SchedPriorities::SchedPriorities(const Method* method, |
| 40 | const SchedGraph* _graph) |
| 41 | : curTime(0), |
| 42 | graph(_graph), |
| 43 | methodLiveVarInfo(method), // expensive! |
| 44 | lastUseMap(), |
| 45 | nodeDelayVec(_graph->getNumNodes(),INVALID_LATENCY), //make errors obvious |
| 46 | earliestForNode(_graph->getNumNodes(), 0), |
| 47 | earliestReadyTime(0), |
| 48 | candsAsHeap(), |
| 49 | candsAsSet(), |
| 50 | mcands(), |
| 51 | nextToTry(candsAsHeap.begin()) |
| 52 | { |
| 53 | methodLiveVarInfo.analyze(); |
| 54 | computeDelays(graph); |
| 55 | } |
| 56 | |
| 57 | |
| 58 | void |
| 59 | SchedPriorities::initialize() |
| 60 | { |
| 61 | initializeReadyHeap(graph); |
| 62 | } |
| 63 | |
| 64 | |
| 65 | void |
| 66 | SchedPriorities::computeDelays(const SchedGraph* graph) |
| 67 | { |
| 68 | sg_po_const_iterator poIter = sg_po_const_iterator::begin(graph->getRoot()); |
| 69 | sg_po_const_iterator poEnd = sg_po_const_iterator::end( graph->getRoot()); |
| 70 | for ( ; poIter != poEnd; ++poIter) |
| 71 | { |
| 72 | const SchedGraphNode* node = *poIter; |
| 73 | cycles_t nodeDelay; |
| 74 | if (node->beginOutEdges() == node->endOutEdges()) |
| 75 | nodeDelay = node->getLatency(); |
| 76 | else |
| 77 | { |
| 78 | // Iterate over the out-edges of the node to compute delay |
| 79 | nodeDelay = 0; |
| 80 | for (SchedGraphNode::const_iterator E=node->beginOutEdges(); |
| 81 | E != node->endOutEdges(); ++E) |
| 82 | { |
| 83 | cycles_t sinkDelay = getNodeDelayRef((*E)->getSink()); |
| 84 | nodeDelay = max(nodeDelay, sinkDelay + (*E)->getMinDelay()); |
| 85 | } |
| 86 | } |
| 87 | getNodeDelayRef(node) = nodeDelay; |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | |
| 92 | void |
| 93 | SchedPriorities::initializeReadyHeap(const SchedGraph* graph) |
| 94 | { |
| 95 | const SchedGraphNode* graphRoot = graph->getRoot(); |
| 96 | assert(graphRoot->getMachineInstr() == NULL && "Expect dummy root"); |
| 97 | |
| 98 | // Insert immediate successors of dummy root, which are the actual roots |
| 99 | sg_succ_const_iterator SEnd = succ_end(graphRoot); |
| 100 | for (sg_succ_const_iterator S = succ_begin(graphRoot); S != SEnd; ++S) |
| 101 | this->insertReady(*S); |
| 102 | |
| 103 | #undef TEST_HEAP_CONVERSION |
| 104 | #ifdef TEST_HEAP_CONVERSION |
| 105 | cout << "Before heap conversion:" << endl; |
| 106 | copy(candsAsHeap.begin(), candsAsHeap.end(), |
| 107 | ostream_iterator<NodeDelayPair*>(cout,"\n")); |
| 108 | #endif |
| 109 | |
| 110 | candsAsHeap.makeHeap(); |
| 111 | |
| 112 | #ifdef TEST_HEAP_CONVERSION |
| 113 | cout << "After heap conversion:" << endl; |
| 114 | copy(candsAsHeap.begin(), candsAsHeap.end(), |
| 115 | ostream_iterator<NodeDelayPair*>(cout,"\n")); |
| 116 | #endif |
| 117 | } |
| 118 | |
| 119 | |
| 120 | void |
| 121 | SchedPriorities::issuedReadyNodeAt(cycles_t curTime, |
| 122 | const SchedGraphNode* node) |
| 123 | { |
| 124 | candsAsHeap.removeNode(node); |
| 125 | candsAsSet.erase(node); |
| 126 | mcands.clear(); // ensure reset choices is called before any more choices |
| 127 | |
| 128 | if (earliestReadyTime == getEarliestForNodeRef(node)) |
| 129 | {// earliestReadyTime may have been due to this node, so recompute it |
| 130 | earliestReadyTime = HUGE_LATENCY; |
| 131 | for (NodeHeap::const_iterator I=candsAsHeap.begin(); |
| 132 | I != candsAsHeap.end(); ++I) |
| 133 | if (candsAsHeap.getNode(I)) |
| 134 | earliestReadyTime = min(earliestReadyTime, |
| 135 | getEarliestForNodeRef(candsAsHeap.getNode(I))); |
| 136 | } |
| 137 | |
| 138 | // Now update ready times for successors |
| 139 | for (SchedGraphNode::const_iterator E=node->beginOutEdges(); |
| 140 | E != node->endOutEdges(); ++E) |
| 141 | { |
| 142 | cycles_t& etime = getEarliestForNodeRef((*E)->getSink()); |
| 143 | etime = max(etime, curTime + (*E)->getMinDelay()); |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | |
| 148 | //---------------------------------------------------------------------- |
| 149 | // Priority ordering rules: |
| 150 | // (1) Max delay, which is the order of the heap S.candsAsHeap. |
| 151 | // (2) Instruction that frees up a register. |
| 152 | // (3) Instruction that has the maximum number of dependent instructions. |
| 153 | // Note that rules 2 and 3 are only used if issue conflicts prevent |
| 154 | // choosing a higher priority instruction by rule 1. |
| 155 | //---------------------------------------------------------------------- |
| 156 | |
| 157 | inline int |
| 158 | SchedPriorities::chooseByRule1(vector<candIndex>& mcands) |
| 159 | { |
| 160 | return (mcands.size() == 1)? 0 // only one choice exists so take it |
| 161 | : -1; // -1 indicates multiple choices |
| 162 | } |
| 163 | |
| 164 | inline int |
| 165 | SchedPriorities::chooseByRule2(vector<candIndex>& mcands) |
| 166 | { |
| 167 | assert(mcands.size() >= 1 && "Should have at least one candidate here."); |
| 168 | for (unsigned i=0, N = mcands.size(); i < N; i++) |
| 169 | if (instructionHasLastUse(methodLiveVarInfo, |
| 170 | candsAsHeap.getNode(mcands[i]))) |
| 171 | return i; |
| 172 | return -1; |
| 173 | } |
| 174 | |
| 175 | inline int |
| 176 | SchedPriorities::chooseByRule3(vector<candIndex>& mcands) |
| 177 | { |
| 178 | assert(mcands.size() >= 1 && "Should have at least one candidate here."); |
| 179 | int maxUses = candsAsHeap.getNode(mcands[0])->getNumOutEdges(); |
| 180 | int indexWithMaxUses = 0; |
| 181 | for (unsigned i=1, N = mcands.size(); i < N; i++) |
| 182 | { |
| 183 | int numUses = candsAsHeap.getNode(mcands[i])->getNumOutEdges(); |
| 184 | if (numUses > maxUses) |
| 185 | { |
| 186 | maxUses = numUses; |
| 187 | indexWithMaxUses = i; |
| 188 | } |
| 189 | } |
| 190 | return indexWithMaxUses; |
| 191 | } |
| 192 | |
| 193 | const SchedGraphNode* |
| 194 | SchedPriorities::getNextHighest(const SchedulingManager& S, |
| 195 | cycles_t curTime) |
| 196 | { |
| 197 | int nextIdx = -1; |
| 198 | const SchedGraphNode* nextChoice = NULL; |
| 199 | |
| 200 | if (mcands.size() == 0) |
| 201 | findSetWithMaxDelay(mcands, S); |
| 202 | |
| 203 | while (nextIdx < 0 && mcands.size() > 0) |
| 204 | { |
| 205 | nextIdx = chooseByRule1(mcands); // rule 1 |
| 206 | |
| 207 | if (nextIdx == -1) |
| 208 | nextIdx = chooseByRule2(mcands); // rule 2 |
| 209 | |
| 210 | if (nextIdx == -1) |
| 211 | nextIdx = chooseByRule3(mcands); // rule 3 |
| 212 | |
| 213 | if (nextIdx == -1) |
| 214 | nextIdx = 0; // default to first choice by delays |
| 215 | |
| 216 | // We have found the next best candidate. Check if it ready in |
| 217 | // the current cycle, and if it is feasible. |
| 218 | // If not, remove it from mcands and continue. Refill mcands if |
| 219 | // it becomes empty. |
| 220 | nextChoice = candsAsHeap.getNode(mcands[nextIdx]); |
| 221 | if (getEarliestForNodeRef(nextChoice) > curTime |
| 222 | || ! instrIsFeasible(S, nextChoice->getOpCode())) |
| 223 | { |
| 224 | mcands.erase(mcands.begin() + nextIdx); |
| 225 | nextIdx = -1; |
| 226 | if (mcands.size() == 0) |
| 227 | findSetWithMaxDelay(mcands, S); |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | if (nextIdx >= 0) |
| 232 | { |
| 233 | mcands.erase(mcands.begin() + nextIdx); |
| 234 | return nextChoice; |
| 235 | } |
| 236 | else |
| 237 | return NULL; |
| 238 | } |
| 239 | |
| 240 | |
| 241 | void |
| 242 | SchedPriorities::findSetWithMaxDelay(vector<candIndex>& mcands, |
| 243 | const SchedulingManager& S) |
| 244 | { |
| 245 | if (mcands.size() == 0 && nextToTry != candsAsHeap.end()) |
| 246 | { // out of choices at current maximum delay; |
| 247 | // put nodes with next highest delay in mcands |
| 248 | candIndex next = nextToTry; |
| 249 | cycles_t maxDelay = candsAsHeap.getDelay(next); |
| 250 | for (; next != candsAsHeap.end() |
| 251 | && candsAsHeap.getDelay(next) == maxDelay; ++next) |
| 252 | mcands.push_back(next); |
| 253 | |
| 254 | nextToTry = next; |
| 255 | |
| 256 | if (SchedDebugLevel >= Sched_PrintSchedTrace) |
| 257 | { |
| 258 | printIndent(2); |
| 259 | cout << "Cycle " << this->getTime() << ": " |
| 260 | << "Next highest delay = " << maxDelay << " : " |
| 261 | << mcands.size() << " Nodes with this delay: "; |
| 262 | for (unsigned i=0; i < mcands.size(); i++) |
| 263 | cout << candsAsHeap.getNode(mcands[i])->getNodeId() << ", "; |
| 264 | cout << endl; |
| 265 | } |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | |
| 270 | bool |
| 271 | SchedPriorities::instructionHasLastUse(MethodLiveVarInfo& methodLiveVarInfo, |
| 272 | const SchedGraphNode* graphNode) |
| 273 | { |
| 274 | const MachineInstr* minstr = graphNode->getMachineInstr(); |
| 275 | |
| 276 | hash_map<const MachineInstr*, bool>::const_iterator |
| 277 | ui = lastUseMap.find(minstr); |
| 278 | if (ui != lastUseMap.end()) |
| 279 | return (*ui).second; |
| 280 | |
| 281 | // else check if instruction is a last use and save it in the hash_map |
| 282 | bool hasLastUse = false; |
| 283 | const BasicBlock* bb = graphNode->getInstr()->getParent(); |
| 284 | const LiveVarSet* liveVars = |
| 285 | methodLiveVarInfo.getLiveVarSetBeforeMInst(minstr, bb); |
| 286 | |
| 287 | for (MachineInstr::val_op_const_iterator vo(minstr); ! vo.done(); ++vo) |
| 288 | if (liveVars->find(*vo) == liveVars->end()) |
| 289 | { |
| 290 | hasLastUse = true; |
| 291 | break; |
| 292 | } |
| 293 | |
| 294 | lastUseMap[minstr] = hasLastUse; |
| 295 | return hasLastUse; |
| 296 | } |
| 297 | |