blob: 1f211081521076669450f3d38a5d2a007c365038 [file] [log] [blame]
Chris Lattner6148c022001-12-03 17:28:42 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner6148c022001-12-03 17:28:42 +00009//
Chris Lattner40bf8b42004-04-02 20:24:31 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
Chris Lattner40bf8b42004-04-02 20:24:31 +000014// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16// 1. The exit condition for the loop is canonicalized to compare the
17// induction value against the exit value. This turns loops like:
18// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19// 2. Any use outside of the loop of an expression derived from the indvar
20// is changed to compute the derived value outside of the loop, eliminating
21// the dependence on the exit value of the induction variable. If the only
22// purpose of the loop is to compute the exit value of some derived
23// expression, this transformation will make the loop dead.
24//
Chris Lattner6148c022001-12-03 17:28:42 +000025//===----------------------------------------------------------------------===//
26
Chris Lattner0e5f4992006-12-19 21:40:18 +000027#define DEBUG_TYPE "indvars"
Chris Lattner022103b2002-05-07 20:03:00 +000028#include "llvm/Transforms/Scalar.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000029#include "llvm/BasicBlock.h"
Chris Lattner59fdaee2004-04-15 15:21:43 +000030#include "llvm/Constants.h"
Chris Lattner18b3c972003-12-22 05:02:01 +000031#include "llvm/Instructions.h"
Devang Patel7b9f6b12010-03-15 22:23:03 +000032#include "llvm/IntrinsicInst.h"
Owen Andersond672ecb2009-07-03 00:17:18 +000033#include "llvm/LLVMContext.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000034#include "llvm/Type.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000035#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/IVUsers.h"
Nate Begeman36f891b2005-07-30 00:12:19 +000037#include "llvm/Analysis/ScalarEvolutionExpander.h"
John Criswell47df12d2003-12-18 17:19:19 +000038#include "llvm/Analysis/LoopInfo.h"
Devang Patel5ee99972007-03-07 06:39:01 +000039#include "llvm/Analysis/LoopPass.h"
Chris Lattner455889a2002-02-12 22:39:50 +000040#include "llvm/Support/CFG.h"
Andrew Trick56caa092011-06-28 03:01:46 +000041#include "llvm/Support/CommandLine.h"
Chris Lattneree4f13a2007-01-07 01:14:12 +000042#include "llvm/Support/Debug.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000043#include "llvm/Support/raw_ostream.h"
John Criswell47df12d2003-12-18 17:19:19 +000044#include "llvm/Transforms/Utils/Local.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000045#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Andrew Trick4b4bb712011-08-10 03:46:27 +000046#include "llvm/Transforms/Utils/SimplifyIndVar.h"
Andrew Trick37da4082011-05-04 02:10:13 +000047#include "llvm/Target/TargetData.h"
Andrew Trick037d1c02011-07-06 20:50:43 +000048#include "llvm/ADT/DenseMap.h"
Reid Spencera54b7cb2007-01-12 07:05:14 +000049#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000050#include "llvm/ADT/Statistic.h"
John Criswell47df12d2003-12-18 17:19:19 +000051using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000052
Andrew Trick2fabd462011-06-21 03:22:38 +000053STATISTIC(NumRemoved , "Number of aux indvars removed");
54STATISTIC(NumWidened , "Number of indvars widened");
55STATISTIC(NumInserted , "Number of canonical indvars added");
56STATISTIC(NumReplaced , "Number of exit values replaced");
57STATISTIC(NumLFTR , "Number of loop exit tests replaced");
Andrew Trick2fabd462011-06-21 03:22:38 +000058STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
Andrew Trick037d1c02011-07-06 20:50:43 +000059STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
Chris Lattner3324e712003-12-22 03:58:44 +000060
Andrew Trick4b4bb712011-08-10 03:46:27 +000061namespace llvm {
Andrew Trickf21bdf42011-09-12 18:28:44 +000062 cl::opt<bool> EnableIVRewrite(
Andrew Trickb0598b12011-09-15 20:58:37 +000063 "enable-iv-rewrite", cl::Hidden,
Andrew Trickf21bdf42011-09-12 18:28:44 +000064 cl::desc("Enable canonical induction variable rewriting"));
Andrew Trick75ebc0e2011-09-06 20:20:38 +000065
66 // Trip count verification can be enabled by default under NDEBUG if we
67 // implement a strong expression equivalence checker in SCEV. Until then, we
68 // use the verify-indvars flag, which may assert in some cases.
69 cl::opt<bool> VerifyIndvars(
70 "verify-indvars", cl::Hidden,
71 cl::desc("Verify the ScalarEvolution result after running indvars"));
Andrew Trick4b4bb712011-08-10 03:46:27 +000072}
Andrew Trick37da4082011-05-04 02:10:13 +000073
Chris Lattner0e5f4992006-12-19 21:40:18 +000074namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000075 class IndVarSimplify : public LoopPass {
Dan Gohman81db61a2009-05-12 02:17:14 +000076 IVUsers *IU;
Chris Lattner40bf8b42004-04-02 20:24:31 +000077 LoopInfo *LI;
78 ScalarEvolution *SE;
Dan Gohmande53dc02009-06-27 05:16:57 +000079 DominatorTree *DT;
Andrew Trick37da4082011-05-04 02:10:13 +000080 TargetData *TD;
Andrew Trick2fabd462011-06-21 03:22:38 +000081
Andrew Trickb12a7542011-03-17 23:51:11 +000082 SmallVector<WeakVH, 16> DeadInsts;
Chris Lattner15cad752003-12-23 07:47:09 +000083 bool Changed;
Chris Lattner3324e712003-12-22 03:58:44 +000084 public:
Devang Patel794fd752007-05-01 21:15:47 +000085
Dan Gohman5668cf72009-07-15 01:26:32 +000086 static char ID; // Pass identification, replacement for typeid
Andrew Trick2fabd462011-06-21 03:22:38 +000087 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
Andrew Trick15832f62011-06-28 02:49:20 +000088 Changed(false) {
Owen Anderson081c34b2010-10-19 17:21:58 +000089 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
90 }
Devang Patel794fd752007-05-01 21:15:47 +000091
Dan Gohman5668cf72009-07-15 01:26:32 +000092 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
Dan Gohman60f8a632009-02-17 20:49:49 +000093
Dan Gohman5668cf72009-07-15 01:26:32 +000094 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
95 AU.addRequired<DominatorTree>();
96 AU.addRequired<LoopInfo>();
97 AU.addRequired<ScalarEvolution>();
98 AU.addRequiredID(LoopSimplifyID);
99 AU.addRequiredID(LCSSAID);
Andrew Trickf21bdf42011-09-12 18:28:44 +0000100 if (EnableIVRewrite)
Andrew Trick56caa092011-06-28 03:01:46 +0000101 AU.addRequired<IVUsers>();
Dan Gohman5668cf72009-07-15 01:26:32 +0000102 AU.addPreserved<ScalarEvolution>();
103 AU.addPreservedID(LoopSimplifyID);
104 AU.addPreservedID(LCSSAID);
Andrew Trickf21bdf42011-09-12 18:28:44 +0000105 if (EnableIVRewrite)
Andrew Trick2fabd462011-06-21 03:22:38 +0000106 AU.addPreserved<IVUsers>();
Dan Gohman5668cf72009-07-15 01:26:32 +0000107 AU.setPreservesCFG();
108 }
Chris Lattner15cad752003-12-23 07:47:09 +0000109
Chris Lattner40bf8b42004-04-02 20:24:31 +0000110 private:
Andrew Trick037d1c02011-07-06 20:50:43 +0000111 virtual void releaseMemory() {
Andrew Trick037d1c02011-07-06 20:50:43 +0000112 DeadInsts.clear();
113 }
114
Andrew Trickb12a7542011-03-17 23:51:11 +0000115 bool isValidRewrite(Value *FromVal, Value *ToVal);
Devang Patel5ee99972007-03-07 06:39:01 +0000116
Andrew Trick1a54bb22011-07-12 00:08:50 +0000117 void HandleFloatingPointIV(Loop *L, PHINode *PH);
118 void RewriteNonIntegerIVs(Loop *L);
119
Andrew Trick4b4bb712011-08-10 03:46:27 +0000120 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
Andrew Trick06988bc2011-08-06 07:00:37 +0000121
Andrew Trick4b4bb712011-08-10 03:46:27 +0000122 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
123
Dan Gohman454d26d2010-02-22 04:11:59 +0000124 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
Devang Pateld22a8492008-09-09 21:41:07 +0000125
Andrew Trickfc933c02011-07-18 20:32:31 +0000126 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
127 PHINode *IndVar, SCEVExpander &Rewriter);
Dan Gohman81db61a2009-05-12 02:17:14 +0000128
Andrew Trick1a54bb22011-07-12 00:08:50 +0000129 void SinkUnusedInvariants(Loop *L);
Chris Lattner3324e712003-12-22 03:58:44 +0000130 };
Chris Lattner5e761402002-09-10 05:24:05 +0000131}
Chris Lattner394437f2001-12-04 04:32:29 +0000132
Dan Gohman844731a2008-05-13 00:00:25 +0000133char IndVarSimplify::ID = 0;
Owen Anderson2ab36d32010-10-12 19:48:12 +0000134INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
Andrew Trick37da4082011-05-04 02:10:13 +0000135 "Induction Variable Simplification", false, false)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000136INITIALIZE_PASS_DEPENDENCY(DominatorTree)
137INITIALIZE_PASS_DEPENDENCY(LoopInfo)
138INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
139INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
140INITIALIZE_PASS_DEPENDENCY(LCSSA)
141INITIALIZE_PASS_DEPENDENCY(IVUsers)
142INITIALIZE_PASS_END(IndVarSimplify, "indvars",
Andrew Trick37da4082011-05-04 02:10:13 +0000143 "Induction Variable Simplification", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000144
Daniel Dunbar394f0442008-10-22 23:32:42 +0000145Pass *llvm::createIndVarSimplifyPass() {
Chris Lattner3324e712003-12-22 03:58:44 +0000146 return new IndVarSimplify();
Chris Lattner394437f2001-12-04 04:32:29 +0000147}
148
Andrew Trickb12a7542011-03-17 23:51:11 +0000149/// isValidRewrite - Return true if the SCEV expansion generated by the
150/// rewriter can replace the original value. SCEV guarantees that it
151/// produces the same value, but the way it is produced may be illegal IR.
152/// Ideally, this function will only be called for verification.
153bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
154 // If an SCEV expression subsumed multiple pointers, its expansion could
155 // reassociate the GEP changing the base pointer. This is illegal because the
156 // final address produced by a GEP chain must be inbounds relative to its
157 // underlying object. Otherwise basic alias analysis, among other things,
158 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
159 // producing an expression involving multiple pointers. Until then, we must
160 // bail out here.
161 //
162 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
163 // because it understands lcssa phis while SCEV does not.
164 Value *FromPtr = FromVal;
165 Value *ToPtr = ToVal;
166 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
167 FromPtr = GEP->getPointerOperand();
168 }
169 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
170 ToPtr = GEP->getPointerOperand();
171 }
172 if (FromPtr != FromVal || ToPtr != ToVal) {
173 // Quickly check the common case
174 if (FromPtr == ToPtr)
175 return true;
176
177 // SCEV may have rewritten an expression that produces the GEP's pointer
178 // operand. That's ok as long as the pointer operand has the same base
179 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
180 // base of a recurrence. This handles the case in which SCEV expansion
181 // converts a pointer type recurrence into a nonrecurrent pointer base
182 // indexed by an integer recurrence.
183 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
184 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
185 if (FromBase == ToBase)
186 return true;
187
188 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
189 << *FromBase << " != " << *ToBase << "\n");
190
191 return false;
192 }
193 return true;
194}
195
Andrew Trick86c98142011-07-20 05:32:06 +0000196/// Determine the insertion point for this user. By default, insert immediately
197/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
198/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
199/// common dominator for the incoming blocks.
200static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
201 DominatorTree *DT) {
202 PHINode *PHI = dyn_cast<PHINode>(User);
203 if (!PHI)
204 return User;
205
206 Instruction *InsertPt = 0;
207 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
208 if (PHI->getIncomingValue(i) != Def)
209 continue;
210
211 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
212 if (!InsertPt) {
213 InsertPt = InsertBB->getTerminator();
214 continue;
215 }
216 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
217 InsertPt = InsertBB->getTerminator();
218 }
219 assert(InsertPt && "Missing phi operand");
Jay Foad626f52d2011-07-20 08:15:21 +0000220 assert((!isa<Instruction>(Def) ||
221 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
Andrew Trick86c98142011-07-20 05:32:06 +0000222 "def does not dominate all uses");
223 return InsertPt;
224}
225
Andrew Trick1a54bb22011-07-12 00:08:50 +0000226//===----------------------------------------------------------------------===//
227// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
228//===----------------------------------------------------------------------===//
Andrew Trick4dfdf242011-05-03 22:24:10 +0000229
Andrew Trick1a54bb22011-07-12 00:08:50 +0000230/// ConvertToSInt - Convert APF to an integer, if possible.
231static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
232 bool isExact = false;
233 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
Andrew Trick4dfdf242011-05-03 22:24:10 +0000234 return false;
Andrew Trick1a54bb22011-07-12 00:08:50 +0000235 // See if we can convert this to an int64_t
236 uint64_t UIntVal;
237 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
238 &isExact) != APFloat::opOK || !isExact)
Andrew Trick4dfdf242011-05-03 22:24:10 +0000239 return false;
Andrew Trick1a54bb22011-07-12 00:08:50 +0000240 IntVal = UIntVal;
Andrew Trick4dfdf242011-05-03 22:24:10 +0000241 return true;
242}
243
Andrew Trick1a54bb22011-07-12 00:08:50 +0000244/// HandleFloatingPointIV - If the loop has floating induction variable
245/// then insert corresponding integer induction variable if possible.
246/// For example,
247/// for(double i = 0; i < 10000; ++i)
248/// bar(i)
249/// is converted into
250/// for(int i = 0; i < 10000; ++i)
251/// bar((double)i);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000252///
Andrew Trick1a54bb22011-07-12 00:08:50 +0000253void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
254 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
255 unsigned BackEdge = IncomingEdge^1;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000256
Andrew Trick1a54bb22011-07-12 00:08:50 +0000257 // Check incoming value.
258 ConstantFP *InitValueVal =
259 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000260
Andrew Trick1a54bb22011-07-12 00:08:50 +0000261 int64_t InitValue;
262 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
263 return;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000264
Andrew Trick1a54bb22011-07-12 00:08:50 +0000265 // Check IV increment. Reject this PN if increment operation is not
266 // an add or increment value can not be represented by an integer.
267 BinaryOperator *Incr =
268 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
269 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000270
Andrew Trick1a54bb22011-07-12 00:08:50 +0000271 // If this is not an add of the PHI with a constantfp, or if the constant fp
272 // is not an integer, bail out.
273 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
274 int64_t IncValue;
275 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
276 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
277 return;
278
279 // Check Incr uses. One user is PN and the other user is an exit condition
280 // used by the conditional terminator.
281 Value::use_iterator IncrUse = Incr->use_begin();
282 Instruction *U1 = cast<Instruction>(*IncrUse++);
283 if (IncrUse == Incr->use_end()) return;
284 Instruction *U2 = cast<Instruction>(*IncrUse++);
285 if (IncrUse != Incr->use_end()) return;
286
287 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
288 // only used by a branch, we can't transform it.
289 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
290 if (!Compare)
291 Compare = dyn_cast<FCmpInst>(U2);
292 if (Compare == 0 || !Compare->hasOneUse() ||
293 !isa<BranchInst>(Compare->use_back()))
294 return;
295
296 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
297
298 // We need to verify that the branch actually controls the iteration count
299 // of the loop. If not, the new IV can overflow and no one will notice.
300 // The branch block must be in the loop and one of the successors must be out
301 // of the loop.
302 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
303 if (!L->contains(TheBr->getParent()) ||
304 (L->contains(TheBr->getSuccessor(0)) &&
305 L->contains(TheBr->getSuccessor(1))))
306 return;
307
308
309 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
310 // transform it.
311 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
312 int64_t ExitValue;
313 if (ExitValueVal == 0 ||
314 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
315 return;
316
317 // Find new predicate for integer comparison.
318 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
319 switch (Compare->getPredicate()) {
320 default: return; // Unknown comparison.
321 case CmpInst::FCMP_OEQ:
322 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
323 case CmpInst::FCMP_ONE:
324 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
325 case CmpInst::FCMP_OGT:
326 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
327 case CmpInst::FCMP_OGE:
328 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
329 case CmpInst::FCMP_OLT:
330 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
331 case CmpInst::FCMP_OLE:
332 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000333 }
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000334
Andrew Trick1a54bb22011-07-12 00:08:50 +0000335 // We convert the floating point induction variable to a signed i32 value if
336 // we can. This is only safe if the comparison will not overflow in a way
337 // that won't be trapped by the integer equivalent operations. Check for this
338 // now.
339 // TODO: We could use i64 if it is native and the range requires it.
Dan Gohmanca9b7032010-04-12 21:13:43 +0000340
Andrew Trick1a54bb22011-07-12 00:08:50 +0000341 // The start/stride/exit values must all fit in signed i32.
342 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
343 return;
344
345 // If not actually striding (add x, 0.0), avoid touching the code.
346 if (IncValue == 0)
347 return;
348
349 // Positive and negative strides have different safety conditions.
350 if (IncValue > 0) {
351 // If we have a positive stride, we require the init to be less than the
Andrew Trick94f2c232011-09-13 01:59:32 +0000352 // exit value.
353 if (InitValue >= ExitValue)
Andrew Trick1a54bb22011-07-12 00:08:50 +0000354 return;
355
356 uint32_t Range = uint32_t(ExitValue-InitValue);
Andrew Trick94f2c232011-09-13 01:59:32 +0000357 // Check for infinite loop, either:
358 // while (i <= Exit) or until (i > Exit)
359 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000360 if (++Range == 0) return; // Range overflows.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000361 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000362
Andrew Trick1a54bb22011-07-12 00:08:50 +0000363 unsigned Leftover = Range % uint32_t(IncValue);
364
365 // If this is an equality comparison, we require that the strided value
366 // exactly land on the exit value, otherwise the IV condition will wrap
367 // around and do things the fp IV wouldn't.
368 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
369 Leftover != 0)
370 return;
371
372 // If the stride would wrap around the i32 before exiting, we can't
373 // transform the IV.
374 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
375 return;
376
Chris Lattnerd2440572004-04-15 20:26:22 +0000377 } else {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000378 // If we have a negative stride, we require the init to be greater than the
Andrew Trick94f2c232011-09-13 01:59:32 +0000379 // exit value.
380 if (InitValue <= ExitValue)
Andrew Trick1a54bb22011-07-12 00:08:50 +0000381 return;
382
383 uint32_t Range = uint32_t(InitValue-ExitValue);
Andrew Trick94f2c232011-09-13 01:59:32 +0000384 // Check for infinite loop, either:
385 // while (i >= Exit) or until (i < Exit)
386 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000387 if (++Range == 0) return; // Range overflows.
388 }
389
390 unsigned Leftover = Range % uint32_t(-IncValue);
391
392 // If this is an equality comparison, we require that the strided value
393 // exactly land on the exit value, otherwise the IV condition will wrap
394 // around and do things the fp IV wouldn't.
395 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
396 Leftover != 0)
397 return;
398
399 // If the stride would wrap around the i32 before exiting, we can't
400 // transform the IV.
401 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
402 return;
Chris Lattnerd2440572004-04-15 20:26:22 +0000403 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000404
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000405 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
Chris Lattner40bf8b42004-04-02 20:24:31 +0000406
Andrew Trick1a54bb22011-07-12 00:08:50 +0000407 // Insert new integer induction variable.
408 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
409 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
410 PN->getIncomingBlock(IncomingEdge));
Chris Lattner40bf8b42004-04-02 20:24:31 +0000411
Andrew Trick1a54bb22011-07-12 00:08:50 +0000412 Value *NewAdd =
413 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
414 Incr->getName()+".int", Incr);
415 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
Dan Gohmanc2390b12009-02-12 22:19:27 +0000416
Andrew Trick1a54bb22011-07-12 00:08:50 +0000417 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
418 ConstantInt::get(Int32Ty, ExitValue),
419 Compare->getName());
Dan Gohman81db61a2009-05-12 02:17:14 +0000420
Andrew Trick1a54bb22011-07-12 00:08:50 +0000421 // In the following deletions, PN may become dead and may be deleted.
422 // Use a WeakVH to observe whether this happens.
423 WeakVH WeakPH = PN;
424
425 // Delete the old floating point exit comparison. The branch starts using the
426 // new comparison.
427 NewCompare->takeName(Compare);
428 Compare->replaceAllUsesWith(NewCompare);
429 RecursivelyDeleteTriviallyDeadInstructions(Compare);
430
431 // Delete the old floating point increment.
432 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
433 RecursivelyDeleteTriviallyDeadInstructions(Incr);
434
435 // If the FP induction variable still has uses, this is because something else
436 // in the loop uses its value. In order to canonicalize the induction
437 // variable, we chose to eliminate the IV and rewrite it in terms of an
438 // int->fp cast.
439 //
440 // We give preference to sitofp over uitofp because it is faster on most
441 // platforms.
442 if (WeakPH) {
443 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
Bill Wendlingb05fdd62011-08-24 20:28:43 +0000444 PN->getParent()->getFirstInsertionPt());
Andrew Trick1a54bb22011-07-12 00:08:50 +0000445 PN->replaceAllUsesWith(Conv);
446 RecursivelyDeleteTriviallyDeadInstructions(PN);
447 }
448
449 // Add a new IVUsers entry for the newly-created integer PHI.
450 if (IU)
451 IU->AddUsersIfInteresting(NewPHI);
Andrew Trick4b4bb712011-08-10 03:46:27 +0000452
453 Changed = true;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000454}
455
Andrew Trick1a54bb22011-07-12 00:08:50 +0000456void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
457 // First step. Check to see if there are any floating-point recurrences.
458 // If there are, change them into integer recurrences, permitting analysis by
459 // the SCEV routines.
460 //
461 BasicBlock *Header = L->getHeader();
462
463 SmallVector<WeakVH, 8> PHIs;
464 for (BasicBlock::iterator I = Header->begin();
465 PHINode *PN = dyn_cast<PHINode>(I); ++I)
466 PHIs.push_back(PN);
467
468 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
469 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
470 HandleFloatingPointIV(L, PN);
471
472 // If the loop previously had floating-point IV, ScalarEvolution
473 // may not have been able to compute a trip count. Now that we've done some
474 // re-writing, the trip count may be computable.
475 if (Changed)
476 SE->forgetLoop(L);
477}
478
479//===----------------------------------------------------------------------===//
480// RewriteLoopExitValues - Optimize IV users outside the loop.
481// As a side effect, reduces the amount of IV processing within the loop.
482//===----------------------------------------------------------------------===//
483
Chris Lattner40bf8b42004-04-02 20:24:31 +0000484/// RewriteLoopExitValues - Check to see if this loop has a computable
485/// loop-invariant execution count. If so, this means that we can compute the
486/// final value of any expressions that are recurrent in the loop, and
487/// substitute the exit values from the loop into any instructions outside of
488/// the loop that use the final values of the current expressions.
Dan Gohman81db61a2009-05-12 02:17:14 +0000489///
490/// This is mostly redundant with the regular IndVarSimplify activities that
491/// happen later, except that it's more powerful in some cases, because it's
492/// able to brute-force evaluate arbitrary instructions as long as they have
493/// constant operands at the beginning of the loop.
Chris Lattnerf1859892011-01-09 02:16:18 +0000494void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
Dan Gohman81db61a2009-05-12 02:17:14 +0000495 // Verify the input to the pass in already in LCSSA form.
Dan Gohmanbbf81d82010-03-10 19:38:49 +0000496 assert(L->isLCSSAForm(*DT));
Dan Gohman81db61a2009-05-12 02:17:14 +0000497
Devang Patelb7211a22007-08-21 00:31:24 +0000498 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattner9f3d7382007-03-04 03:43:23 +0000499 L->getUniqueExitBlocks(ExitBlocks);
Misha Brukmanfd939082005-04-21 23:48:37 +0000500
Chris Lattner9f3d7382007-03-04 03:43:23 +0000501 // Find all values that are computed inside the loop, but used outside of it.
502 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
503 // the exit blocks of the loop to find them.
504 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
505 BasicBlock *ExitBB = ExitBlocks[i];
Dan Gohmancafb8132009-02-17 19:13:57 +0000506
Chris Lattner9f3d7382007-03-04 03:43:23 +0000507 // If there are no PHI nodes in this exit block, then no values defined
508 // inside the loop are used on this path, skip it.
509 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
510 if (!PN) continue;
Dan Gohmancafb8132009-02-17 19:13:57 +0000511
Chris Lattner9f3d7382007-03-04 03:43:23 +0000512 unsigned NumPreds = PN->getNumIncomingValues();
Dan Gohmancafb8132009-02-17 19:13:57 +0000513
Chris Lattner9f3d7382007-03-04 03:43:23 +0000514 // Iterate over all of the PHI nodes.
515 BasicBlock::iterator BBI = ExitBB->begin();
516 while ((PN = dyn_cast<PHINode>(BBI++))) {
Torok Edwin3790fb02009-05-24 19:36:09 +0000517 if (PN->use_empty())
518 continue; // dead use, don't replace it
Dan Gohman814f2b22010-02-18 21:34:02 +0000519
520 // SCEV only supports integer expressions for now.
521 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
522 continue;
523
Dale Johannesen45a2d7d2010-02-19 07:14:22 +0000524 // It's necessary to tell ScalarEvolution about this explicitly so that
525 // it can walk the def-use list and forget all SCEVs, as it may not be
526 // watching the PHI itself. Once the new exit value is in place, there
527 // may not be a def-use connection between the loop and every instruction
528 // which got a SCEVAddRecExpr for that loop.
529 SE->forgetValue(PN);
530
Chris Lattner9f3d7382007-03-04 03:43:23 +0000531 // Iterate over all of the values in all the PHI nodes.
532 for (unsigned i = 0; i != NumPreds; ++i) {
533 // If the value being merged in is not integer or is not defined
534 // in the loop, skip it.
535 Value *InVal = PN->getIncomingValue(i);
Dan Gohman814f2b22010-02-18 21:34:02 +0000536 if (!isa<Instruction>(InVal))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000537 continue;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000538
Chris Lattner9f3d7382007-03-04 03:43:23 +0000539 // If this pred is for a subloop, not L itself, skip it.
Dan Gohmancafb8132009-02-17 19:13:57 +0000540 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
Chris Lattner9f3d7382007-03-04 03:43:23 +0000541 continue; // The Block is in a subloop, skip it.
542
543 // Check that InVal is defined in the loop.
544 Instruction *Inst = cast<Instruction>(InVal);
Dan Gohman92329c72009-12-18 01:24:09 +0000545 if (!L->contains(Inst))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000546 continue;
Dan Gohmancafb8132009-02-17 19:13:57 +0000547
Chris Lattner9f3d7382007-03-04 03:43:23 +0000548 // Okay, this instruction has a user outside of the current loop
549 // and varies predictably *inside* the loop. Evaluate the value it
550 // contains when the loop exits, if possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000551 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +0000552 if (!SE->isLoopInvariant(ExitValue, L))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000553 continue;
Chris Lattner9caed542007-03-04 01:00:28 +0000554
Dan Gohman667d7872009-06-26 22:53:46 +0000555 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
Dan Gohmancafb8132009-02-17 19:13:57 +0000556
David Greenef67ef312010-01-05 01:27:06 +0000557 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
Chris Lattnerbdff5482009-08-23 04:37:46 +0000558 << " LoopVal = " << *Inst << "\n");
Chris Lattner9f3d7382007-03-04 03:43:23 +0000559
Andrew Trickb12a7542011-03-17 23:51:11 +0000560 if (!isValidRewrite(Inst, ExitVal)) {
561 DeadInsts.push_back(ExitVal);
562 continue;
563 }
564 Changed = true;
565 ++NumReplaced;
566
Chris Lattner9f3d7382007-03-04 03:43:23 +0000567 PN->setIncomingValue(i, ExitVal);
Dan Gohmancafb8132009-02-17 19:13:57 +0000568
Dan Gohman81db61a2009-05-12 02:17:14 +0000569 // If this instruction is dead now, delete it.
570 RecursivelyDeleteTriviallyDeadInstructions(Inst);
Dan Gohmancafb8132009-02-17 19:13:57 +0000571
Dan Gohman65d1e2b2009-07-14 01:09:02 +0000572 if (NumPreds == 1) {
573 // Completely replace a single-pred PHI. This is safe, because the
574 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
575 // node anymore.
Chris Lattner9f3d7382007-03-04 03:43:23 +0000576 PN->replaceAllUsesWith(ExitVal);
Dan Gohman81db61a2009-05-12 02:17:14 +0000577 RecursivelyDeleteTriviallyDeadInstructions(PN);
Chris Lattnerc9838f22007-03-03 22:48:48 +0000578 }
579 }
Dan Gohman65d1e2b2009-07-14 01:09:02 +0000580 if (NumPreds != 1) {
Dan Gohman667d7872009-06-26 22:53:46 +0000581 // Clone the PHI and delete the original one. This lets IVUsers and
582 // any other maps purge the original user from their records.
Devang Patel50b6e332009-10-27 22:16:29 +0000583 PHINode *NewPN = cast<PHINode>(PN->clone());
Dan Gohman667d7872009-06-26 22:53:46 +0000584 NewPN->takeName(PN);
585 NewPN->insertBefore(PN);
586 PN->replaceAllUsesWith(NewPN);
587 PN->eraseFromParent();
588 }
Chris Lattnerc9838f22007-03-03 22:48:48 +0000589 }
590 }
Dan Gohman472fdf72010-03-20 03:53:53 +0000591
592 // The insertion point instruction may have been deleted; clear it out
593 // so that the rewriter doesn't trip over it later.
594 Rewriter.clearInsertPoint();
Chris Lattner40bf8b42004-04-02 20:24:31 +0000595}
596
Andrew Trick1a54bb22011-07-12 00:08:50 +0000597//===----------------------------------------------------------------------===//
598// Rewrite IV users based on a canonical IV.
Andrew Trickf21bdf42011-09-12 18:28:44 +0000599// Only for use with -enable-iv-rewrite.
Andrew Trick1a54bb22011-07-12 00:08:50 +0000600//===----------------------------------------------------------------------===//
Dale Johannesenc671d892009-04-15 23:31:51 +0000601
Andrew Trick39d78022011-09-09 17:35:10 +0000602/// FIXME: It is an extremely bad idea to indvar substitute anything more
603/// complex than affine induction variables. Doing so will put expensive
604/// polynomial evaluations inside of the loop, and the str reduction pass
605/// currently can only reduce affine polynomials. For now just disable
606/// indvar subst on anything more complex than an affine addrec, unless
607/// it can be expanded to a trivial value.
Andrew Trick1a54bb22011-07-12 00:08:50 +0000608static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
609 // Loop-invariant values are safe.
610 if (SE->isLoopInvariant(S, L)) return true;
611
612 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
613 // to transform them into efficient code.
614 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
615 return AR->isAffine();
616
617 // An add is safe it all its operands are safe.
Andrew Trick39d78022011-09-09 17:35:10 +0000618 if (const SCEVCommutativeExpr *Commutative
619 = dyn_cast<SCEVCommutativeExpr>(S)) {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000620 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
621 E = Commutative->op_end(); I != E; ++I)
622 if (!isSafe(*I, L, SE)) return false;
623 return true;
624 }
625
626 // A cast is safe if its operand is.
627 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
628 return isSafe(C->getOperand(), L, SE);
629
630 // A udiv is safe if its operands are.
631 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
632 return isSafe(UD->getLHS(), L, SE) &&
633 isSafe(UD->getRHS(), L, SE);
634
635 // SCEVUnknown is always safe.
636 if (isa<SCEVUnknown>(S))
637 return true;
638
639 // Nothing else is safe.
640 return false;
641}
642
643void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
644 // Rewrite all induction variable expressions in terms of the canonical
645 // induction variable.
646 //
647 // If there were induction variables of other sizes or offsets, manually
648 // add the offsets to the primary induction variable and cast, avoiding
649 // the need for the code evaluation methods to insert induction variables
650 // of different sizes.
651 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
652 Value *Op = UI->getOperandValToReplace();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000653 Type *UseTy = Op->getType();
Andrew Trick1a54bb22011-07-12 00:08:50 +0000654 Instruction *User = UI->getUser();
655
656 // Compute the final addrec to expand into code.
657 const SCEV *AR = IU->getReplacementExpr(*UI);
658
659 // Evaluate the expression out of the loop, if possible.
660 if (!L->contains(UI->getUser())) {
661 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
662 if (SE->isLoopInvariant(ExitVal, L))
663 AR = ExitVal;
664 }
665
666 // FIXME: It is an extremely bad idea to indvar substitute anything more
667 // complex than affine induction variables. Doing so will put expensive
668 // polynomial evaluations inside of the loop, and the str reduction pass
669 // currently can only reduce affine polynomials. For now just disable
670 // indvar subst on anything more complex than an affine addrec, unless
671 // it can be expanded to a trivial value.
672 if (!isSafe(AR, L, SE))
673 continue;
674
675 // Determine the insertion point for this user. By default, insert
676 // immediately before the user. The SCEVExpander class will automatically
677 // hoist loop invariants out of the loop. For PHI nodes, there may be
678 // multiple uses, so compute the nearest common dominator for the
679 // incoming blocks.
Andrew Trick86c98142011-07-20 05:32:06 +0000680 Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
Andrew Trick1a54bb22011-07-12 00:08:50 +0000681
682 // Now expand it into actual Instructions and patch it into place.
683 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
684
685 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
686 << " into = " << *NewVal << "\n");
687
688 if (!isValidRewrite(Op, NewVal)) {
689 DeadInsts.push_back(NewVal);
690 continue;
691 }
692 // Inform ScalarEvolution that this value is changing. The change doesn't
693 // affect its value, but it does potentially affect which use lists the
694 // value will be on after the replacement, which affects ScalarEvolution's
695 // ability to walk use lists and drop dangling pointers when a value is
696 // deleted.
697 SE->forgetValue(User);
698
699 // Patch the new value into place.
700 if (Op->hasName())
701 NewVal->takeName(Op);
702 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
703 NewValI->setDebugLoc(User->getDebugLoc());
704 User->replaceUsesOfWith(Op, NewVal);
705 UI->setOperandValToReplace(NewVal);
706
707 ++NumRemoved;
708 Changed = true;
709
710 // The old value may be dead now.
711 DeadInsts.push_back(Op);
712 }
713}
714
715//===----------------------------------------------------------------------===//
716// IV Widening - Extend the width of an IV to cover its widest uses.
717//===----------------------------------------------------------------------===//
718
Andrew Trickf85092c2011-05-20 18:25:42 +0000719namespace {
720 // Collect information about induction variables that are used by sign/zero
721 // extend operations. This information is recorded by CollectExtend and
722 // provides the input to WidenIV.
723 struct WideIVInfo {
Andrew Trick513b1f42011-10-15 01:38:14 +0000724 PHINode *NarrowIV;
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000725 Type *WidestNativeType; // Widest integer type created [sz]ext
Andrew Trick4b4bb712011-08-10 03:46:27 +0000726 bool IsSigned; // Was an sext user seen before a zext?
Andrew Trickf85092c2011-05-20 18:25:42 +0000727
Andrew Trick513b1f42011-10-15 01:38:14 +0000728 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
Andrew Trickf85092c2011-05-20 18:25:42 +0000729 };
Andrew Trick4b4bb712011-08-10 03:46:27 +0000730
731 class WideIVVisitor : public IVVisitor {
732 ScalarEvolution *SE;
733 const TargetData *TD;
734
735 public:
736 WideIVInfo WI;
737
Andrew Trick513b1f42011-10-15 01:38:14 +0000738 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
739 const TargetData *TData) :
740 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
Andrew Trick4b4bb712011-08-10 03:46:27 +0000741
742 // Implement the interface used by simplifyUsersOfIV.
743 virtual void visitCast(CastInst *Cast);
744 };
Andrew Trickf85092c2011-05-20 18:25:42 +0000745}
746
Andrew Trick4b4bb712011-08-10 03:46:27 +0000747/// visitCast - Update information about the induction variable that is
Andrew Trickf85092c2011-05-20 18:25:42 +0000748/// extended by this sign or zero extend operation. This is used to determine
749/// the final width of the IV before actually widening it.
Andrew Trick4b4bb712011-08-10 03:46:27 +0000750void WideIVVisitor::visitCast(CastInst *Cast) {
751 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
752 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
753 return;
754
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000755 Type *Ty = Cast->getType();
Andrew Trickf85092c2011-05-20 18:25:42 +0000756 uint64_t Width = SE->getTypeSizeInBits(Ty);
757 if (TD && !TD->isLegalInteger(Width))
758 return;
759
Andrew Trick2fabd462011-06-21 03:22:38 +0000760 if (!WI.WidestNativeType) {
761 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
762 WI.IsSigned = IsSigned;
Andrew Trickf85092c2011-05-20 18:25:42 +0000763 return;
764 }
765
766 // We extend the IV to satisfy the sign of its first user, arbitrarily.
Andrew Trick2fabd462011-06-21 03:22:38 +0000767 if (WI.IsSigned != IsSigned)
Andrew Trickf85092c2011-05-20 18:25:42 +0000768 return;
769
Andrew Trick2fabd462011-06-21 03:22:38 +0000770 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
771 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
Andrew Trickf85092c2011-05-20 18:25:42 +0000772}
773
774namespace {
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000775
776/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
777/// WideIV that computes the same value as the Narrow IV def. This avoids
778/// caching Use* pointers.
779struct NarrowIVDefUse {
780 Instruction *NarrowDef;
781 Instruction *NarrowUse;
782 Instruction *WideDef;
783
784 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
785
786 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
787 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
788};
789
Andrew Trickf85092c2011-05-20 18:25:42 +0000790/// WidenIV - The goal of this transform is to remove sign and zero extends
791/// without creating any new induction variables. To do this, it creates a new
792/// phi of the wider type and redirects all users, either removing extends or
793/// inserting truncs whenever we stop propagating the type.
794///
795class WidenIV {
Andrew Trick2fabd462011-06-21 03:22:38 +0000796 // Parameters
Andrew Trickf85092c2011-05-20 18:25:42 +0000797 PHINode *OrigPhi;
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000798 Type *WideType;
Andrew Trickf85092c2011-05-20 18:25:42 +0000799 bool IsSigned;
800
Andrew Trick2fabd462011-06-21 03:22:38 +0000801 // Context
802 LoopInfo *LI;
803 Loop *L;
Andrew Trickf85092c2011-05-20 18:25:42 +0000804 ScalarEvolution *SE;
Andrew Trick2fabd462011-06-21 03:22:38 +0000805 DominatorTree *DT;
Andrew Trickf85092c2011-05-20 18:25:42 +0000806
Andrew Trick2fabd462011-06-21 03:22:38 +0000807 // Result
Andrew Trickf85092c2011-05-20 18:25:42 +0000808 PHINode *WidePhi;
809 Instruction *WideInc;
810 const SCEV *WideIncExpr;
Andrew Trick2fabd462011-06-21 03:22:38 +0000811 SmallVectorImpl<WeakVH> &DeadInsts;
Andrew Trickf85092c2011-05-20 18:25:42 +0000812
Andrew Trick2fabd462011-06-21 03:22:38 +0000813 SmallPtrSet<Instruction*,16> Widened;
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000814 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
Andrew Trickf85092c2011-05-20 18:25:42 +0000815
816public:
Andrew Trick513b1f42011-10-15 01:38:14 +0000817 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
Andrew Trick2fabd462011-06-21 03:22:38 +0000818 ScalarEvolution *SEv, DominatorTree *DTree,
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000819 SmallVectorImpl<WeakVH> &DI) :
Andrew Trick513b1f42011-10-15 01:38:14 +0000820 OrigPhi(WI.NarrowIV),
Andrew Trick2fabd462011-06-21 03:22:38 +0000821 WideType(WI.WidestNativeType),
822 IsSigned(WI.IsSigned),
Andrew Trickf85092c2011-05-20 18:25:42 +0000823 LI(LInfo),
824 L(LI->getLoopFor(OrigPhi->getParent())),
825 SE(SEv),
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000826 DT(DTree),
Andrew Trickf85092c2011-05-20 18:25:42 +0000827 WidePhi(0),
828 WideInc(0),
Andrew Trick2fabd462011-06-21 03:22:38 +0000829 WideIncExpr(0),
830 DeadInsts(DI) {
Andrew Trickf85092c2011-05-20 18:25:42 +0000831 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
832 }
833
Andrew Trick2fabd462011-06-21 03:22:38 +0000834 PHINode *CreateWideIV(SCEVExpander &Rewriter);
Andrew Trickf85092c2011-05-20 18:25:42 +0000835
836protected:
Andrew Trick909ef7d2011-09-28 01:35:36 +0000837 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
838 Instruction *Use);
839
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000840 Instruction *CloneIVUser(NarrowIVDefUse DU);
Andrew Trickf85092c2011-05-20 18:25:42 +0000841
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000842 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
843
Andrew Trick20151da2011-09-10 01:24:17 +0000844 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
845
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000846 Instruction *WidenIVUse(NarrowIVDefUse DU);
Andrew Trick4b029152011-07-02 02:34:25 +0000847
848 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
Andrew Trickf85092c2011-05-20 18:25:42 +0000849};
850} // anonymous namespace
851
Andrew Trick909ef7d2011-09-28 01:35:36 +0000852/// isLoopInvariant - Perform a quick domtree based check for loop invariance
853/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
854/// gratuitous for this purpose.
855static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
856 Instruction *Inst = dyn_cast<Instruction>(V);
857 if (!Inst)
858 return true;
859
860 return DT->properlyDominates(Inst->getParent(), L->getHeader());
861}
862
863Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
864 Instruction *Use) {
865 // Set the debug location and conservative insertion point.
866 IRBuilder<> Builder(Use);
867 // Hoist the insertion point into loop preheaders as far as possible.
868 for (const Loop *L = LI->getLoopFor(Use->getParent());
869 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
870 L = L->getParentLoop())
871 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
872
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000873 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
874 Builder.CreateZExt(NarrowOper, WideType);
Andrew Trickf85092c2011-05-20 18:25:42 +0000875}
876
877/// CloneIVUser - Instantiate a wide operation to replace a narrow
878/// operation. This only needs to handle operations that can evaluation to
879/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000880Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
881 unsigned Opcode = DU.NarrowUse->getOpcode();
Andrew Trickf85092c2011-05-20 18:25:42 +0000882 switch (Opcode) {
883 default:
884 return 0;
885 case Instruction::Add:
886 case Instruction::Mul:
887 case Instruction::UDiv:
888 case Instruction::Sub:
889 case Instruction::And:
890 case Instruction::Or:
891 case Instruction::Xor:
892 case Instruction::Shl:
893 case Instruction::LShr:
894 case Instruction::AShr:
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000895 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
Andrew Trickf85092c2011-05-20 18:25:42 +0000896
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000897 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
898 // anything about the narrow operand yet so must insert a [sz]ext. It is
899 // probably loop invariant and will be folded or hoisted. If it actually
900 // comes from a widened IV, it should be removed during a future call to
901 // WidenIVUse.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000902 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
Andrew Trick909ef7d2011-09-28 01:35:36 +0000903 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000904 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
Andrew Trick909ef7d2011-09-28 01:35:36 +0000905 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000906
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000907 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +0000908 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000909 LHS, RHS,
Andrew Trickf85092c2011-05-20 18:25:42 +0000910 NarrowBO->getName());
Andrew Trick909ef7d2011-09-28 01:35:36 +0000911 IRBuilder<> Builder(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +0000912 Builder.Insert(WideBO);
Andrew Trick6e0ce242011-06-30 19:02:17 +0000913 if (const OverflowingBinaryOperator *OBO =
914 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
915 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
916 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
917 }
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000918 return WideBO;
Andrew Trickf85092c2011-05-20 18:25:42 +0000919 }
920 llvm_unreachable(0);
921}
922
Andrew Trick20151da2011-09-10 01:24:17 +0000923/// No-wrap operations can transfer sign extension of their result to their
924/// operands. Generate the SCEV value for the widened operation without
925/// actually modifying the IR yet. If the expression after extending the
926/// operands is an AddRec for this loop, return it.
927const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
928 // Handle the common case of add<nsw/nuw>
929 if (DU.NarrowUse->getOpcode() != Instruction::Add)
930 return 0;
931
932 // One operand (NarrowDef) has already been extended to WideDef. Now determine
933 // if extending the other will lead to a recurrence.
934 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
935 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
936
937 const SCEV *ExtendOperExpr = 0;
938 const OverflowingBinaryOperator *OBO =
939 cast<OverflowingBinaryOperator>(DU.NarrowUse);
940 if (IsSigned && OBO->hasNoSignedWrap())
941 ExtendOperExpr = SE->getSignExtendExpr(
942 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
943 else if(!IsSigned && OBO->hasNoUnsignedWrap())
944 ExtendOperExpr = SE->getZeroExtendExpr(
945 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
946 else
947 return 0;
948
949 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
950 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr,
951 IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW));
952
953 if (!AddRec || AddRec->getLoop() != L)
954 return 0;
955 return AddRec;
956}
957
Andrew Trick39d78022011-09-09 17:35:10 +0000958/// GetWideRecurrence - Is this instruction potentially interesting from
959/// IVUsers' perspective after widening it's type? In other words, can the
960/// extend be safely hoisted out of the loop with SCEV reducing the value to a
961/// recurrence on the same loop. If so, return the sign or zero extended
962/// recurrence. Otherwise return NULL.
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000963const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
964 if (!SE->isSCEVable(NarrowUse->getType()))
965 return 0;
966
967 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
968 if (SE->getTypeSizeInBits(NarrowExpr->getType())
969 >= SE->getTypeSizeInBits(WideType)) {
970 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
971 // index. So don't follow this use.
972 return 0;
973 }
974
975 const SCEV *WideExpr = IsSigned ?
976 SE->getSignExtendExpr(NarrowExpr, WideType) :
977 SE->getZeroExtendExpr(NarrowExpr, WideType);
978 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
979 if (!AddRec || AddRec->getLoop() != L)
980 return 0;
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000981 return AddRec;
982}
983
Andrew Trickf85092c2011-05-20 18:25:42 +0000984/// WidenIVUse - Determine whether an individual user of the narrow IV can be
985/// widened. If so, return the wide clone of the user.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000986Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
Andrew Trickcc359d92011-06-29 23:03:57 +0000987
Andrew Trick4b029152011-07-02 02:34:25 +0000988 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000989 if (isa<PHINode>(DU.NarrowUse) &&
990 LI->getLoopFor(DU.NarrowUse->getParent()) != L)
Andrew Trickf85092c2011-05-20 18:25:42 +0000991 return 0;
992
Andrew Trickf85092c2011-05-20 18:25:42 +0000993 // Our raison d'etre! Eliminate sign and zero extension.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000994 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
995 Value *NewDef = DU.WideDef;
996 if (DU.NarrowUse->getType() != WideType) {
997 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000998 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
999 if (CastWidth < IVWidth) {
1000 // The cast isn't as wide as the IV, so insert a Trunc.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001001 IRBuilder<> Builder(DU.NarrowUse);
1002 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001003 }
1004 else {
1005 // A wider extend was hidden behind a narrower one. This may induce
1006 // another round of IV widening in which the intermediate IV becomes
1007 // dead. It should be very rare.
1008 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001009 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1010 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1011 NewDef = DU.NarrowUse;
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001012 }
1013 }
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001014 if (NewDef != DU.NarrowUse) {
1015 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1016 << " replaced by " << *DU.WideDef << "\n");
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001017 ++NumElimExt;
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001018 DU.NarrowUse->replaceAllUsesWith(NewDef);
1019 DeadInsts.push_back(DU.NarrowUse);
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001020 }
Andrew Trick2fabd462011-06-21 03:22:38 +00001021 // Now that the extend is gone, we want to expose it's uses for potential
1022 // further simplification. We don't need to directly inform SimplifyIVUsers
1023 // of the new users, because their parent IV will be processed later as a
1024 // new loop phi. If we preserved IVUsers analysis, we would also want to
1025 // push the uses of WideDef here.
Andrew Trickf85092c2011-05-20 18:25:42 +00001026
1027 // No further widening is needed. The deceased [sz]ext had done it for us.
1028 return 0;
1029 }
Andrew Trick4b029152011-07-02 02:34:25 +00001030
1031 // Does this user itself evaluate to a recurrence after widening?
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001032 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +00001033 if (!WideAddRec) {
Andrew Trick20151da2011-09-10 01:24:17 +00001034 WideAddRec = GetExtendedOperandRecurrence(DU);
1035 }
1036 if (!WideAddRec) {
Andrew Trickf85092c2011-05-20 18:25:42 +00001037 // This user does not evaluate to a recurence after widening, so don't
1038 // follow it. Instead insert a Trunc to kill off the original use,
1039 // eventually isolating the original narrow IV so it can be removed.
Andrew Trick86c98142011-07-20 05:32:06 +00001040 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001041 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1042 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
Andrew Trickf85092c2011-05-20 18:25:42 +00001043 return 0;
1044 }
Andrew Trickfc933c02011-07-18 20:32:31 +00001045 // Assume block terminators cannot evaluate to a recurrence. We can't to
Andrew Trick4b029152011-07-02 02:34:25 +00001046 // insert a Trunc after a terminator if there happens to be a critical edge.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001047 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
Andrew Trick4b029152011-07-02 02:34:25 +00001048 "SCEV is not expected to evaluate a block terminator");
Andrew Trickcc359d92011-06-29 23:03:57 +00001049
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001050 // Reuse the IV increment that SCEVExpander created as long as it dominates
1051 // NarrowUse.
Andrew Trickf85092c2011-05-20 18:25:42 +00001052 Instruction *WideUse = 0;
Andrew Trick20449412011-10-11 02:28:51 +00001053 if (WideAddRec == WideIncExpr
1054 && SCEVExpander::hoistStep(WideInc, DU.NarrowUse, DT))
Andrew Trickf85092c2011-05-20 18:25:42 +00001055 WideUse = WideInc;
Andrew Trickf85092c2011-05-20 18:25:42 +00001056 else {
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001057 WideUse = CloneIVUser(DU);
Andrew Trickf85092c2011-05-20 18:25:42 +00001058 if (!WideUse)
1059 return 0;
1060 }
Andrew Trick4b029152011-07-02 02:34:25 +00001061 // Evaluation of WideAddRec ensured that the narrow expression could be
1062 // extended outside the loop without overflow. This suggests that the wide use
Andrew Trickf85092c2011-05-20 18:25:42 +00001063 // evaluates to the same expression as the extended narrow use, but doesn't
1064 // absolutely guarantee it. Hence the following failsafe check. In rare cases
Andrew Trick2fabd462011-06-21 03:22:38 +00001065 // where it fails, we simply throw away the newly created wide use.
Andrew Trickf85092c2011-05-20 18:25:42 +00001066 if (WideAddRec != SE->getSCEV(WideUse)) {
1067 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1068 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1069 DeadInsts.push_back(WideUse);
1070 return 0;
1071 }
1072
1073 // Returning WideUse pushes it on the worklist.
1074 return WideUse;
1075}
1076
Andrew Trick4b029152011-07-02 02:34:25 +00001077/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1078///
1079void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1080 for (Value::use_iterator UI = NarrowDef->use_begin(),
1081 UE = NarrowDef->use_end(); UI != UE; ++UI) {
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001082 Instruction *NarrowUse = cast<Instruction>(*UI);
Andrew Trick4b029152011-07-02 02:34:25 +00001083
1084 // Handle data flow merges and bizarre phi cycles.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001085 if (!Widened.insert(NarrowUse))
Andrew Trick4b029152011-07-02 02:34:25 +00001086 continue;
1087
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001088 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
Andrew Trick4b029152011-07-02 02:34:25 +00001089 }
1090}
1091
Andrew Trickf85092c2011-05-20 18:25:42 +00001092/// CreateWideIV - Process a single induction variable. First use the
1093/// SCEVExpander to create a wide induction variable that evaluates to the same
1094/// recurrence as the original narrow IV. Then use a worklist to forward
Andrew Trick2fabd462011-06-21 03:22:38 +00001095/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
Andrew Trickf85092c2011-05-20 18:25:42 +00001096/// interesting IV users, the narrow IV will be isolated for removal by
1097/// DeleteDeadPHIs.
1098///
1099/// It would be simpler to delete uses as they are processed, but we must avoid
1100/// invalidating SCEV expressions.
1101///
Andrew Trick2fabd462011-06-21 03:22:38 +00001102PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
Andrew Trickf85092c2011-05-20 18:25:42 +00001103 // Is this phi an induction variable?
1104 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1105 if (!AddRec)
Andrew Trick2fabd462011-06-21 03:22:38 +00001106 return NULL;
Andrew Trickf85092c2011-05-20 18:25:42 +00001107
1108 // Widen the induction variable expression.
1109 const SCEV *WideIVExpr = IsSigned ?
1110 SE->getSignExtendExpr(AddRec, WideType) :
1111 SE->getZeroExtendExpr(AddRec, WideType);
1112
1113 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1114 "Expect the new IV expression to preserve its type");
1115
1116 // Can the IV be extended outside the loop without overflow?
1117 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1118 if (!AddRec || AddRec->getLoop() != L)
Andrew Trick2fabd462011-06-21 03:22:38 +00001119 return NULL;
Andrew Trickf85092c2011-05-20 18:25:42 +00001120
Andrew Trick2fabd462011-06-21 03:22:38 +00001121 // An AddRec must have loop-invariant operands. Since this AddRec is
Andrew Trickf85092c2011-05-20 18:25:42 +00001122 // materialized by a loop header phi, the expression cannot have any post-loop
1123 // operands, so they must dominate the loop header.
1124 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1125 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1126 && "Loop header phi recurrence inputs do not dominate the loop");
1127
1128 // The rewriter provides a value for the desired IV expression. This may
1129 // either find an existing phi or materialize a new one. Either way, we
1130 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1131 // of the phi-SCC dominates the loop entry.
1132 Instruction *InsertPt = L->getHeader()->begin();
1133 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1134
1135 // Remembering the WideIV increment generated by SCEVExpander allows
1136 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1137 // employ a general reuse mechanism because the call above is the only call to
1138 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001139 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1140 WideInc =
1141 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1142 WideIncExpr = SE->getSCEV(WideInc);
1143 }
Andrew Trickf85092c2011-05-20 18:25:42 +00001144
1145 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1146 ++NumWidened;
1147
1148 // Traverse the def-use chain using a worklist starting at the original IV.
Andrew Trick4b029152011-07-02 02:34:25 +00001149 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
Andrew Trickf85092c2011-05-20 18:25:42 +00001150
Andrew Trick4b029152011-07-02 02:34:25 +00001151 Widened.insert(OrigPhi);
1152 pushNarrowIVUsers(OrigPhi, WidePhi);
1153
Andrew Trickf85092c2011-05-20 18:25:42 +00001154 while (!NarrowIVUsers.empty()) {
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001155 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
Andrew Trickf85092c2011-05-20 18:25:42 +00001156
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001157 // Process a def-use edge. This may replace the use, so don't hold a
1158 // use_iterator across it.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001159 Instruction *WideUse = WidenIVUse(DU);
Andrew Trickf85092c2011-05-20 18:25:42 +00001160
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001161 // Follow all def-use edges from the previous narrow use.
Andrew Trick4b029152011-07-02 02:34:25 +00001162 if (WideUse)
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001163 pushNarrowIVUsers(DU.NarrowUse, WideUse);
Andrew Trick4b029152011-07-02 02:34:25 +00001164
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001165 // WidenIVUse may have removed the def-use edge.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001166 if (DU.NarrowDef->use_empty())
1167 DeadInsts.push_back(DU.NarrowDef);
Andrew Trickf85092c2011-05-20 18:25:42 +00001168 }
Andrew Trick2fabd462011-06-21 03:22:38 +00001169 return WidePhi;
Andrew Trickf85092c2011-05-20 18:25:42 +00001170}
1171
Andrew Trick1a54bb22011-07-12 00:08:50 +00001172//===----------------------------------------------------------------------===//
1173// Simplification of IV users based on SCEV evaluation.
1174//===----------------------------------------------------------------------===//
1175
Andrew Trickaeee4612011-05-12 00:04:28 +00001176
Andrew Trick4b4bb712011-08-10 03:46:27 +00001177/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1178/// users. Each successive simplification may push more users which may
Andrew Trick2fabd462011-06-21 03:22:38 +00001179/// themselves be candidates for simplification.
1180///
Andrew Trick4b4bb712011-08-10 03:46:27 +00001181/// Sign/Zero extend elimination is interleaved with IV simplification.
Andrew Trick2fabd462011-06-21 03:22:38 +00001182///
Andrew Trick4b4bb712011-08-10 03:46:27 +00001183void IndVarSimplify::SimplifyAndExtend(Loop *L,
1184 SCEVExpander &Rewriter,
1185 LPPassManager &LPM) {
Andrew Trick513b1f42011-10-15 01:38:14 +00001186 SmallVector<WideIVInfo, 8> WideIVs;
Andrew Trick15832f62011-06-28 02:49:20 +00001187
Andrew Trick2fabd462011-06-21 03:22:38 +00001188 SmallVector<PHINode*, 8> LoopPhis;
1189 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1190 LoopPhis.push_back(cast<PHINode>(I));
1191 }
Andrew Trick15832f62011-06-28 02:49:20 +00001192 // Each round of simplification iterates through the SimplifyIVUsers worklist
1193 // for all current phis, then determines whether any IVs can be
1194 // widened. Widening adds new phis to LoopPhis, inducing another round of
1195 // simplification on the wide IVs.
Andrew Trick2fabd462011-06-21 03:22:38 +00001196 while (!LoopPhis.empty()) {
Andrew Trick15832f62011-06-28 02:49:20 +00001197 // Evaluate as many IV expressions as possible before widening any IVs. This
Andrew Trick99a92f62011-06-28 16:45:04 +00001198 // forces SCEV to set no-wrap flags before evaluating sign/zero
Andrew Trick15832f62011-06-28 02:49:20 +00001199 // extension. The first time SCEV attempts to normalize sign/zero extension,
1200 // the result becomes final. So for the most predictable results, we delay
1201 // evaluation of sign/zero extend evaluation until needed, and avoid running
Andrew Trick4b4bb712011-08-10 03:46:27 +00001202 // other SCEV based analysis prior to SimplifyAndExtend.
Andrew Trick15832f62011-06-28 02:49:20 +00001203 do {
1204 PHINode *CurrIV = LoopPhis.pop_back_val();
Andrew Trick2fabd462011-06-21 03:22:38 +00001205
Andrew Trick15832f62011-06-28 02:49:20 +00001206 // Information about sign/zero extensions of CurrIV.
Andrew Trick513b1f42011-10-15 01:38:14 +00001207 WideIVVisitor WIV(CurrIV, SE, TD);
Andrew Trick2fabd462011-06-21 03:22:38 +00001208
Andrew Trickbddb7f82011-08-10 04:22:26 +00001209 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
Andrew Trick2fabd462011-06-21 03:22:38 +00001210
Andrew Trick4b4bb712011-08-10 03:46:27 +00001211 if (WIV.WI.WidestNativeType) {
Andrew Trick513b1f42011-10-15 01:38:14 +00001212 WideIVs.push_back(WIV.WI);
Andrew Trick2fabd462011-06-21 03:22:38 +00001213 }
Andrew Trick15832f62011-06-28 02:49:20 +00001214 } while(!LoopPhis.empty());
1215
Andrew Trick513b1f42011-10-15 01:38:14 +00001216 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1217 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
Andrew Trick2fabd462011-06-21 03:22:38 +00001218 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1219 Changed = true;
1220 LoopPhis.push_back(WidePhi);
1221 }
1222 }
1223 }
1224}
1225
Andrew Trick1a54bb22011-07-12 00:08:50 +00001226//===----------------------------------------------------------------------===//
1227// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1228//===----------------------------------------------------------------------===//
1229
Andrew Trick39d78022011-09-09 17:35:10 +00001230/// Check for expressions that ScalarEvolution generates to compute
1231/// BackedgeTakenInfo. If these expressions have not been reduced, then
1232/// expanding them may incur additional cost (albeit in the loop preheader).
Andrew Trick5241b792011-07-18 18:21:35 +00001233static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1234 ScalarEvolution *SE) {
1235 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1236 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1237 // precise expression, rather than a UDiv from the user's code. If we can't
1238 // find a UDiv in the code with some simple searching, assume the former and
1239 // forego rewriting the loop.
1240 if (isa<SCEVUDivExpr>(S)) {
1241 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1242 if (!OrigCond) return true;
1243 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1244 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1245 if (R != S) {
1246 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1247 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1248 if (L != S)
1249 return true;
1250 }
1251 }
1252
Andrew Trickf21bdf42011-09-12 18:28:44 +00001253 if (EnableIVRewrite)
Andrew Trick5241b792011-07-18 18:21:35 +00001254 return false;
1255
1256 // Recurse past add expressions, which commonly occur in the
1257 // BackedgeTakenCount. They may already exist in program code, and if not,
1258 // they are not too expensive rematerialize.
1259 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1260 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1261 I != E; ++I) {
1262 if (isHighCostExpansion(*I, BI, SE))
1263 return true;
1264 }
1265 return false;
1266 }
1267
1268 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1269 // the exit condition.
1270 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1271 return true;
1272
1273 // If we haven't recognized an expensive SCEV patter, assume its an expression
1274 // produced by program code.
1275 return false;
1276}
1277
Andrew Trick1a54bb22011-07-12 00:08:50 +00001278/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1279/// count expression can be safely and cheaply expanded into an instruction
1280/// sequence that can be used by LinearFunctionTestReplace.
Andrew Trickd3714b62011-11-02 17:19:57 +00001281///
1282/// TODO: This fails for pointer-type loop counters with greater than one byte
1283/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1284/// we could skip this check in the case that the LFTR loop counter (chosen by
1285/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1286/// the loop test to an inequality test by checking the target data's alignment
1287/// of element types (given that the initial pointer value originates from or is
1288/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1289/// However, we don't yet have a strong motivation for converting loop tests
1290/// into inequality tests.
Andrew Trick1a54bb22011-07-12 00:08:50 +00001291static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1292 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1293 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1294 BackedgeTakenCount->isZero())
1295 return false;
1296
1297 if (!L->getExitingBlock())
1298 return false;
1299
1300 // Can't rewrite non-branch yet.
1301 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1302 if (!BI)
1303 return false;
1304
Andrew Trick5241b792011-07-18 18:21:35 +00001305 if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
1306 return false;
1307
Andrew Trick1a54bb22011-07-12 00:08:50 +00001308 return true;
1309}
1310
1311/// getBackedgeIVType - Get the widest type used by the loop test after peeking
1312/// through Truncs.
1313///
Andrew Trickfc933c02011-07-18 20:32:31 +00001314/// TODO: Unnecessary when ForceLFTR is removed.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001315static Type *getBackedgeIVType(Loop *L) {
Andrew Trick1a54bb22011-07-12 00:08:50 +00001316 if (!L->getExitingBlock())
1317 return 0;
1318
1319 // Can't rewrite non-branch yet.
1320 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1321 if (!BI)
1322 return 0;
1323
1324 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1325 if (!Cond)
1326 return 0;
1327
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001328 Type *Ty = 0;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001329 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1330 OI != OE; ++OI) {
1331 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1332 TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1333 if (!Trunc)
1334 continue;
1335
1336 return Trunc->getSrcTy();
1337 }
1338 return Ty;
1339}
1340
Andrew Trickfc933c02011-07-18 20:32:31 +00001341/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1342/// invariant value to the phi.
1343static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1344 Instruction *IncI = dyn_cast<Instruction>(IncV);
1345 if (!IncI)
1346 return 0;
1347
1348 switch (IncI->getOpcode()) {
1349 case Instruction::Add:
1350 case Instruction::Sub:
1351 break;
1352 case Instruction::GetElementPtr:
1353 // An IV counter must preserve its type.
1354 if (IncI->getNumOperands() == 2)
1355 break;
1356 default:
1357 return 0;
1358 }
1359
1360 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1361 if (Phi && Phi->getParent() == L->getHeader()) {
1362 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1363 return Phi;
1364 return 0;
1365 }
1366 if (IncI->getOpcode() == Instruction::GetElementPtr)
1367 return 0;
1368
1369 // Allow add/sub to be commuted.
1370 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1371 if (Phi && Phi->getParent() == L->getHeader()) {
1372 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1373 return Phi;
1374 }
1375 return 0;
1376}
1377
1378/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1379/// that the current exit test is already sufficiently canonical.
1380static bool needsLFTR(Loop *L, DominatorTree *DT) {
1381 assert(L->getExitingBlock() && "expected loop exit");
1382
1383 BasicBlock *LatchBlock = L->getLoopLatch();
1384 // Don't bother with LFTR if the loop is not properly simplified.
1385 if (!LatchBlock)
1386 return false;
1387
1388 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1389 assert(BI && "expected exit branch");
1390
1391 // Do LFTR to simplify the exit condition to an ICMP.
1392 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1393 if (!Cond)
1394 return true;
1395
1396 // Do LFTR to simplify the exit ICMP to EQ/NE
1397 ICmpInst::Predicate Pred = Cond->getPredicate();
1398 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1399 return true;
1400
1401 // Look for a loop invariant RHS
1402 Value *LHS = Cond->getOperand(0);
1403 Value *RHS = Cond->getOperand(1);
1404 if (!isLoopInvariant(RHS, L, DT)) {
1405 if (!isLoopInvariant(LHS, L, DT))
1406 return true;
1407 std::swap(LHS, RHS);
1408 }
1409 // Look for a simple IV counter LHS
1410 PHINode *Phi = dyn_cast<PHINode>(LHS);
1411 if (!Phi)
1412 Phi = getLoopPhiForCounter(LHS, L, DT);
1413
1414 if (!Phi)
1415 return true;
1416
1417 // Do LFTR if the exit condition's IV is *not* a simple counter.
1418 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1419 return Phi != getLoopPhiForCounter(IncV, L, DT);
1420}
1421
1422/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1423/// be rewritten) loop exit test.
1424static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1425 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1426 Value *IncV = Phi->getIncomingValue(LatchIdx);
1427
1428 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1429 UI != UE; ++UI) {
1430 if (*UI != Cond && *UI != IncV) return false;
1431 }
1432
1433 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1434 UI != UE; ++UI) {
1435 if (*UI != Cond && *UI != Phi) return false;
1436 }
1437 return true;
1438}
1439
1440/// FindLoopCounter - Find an affine IV in canonical form.
1441///
Andrew Trickd3714b62011-11-02 17:19:57 +00001442/// BECount may be an i8* pointer type. The pointer difference is already
1443/// valid count without scaling the address stride, so it remains a pointer
1444/// expression as far as SCEV is concerned.
1445///
Andrew Trickfc933c02011-07-18 20:32:31 +00001446/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1447///
1448/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1449/// This is difficult in general for SCEV because of potential overflow. But we
1450/// could at least handle constant BECounts.
1451static PHINode *
1452FindLoopCounter(Loop *L, const SCEV *BECount,
1453 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
Andrew Trickfc933c02011-07-18 20:32:31 +00001454 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1455
1456 Value *Cond =
1457 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1458
1459 // Loop over all of the PHI nodes, looking for a simple counter.
1460 PHINode *BestPhi = 0;
1461 const SCEV *BestInit = 0;
1462 BasicBlock *LatchBlock = L->getLoopLatch();
1463 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1464
1465 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1466 PHINode *Phi = cast<PHINode>(I);
1467 if (!SE->isSCEVable(Phi->getType()))
1468 continue;
1469
Andrew Trickd3714b62011-11-02 17:19:57 +00001470 // Avoid comparing an integer IV against a pointer Limit.
1471 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1472 continue;
1473
Andrew Trickfc933c02011-07-18 20:32:31 +00001474 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1475 if (!AR || AR->getLoop() != L || !AR->isAffine())
1476 continue;
1477
1478 // AR may be a pointer type, while BECount is an integer type.
1479 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1480 // AR may not be a narrower type, or we may never exit.
1481 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1482 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1483 continue;
1484
1485 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1486 if (!Step || !Step->isOne())
1487 continue;
1488
1489 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1490 Value *IncV = Phi->getIncomingValue(LatchIdx);
1491 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1492 continue;
1493
1494 const SCEV *Init = AR->getStart();
1495
1496 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1497 // Don't force a live loop counter if another IV can be used.
1498 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1499 continue;
1500
1501 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1502 // also prefers integer to pointer IVs.
1503 if (BestInit->isZero() != Init->isZero()) {
1504 if (BestInit->isZero())
1505 continue;
1506 }
1507 // If two IVs both count from zero or both count from nonzero then the
1508 // narrower is likely a dead phi that has been widened. Use the wider phi
1509 // to allow the other to be eliminated.
1510 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1511 continue;
1512 }
1513 BestPhi = Phi;
1514 BestInit = Init;
1515 }
1516 return BestPhi;
1517}
1518
Andrew Trickd3714b62011-11-02 17:19:57 +00001519/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1520/// holds the RHS of the new loop test.
1521static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1522 SCEVExpander &Rewriter, ScalarEvolution *SE) {
1523 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1524 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1525 const SCEV *IVInit = AR->getStart();
1526
1527 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1528 // finds a valid pointer IV. Sign extend BECount in order to materialize a
1529 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1530 // the existing GEPs whenever possible.
1531 if (IndVar->getType()->isPointerTy()
1532 && !IVCount->getType()->isPointerTy()) {
1533
1534 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1535 const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
1536
1537 // Expand the code for the iteration count.
1538 assert(SE->isLoopInvariant(IVOffset, L) &&
1539 "Computed iteration count is not loop invariant!");
1540 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1541 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1542
1543 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1544 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1545 // We could handle pointer IVs other than i8*, but we need to compensate for
1546 // gep index scaling. See canExpandBackedgeTakenCount comments.
1547 assert(SE->getSizeOfExpr(
1548 cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1549 && "unit stride pointer IV must be i8*");
1550
1551 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1552 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1553 }
1554 else {
1555 // In any other case, convert both IVInit and IVCount to integers before
1556 // comparing. This may result in SCEV expension of pointers, but in practice
1557 // SCEV will fold the pointer arithmetic away as such:
1558 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1559 //
1560 // Valid Cases: (1) both integers is most common; (2) both may be pointers
1561 // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
1562 // pointer may occur when enable-iv-rewrite generates a canonical IV on top
1563 // of case #2.
1564
1565 const SCEV *IVLimit = 0;
1566 // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1567 // For non-zero Start, compute IVCount here.
1568 if (AR->getStart()->isZero())
1569 IVLimit = IVCount;
1570 else {
1571 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1572 const SCEV *IVInit = AR->getStart();
1573
1574 // For integer IVs, truncate the IV before computing IVInit + BECount.
1575 if (SE->getTypeSizeInBits(IVInit->getType())
1576 > SE->getTypeSizeInBits(IVCount->getType()))
1577 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1578
1579 IVLimit = SE->getAddExpr(IVInit, IVCount);
1580 }
1581 // Expand the code for the iteration count.
1582 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1583 IRBuilder<> Builder(BI);
1584 assert(SE->isLoopInvariant(IVLimit, L) &&
1585 "Computed iteration count is not loop invariant!");
1586 // Ensure that we generate the same type as IndVar, or a smaller integer
1587 // type. In the presence of null pointer values, we have an integer type
1588 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1589 Type *LimitTy = IVCount->getType()->isPointerTy() ?
1590 IndVar->getType() : IVCount->getType();
1591 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1592 }
1593}
1594
Andrew Trick1a54bb22011-07-12 00:08:50 +00001595/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1596/// loop to be a canonical != comparison against the incremented loop induction
1597/// variable. This pass is able to rewrite the exit tests of any loop where the
1598/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1599/// is actually a much broader range than just linear tests.
Andrew Trickfc933c02011-07-18 20:32:31 +00001600Value *IndVarSimplify::
Andrew Trick1a54bb22011-07-12 00:08:50 +00001601LinearFunctionTestReplace(Loop *L,
1602 const SCEV *BackedgeTakenCount,
1603 PHINode *IndVar,
1604 SCEVExpander &Rewriter) {
1605 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001606
Andrew Trickf21bdf42011-09-12 18:28:44 +00001607 // LFTR can ignore IV overflow and truncate to the width of
Andrew Trickfc933c02011-07-18 20:32:31 +00001608 // BECount. This avoids materializing the add(zext(add)) expression.
Andrew Trickf21bdf42011-09-12 18:28:44 +00001609 Type *CntTy = !EnableIVRewrite ?
Andrew Trickfc933c02011-07-18 20:32:31 +00001610 BackedgeTakenCount->getType() : IndVar->getType();
1611
Andrew Trickd3714b62011-11-02 17:19:57 +00001612 const SCEV *IVCount = BackedgeTakenCount;
Andrew Trickfc933c02011-07-18 20:32:31 +00001613
Andrew Trickd3714b62011-11-02 17:19:57 +00001614 // If the exiting block is the same as the backedge block, we prefer to
1615 // compare against the post-incremented value, otherwise we must compare
1616 // against the preincremented value.
Andrew Trick1a54bb22011-07-12 00:08:50 +00001617 Value *CmpIndVar;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001618 if (L->getExitingBlock() == L->getLoopLatch()) {
1619 // Add one to the "backedge-taken" count to get the trip count.
1620 // If this addition may overflow, we have to be more pessimistic and
1621 // cast the induction variable before doing the add.
Andrew Trick1a54bb22011-07-12 00:08:50 +00001622 const SCEV *N =
Andrew Trickd3714b62011-11-02 17:19:57 +00001623 SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
1624 if (CntTy == IVCount->getType())
1625 IVCount = N;
Andrew Trickfc933c02011-07-18 20:32:31 +00001626 else {
Andrew Trickd3714b62011-11-02 17:19:57 +00001627 const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
Andrew Trickfc933c02011-07-18 20:32:31 +00001628 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1629 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1630 // No overflow. Cast the sum.
Andrew Trickd3714b62011-11-02 17:19:57 +00001631 IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
Andrew Trickfc933c02011-07-18 20:32:31 +00001632 } else {
1633 // Potential overflow. Cast before doing the add.
Andrew Trickd3714b62011-11-02 17:19:57 +00001634 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1635 IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
Andrew Trickfc933c02011-07-18 20:32:31 +00001636 }
Andrew Trick1a54bb22011-07-12 00:08:50 +00001637 }
Andrew Trick1a54bb22011-07-12 00:08:50 +00001638 // The BackedgeTaken expression contains the number of times that the
1639 // backedge branches to the loop header. This is one less than the
1640 // number of times the loop executes, so use the incremented indvar.
1641 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1642 } else {
Andrew Trickd3714b62011-11-02 17:19:57 +00001643 // We must use the preincremented value...
1644 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
Andrew Trick1a54bb22011-07-12 00:08:50 +00001645 CmpIndVar = IndVar;
1646 }
1647
Andrew Trickd3714b62011-11-02 17:19:57 +00001648 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1649 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1650 && "genLoopLimit missed a cast");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001651
1652 // Insert a new icmp_ne or icmp_eq instruction before the branch.
Andrew Trickd3714b62011-11-02 17:19:57 +00001653 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
Andrew Trickfc933c02011-07-18 20:32:31 +00001654 ICmpInst::Predicate P;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001655 if (L->contains(BI->getSuccessor(0)))
Andrew Trickfc933c02011-07-18 20:32:31 +00001656 P = ICmpInst::ICMP_NE;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001657 else
Andrew Trickfc933c02011-07-18 20:32:31 +00001658 P = ICmpInst::ICMP_EQ;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001659
1660 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1661 << " LHS:" << *CmpIndVar << '\n'
1662 << " op:\t"
Andrew Trickfc933c02011-07-18 20:32:31 +00001663 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1664 << " RHS:\t" << *ExitCnt << "\n"
Andrew Trickd3714b62011-11-02 17:19:57 +00001665 << " IVCount:\t" << *IVCount << "\n");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001666
Andrew Trickd3714b62011-11-02 17:19:57 +00001667 IRBuilder<> Builder(BI);
Andrew Trickfc933c02011-07-18 20:32:31 +00001668 if (SE->getTypeSizeInBits(CmpIndVar->getType())
Andrew Trickd3714b62011-11-02 17:19:57 +00001669 > SE->getTypeSizeInBits(ExitCnt->getType())) {
1670 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1671 "lftr.wideiv");
Andrew Trickfc933c02011-07-18 20:32:31 +00001672 }
1673
1674 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001675 Value *OrigCond = BI->getCondition();
1676 // It's tempting to use replaceAllUsesWith here to fully replace the old
1677 // comparison, but that's not immediately safe, since users of the old
1678 // comparison may not be dominated by the new comparison. Instead, just
1679 // update the branch to use the new comparison; in the common case this
1680 // will make old comparison dead.
1681 BI->setCondition(Cond);
1682 DeadInsts.push_back(OrigCond);
1683
1684 ++NumLFTR;
1685 Changed = true;
1686 return Cond;
1687}
1688
1689//===----------------------------------------------------------------------===//
1690// SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1691//===----------------------------------------------------------------------===//
1692
1693/// If there's a single exit block, sink any loop-invariant values that
1694/// were defined in the preheader but not used inside the loop into the
1695/// exit block to reduce register pressure in the loop.
1696void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1697 BasicBlock *ExitBlock = L->getExitBlock();
1698 if (!ExitBlock) return;
1699
1700 BasicBlock *Preheader = L->getLoopPreheader();
1701 if (!Preheader) return;
1702
Bill Wendlingb05fdd62011-08-24 20:28:43 +00001703 Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
Andrew Trick1a54bb22011-07-12 00:08:50 +00001704 BasicBlock::iterator I = Preheader->getTerminator();
1705 while (I != Preheader->begin()) {
1706 --I;
1707 // New instructions were inserted at the end of the preheader.
1708 if (isa<PHINode>(I))
1709 break;
1710
1711 // Don't move instructions which might have side effects, since the side
1712 // effects need to complete before instructions inside the loop. Also don't
1713 // move instructions which might read memory, since the loop may modify
1714 // memory. Note that it's okay if the instruction might have undefined
1715 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1716 // block.
1717 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1718 continue;
1719
1720 // Skip debug info intrinsics.
1721 if (isa<DbgInfoIntrinsic>(I))
1722 continue;
1723
Bill Wendling2b188812011-08-26 20:40:15 +00001724 // Skip landingpad instructions.
1725 if (isa<LandingPadInst>(I))
1726 continue;
1727
Eli Friedman8ecde6c2011-10-27 01:33:51 +00001728 // Don't sink alloca: we never want to sink static alloca's out of the
1729 // entry block, and correctly sinking dynamic alloca's requires
1730 // checks for stacksave/stackrestore intrinsics.
1731 // FIXME: Refactor this check somehow?
1732 if (isa<AllocaInst>(I))
1733 continue;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001734
1735 // Determine if there is a use in or before the loop (direct or
1736 // otherwise).
1737 bool UsedInLoop = false;
1738 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1739 UI != UE; ++UI) {
1740 User *U = *UI;
1741 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1742 if (PHINode *P = dyn_cast<PHINode>(U)) {
1743 unsigned i =
1744 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1745 UseBB = P->getIncomingBlock(i);
1746 }
1747 if (UseBB == Preheader || L->contains(UseBB)) {
1748 UsedInLoop = true;
1749 break;
1750 }
1751 }
1752
1753 // If there is, the def must remain in the preheader.
1754 if (UsedInLoop)
1755 continue;
1756
1757 // Otherwise, sink it to the exit block.
1758 Instruction *ToMove = I;
1759 bool Done = false;
1760
1761 if (I != Preheader->begin()) {
1762 // Skip debug info intrinsics.
1763 do {
1764 --I;
1765 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1766
1767 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1768 Done = true;
1769 } else {
1770 Done = true;
1771 }
1772
1773 ToMove->moveBefore(InsertPt);
1774 if (Done) break;
1775 InsertPt = ToMove;
1776 }
1777}
1778
1779//===----------------------------------------------------------------------===//
1780// IndVarSimplify driver. Manage several subpasses of IV simplification.
1781//===----------------------------------------------------------------------===//
1782
Dan Gohmanc2390b12009-02-12 22:19:27 +00001783bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohmana5283822010-06-18 01:35:11 +00001784 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1785 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1786 // canonicalization can be a pessimization without LSR to "clean up"
1787 // afterwards.
1788 // - We depend on having a preheader; in particular,
1789 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1790 // and we're in trouble if we can't find the induction variable even when
1791 // we've manually inserted one.
1792 if (!L->isLoopSimplifyForm())
1793 return false;
1794
Andrew Trickf21bdf42011-09-12 18:28:44 +00001795 if (EnableIVRewrite)
Andrew Trick2fabd462011-06-21 03:22:38 +00001796 IU = &getAnalysis<IVUsers>();
Devang Patel5ee99972007-03-07 06:39:01 +00001797 LI = &getAnalysis<LoopInfo>();
1798 SE = &getAnalysis<ScalarEvolution>();
Dan Gohmande53dc02009-06-27 05:16:57 +00001799 DT = &getAnalysis<DominatorTree>();
Andrew Trick37da4082011-05-04 02:10:13 +00001800 TD = getAnalysisIfAvailable<TargetData>();
1801
Andrew Trickb12a7542011-03-17 23:51:11 +00001802 DeadInsts.clear();
Devang Patel5ee99972007-03-07 06:39:01 +00001803 Changed = false;
Dan Gohman60f8a632009-02-17 20:49:49 +00001804
Dan Gohman2d1be872009-04-16 03:18:22 +00001805 // If there are any floating-point recurrences, attempt to
Dan Gohman60f8a632009-02-17 20:49:49 +00001806 // transform them to use integer recurrences.
1807 RewriteNonIntegerIVs(L);
1808
Dan Gohman0bba49c2009-07-07 17:06:11 +00001809 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
Chris Lattner9caed542007-03-04 01:00:28 +00001810
Dan Gohman667d7872009-06-26 22:53:46 +00001811 // Create a rewriter object which we'll use to transform the code with.
Andrew Trick5e7645b2011-06-28 05:07:32 +00001812 SCEVExpander Rewriter(*SE, "indvars");
Andrew Trick20449412011-10-11 02:28:51 +00001813#ifndef NDEBUG
1814 Rewriter.setDebugType(DEBUG_TYPE);
1815#endif
Andrew Trick156d4602011-06-27 23:17:44 +00001816
1817 // Eliminate redundant IV users.
Andrew Trick15832f62011-06-28 02:49:20 +00001818 //
1819 // Simplification works best when run before other consumers of SCEV. We
1820 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1821 // other expressions involving loop IVs have been evaluated. This helps SCEV
Andrew Trick99a92f62011-06-28 16:45:04 +00001822 // set no-wrap flags before normalizing sign/zero extension.
Andrew Trickf21bdf42011-09-12 18:28:44 +00001823 if (!EnableIVRewrite) {
Andrew Trick37da4082011-05-04 02:10:13 +00001824 Rewriter.disableCanonicalMode();
Andrew Trick4b4bb712011-08-10 03:46:27 +00001825 SimplifyAndExtend(L, Rewriter, LPM);
Andrew Trick156d4602011-06-27 23:17:44 +00001826 }
Andrew Trick37da4082011-05-04 02:10:13 +00001827
Chris Lattner40bf8b42004-04-02 20:24:31 +00001828 // Check to see if this loop has a computable loop-invariant execution count.
1829 // If so, this means that we can compute the final value of any expressions
1830 // that are recurrent in the loop, and substitute the exit values from the
1831 // loop into any instructions outside of the loop that use the final values of
1832 // the current expressions.
Chris Lattner3dec1f22002-05-10 15:38:35 +00001833 //
Dan Gohman46bdfb02009-02-24 18:55:53 +00001834 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
Dan Gohman454d26d2010-02-22 04:11:59 +00001835 RewriteLoopExitValues(L, Rewriter);
Chris Lattner6148c022001-12-03 17:28:42 +00001836
Andrew Trickf85092c2011-05-20 18:25:42 +00001837 // Eliminate redundant IV users.
Andrew Trickf21bdf42011-09-12 18:28:44 +00001838 if (EnableIVRewrite)
Andrew Trickbddb7f82011-08-10 04:22:26 +00001839 Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
Dan Gohmana590b792010-04-13 01:46:36 +00001840
Andrew Trick6f684b02011-07-16 01:06:48 +00001841 // Eliminate redundant IV cycles.
Andrew Trickf21bdf42011-09-12 18:28:44 +00001842 if (!EnableIVRewrite)
Andrew Trick20449412011-10-11 02:28:51 +00001843 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
Andrew Trick037d1c02011-07-06 20:50:43 +00001844
Dan Gohman81db61a2009-05-12 02:17:14 +00001845 // Compute the type of the largest recurrence expression, and decide whether
1846 // a canonical induction variable should be inserted.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001847 Type *LargestType = 0;
Dan Gohman81db61a2009-05-12 02:17:14 +00001848 bool NeedCannIV = false;
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001849 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
Andrew Trickf21bdf42011-09-12 18:28:44 +00001850 if (EnableIVRewrite && ExpandBECount) {
Dan Gohman81db61a2009-05-12 02:17:14 +00001851 // If we have a known trip count and a single exit block, we'll be
1852 // rewriting the loop exit test condition below, which requires a
1853 // canonical induction variable.
Andrew Trick4dfdf242011-05-03 22:24:10 +00001854 NeedCannIV = true;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001855 Type *Ty = BackedgeTakenCount->getType();
Andrew Trickf21bdf42011-09-12 18:28:44 +00001856 if (!EnableIVRewrite) {
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001857 // In this mode, SimplifyIVUsers may have already widened the IV used by
1858 // the backedge test and inserted a Trunc on the compare's operand. Get
1859 // the wider type to avoid creating a redundant narrow IV only used by the
1860 // loop test.
1861 LargestType = getBackedgeIVType(L);
1862 }
Andrew Trick4dfdf242011-05-03 22:24:10 +00001863 if (!LargestType ||
1864 SE->getTypeSizeInBits(Ty) >
1865 SE->getTypeSizeInBits(LargestType))
1866 LargestType = SE->getEffectiveSCEVType(Ty);
Chris Lattnerf50af082004-04-17 18:08:33 +00001867 }
Andrew Trickf21bdf42011-09-12 18:28:44 +00001868 if (EnableIVRewrite) {
Andrew Trick37da4082011-05-04 02:10:13 +00001869 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1870 NeedCannIV = true;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001871 Type *Ty =
Andrew Trick37da4082011-05-04 02:10:13 +00001872 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1873 if (!LargestType ||
1874 SE->getTypeSizeInBits(Ty) >
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001875 SE->getTypeSizeInBits(LargestType))
Andrew Trick37da4082011-05-04 02:10:13 +00001876 LargestType = Ty;
1877 }
Chris Lattner6148c022001-12-03 17:28:42 +00001878 }
1879
Dan Gohmanf451cb82010-02-10 16:03:48 +00001880 // Now that we know the largest of the induction variable expressions
Dan Gohman81db61a2009-05-12 02:17:14 +00001881 // in this loop, insert a canonical induction variable of the largest size.
Dan Gohman43ef3fb2010-07-20 17:18:52 +00001882 PHINode *IndVar = 0;
Dan Gohman81db61a2009-05-12 02:17:14 +00001883 if (NeedCannIV) {
Dan Gohman85669632010-02-25 06:57:05 +00001884 // Check to see if the loop already has any canonical-looking induction
1885 // variables. If any are present and wider than the planned canonical
1886 // induction variable, temporarily remove them, so that the Rewriter
1887 // doesn't attempt to reuse them.
1888 SmallVector<PHINode *, 2> OldCannIVs;
1889 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
Dan Gohman4d8414f2009-06-13 16:25:49 +00001890 if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1891 SE->getTypeSizeInBits(LargestType))
1892 OldCannIV->removeFromParent();
1893 else
Dan Gohman85669632010-02-25 06:57:05 +00001894 break;
1895 OldCannIVs.push_back(OldCannIV);
Dan Gohman4d8414f2009-06-13 16:25:49 +00001896 }
1897
Dan Gohman667d7872009-06-26 22:53:46 +00001898 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
Dan Gohman4d8414f2009-06-13 16:25:49 +00001899
Dan Gohmanc2390b12009-02-12 22:19:27 +00001900 ++NumInserted;
1901 Changed = true;
David Greenef67ef312010-01-05 01:27:06 +00001902 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
Dan Gohman4d8414f2009-06-13 16:25:49 +00001903
1904 // Now that the official induction variable is established, reinsert
Dan Gohman85669632010-02-25 06:57:05 +00001905 // any old canonical-looking variables after it so that the IR remains
1906 // consistent. They will be deleted as part of the dead-PHI deletion at
Dan Gohman4d8414f2009-06-13 16:25:49 +00001907 // the end of the pass.
Dan Gohman85669632010-02-25 06:57:05 +00001908 while (!OldCannIVs.empty()) {
1909 PHINode *OldCannIV = OldCannIVs.pop_back_val();
Bill Wendlingb05fdd62011-08-24 20:28:43 +00001910 OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
Dan Gohman85669632010-02-25 06:57:05 +00001911 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001912 }
Andrew Trickf21bdf42011-09-12 18:28:44 +00001913 else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) {
Andrew Trickfc933c02011-07-18 20:32:31 +00001914 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1915 }
Dan Gohmanc2390b12009-02-12 22:19:27 +00001916 // If we have a trip count expression, rewrite the loop's exit condition
1917 // using it. We can currently only handle loops with a single exit.
Andrew Trickfc933c02011-07-18 20:32:31 +00001918 Value *NewICmp = 0;
1919 if (ExpandBECount && IndVar) {
Andrew Trick56147692011-07-16 01:18:53 +00001920 // Check preconditions for proper SCEVExpander operation. SCEV does not
1921 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1922 // pass that uses the SCEVExpander must do it. This does not work well for
1923 // loop passes because SCEVExpander makes assumptions about all loops, while
1924 // LoopPassManager only forces the current loop to be simplified.
1925 //
1926 // FIXME: SCEV expansion has no way to bail out, so the caller must
1927 // explicitly check any assumptions made by SCEV. Brittle.
1928 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1929 if (!AR || AR->getLoop()->getLoopPreheader())
1930 NewICmp =
1931 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
Chris Lattnerfcb81f52004-04-22 14:59:40 +00001932 }
Andrew Trickb12a7542011-03-17 23:51:11 +00001933 // Rewrite IV-derived expressions.
Andrew Trickf21bdf42011-09-12 18:28:44 +00001934 if (EnableIVRewrite)
Andrew Trick37da4082011-05-04 02:10:13 +00001935 RewriteIVExpressions(L, Rewriter);
Dan Gohmanc2390b12009-02-12 22:19:27 +00001936
Andrew Trickb12a7542011-03-17 23:51:11 +00001937 // Clear the rewriter cache, because values that are in the rewriter's cache
1938 // can be deleted in the loop below, causing the AssertingVH in the cache to
1939 // trigger.
1940 Rewriter.clear();
1941
1942 // Now that we're done iterating through lists, clean up any instructions
1943 // which are now dead.
1944 while (!DeadInsts.empty())
1945 if (Instruction *Inst =
1946 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1947 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1948
Dan Gohman667d7872009-06-26 22:53:46 +00001949 // The Rewriter may not be used from this point on.
Torok Edwin3d431382009-05-24 20:08:21 +00001950
Dan Gohman81db61a2009-05-12 02:17:14 +00001951 // Loop-invariant instructions in the preheader that aren't used in the
1952 // loop may be sunk below the loop to reduce register pressure.
Dan Gohman667d7872009-06-26 22:53:46 +00001953 SinkUnusedInvariants(L);
Dan Gohman81db61a2009-05-12 02:17:14 +00001954
1955 // For completeness, inform IVUsers of the IV use in the newly-created
1956 // loop exit test instruction.
Andrew Trickfc933c02011-07-18 20:32:31 +00001957 if (IU && NewICmp) {
1958 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
1959 if (NewICmpInst)
1960 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
1961 }
Dan Gohman81db61a2009-05-12 02:17:14 +00001962 // Clean up dead instructions.
Dan Gohman9fff2182010-01-05 16:31:45 +00001963 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohman81db61a2009-05-12 02:17:14 +00001964 // Check a post-condition.
Andrew Trickf6a0dba2011-07-18 18:44:20 +00001965 assert(L->isLCSSAForm(*DT) &&
1966 "Indvars did not leave the loop in lcssa form!");
1967
1968 // Verify that LFTR, and any other change have not interfered with SCEV's
1969 // ability to compute trip count.
1970#ifndef NDEBUG
Andrew Trickf21bdf42011-09-12 18:28:44 +00001971 if (!EnableIVRewrite && VerifyIndvars &&
Andrew Trick75ebc0e2011-09-06 20:20:38 +00001972 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
Andrew Trickf6a0dba2011-07-18 18:44:20 +00001973 SE->forgetLoop(L);
1974 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1975 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1976 SE->getTypeSizeInBits(NewBECount->getType()))
1977 NewBECount = SE->getTruncateOrNoop(NewBECount,
1978 BackedgeTakenCount->getType());
1979 else
1980 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1981 NewBECount->getType());
1982 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1983 }
1984#endif
1985
Devang Patel5ee99972007-03-07 06:39:01 +00001986 return Changed;
Chris Lattner6148c022001-12-03 17:28:42 +00001987}