Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 1 | //===- InstCombineCompares.cpp --------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the visitICmp and visitFCmp functions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "InstCombine.h" |
| 15 | #include "llvm/IntrinsicInst.h" |
| 16 | #include "llvm/Analysis/InstructionSimplify.h" |
| 17 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 18 | #include "llvm/Target/TargetData.h" |
| 19 | #include "llvm/Support/ConstantRange.h" |
| 20 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
| 21 | #include "llvm/Support/PatternMatch.h" |
| 22 | using namespace llvm; |
| 23 | using namespace PatternMatch; |
| 24 | |
| 25 | /// AddOne - Add one to a ConstantInt |
| 26 | static Constant *AddOne(Constant *C) { |
| 27 | return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); |
| 28 | } |
| 29 | /// SubOne - Subtract one from a ConstantInt |
| 30 | static Constant *SubOne(ConstantInt *C) { |
| 31 | return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); |
| 32 | } |
| 33 | |
| 34 | static ConstantInt *ExtractElement(Constant *V, Constant *Idx) { |
| 35 | return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); |
| 36 | } |
| 37 | |
| 38 | static bool HasAddOverflow(ConstantInt *Result, |
| 39 | ConstantInt *In1, ConstantInt *In2, |
| 40 | bool IsSigned) { |
| 41 | if (IsSigned) |
| 42 | if (In2->getValue().isNegative()) |
| 43 | return Result->getValue().sgt(In1->getValue()); |
| 44 | else |
| 45 | return Result->getValue().slt(In1->getValue()); |
| 46 | else |
| 47 | return Result->getValue().ult(In1->getValue()); |
| 48 | } |
| 49 | |
| 50 | /// AddWithOverflow - Compute Result = In1+In2, returning true if the result |
| 51 | /// overflowed for this type. |
| 52 | static bool AddWithOverflow(Constant *&Result, Constant *In1, |
| 53 | Constant *In2, bool IsSigned = false) { |
| 54 | Result = ConstantExpr::getAdd(In1, In2); |
| 55 | |
| 56 | if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { |
| 57 | for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { |
| 58 | Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); |
| 59 | if (HasAddOverflow(ExtractElement(Result, Idx), |
| 60 | ExtractElement(In1, Idx), |
| 61 | ExtractElement(In2, Idx), |
| 62 | IsSigned)) |
| 63 | return true; |
| 64 | } |
| 65 | return false; |
| 66 | } |
| 67 | |
| 68 | return HasAddOverflow(cast<ConstantInt>(Result), |
| 69 | cast<ConstantInt>(In1), cast<ConstantInt>(In2), |
| 70 | IsSigned); |
| 71 | } |
| 72 | |
| 73 | static bool HasSubOverflow(ConstantInt *Result, |
| 74 | ConstantInt *In1, ConstantInt *In2, |
| 75 | bool IsSigned) { |
| 76 | if (IsSigned) |
| 77 | if (In2->getValue().isNegative()) |
| 78 | return Result->getValue().slt(In1->getValue()); |
| 79 | else |
| 80 | return Result->getValue().sgt(In1->getValue()); |
| 81 | else |
| 82 | return Result->getValue().ugt(In1->getValue()); |
| 83 | } |
| 84 | |
| 85 | /// SubWithOverflow - Compute Result = In1-In2, returning true if the result |
| 86 | /// overflowed for this type. |
| 87 | static bool SubWithOverflow(Constant *&Result, Constant *In1, |
| 88 | Constant *In2, bool IsSigned = false) { |
| 89 | Result = ConstantExpr::getSub(In1, In2); |
| 90 | |
| 91 | if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { |
| 92 | for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { |
| 93 | Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); |
| 94 | if (HasSubOverflow(ExtractElement(Result, Idx), |
| 95 | ExtractElement(In1, Idx), |
| 96 | ExtractElement(In2, Idx), |
| 97 | IsSigned)) |
| 98 | return true; |
| 99 | } |
| 100 | return false; |
| 101 | } |
| 102 | |
| 103 | return HasSubOverflow(cast<ConstantInt>(Result), |
| 104 | cast<ConstantInt>(In1), cast<ConstantInt>(In2), |
| 105 | IsSigned); |
| 106 | } |
| 107 | |
| 108 | /// isSignBitCheck - Given an exploded icmp instruction, return true if the |
| 109 | /// comparison only checks the sign bit. If it only checks the sign bit, set |
| 110 | /// TrueIfSigned if the result of the comparison is true when the input value is |
| 111 | /// signed. |
| 112 | static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, |
| 113 | bool &TrueIfSigned) { |
| 114 | switch (pred) { |
| 115 | case ICmpInst::ICMP_SLT: // True if LHS s< 0 |
| 116 | TrueIfSigned = true; |
| 117 | return RHS->isZero(); |
| 118 | case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 |
| 119 | TrueIfSigned = true; |
| 120 | return RHS->isAllOnesValue(); |
| 121 | case ICmpInst::ICMP_SGT: // True if LHS s> -1 |
| 122 | TrueIfSigned = false; |
| 123 | return RHS->isAllOnesValue(); |
| 124 | case ICmpInst::ICMP_UGT: |
| 125 | // True if LHS u> RHS and RHS == high-bit-mask - 1 |
| 126 | TrueIfSigned = true; |
| 127 | return RHS->getValue() == |
| 128 | APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits()); |
| 129 | case ICmpInst::ICMP_UGE: |
| 130 | // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) |
| 131 | TrueIfSigned = true; |
| 132 | return RHS->getValue().isSignBit(); |
| 133 | default: |
| 134 | return false; |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | // isHighOnes - Return true if the constant is of the form 1+0+. |
| 139 | // This is the same as lowones(~X). |
| 140 | static bool isHighOnes(const ConstantInt *CI) { |
| 141 | return (~CI->getValue() + 1).isPowerOf2(); |
| 142 | } |
| 143 | |
| 144 | /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a |
| 145 | /// set of known zero and one bits, compute the maximum and minimum values that |
| 146 | /// could have the specified known zero and known one bits, returning them in |
| 147 | /// min/max. |
| 148 | static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero, |
| 149 | const APInt& KnownOne, |
| 150 | APInt& Min, APInt& Max) { |
| 151 | assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && |
| 152 | KnownZero.getBitWidth() == Min.getBitWidth() && |
| 153 | KnownZero.getBitWidth() == Max.getBitWidth() && |
| 154 | "KnownZero, KnownOne and Min, Max must have equal bitwidth."); |
| 155 | APInt UnknownBits = ~(KnownZero|KnownOne); |
| 156 | |
| 157 | // The minimum value is when all unknown bits are zeros, EXCEPT for the sign |
| 158 | // bit if it is unknown. |
| 159 | Min = KnownOne; |
| 160 | Max = KnownOne|UnknownBits; |
| 161 | |
| 162 | if (UnknownBits.isNegative()) { // Sign bit is unknown |
| 163 | Min.set(Min.getBitWidth()-1); |
| 164 | Max.clear(Max.getBitWidth()-1); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and |
| 169 | // a set of known zero and one bits, compute the maximum and minimum values that |
| 170 | // could have the specified known zero and known one bits, returning them in |
| 171 | // min/max. |
| 172 | static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, |
| 173 | const APInt &KnownOne, |
| 174 | APInt &Min, APInt &Max) { |
| 175 | assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && |
| 176 | KnownZero.getBitWidth() == Min.getBitWidth() && |
| 177 | KnownZero.getBitWidth() == Max.getBitWidth() && |
| 178 | "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); |
| 179 | APInt UnknownBits = ~(KnownZero|KnownOne); |
| 180 | |
| 181 | // The minimum value is when the unknown bits are all zeros. |
| 182 | Min = KnownOne; |
| 183 | // The maximum value is when the unknown bits are all ones. |
| 184 | Max = KnownOne|UnknownBits; |
| 185 | } |
| 186 | |
| 187 | |
| 188 | |
| 189 | /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern: |
| 190 | /// cmp pred (load (gep GV, ...)), cmpcst |
| 191 | /// where GV is a global variable with a constant initializer. Try to simplify |
| 192 | /// this into some simple computation that does not need the load. For example |
| 193 | /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". |
| 194 | /// |
| 195 | /// If AndCst is non-null, then the loaded value is masked with that constant |
| 196 | /// before doing the comparison. This handles cases like "A[i]&4 == 0". |
| 197 | Instruction *InstCombiner:: |
| 198 | FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, |
| 199 | CmpInst &ICI, ConstantInt *AndCst) { |
Chris Lattner | d7f5a58 | 2010-01-04 18:57:15 +0000 | [diff] [blame] | 200 | // We need TD information to know the pointer size unless this is inbounds. |
| 201 | if (!GEP->isInBounds() && TD == 0) return 0; |
| 202 | |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 203 | ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer()); |
| 204 | if (Init == 0 || Init->getNumOperands() > 1024) return 0; |
| 205 | |
| 206 | // There are many forms of this optimization we can handle, for now, just do |
| 207 | // the simple index into a single-dimensional array. |
| 208 | // |
| 209 | // Require: GEP GV, 0, i {{, constant indices}} |
| 210 | if (GEP->getNumOperands() < 3 || |
| 211 | !isa<ConstantInt>(GEP->getOperand(1)) || |
| 212 | !cast<ConstantInt>(GEP->getOperand(1))->isZero() || |
| 213 | isa<Constant>(GEP->getOperand(2))) |
| 214 | return 0; |
| 215 | |
| 216 | // Check that indices after the variable are constants and in-range for the |
| 217 | // type they index. Collect the indices. This is typically for arrays of |
| 218 | // structs. |
| 219 | SmallVector<unsigned, 4> LaterIndices; |
| 220 | |
| 221 | const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType(); |
| 222 | for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { |
| 223 | ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); |
| 224 | if (Idx == 0) return 0; // Variable index. |
| 225 | |
| 226 | uint64_t IdxVal = Idx->getZExtValue(); |
| 227 | if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index. |
| 228 | |
| 229 | if (const StructType *STy = dyn_cast<StructType>(EltTy)) |
| 230 | EltTy = STy->getElementType(IdxVal); |
| 231 | else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { |
| 232 | if (IdxVal >= ATy->getNumElements()) return 0; |
| 233 | EltTy = ATy->getElementType(); |
| 234 | } else { |
| 235 | return 0; // Unknown type. |
| 236 | } |
| 237 | |
| 238 | LaterIndices.push_back(IdxVal); |
| 239 | } |
| 240 | |
| 241 | enum { Overdefined = -3, Undefined = -2 }; |
| 242 | |
| 243 | // Variables for our state machines. |
| 244 | |
| 245 | // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form |
| 246 | // "i == 47 | i == 87", where 47 is the first index the condition is true for, |
| 247 | // and 87 is the second (and last) index. FirstTrueElement is -2 when |
| 248 | // undefined, otherwise set to the first true element. SecondTrueElement is |
| 249 | // -2 when undefined, -3 when overdefined and >= 0 when that index is true. |
| 250 | int FirstTrueElement = Undefined, SecondTrueElement = Undefined; |
| 251 | |
| 252 | // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the |
| 253 | // form "i != 47 & i != 87". Same state transitions as for true elements. |
| 254 | int FirstFalseElement = Undefined, SecondFalseElement = Undefined; |
| 255 | |
| 256 | /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these |
| 257 | /// define a state machine that triggers for ranges of values that the index |
| 258 | /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. |
| 259 | /// This is -2 when undefined, -3 when overdefined, and otherwise the last |
| 260 | /// index in the range (inclusive). We use -2 for undefined here because we |
| 261 | /// use relative comparisons and don't want 0-1 to match -1. |
| 262 | int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; |
| 263 | |
| 264 | // MagicBitvector - This is a magic bitvector where we set a bit if the |
| 265 | // comparison is true for element 'i'. If there are 64 elements or less in |
| 266 | // the array, this will fully represent all the comparison results. |
| 267 | uint64_t MagicBitvector = 0; |
| 268 | |
| 269 | |
| 270 | // Scan the array and see if one of our patterns matches. |
| 271 | Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); |
| 272 | for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { |
| 273 | Constant *Elt = Init->getOperand(i); |
| 274 | |
| 275 | // If this is indexing an array of structures, get the structure element. |
| 276 | if (!LaterIndices.empty()) |
| 277 | Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(), |
| 278 | LaterIndices.size()); |
| 279 | |
| 280 | // If the element is masked, handle it. |
| 281 | if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); |
| 282 | |
| 283 | // Find out if the comparison would be true or false for the i'th element. |
| 284 | Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, |
| 285 | CompareRHS, TD); |
| 286 | // If the result is undef for this element, ignore it. |
| 287 | if (isa<UndefValue>(C)) { |
| 288 | // Extend range state machines to cover this element in case there is an |
| 289 | // undef in the middle of the range. |
| 290 | if (TrueRangeEnd == (int)i-1) |
| 291 | TrueRangeEnd = i; |
| 292 | if (FalseRangeEnd == (int)i-1) |
| 293 | FalseRangeEnd = i; |
| 294 | continue; |
| 295 | } |
| 296 | |
| 297 | // If we can't compute the result for any of the elements, we have to give |
| 298 | // up evaluating the entire conditional. |
| 299 | if (!isa<ConstantInt>(C)) return 0; |
| 300 | |
| 301 | // Otherwise, we know if the comparison is true or false for this element, |
| 302 | // update our state machines. |
| 303 | bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); |
| 304 | |
| 305 | // State machine for single/double/range index comparison. |
| 306 | if (IsTrueForElt) { |
| 307 | // Update the TrueElement state machine. |
| 308 | if (FirstTrueElement == Undefined) |
| 309 | FirstTrueElement = TrueRangeEnd = i; // First true element. |
| 310 | else { |
| 311 | // Update double-compare state machine. |
| 312 | if (SecondTrueElement == Undefined) |
| 313 | SecondTrueElement = i; |
| 314 | else |
| 315 | SecondTrueElement = Overdefined; |
| 316 | |
| 317 | // Update range state machine. |
| 318 | if (TrueRangeEnd == (int)i-1) |
| 319 | TrueRangeEnd = i; |
| 320 | else |
| 321 | TrueRangeEnd = Overdefined; |
| 322 | } |
| 323 | } else { |
| 324 | // Update the FalseElement state machine. |
| 325 | if (FirstFalseElement == Undefined) |
| 326 | FirstFalseElement = FalseRangeEnd = i; // First false element. |
| 327 | else { |
| 328 | // Update double-compare state machine. |
| 329 | if (SecondFalseElement == Undefined) |
| 330 | SecondFalseElement = i; |
| 331 | else |
| 332 | SecondFalseElement = Overdefined; |
| 333 | |
| 334 | // Update range state machine. |
| 335 | if (FalseRangeEnd == (int)i-1) |
| 336 | FalseRangeEnd = i; |
| 337 | else |
| 338 | FalseRangeEnd = Overdefined; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | |
| 343 | // If this element is in range, update our magic bitvector. |
| 344 | if (i < 64 && IsTrueForElt) |
| 345 | MagicBitvector |= 1ULL << i; |
| 346 | |
| 347 | // If all of our states become overdefined, bail out early. Since the |
| 348 | // predicate is expensive, only check it every 8 elements. This is only |
| 349 | // really useful for really huge arrays. |
| 350 | if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && |
| 351 | SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && |
| 352 | FalseRangeEnd == Overdefined) |
| 353 | return 0; |
| 354 | } |
| 355 | |
| 356 | // Now that we've scanned the entire array, emit our new comparison(s). We |
| 357 | // order the state machines in complexity of the generated code. |
| 358 | Value *Idx = GEP->getOperand(2); |
| 359 | |
Chris Lattner | d7f5a58 | 2010-01-04 18:57:15 +0000 | [diff] [blame] | 360 | // If the index is larger than the pointer size of the target, truncate the |
| 361 | // index down like the GEP would do implicitly. We don't have to do this for |
| 362 | // an inbounds GEP because the index can't be out of range. |
| 363 | if (!GEP->isInBounds() && |
| 364 | Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits()) |
| 365 | Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext())); |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 366 | |
| 367 | // If the comparison is only true for one or two elements, emit direct |
| 368 | // comparisons. |
| 369 | if (SecondTrueElement != Overdefined) { |
| 370 | // None true -> false. |
| 371 | if (FirstTrueElement == Undefined) |
| 372 | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext())); |
| 373 | |
| 374 | Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); |
| 375 | |
| 376 | // True for one element -> 'i == 47'. |
| 377 | if (SecondTrueElement == Undefined) |
| 378 | return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); |
| 379 | |
| 380 | // True for two elements -> 'i == 47 | i == 72'. |
| 381 | Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx); |
| 382 | Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); |
| 383 | Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx); |
| 384 | return BinaryOperator::CreateOr(C1, C2); |
| 385 | } |
| 386 | |
| 387 | // If the comparison is only false for one or two elements, emit direct |
| 388 | // comparisons. |
| 389 | if (SecondFalseElement != Overdefined) { |
| 390 | // None false -> true. |
| 391 | if (FirstFalseElement == Undefined) |
| 392 | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext())); |
| 393 | |
| 394 | Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); |
| 395 | |
| 396 | // False for one element -> 'i != 47'. |
| 397 | if (SecondFalseElement == Undefined) |
| 398 | return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); |
| 399 | |
| 400 | // False for two elements -> 'i != 47 & i != 72'. |
| 401 | Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx); |
| 402 | Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); |
| 403 | Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx); |
| 404 | return BinaryOperator::CreateAnd(C1, C2); |
| 405 | } |
| 406 | |
| 407 | // If the comparison can be replaced with a range comparison for the elements |
| 408 | // where it is true, emit the range check. |
| 409 | if (TrueRangeEnd != Overdefined) { |
| 410 | assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); |
| 411 | |
| 412 | // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). |
| 413 | if (FirstTrueElement) { |
| 414 | Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); |
| 415 | Idx = Builder->CreateAdd(Idx, Offs); |
| 416 | } |
| 417 | |
| 418 | Value *End = ConstantInt::get(Idx->getType(), |
| 419 | TrueRangeEnd-FirstTrueElement+1); |
| 420 | return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); |
| 421 | } |
| 422 | |
| 423 | // False range check. |
| 424 | if (FalseRangeEnd != Overdefined) { |
| 425 | assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); |
| 426 | // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). |
| 427 | if (FirstFalseElement) { |
| 428 | Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); |
| 429 | Idx = Builder->CreateAdd(Idx, Offs); |
| 430 | } |
| 431 | |
| 432 | Value *End = ConstantInt::get(Idx->getType(), |
| 433 | FalseRangeEnd-FirstFalseElement); |
| 434 | return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); |
| 435 | } |
| 436 | |
| 437 | |
| 438 | // If a 32-bit or 64-bit magic bitvector captures the entire comparison state |
| 439 | // of this load, replace it with computation that does: |
| 440 | // ((magic_cst >> i) & 1) != 0 |
| 441 | if (Init->getNumOperands() <= 32 || |
| 442 | (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) { |
| 443 | const Type *Ty; |
| 444 | if (Init->getNumOperands() <= 32) |
| 445 | Ty = Type::getInt32Ty(Init->getContext()); |
| 446 | else |
| 447 | Ty = Type::getInt64Ty(Init->getContext()); |
| 448 | Value *V = Builder->CreateIntCast(Idx, Ty, false); |
| 449 | V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); |
| 450 | V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V); |
| 451 | return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); |
| 452 | } |
| 453 | |
| 454 | return 0; |
| 455 | } |
| 456 | |
| 457 | |
| 458 | /// EvaluateGEPOffsetExpression - Return a value that can be used to compare |
| 459 | /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we |
| 460 | /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can |
| 461 | /// be complex, and scales are involved. The above expression would also be |
| 462 | /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). |
| 463 | /// This later form is less amenable to optimization though, and we are allowed |
| 464 | /// to generate the first by knowing that pointer arithmetic doesn't overflow. |
| 465 | /// |
| 466 | /// If we can't emit an optimized form for this expression, this returns null. |
| 467 | /// |
| 468 | static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I, |
| 469 | InstCombiner &IC) { |
| 470 | TargetData &TD = *IC.getTargetData(); |
| 471 | gep_type_iterator GTI = gep_type_begin(GEP); |
| 472 | |
| 473 | // Check to see if this gep only has a single variable index. If so, and if |
| 474 | // any constant indices are a multiple of its scale, then we can compute this |
| 475 | // in terms of the scale of the variable index. For example, if the GEP |
| 476 | // implies an offset of "12 + i*4", then we can codegen this as "3 + i", |
| 477 | // because the expression will cross zero at the same point. |
| 478 | unsigned i, e = GEP->getNumOperands(); |
| 479 | int64_t Offset = 0; |
| 480 | for (i = 1; i != e; ++i, ++GTI) { |
| 481 | if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { |
| 482 | // Compute the aggregate offset of constant indices. |
| 483 | if (CI->isZero()) continue; |
| 484 | |
| 485 | // Handle a struct index, which adds its field offset to the pointer. |
| 486 | if (const StructType *STy = dyn_cast<StructType>(*GTI)) { |
| 487 | Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); |
| 488 | } else { |
| 489 | uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); |
| 490 | Offset += Size*CI->getSExtValue(); |
| 491 | } |
| 492 | } else { |
| 493 | // Found our variable index. |
| 494 | break; |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | // If there are no variable indices, we must have a constant offset, just |
| 499 | // evaluate it the general way. |
| 500 | if (i == e) return 0; |
| 501 | |
| 502 | Value *VariableIdx = GEP->getOperand(i); |
| 503 | // Determine the scale factor of the variable element. For example, this is |
| 504 | // 4 if the variable index is into an array of i32. |
| 505 | uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType()); |
| 506 | |
| 507 | // Verify that there are no other variable indices. If so, emit the hard way. |
| 508 | for (++i, ++GTI; i != e; ++i, ++GTI) { |
| 509 | ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); |
| 510 | if (!CI) return 0; |
| 511 | |
| 512 | // Compute the aggregate offset of constant indices. |
| 513 | if (CI->isZero()) continue; |
| 514 | |
| 515 | // Handle a struct index, which adds its field offset to the pointer. |
| 516 | if (const StructType *STy = dyn_cast<StructType>(*GTI)) { |
| 517 | Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); |
| 518 | } else { |
| 519 | uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); |
| 520 | Offset += Size*CI->getSExtValue(); |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | // Okay, we know we have a single variable index, which must be a |
| 525 | // pointer/array/vector index. If there is no offset, life is simple, return |
| 526 | // the index. |
| 527 | unsigned IntPtrWidth = TD.getPointerSizeInBits(); |
| 528 | if (Offset == 0) { |
| 529 | // Cast to intptrty in case a truncation occurs. If an extension is needed, |
| 530 | // we don't need to bother extending: the extension won't affect where the |
| 531 | // computation crosses zero. |
| 532 | if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) |
| 533 | VariableIdx = new TruncInst(VariableIdx, |
| 534 | TD.getIntPtrType(VariableIdx->getContext()), |
| 535 | VariableIdx->getName(), &I); |
| 536 | return VariableIdx; |
| 537 | } |
| 538 | |
| 539 | // Otherwise, there is an index. The computation we will do will be modulo |
| 540 | // the pointer size, so get it. |
| 541 | uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); |
| 542 | |
| 543 | Offset &= PtrSizeMask; |
| 544 | VariableScale &= PtrSizeMask; |
| 545 | |
| 546 | // To do this transformation, any constant index must be a multiple of the |
| 547 | // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", |
| 548 | // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a |
| 549 | // multiple of the variable scale. |
| 550 | int64_t NewOffs = Offset / (int64_t)VariableScale; |
| 551 | if (Offset != NewOffs*(int64_t)VariableScale) |
| 552 | return 0; |
| 553 | |
| 554 | // Okay, we can do this evaluation. Start by converting the index to intptr. |
| 555 | const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext()); |
| 556 | if (VariableIdx->getType() != IntPtrTy) |
| 557 | VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy, |
| 558 | true /*SExt*/, |
| 559 | VariableIdx->getName(), &I); |
| 560 | Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); |
| 561 | return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I); |
| 562 | } |
| 563 | |
| 564 | /// FoldGEPICmp - Fold comparisons between a GEP instruction and something |
| 565 | /// else. At this point we know that the GEP is on the LHS of the comparison. |
| 566 | Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, |
| 567 | ICmpInst::Predicate Cond, |
| 568 | Instruction &I) { |
| 569 | // Look through bitcasts. |
| 570 | if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS)) |
| 571 | RHS = BCI->getOperand(0); |
| 572 | |
| 573 | Value *PtrBase = GEPLHS->getOperand(0); |
| 574 | if (TD && PtrBase == RHS && GEPLHS->isInBounds()) { |
| 575 | // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). |
| 576 | // This transformation (ignoring the base and scales) is valid because we |
| 577 | // know pointers can't overflow since the gep is inbounds. See if we can |
| 578 | // output an optimized form. |
| 579 | Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this); |
| 580 | |
| 581 | // If not, synthesize the offset the hard way. |
| 582 | if (Offset == 0) |
| 583 | Offset = EmitGEPOffset(GEPLHS); |
| 584 | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, |
| 585 | Constant::getNullValue(Offset->getType())); |
| 586 | } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { |
| 587 | // If the base pointers are different, but the indices are the same, just |
| 588 | // compare the base pointer. |
| 589 | if (PtrBase != GEPRHS->getOperand(0)) { |
| 590 | bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); |
| 591 | IndicesTheSame &= GEPLHS->getOperand(0)->getType() == |
| 592 | GEPRHS->getOperand(0)->getType(); |
| 593 | if (IndicesTheSame) |
| 594 | for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) |
| 595 | if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { |
| 596 | IndicesTheSame = false; |
| 597 | break; |
| 598 | } |
| 599 | |
| 600 | // If all indices are the same, just compare the base pointers. |
| 601 | if (IndicesTheSame) |
| 602 | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), |
| 603 | GEPLHS->getOperand(0), GEPRHS->getOperand(0)); |
| 604 | |
| 605 | // Otherwise, the base pointers are different and the indices are |
| 606 | // different, bail out. |
| 607 | return 0; |
| 608 | } |
| 609 | |
| 610 | // If one of the GEPs has all zero indices, recurse. |
| 611 | bool AllZeros = true; |
| 612 | for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) |
| 613 | if (!isa<Constant>(GEPLHS->getOperand(i)) || |
| 614 | !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) { |
| 615 | AllZeros = false; |
| 616 | break; |
| 617 | } |
| 618 | if (AllZeros) |
| 619 | return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), |
| 620 | ICmpInst::getSwappedPredicate(Cond), I); |
| 621 | |
| 622 | // If the other GEP has all zero indices, recurse. |
| 623 | AllZeros = true; |
| 624 | for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) |
| 625 | if (!isa<Constant>(GEPRHS->getOperand(i)) || |
| 626 | !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) { |
| 627 | AllZeros = false; |
| 628 | break; |
| 629 | } |
| 630 | if (AllZeros) |
| 631 | return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); |
| 632 | |
| 633 | if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { |
| 634 | // If the GEPs only differ by one index, compare it. |
| 635 | unsigned NumDifferences = 0; // Keep track of # differences. |
| 636 | unsigned DiffOperand = 0; // The operand that differs. |
| 637 | for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) |
| 638 | if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { |
| 639 | if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != |
| 640 | GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { |
| 641 | // Irreconcilable differences. |
| 642 | NumDifferences = 2; |
| 643 | break; |
| 644 | } else { |
| 645 | if (NumDifferences++) break; |
| 646 | DiffOperand = i; |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | if (NumDifferences == 0) // SAME GEP? |
| 651 | return ReplaceInstUsesWith(I, // No comparison is needed here. |
| 652 | ConstantInt::get(Type::getInt1Ty(I.getContext()), |
| 653 | ICmpInst::isTrueWhenEqual(Cond))); |
| 654 | |
| 655 | else if (NumDifferences == 1) { |
| 656 | Value *LHSV = GEPLHS->getOperand(DiffOperand); |
| 657 | Value *RHSV = GEPRHS->getOperand(DiffOperand); |
| 658 | // Make sure we do a signed comparison here. |
| 659 | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | // Only lower this if the icmp is the only user of the GEP or if we expect |
| 664 | // the result to fold to a constant! |
| 665 | if (TD && |
| 666 | (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && |
| 667 | (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { |
| 668 | // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) |
| 669 | Value *L = EmitGEPOffset(GEPLHS); |
| 670 | Value *R = EmitGEPOffset(GEPRHS); |
| 671 | return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); |
| 672 | } |
| 673 | } |
| 674 | return 0; |
| 675 | } |
| 676 | |
| 677 | /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X". |
| 678 | Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI, |
| 679 | Value *X, ConstantInt *CI, |
| 680 | ICmpInst::Predicate Pred, |
| 681 | Value *TheAdd) { |
| 682 | // If we have X+0, exit early (simplifying logic below) and let it get folded |
| 683 | // elsewhere. icmp X+0, X -> icmp X, X |
| 684 | if (CI->isZero()) { |
| 685 | bool isTrue = ICmpInst::isTrueWhenEqual(Pred); |
| 686 | return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue)); |
| 687 | } |
| 688 | |
| 689 | // (X+4) == X -> false. |
| 690 | if (Pred == ICmpInst::ICMP_EQ) |
| 691 | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext())); |
| 692 | |
| 693 | // (X+4) != X -> true. |
| 694 | if (Pred == ICmpInst::ICMP_NE) |
| 695 | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext())); |
| 696 | |
| 697 | // If this is an instruction (as opposed to constantexpr) get NUW/NSW info. |
| 698 | bool isNUW = false, isNSW = false; |
| 699 | if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) { |
| 700 | isNUW = Add->hasNoUnsignedWrap(); |
| 701 | isNSW = Add->hasNoSignedWrap(); |
| 702 | } |
| 703 | |
| 704 | // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, |
| 705 | // so the values can never be equal. Similiarly for all other "or equals" |
| 706 | // operators. |
| 707 | |
Chris Lattner | 9aa1e24 | 2010-01-08 17:48:19 +0000 | [diff] [blame] | 708 | // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 709 | // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 |
| 710 | // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 |
| 711 | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { |
| 712 | // If this is an NUW add, then this is always false. |
| 713 | if (isNUW) |
| 714 | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext())); |
| 715 | |
Chris Lattner | 9aa1e24 | 2010-01-08 17:48:19 +0000 | [diff] [blame] | 716 | Value *R = |
| 717 | ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 718 | return new ICmpInst(ICmpInst::ICMP_UGT, X, R); |
| 719 | } |
| 720 | |
| 721 | // (X+1) >u X --> X <u (0-1) --> X != 255 |
| 722 | // (X+2) >u X --> X <u (0-2) --> X <u 254 |
| 723 | // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 |
| 724 | if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { |
| 725 | // If this is an NUW add, then this is always true. |
| 726 | if (isNUW) |
| 727 | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext())); |
| 728 | return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); |
| 729 | } |
| 730 | |
| 731 | unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); |
| 732 | ConstantInt *SMax = ConstantInt::get(X->getContext(), |
| 733 | APInt::getSignedMaxValue(BitWidth)); |
| 734 | |
| 735 | // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 |
| 736 | // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 |
| 737 | // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 |
| 738 | // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 |
| 739 | // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 |
| 740 | // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 |
| 741 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { |
| 742 | // If this is an NSW add, then we have two cases: if the constant is |
| 743 | // positive, then this is always false, if negative, this is always true. |
| 744 | if (isNSW) { |
| 745 | bool isTrue = CI->getValue().isNegative(); |
| 746 | return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue)); |
| 747 | } |
| 748 | |
| 749 | return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); |
| 750 | } |
| 751 | |
| 752 | // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 |
| 753 | // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 |
| 754 | // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 |
| 755 | // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 |
| 756 | // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 |
| 757 | // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 |
| 758 | |
| 759 | // If this is an NSW add, then we have two cases: if the constant is |
| 760 | // positive, then this is always true, if negative, this is always false. |
| 761 | if (isNSW) { |
| 762 | bool isTrue = !CI->getValue().isNegative(); |
| 763 | return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue)); |
| 764 | } |
| 765 | |
| 766 | assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); |
| 767 | Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1); |
| 768 | return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); |
| 769 | } |
| 770 | |
| 771 | /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS |
| 772 | /// and CmpRHS are both known to be integer constants. |
| 773 | Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, |
| 774 | ConstantInt *DivRHS) { |
| 775 | ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1)); |
| 776 | const APInt &CmpRHSV = CmpRHS->getValue(); |
| 777 | |
| 778 | // FIXME: If the operand types don't match the type of the divide |
| 779 | // then don't attempt this transform. The code below doesn't have the |
| 780 | // logic to deal with a signed divide and an unsigned compare (and |
| 781 | // vice versa). This is because (x /s C1) <s C2 produces different |
| 782 | // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even |
| 783 | // (x /u C1) <u C2. Simply casting the operands and result won't |
| 784 | // work. :( The if statement below tests that condition and bails |
| 785 | // if it finds it. |
| 786 | bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv; |
| 787 | if (!ICI.isEquality() && DivIsSigned != ICI.isSigned()) |
| 788 | return 0; |
| 789 | if (DivRHS->isZero()) |
| 790 | return 0; // The ProdOV computation fails on divide by zero. |
| 791 | if (DivIsSigned && DivRHS->isAllOnesValue()) |
| 792 | return 0; // The overflow computation also screws up here |
| 793 | if (DivRHS->isOne()) |
| 794 | return 0; // Not worth bothering, and eliminates some funny cases |
| 795 | // with INT_MIN. |
| 796 | |
| 797 | // Compute Prod = CI * DivRHS. We are essentially solving an equation |
| 798 | // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and |
| 799 | // C2 (CI). By solving for X we can turn this into a range check |
| 800 | // instead of computing a divide. |
| 801 | Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); |
| 802 | |
| 803 | // Determine if the product overflows by seeing if the product is |
| 804 | // not equal to the divide. Make sure we do the same kind of divide |
| 805 | // as in the LHS instruction that we're folding. |
| 806 | bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : |
| 807 | ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; |
| 808 | |
| 809 | // Get the ICmp opcode |
| 810 | ICmpInst::Predicate Pred = ICI.getPredicate(); |
| 811 | |
| 812 | // Figure out the interval that is being checked. For example, a comparison |
| 813 | // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). |
| 814 | // Compute this interval based on the constants involved and the signedness of |
| 815 | // the compare/divide. This computes a half-open interval, keeping track of |
| 816 | // whether either value in the interval overflows. After analysis each |
| 817 | // overflow variable is set to 0 if it's corresponding bound variable is valid |
| 818 | // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. |
| 819 | int LoOverflow = 0, HiOverflow = 0; |
| 820 | Constant *LoBound = 0, *HiBound = 0; |
| 821 | |
| 822 | if (!DivIsSigned) { // udiv |
| 823 | // e.g. X/5 op 3 --> [15, 20) |
| 824 | LoBound = Prod; |
| 825 | HiOverflow = LoOverflow = ProdOV; |
| 826 | if (!HiOverflow) |
| 827 | HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false); |
| 828 | } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. |
| 829 | if (CmpRHSV == 0) { // (X / pos) op 0 |
| 830 | // Can't overflow. e.g. X/2 op 0 --> [-1, 2) |
| 831 | LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS))); |
| 832 | HiBound = DivRHS; |
| 833 | } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos |
| 834 | LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) |
| 835 | HiOverflow = LoOverflow = ProdOV; |
| 836 | if (!HiOverflow) |
| 837 | HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true); |
| 838 | } else { // (X / pos) op neg |
| 839 | // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) |
| 840 | HiBound = AddOne(Prod); |
| 841 | LoOverflow = HiOverflow = ProdOV ? -1 : 0; |
| 842 | if (!LoOverflow) { |
| 843 | ConstantInt* DivNeg = |
| 844 | cast<ConstantInt>(ConstantExpr::getNeg(DivRHS)); |
| 845 | LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; |
| 846 | } |
| 847 | } |
| 848 | } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0. |
| 849 | if (CmpRHSV == 0) { // (X / neg) op 0 |
| 850 | // e.g. X/-5 op 0 --> [-4, 5) |
| 851 | LoBound = AddOne(DivRHS); |
| 852 | HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS)); |
| 853 | if (HiBound == DivRHS) { // -INTMIN = INTMIN |
| 854 | HiOverflow = 1; // [INTMIN+1, overflow) |
| 855 | HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN |
| 856 | } |
| 857 | } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos |
| 858 | // e.g. X/-5 op 3 --> [-19, -14) |
| 859 | HiBound = AddOne(Prod); |
| 860 | HiOverflow = LoOverflow = ProdOV ? -1 : 0; |
| 861 | if (!LoOverflow) |
| 862 | LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0; |
| 863 | } else { // (X / neg) op neg |
| 864 | LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) |
| 865 | LoOverflow = HiOverflow = ProdOV; |
| 866 | if (!HiOverflow) |
| 867 | HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true); |
| 868 | } |
| 869 | |
| 870 | // Dividing by a negative swaps the condition. LT <-> GT |
| 871 | Pred = ICmpInst::getSwappedPredicate(Pred); |
| 872 | } |
| 873 | |
| 874 | Value *X = DivI->getOperand(0); |
| 875 | switch (Pred) { |
| 876 | default: llvm_unreachable("Unhandled icmp opcode!"); |
| 877 | case ICmpInst::ICMP_EQ: |
| 878 | if (LoOverflow && HiOverflow) |
| 879 | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext())); |
| 880 | else if (HiOverflow) |
| 881 | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : |
| 882 | ICmpInst::ICMP_UGE, X, LoBound); |
| 883 | else if (LoOverflow) |
| 884 | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : |
| 885 | ICmpInst::ICMP_ULT, X, HiBound); |
| 886 | else |
| 887 | return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI); |
| 888 | case ICmpInst::ICMP_NE: |
| 889 | if (LoOverflow && HiOverflow) |
| 890 | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext())); |
| 891 | else if (HiOverflow) |
| 892 | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : |
| 893 | ICmpInst::ICMP_ULT, X, LoBound); |
| 894 | else if (LoOverflow) |
| 895 | return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : |
| 896 | ICmpInst::ICMP_UGE, X, HiBound); |
| 897 | else |
| 898 | return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI); |
| 899 | case ICmpInst::ICMP_ULT: |
| 900 | case ICmpInst::ICMP_SLT: |
| 901 | if (LoOverflow == +1) // Low bound is greater than input range. |
| 902 | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext())); |
| 903 | if (LoOverflow == -1) // Low bound is less than input range. |
| 904 | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext())); |
| 905 | return new ICmpInst(Pred, X, LoBound); |
| 906 | case ICmpInst::ICMP_UGT: |
| 907 | case ICmpInst::ICMP_SGT: |
| 908 | if (HiOverflow == +1) // High bound greater than input range. |
| 909 | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext())); |
| 910 | else if (HiOverflow == -1) // High bound less than input range. |
| 911 | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext())); |
| 912 | if (Pred == ICmpInst::ICMP_UGT) |
| 913 | return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); |
| 914 | else |
| 915 | return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | |
| 920 | /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)". |
| 921 | /// |
| 922 | Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, |
| 923 | Instruction *LHSI, |
| 924 | ConstantInt *RHS) { |
| 925 | const APInt &RHSV = RHS->getValue(); |
| 926 | |
| 927 | switch (LHSI->getOpcode()) { |
| 928 | case Instruction::Trunc: |
| 929 | if (ICI.isEquality() && LHSI->hasOneUse()) { |
| 930 | // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all |
| 931 | // of the high bits truncated out of x are known. |
| 932 | unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(), |
| 933 | SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); |
| 934 | APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits)); |
| 935 | APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); |
| 936 | ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne); |
| 937 | |
| 938 | // If all the high bits are known, we can do this xform. |
| 939 | if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { |
| 940 | // Pull in the high bits from known-ones set. |
| 941 | APInt NewRHS(RHS->getValue()); |
| 942 | NewRHS.zext(SrcBits); |
| 943 | NewRHS |= KnownOne; |
| 944 | return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), |
| 945 | ConstantInt::get(ICI.getContext(), NewRHS)); |
| 946 | } |
| 947 | } |
| 948 | break; |
| 949 | |
| 950 | case Instruction::Xor: // (icmp pred (xor X, XorCST), CI) |
| 951 | if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { |
| 952 | // If this is a comparison that tests the signbit (X < 0) or (x > -1), |
| 953 | // fold the xor. |
| 954 | if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || |
| 955 | (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { |
| 956 | Value *CompareVal = LHSI->getOperand(0); |
| 957 | |
| 958 | // If the sign bit of the XorCST is not set, there is no change to |
| 959 | // the operation, just stop using the Xor. |
| 960 | if (!XorCST->getValue().isNegative()) { |
| 961 | ICI.setOperand(0, CompareVal); |
| 962 | Worklist.Add(LHSI); |
| 963 | return &ICI; |
| 964 | } |
| 965 | |
| 966 | // Was the old condition true if the operand is positive? |
| 967 | bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; |
| 968 | |
| 969 | // If so, the new one isn't. |
| 970 | isTrueIfPositive ^= true; |
| 971 | |
| 972 | if (isTrueIfPositive) |
| 973 | return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, |
| 974 | SubOne(RHS)); |
| 975 | else |
| 976 | return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, |
| 977 | AddOne(RHS)); |
| 978 | } |
| 979 | |
| 980 | if (LHSI->hasOneUse()) { |
| 981 | // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) |
| 982 | if (!ICI.isEquality() && XorCST->getValue().isSignBit()) { |
| 983 | const APInt &SignBit = XorCST->getValue(); |
| 984 | ICmpInst::Predicate Pred = ICI.isSigned() |
| 985 | ? ICI.getUnsignedPredicate() |
| 986 | : ICI.getSignedPredicate(); |
| 987 | return new ICmpInst(Pred, LHSI->getOperand(0), |
| 988 | ConstantInt::get(ICI.getContext(), |
| 989 | RHSV ^ SignBit)); |
| 990 | } |
| 991 | |
| 992 | // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) |
| 993 | if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) { |
| 994 | const APInt &NotSignBit = XorCST->getValue(); |
| 995 | ICmpInst::Predicate Pred = ICI.isSigned() |
| 996 | ? ICI.getUnsignedPredicate() |
| 997 | : ICI.getSignedPredicate(); |
| 998 | Pred = ICI.getSwappedPredicate(Pred); |
| 999 | return new ICmpInst(Pred, LHSI->getOperand(0), |
| 1000 | ConstantInt::get(ICI.getContext(), |
| 1001 | RHSV ^ NotSignBit)); |
| 1002 | } |
| 1003 | } |
| 1004 | } |
| 1005 | break; |
| 1006 | case Instruction::And: // (icmp pred (and X, AndCST), RHS) |
| 1007 | if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && |
| 1008 | LHSI->getOperand(0)->hasOneUse()) { |
| 1009 | ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1)); |
| 1010 | |
| 1011 | // If the LHS is an AND of a truncating cast, we can widen the |
| 1012 | // and/compare to be the input width without changing the value |
| 1013 | // produced, eliminating a cast. |
| 1014 | if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) { |
| 1015 | // We can do this transformation if either the AND constant does not |
| 1016 | // have its sign bit set or if it is an equality comparison. |
| 1017 | // Extending a relational comparison when we're checking the sign |
| 1018 | // bit would not work. |
| 1019 | if (Cast->hasOneUse() && |
| 1020 | (ICI.isEquality() || |
| 1021 | (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) { |
| 1022 | uint32_t BitWidth = |
| 1023 | cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth(); |
| 1024 | APInt NewCST = AndCST->getValue(); |
| 1025 | NewCST.zext(BitWidth); |
| 1026 | APInt NewCI = RHSV; |
| 1027 | NewCI.zext(BitWidth); |
| 1028 | Value *NewAnd = |
| 1029 | Builder->CreateAnd(Cast->getOperand(0), |
| 1030 | ConstantInt::get(ICI.getContext(), NewCST), |
| 1031 | LHSI->getName()); |
| 1032 | return new ICmpInst(ICI.getPredicate(), NewAnd, |
| 1033 | ConstantInt::get(ICI.getContext(), NewCI)); |
| 1034 | } |
| 1035 | } |
| 1036 | |
| 1037 | // If this is: (X >> C1) & C2 != C3 (where any shift and any compare |
| 1038 | // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This |
| 1039 | // happens a LOT in code produced by the C front-end, for bitfield |
| 1040 | // access. |
| 1041 | BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0)); |
| 1042 | if (Shift && !Shift->isShift()) |
| 1043 | Shift = 0; |
| 1044 | |
| 1045 | ConstantInt *ShAmt; |
| 1046 | ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0; |
| 1047 | const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift. |
| 1048 | const Type *AndTy = AndCST->getType(); // Type of the and. |
| 1049 | |
| 1050 | // We can fold this as long as we can't shift unknown bits |
| 1051 | // into the mask. This can only happen with signed shift |
| 1052 | // rights, as they sign-extend. |
| 1053 | if (ShAmt) { |
| 1054 | bool CanFold = Shift->isLogicalShift(); |
| 1055 | if (!CanFold) { |
| 1056 | // To test for the bad case of the signed shr, see if any |
| 1057 | // of the bits shifted in could be tested after the mask. |
| 1058 | uint32_t TyBits = Ty->getPrimitiveSizeInBits(); |
| 1059 | int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits); |
| 1060 | |
| 1061 | uint32_t BitWidth = AndTy->getPrimitiveSizeInBits(); |
| 1062 | if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & |
| 1063 | AndCST->getValue()) == 0) |
| 1064 | CanFold = true; |
| 1065 | } |
| 1066 | |
| 1067 | if (CanFold) { |
| 1068 | Constant *NewCst; |
| 1069 | if (Shift->getOpcode() == Instruction::Shl) |
| 1070 | NewCst = ConstantExpr::getLShr(RHS, ShAmt); |
| 1071 | else |
| 1072 | NewCst = ConstantExpr::getShl(RHS, ShAmt); |
| 1073 | |
| 1074 | // Check to see if we are shifting out any of the bits being |
| 1075 | // compared. |
| 1076 | if (ConstantExpr::get(Shift->getOpcode(), |
| 1077 | NewCst, ShAmt) != RHS) { |
| 1078 | // If we shifted bits out, the fold is not going to work out. |
| 1079 | // As a special case, check to see if this means that the |
| 1080 | // result is always true or false now. |
| 1081 | if (ICI.getPredicate() == ICmpInst::ICMP_EQ) |
| 1082 | return ReplaceInstUsesWith(ICI, |
| 1083 | ConstantInt::getFalse(ICI.getContext())); |
| 1084 | if (ICI.getPredicate() == ICmpInst::ICMP_NE) |
| 1085 | return ReplaceInstUsesWith(ICI, |
| 1086 | ConstantInt::getTrue(ICI.getContext())); |
| 1087 | } else { |
| 1088 | ICI.setOperand(1, NewCst); |
| 1089 | Constant *NewAndCST; |
| 1090 | if (Shift->getOpcode() == Instruction::Shl) |
| 1091 | NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt); |
| 1092 | else |
| 1093 | NewAndCST = ConstantExpr::getShl(AndCST, ShAmt); |
| 1094 | LHSI->setOperand(1, NewAndCST); |
| 1095 | LHSI->setOperand(0, Shift->getOperand(0)); |
| 1096 | Worklist.Add(Shift); // Shift is dead. |
| 1097 | return &ICI; |
| 1098 | } |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is |
| 1103 | // preferable because it allows the C<<Y expression to be hoisted out |
| 1104 | // of a loop if Y is invariant and X is not. |
| 1105 | if (Shift && Shift->hasOneUse() && RHSV == 0 && |
| 1106 | ICI.isEquality() && !Shift->isArithmeticShift() && |
| 1107 | !isa<Constant>(Shift->getOperand(0))) { |
| 1108 | // Compute C << Y. |
| 1109 | Value *NS; |
| 1110 | if (Shift->getOpcode() == Instruction::LShr) { |
| 1111 | NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp"); |
| 1112 | } else { |
| 1113 | // Insert a logical shift. |
| 1114 | NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp"); |
| 1115 | } |
| 1116 | |
| 1117 | // Compute X & (C << Y). |
| 1118 | Value *NewAnd = |
| 1119 | Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); |
| 1120 | |
| 1121 | ICI.setOperand(0, NewAnd); |
| 1122 | return &ICI; |
| 1123 | } |
| 1124 | } |
| 1125 | |
| 1126 | // Try to optimize things like "A[i]&42 == 0" to index computations. |
| 1127 | if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) { |
| 1128 | if (GetElementPtrInst *GEP = |
| 1129 | dyn_cast<GetElementPtrInst>(LI->getOperand(0))) |
| 1130 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) |
| 1131 | if (GV->isConstant() && GV->hasDefinitiveInitializer() && |
| 1132 | !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) { |
| 1133 | ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1)); |
| 1134 | if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C)) |
| 1135 | return Res; |
| 1136 | } |
| 1137 | } |
| 1138 | break; |
| 1139 | |
| 1140 | case Instruction::Or: { |
| 1141 | if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse()) |
| 1142 | break; |
| 1143 | Value *P, *Q; |
| 1144 | if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { |
| 1145 | // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 |
| 1146 | // -> and (icmp eq P, null), (icmp eq Q, null). |
| 1147 | |
| 1148 | Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P, |
| 1149 | Constant::getNullValue(P->getType())); |
| 1150 | Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q, |
| 1151 | Constant::getNullValue(Q->getType())); |
| 1152 | Instruction *Op; |
| 1153 | if (ICI.getPredicate() == ICmpInst::ICMP_EQ) |
| 1154 | Op = BinaryOperator::CreateAnd(ICIP, ICIQ); |
| 1155 | else |
| 1156 | Op = BinaryOperator::CreateOr(ICIP, ICIQ); |
| 1157 | return Op; |
| 1158 | } |
| 1159 | break; |
| 1160 | } |
| 1161 | |
| 1162 | case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) |
| 1163 | ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); |
| 1164 | if (!ShAmt) break; |
| 1165 | |
| 1166 | uint32_t TypeBits = RHSV.getBitWidth(); |
| 1167 | |
| 1168 | // Check that the shift amount is in range. If not, don't perform |
| 1169 | // undefined shifts. When the shift is visited it will be |
| 1170 | // simplified. |
| 1171 | if (ShAmt->uge(TypeBits)) |
| 1172 | break; |
| 1173 | |
| 1174 | if (ICI.isEquality()) { |
| 1175 | // If we are comparing against bits always shifted out, the |
| 1176 | // comparison cannot succeed. |
| 1177 | Constant *Comp = |
| 1178 | ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), |
| 1179 | ShAmt); |
| 1180 | if (Comp != RHS) {// Comparing against a bit that we know is zero. |
| 1181 | bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; |
| 1182 | Constant *Cst = |
| 1183 | ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE); |
| 1184 | return ReplaceInstUsesWith(ICI, Cst); |
| 1185 | } |
| 1186 | |
| 1187 | if (LHSI->hasOneUse()) { |
| 1188 | // Otherwise strength reduce the shift into an and. |
| 1189 | uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); |
| 1190 | Constant *Mask = |
| 1191 | ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits, |
| 1192 | TypeBits-ShAmtVal)); |
| 1193 | |
| 1194 | Value *And = |
| 1195 | Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask"); |
| 1196 | return new ICmpInst(ICI.getPredicate(), And, |
| 1197 | ConstantInt::get(ICI.getContext(), |
| 1198 | RHSV.lshr(ShAmtVal))); |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | // Otherwise, if this is a comparison of the sign bit, simplify to and/test. |
| 1203 | bool TrueIfSigned = false; |
| 1204 | if (LHSI->hasOneUse() && |
| 1205 | isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { |
| 1206 | // (X << 31) <s 0 --> (X&1) != 0 |
| 1207 | Constant *Mask = ConstantInt::get(ICI.getContext(), APInt(TypeBits, 1) << |
| 1208 | (TypeBits-ShAmt->getZExtValue()-1)); |
| 1209 | Value *And = |
| 1210 | Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); |
| 1211 | return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, |
| 1212 | And, Constant::getNullValue(And->getType())); |
| 1213 | } |
| 1214 | break; |
| 1215 | } |
| 1216 | |
| 1217 | case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) |
| 1218 | case Instruction::AShr: { |
| 1219 | // Only handle equality comparisons of shift-by-constant. |
| 1220 | ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); |
| 1221 | if (!ShAmt || !ICI.isEquality()) break; |
| 1222 | |
| 1223 | // Check that the shift amount is in range. If not, don't perform |
| 1224 | // undefined shifts. When the shift is visited it will be |
| 1225 | // simplified. |
| 1226 | uint32_t TypeBits = RHSV.getBitWidth(); |
| 1227 | if (ShAmt->uge(TypeBits)) |
| 1228 | break; |
| 1229 | |
| 1230 | uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); |
| 1231 | |
| 1232 | // If we are comparing against bits always shifted out, the |
| 1233 | // comparison cannot succeed. |
| 1234 | APInt Comp = RHSV << ShAmtVal; |
| 1235 | if (LHSI->getOpcode() == Instruction::LShr) |
| 1236 | Comp = Comp.lshr(ShAmtVal); |
| 1237 | else |
| 1238 | Comp = Comp.ashr(ShAmtVal); |
| 1239 | |
| 1240 | if (Comp != RHSV) { // Comparing against a bit that we know is zero. |
| 1241 | bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; |
| 1242 | Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()), |
| 1243 | IsICMP_NE); |
| 1244 | return ReplaceInstUsesWith(ICI, Cst); |
| 1245 | } |
| 1246 | |
| 1247 | // Otherwise, check to see if the bits shifted out are known to be zero. |
| 1248 | // If so, we can compare against the unshifted value: |
| 1249 | // (X & 4) >> 1 == 2 --> (X & 4) == 4. |
| 1250 | if (LHSI->hasOneUse() && |
| 1251 | MaskedValueIsZero(LHSI->getOperand(0), |
| 1252 | APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) { |
| 1253 | return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), |
| 1254 | ConstantExpr::getShl(RHS, ShAmt)); |
| 1255 | } |
| 1256 | |
| 1257 | if (LHSI->hasOneUse()) { |
| 1258 | // Otherwise strength reduce the shift into an and. |
| 1259 | APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); |
| 1260 | Constant *Mask = ConstantInt::get(ICI.getContext(), Val); |
| 1261 | |
| 1262 | Value *And = Builder->CreateAnd(LHSI->getOperand(0), |
| 1263 | Mask, LHSI->getName()+".mask"); |
| 1264 | return new ICmpInst(ICI.getPredicate(), And, |
| 1265 | ConstantExpr::getShl(RHS, ShAmt)); |
| 1266 | } |
| 1267 | break; |
| 1268 | } |
| 1269 | |
| 1270 | case Instruction::SDiv: |
| 1271 | case Instruction::UDiv: |
| 1272 | // Fold: icmp pred ([us]div X, C1), C2 -> range test |
| 1273 | // Fold this div into the comparison, producing a range check. |
| 1274 | // Determine, based on the divide type, what the range is being |
| 1275 | // checked. If there is an overflow on the low or high side, remember |
| 1276 | // it, otherwise compute the range [low, hi) bounding the new value. |
| 1277 | // See: InsertRangeTest above for the kinds of replacements possible. |
| 1278 | if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) |
| 1279 | if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI), |
| 1280 | DivRHS)) |
| 1281 | return R; |
| 1282 | break; |
| 1283 | |
| 1284 | case Instruction::Add: |
| 1285 | // Fold: icmp pred (add X, C1), C2 |
| 1286 | if (!ICI.isEquality()) { |
| 1287 | ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1)); |
| 1288 | if (!LHSC) break; |
| 1289 | const APInt &LHSV = LHSC->getValue(); |
| 1290 | |
| 1291 | ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV) |
| 1292 | .subtract(LHSV); |
| 1293 | |
| 1294 | if (ICI.isSigned()) { |
| 1295 | if (CR.getLower().isSignBit()) { |
| 1296 | return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0), |
| 1297 | ConstantInt::get(ICI.getContext(),CR.getUpper())); |
| 1298 | } else if (CR.getUpper().isSignBit()) { |
| 1299 | return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0), |
| 1300 | ConstantInt::get(ICI.getContext(),CR.getLower())); |
| 1301 | } |
| 1302 | } else { |
| 1303 | if (CR.getLower().isMinValue()) { |
| 1304 | return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), |
| 1305 | ConstantInt::get(ICI.getContext(),CR.getUpper())); |
| 1306 | } else if (CR.getUpper().isMinValue()) { |
| 1307 | return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), |
| 1308 | ConstantInt::get(ICI.getContext(),CR.getLower())); |
| 1309 | } |
| 1310 | } |
| 1311 | } |
| 1312 | break; |
| 1313 | } |
| 1314 | |
| 1315 | // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. |
| 1316 | if (ICI.isEquality()) { |
| 1317 | bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; |
| 1318 | |
| 1319 | // If the first operand is (add|sub|and|or|xor|rem) with a constant, and |
| 1320 | // the second operand is a constant, simplify a bit. |
| 1321 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) { |
| 1322 | switch (BO->getOpcode()) { |
| 1323 | case Instruction::SRem: |
| 1324 | // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. |
| 1325 | if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){ |
| 1326 | const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue(); |
| 1327 | if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) { |
| 1328 | Value *NewRem = |
| 1329 | Builder->CreateURem(BO->getOperand(0), BO->getOperand(1), |
| 1330 | BO->getName()); |
| 1331 | return new ICmpInst(ICI.getPredicate(), NewRem, |
| 1332 | Constant::getNullValue(BO->getType())); |
| 1333 | } |
| 1334 | } |
| 1335 | break; |
| 1336 | case Instruction::Add: |
| 1337 | // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. |
| 1338 | if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { |
| 1339 | if (BO->hasOneUse()) |
| 1340 | return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), |
| 1341 | ConstantExpr::getSub(RHS, BOp1C)); |
| 1342 | } else if (RHSV == 0) { |
| 1343 | // Replace ((add A, B) != 0) with (A != -B) if A or B is |
| 1344 | // efficiently invertible, or if the add has just this one use. |
| 1345 | Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); |
| 1346 | |
| 1347 | if (Value *NegVal = dyn_castNegVal(BOp1)) |
| 1348 | return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); |
| 1349 | else if (Value *NegVal = dyn_castNegVal(BOp0)) |
| 1350 | return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); |
| 1351 | else if (BO->hasOneUse()) { |
| 1352 | Value *Neg = Builder->CreateNeg(BOp1); |
| 1353 | Neg->takeName(BO); |
| 1354 | return new ICmpInst(ICI.getPredicate(), BOp0, Neg); |
| 1355 | } |
| 1356 | } |
| 1357 | break; |
| 1358 | case Instruction::Xor: |
| 1359 | // For the xor case, we can xor two constants together, eliminating |
| 1360 | // the explicit xor. |
| 1361 | if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) |
| 1362 | return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), |
| 1363 | ConstantExpr::getXor(RHS, BOC)); |
| 1364 | |
| 1365 | // FALLTHROUGH |
| 1366 | case Instruction::Sub: |
| 1367 | // Replace (([sub|xor] A, B) != 0) with (A != B) |
| 1368 | if (RHSV == 0) |
| 1369 | return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), |
| 1370 | BO->getOperand(1)); |
| 1371 | break; |
| 1372 | |
| 1373 | case Instruction::Or: |
| 1374 | // If bits are being or'd in that are not present in the constant we |
| 1375 | // are comparing against, then the comparison could never succeed! |
| 1376 | if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) { |
| 1377 | Constant *NotCI = ConstantExpr::getNot(RHS); |
| 1378 | if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) |
| 1379 | return ReplaceInstUsesWith(ICI, |
| 1380 | ConstantInt::get(Type::getInt1Ty(ICI.getContext()), |
| 1381 | isICMP_NE)); |
| 1382 | } |
| 1383 | break; |
| 1384 | |
| 1385 | case Instruction::And: |
| 1386 | if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { |
| 1387 | // If bits are being compared against that are and'd out, then the |
| 1388 | // comparison can never succeed! |
| 1389 | if ((RHSV & ~BOC->getValue()) != 0) |
| 1390 | return ReplaceInstUsesWith(ICI, |
| 1391 | ConstantInt::get(Type::getInt1Ty(ICI.getContext()), |
| 1392 | isICMP_NE)); |
| 1393 | |
| 1394 | // If we have ((X & C) == C), turn it into ((X & C) != 0). |
| 1395 | if (RHS == BOC && RHSV.isPowerOf2()) |
| 1396 | return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : |
| 1397 | ICmpInst::ICMP_NE, LHSI, |
| 1398 | Constant::getNullValue(RHS->getType())); |
| 1399 | |
| 1400 | // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 |
| 1401 | if (BOC->getValue().isSignBit()) { |
| 1402 | Value *X = BO->getOperand(0); |
| 1403 | Constant *Zero = Constant::getNullValue(X->getType()); |
| 1404 | ICmpInst::Predicate pred = isICMP_NE ? |
| 1405 | ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; |
| 1406 | return new ICmpInst(pred, X, Zero); |
| 1407 | } |
| 1408 | |
| 1409 | // ((X & ~7) == 0) --> X < 8 |
| 1410 | if (RHSV == 0 && isHighOnes(BOC)) { |
| 1411 | Value *X = BO->getOperand(0); |
| 1412 | Constant *NegX = ConstantExpr::getNeg(BOC); |
| 1413 | ICmpInst::Predicate pred = isICMP_NE ? |
| 1414 | ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; |
| 1415 | return new ICmpInst(pred, X, NegX); |
| 1416 | } |
| 1417 | } |
| 1418 | default: break; |
| 1419 | } |
| 1420 | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) { |
| 1421 | // Handle icmp {eq|ne} <intrinsic>, intcst. |
Chris Lattner | 0335740 | 2010-01-05 18:09:56 +0000 | [diff] [blame] | 1422 | switch (II->getIntrinsicID()) { |
| 1423 | case Intrinsic::bswap: |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 1424 | Worklist.Add(II); |
| 1425 | ICI.setOperand(0, II->getOperand(1)); |
| 1426 | ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap())); |
| 1427 | return &ICI; |
Chris Lattner | 0335740 | 2010-01-05 18:09:56 +0000 | [diff] [blame] | 1428 | case Intrinsic::ctlz: |
| 1429 | case Intrinsic::cttz: |
| 1430 | // ctz(A) == bitwidth(a) -> A == 0 and likewise for != |
| 1431 | if (RHSV == RHS->getType()->getBitWidth()) { |
| 1432 | Worklist.Add(II); |
| 1433 | ICI.setOperand(0, II->getOperand(1)); |
| 1434 | ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0)); |
| 1435 | return &ICI; |
| 1436 | } |
| 1437 | break; |
| 1438 | case Intrinsic::ctpop: |
| 1439 | // popcount(A) == 0 -> A == 0 and likewise for != |
| 1440 | if (RHS->isZero()) { |
| 1441 | Worklist.Add(II); |
| 1442 | ICI.setOperand(0, II->getOperand(1)); |
| 1443 | ICI.setOperand(1, RHS); |
| 1444 | return &ICI; |
| 1445 | } |
| 1446 | break; |
| 1447 | default: |
| 1448 | break; |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 1449 | } |
| 1450 | } |
| 1451 | } |
| 1452 | return 0; |
| 1453 | } |
| 1454 | |
| 1455 | /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). |
| 1456 | /// We only handle extending casts so far. |
| 1457 | /// |
| 1458 | Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { |
| 1459 | const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0)); |
| 1460 | Value *LHSCIOp = LHSCI->getOperand(0); |
| 1461 | const Type *SrcTy = LHSCIOp->getType(); |
| 1462 | const Type *DestTy = LHSCI->getType(); |
| 1463 | Value *RHSCIOp; |
| 1464 | |
| 1465 | // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the |
| 1466 | // integer type is the same size as the pointer type. |
| 1467 | if (TD && LHSCI->getOpcode() == Instruction::PtrToInt && |
| 1468 | TD->getPointerSizeInBits() == |
| 1469 | cast<IntegerType>(DestTy)->getBitWidth()) { |
| 1470 | Value *RHSOp = 0; |
| 1471 | if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) { |
| 1472 | RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); |
| 1473 | } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) { |
| 1474 | RHSOp = RHSC->getOperand(0); |
| 1475 | // If the pointer types don't match, insert a bitcast. |
| 1476 | if (LHSCIOp->getType() != RHSOp->getType()) |
| 1477 | RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType()); |
| 1478 | } |
| 1479 | |
| 1480 | if (RHSOp) |
| 1481 | return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); |
| 1482 | } |
| 1483 | |
| 1484 | // The code below only handles extension cast instructions, so far. |
| 1485 | // Enforce this. |
| 1486 | if (LHSCI->getOpcode() != Instruction::ZExt && |
| 1487 | LHSCI->getOpcode() != Instruction::SExt) |
| 1488 | return 0; |
| 1489 | |
| 1490 | bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; |
| 1491 | bool isSignedCmp = ICI.isSigned(); |
| 1492 | |
| 1493 | if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) { |
| 1494 | // Not an extension from the same type? |
| 1495 | RHSCIOp = CI->getOperand(0); |
| 1496 | if (RHSCIOp->getType() != LHSCIOp->getType()) |
| 1497 | return 0; |
| 1498 | |
| 1499 | // If the signedness of the two casts doesn't agree (i.e. one is a sext |
| 1500 | // and the other is a zext), then we can't handle this. |
| 1501 | if (CI->getOpcode() != LHSCI->getOpcode()) |
| 1502 | return 0; |
| 1503 | |
| 1504 | // Deal with equality cases early. |
| 1505 | if (ICI.isEquality()) |
| 1506 | return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); |
| 1507 | |
| 1508 | // A signed comparison of sign extended values simplifies into a |
| 1509 | // signed comparison. |
| 1510 | if (isSignedCmp && isSignedExt) |
| 1511 | return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); |
| 1512 | |
| 1513 | // The other three cases all fold into an unsigned comparison. |
| 1514 | return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp); |
| 1515 | } |
| 1516 | |
| 1517 | // If we aren't dealing with a constant on the RHS, exit early |
| 1518 | ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1)); |
| 1519 | if (!CI) |
| 1520 | return 0; |
| 1521 | |
| 1522 | // Compute the constant that would happen if we truncated to SrcTy then |
| 1523 | // reextended to DestTy. |
| 1524 | Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); |
| 1525 | Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), |
| 1526 | Res1, DestTy); |
| 1527 | |
| 1528 | // If the re-extended constant didn't change... |
| 1529 | if (Res2 == CI) { |
| 1530 | // Deal with equality cases early. |
| 1531 | if (ICI.isEquality()) |
| 1532 | return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); |
| 1533 | |
| 1534 | // A signed comparison of sign extended values simplifies into a |
| 1535 | // signed comparison. |
| 1536 | if (isSignedExt && isSignedCmp) |
| 1537 | return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); |
| 1538 | |
| 1539 | // The other three cases all fold into an unsigned comparison. |
| 1540 | return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1); |
| 1541 | } |
| 1542 | |
| 1543 | // The re-extended constant changed so the constant cannot be represented |
| 1544 | // in the shorter type. Consequently, we cannot emit a simple comparison. |
| 1545 | |
| 1546 | // First, handle some easy cases. We know the result cannot be equal at this |
| 1547 | // point so handle the ICI.isEquality() cases |
| 1548 | if (ICI.getPredicate() == ICmpInst::ICMP_EQ) |
| 1549 | return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext())); |
| 1550 | if (ICI.getPredicate() == ICmpInst::ICMP_NE) |
| 1551 | return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext())); |
| 1552 | |
| 1553 | // Evaluate the comparison for LT (we invert for GT below). LE and GE cases |
| 1554 | // should have been folded away previously and not enter in here. |
| 1555 | Value *Result; |
| 1556 | if (isSignedCmp) { |
| 1557 | // We're performing a signed comparison. |
| 1558 | if (cast<ConstantInt>(CI)->getValue().isNegative()) |
| 1559 | Result = ConstantInt::getFalse(ICI.getContext()); // X < (small) --> false |
| 1560 | else |
| 1561 | Result = ConstantInt::getTrue(ICI.getContext()); // X < (large) --> true |
| 1562 | } else { |
| 1563 | // We're performing an unsigned comparison. |
| 1564 | if (isSignedExt) { |
| 1565 | // We're performing an unsigned comp with a sign extended value. |
| 1566 | // This is true if the input is >= 0. [aka >s -1] |
| 1567 | Constant *NegOne = Constant::getAllOnesValue(SrcTy); |
| 1568 | Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName()); |
| 1569 | } else { |
| 1570 | // Unsigned extend & unsigned compare -> always true. |
| 1571 | Result = ConstantInt::getTrue(ICI.getContext()); |
| 1572 | } |
| 1573 | } |
| 1574 | |
| 1575 | // Finally, return the value computed. |
| 1576 | if (ICI.getPredicate() == ICmpInst::ICMP_ULT || |
| 1577 | ICI.getPredicate() == ICmpInst::ICMP_SLT) |
| 1578 | return ReplaceInstUsesWith(ICI, Result); |
| 1579 | |
| 1580 | assert((ICI.getPredicate()==ICmpInst::ICMP_UGT || |
| 1581 | ICI.getPredicate()==ICmpInst::ICMP_SGT) && |
| 1582 | "ICmp should be folded!"); |
| 1583 | if (Constant *CI = dyn_cast<Constant>(Result)) |
| 1584 | return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI)); |
| 1585 | return BinaryOperator::CreateNot(Result); |
| 1586 | } |
| 1587 | |
| 1588 | |
| 1589 | |
| 1590 | Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { |
| 1591 | bool Changed = false; |
Chris Lattner | 5f670d4 | 2010-02-01 19:54:45 +0000 | [diff] [blame] | 1592 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 1593 | |
| 1594 | /// Orders the operands of the compare so that they are listed from most |
| 1595 | /// complex to least complex. This puts constants before unary operators, |
| 1596 | /// before binary operators. |
Chris Lattner | 5f670d4 | 2010-02-01 19:54:45 +0000 | [diff] [blame] | 1597 | if (getComplexity(Op0) < getComplexity(Op1)) { |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 1598 | I.swapOperands(); |
Chris Lattner | 5f670d4 | 2010-02-01 19:54:45 +0000 | [diff] [blame] | 1599 | std::swap(Op0, Op1); |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 1600 | Changed = true; |
| 1601 | } |
| 1602 | |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 1603 | if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD)) |
| 1604 | return ReplaceInstUsesWith(I, V); |
| 1605 | |
| 1606 | const Type *Ty = Op0->getType(); |
| 1607 | |
| 1608 | // icmp's with boolean values can always be turned into bitwise operations |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 1609 | if (Ty->isIntegerTy(1)) { |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 1610 | switch (I.getPredicate()) { |
| 1611 | default: llvm_unreachable("Invalid icmp instruction!"); |
| 1612 | case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) |
| 1613 | Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp"); |
| 1614 | return BinaryOperator::CreateNot(Xor); |
| 1615 | } |
| 1616 | case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B |
| 1617 | return BinaryOperator::CreateXor(Op0, Op1); |
| 1618 | |
| 1619 | case ICmpInst::ICMP_UGT: |
| 1620 | std::swap(Op0, Op1); // Change icmp ugt -> icmp ult |
| 1621 | // FALL THROUGH |
| 1622 | case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B |
| 1623 | Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); |
| 1624 | return BinaryOperator::CreateAnd(Not, Op1); |
| 1625 | } |
| 1626 | case ICmpInst::ICMP_SGT: |
| 1627 | std::swap(Op0, Op1); // Change icmp sgt -> icmp slt |
| 1628 | // FALL THROUGH |
| 1629 | case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B |
| 1630 | Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); |
| 1631 | return BinaryOperator::CreateAnd(Not, Op0); |
| 1632 | } |
| 1633 | case ICmpInst::ICMP_UGE: |
| 1634 | std::swap(Op0, Op1); // Change icmp uge -> icmp ule |
| 1635 | // FALL THROUGH |
| 1636 | case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B |
| 1637 | Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); |
| 1638 | return BinaryOperator::CreateOr(Not, Op1); |
| 1639 | } |
| 1640 | case ICmpInst::ICMP_SGE: |
| 1641 | std::swap(Op0, Op1); // Change icmp sge -> icmp sle |
| 1642 | // FALL THROUGH |
| 1643 | case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B |
| 1644 | Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); |
| 1645 | return BinaryOperator::CreateOr(Not, Op0); |
| 1646 | } |
| 1647 | } |
| 1648 | } |
| 1649 | |
| 1650 | unsigned BitWidth = 0; |
| 1651 | if (TD) |
| 1652 | BitWidth = TD->getTypeSizeInBits(Ty->getScalarType()); |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 1653 | else if (Ty->isIntOrIntVectorTy()) |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 1654 | BitWidth = Ty->getScalarSizeInBits(); |
| 1655 | |
| 1656 | bool isSignBit = false; |
| 1657 | |
| 1658 | // See if we are doing a comparison with a constant. |
| 1659 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| 1660 | Value *A = 0, *B = 0; |
| 1661 | |
| 1662 | // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) |
| 1663 | if (I.isEquality() && CI->isZero() && |
| 1664 | match(Op0, m_Sub(m_Value(A), m_Value(B)))) { |
| 1665 | // (icmp cond A B) if cond is equality |
| 1666 | return new ICmpInst(I.getPredicate(), A, B); |
| 1667 | } |
| 1668 | |
| 1669 | // If we have an icmp le or icmp ge instruction, turn it into the |
| 1670 | // appropriate icmp lt or icmp gt instruction. This allows us to rely on |
| 1671 | // them being folded in the code below. The SimplifyICmpInst code has |
| 1672 | // already handled the edge cases for us, so we just assert on them. |
| 1673 | switch (I.getPredicate()) { |
| 1674 | default: break; |
| 1675 | case ICmpInst::ICMP_ULE: |
| 1676 | assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE |
| 1677 | return new ICmpInst(ICmpInst::ICMP_ULT, Op0, |
| 1678 | ConstantInt::get(CI->getContext(), CI->getValue()+1)); |
| 1679 | case ICmpInst::ICMP_SLE: |
| 1680 | assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE |
| 1681 | return new ICmpInst(ICmpInst::ICMP_SLT, Op0, |
| 1682 | ConstantInt::get(CI->getContext(), CI->getValue()+1)); |
| 1683 | case ICmpInst::ICMP_UGE: |
| 1684 | assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE |
| 1685 | return new ICmpInst(ICmpInst::ICMP_UGT, Op0, |
| 1686 | ConstantInt::get(CI->getContext(), CI->getValue()-1)); |
| 1687 | case ICmpInst::ICMP_SGE: |
| 1688 | assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE |
| 1689 | return new ICmpInst(ICmpInst::ICMP_SGT, Op0, |
| 1690 | ConstantInt::get(CI->getContext(), CI->getValue()-1)); |
| 1691 | } |
| 1692 | |
| 1693 | // If this comparison is a normal comparison, it demands all |
| 1694 | // bits, if it is a sign bit comparison, it only demands the sign bit. |
| 1695 | bool UnusedBit; |
| 1696 | isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); |
| 1697 | } |
| 1698 | |
| 1699 | // See if we can fold the comparison based on range information we can get |
| 1700 | // by checking whether bits are known to be zero or one in the input. |
| 1701 | if (BitWidth != 0) { |
| 1702 | APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); |
| 1703 | APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); |
| 1704 | |
| 1705 | if (SimplifyDemandedBits(I.getOperandUse(0), |
| 1706 | isSignBit ? APInt::getSignBit(BitWidth) |
| 1707 | : APInt::getAllOnesValue(BitWidth), |
| 1708 | Op0KnownZero, Op0KnownOne, 0)) |
| 1709 | return &I; |
| 1710 | if (SimplifyDemandedBits(I.getOperandUse(1), |
| 1711 | APInt::getAllOnesValue(BitWidth), |
| 1712 | Op1KnownZero, Op1KnownOne, 0)) |
| 1713 | return &I; |
| 1714 | |
| 1715 | // Given the known and unknown bits, compute a range that the LHS could be |
| 1716 | // in. Compute the Min, Max and RHS values based on the known bits. For the |
| 1717 | // EQ and NE we use unsigned values. |
| 1718 | APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); |
| 1719 | APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); |
| 1720 | if (I.isSigned()) { |
| 1721 | ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, |
| 1722 | Op0Min, Op0Max); |
| 1723 | ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, |
| 1724 | Op1Min, Op1Max); |
| 1725 | } else { |
| 1726 | ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, |
| 1727 | Op0Min, Op0Max); |
| 1728 | ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, |
| 1729 | Op1Min, Op1Max); |
| 1730 | } |
| 1731 | |
| 1732 | // If Min and Max are known to be the same, then SimplifyDemandedBits |
| 1733 | // figured out that the LHS is a constant. Just constant fold this now so |
| 1734 | // that code below can assume that Min != Max. |
| 1735 | if (!isa<Constant>(Op0) && Op0Min == Op0Max) |
| 1736 | return new ICmpInst(I.getPredicate(), |
| 1737 | ConstantInt::get(I.getContext(), Op0Min), Op1); |
| 1738 | if (!isa<Constant>(Op1) && Op1Min == Op1Max) |
| 1739 | return new ICmpInst(I.getPredicate(), Op0, |
| 1740 | ConstantInt::get(I.getContext(), Op1Min)); |
| 1741 | |
| 1742 | // Based on the range information we know about the LHS, see if we can |
| 1743 | // simplify this comparison. For example, (x&4) < 8 is always true. |
| 1744 | switch (I.getPredicate()) { |
| 1745 | default: llvm_unreachable("Unknown icmp opcode!"); |
| 1746 | case ICmpInst::ICMP_EQ: |
| 1747 | if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) |
| 1748 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 1749 | break; |
| 1750 | case ICmpInst::ICMP_NE: |
| 1751 | if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) |
| 1752 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 1753 | break; |
| 1754 | case ICmpInst::ICMP_ULT: |
| 1755 | if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) |
| 1756 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 1757 | if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) |
| 1758 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 1759 | if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) |
| 1760 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
| 1761 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| 1762 | if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C |
| 1763 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
| 1764 | ConstantInt::get(CI->getContext(), CI->getValue()-1)); |
| 1765 | |
| 1766 | // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear |
| 1767 | if (CI->isMinValue(true)) |
| 1768 | return new ICmpInst(ICmpInst::ICMP_SGT, Op0, |
| 1769 | Constant::getAllOnesValue(Op0->getType())); |
| 1770 | } |
| 1771 | break; |
| 1772 | case ICmpInst::ICMP_UGT: |
| 1773 | if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) |
| 1774 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 1775 | if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) |
| 1776 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 1777 | |
| 1778 | if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) |
| 1779 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
| 1780 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| 1781 | if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C |
| 1782 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
| 1783 | ConstantInt::get(CI->getContext(), CI->getValue()+1)); |
| 1784 | |
| 1785 | // (x >u 2147483647) -> (x <s 0) -> true if sign bit set |
| 1786 | if (CI->isMaxValue(true)) |
| 1787 | return new ICmpInst(ICmpInst::ICMP_SLT, Op0, |
| 1788 | Constant::getNullValue(Op0->getType())); |
| 1789 | } |
| 1790 | break; |
| 1791 | case ICmpInst::ICMP_SLT: |
| 1792 | if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) |
| 1793 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 1794 | if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) |
| 1795 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 1796 | if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) |
| 1797 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
| 1798 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| 1799 | if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C |
| 1800 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
| 1801 | ConstantInt::get(CI->getContext(), CI->getValue()-1)); |
| 1802 | } |
| 1803 | break; |
| 1804 | case ICmpInst::ICMP_SGT: |
| 1805 | if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) |
| 1806 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 1807 | if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) |
| 1808 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 1809 | |
| 1810 | if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) |
| 1811 | return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); |
| 1812 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| 1813 | if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C |
| 1814 | return new ICmpInst(ICmpInst::ICMP_EQ, Op0, |
| 1815 | ConstantInt::get(CI->getContext(), CI->getValue()+1)); |
| 1816 | } |
| 1817 | break; |
| 1818 | case ICmpInst::ICMP_SGE: |
| 1819 | assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); |
| 1820 | if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) |
| 1821 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 1822 | if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) |
| 1823 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 1824 | break; |
| 1825 | case ICmpInst::ICMP_SLE: |
| 1826 | assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); |
| 1827 | if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) |
| 1828 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 1829 | if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) |
| 1830 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 1831 | break; |
| 1832 | case ICmpInst::ICMP_UGE: |
| 1833 | assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); |
| 1834 | if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) |
| 1835 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 1836 | if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) |
| 1837 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 1838 | break; |
| 1839 | case ICmpInst::ICMP_ULE: |
| 1840 | assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); |
| 1841 | if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) |
| 1842 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 1843 | if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) |
| 1844 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 1845 | break; |
| 1846 | } |
| 1847 | |
| 1848 | // Turn a signed comparison into an unsigned one if both operands |
| 1849 | // are known to have the same sign. |
| 1850 | if (I.isSigned() && |
| 1851 | ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || |
| 1852 | (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) |
| 1853 | return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); |
| 1854 | } |
| 1855 | |
| 1856 | // Test if the ICmpInst instruction is used exclusively by a select as |
| 1857 | // part of a minimum or maximum operation. If so, refrain from doing |
| 1858 | // any other folding. This helps out other analyses which understand |
| 1859 | // non-obfuscated minimum and maximum idioms, such as ScalarEvolution |
| 1860 | // and CodeGen. And in this case, at least one of the comparison |
| 1861 | // operands has at least one user besides the compare (the select), |
| 1862 | // which would often largely negate the benefit of folding anyway. |
| 1863 | if (I.hasOneUse()) |
| 1864 | if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin())) |
| 1865 | if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || |
| 1866 | (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) |
| 1867 | return 0; |
| 1868 | |
| 1869 | // See if we are doing a comparison between a constant and an instruction that |
| 1870 | // can be folded into the comparison. |
| 1871 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| 1872 | // Since the RHS is a ConstantInt (CI), if the left hand side is an |
| 1873 | // instruction, see if that instruction also has constants so that the |
| 1874 | // instruction can be folded into the icmp |
| 1875 | if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) |
| 1876 | if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) |
| 1877 | return Res; |
| 1878 | } |
| 1879 | |
| 1880 | // Handle icmp with constant (but not simple integer constant) RHS |
| 1881 | if (Constant *RHSC = dyn_cast<Constant>(Op1)) { |
| 1882 | if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) |
| 1883 | switch (LHSI->getOpcode()) { |
| 1884 | case Instruction::GetElementPtr: |
| 1885 | // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null |
| 1886 | if (RHSC->isNullValue() && |
| 1887 | cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) |
| 1888 | return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), |
| 1889 | Constant::getNullValue(LHSI->getOperand(0)->getType())); |
| 1890 | break; |
| 1891 | case Instruction::PHI: |
| 1892 | // Only fold icmp into the PHI if the phi and icmp are in the same |
| 1893 | // block. If in the same block, we're encouraging jump threading. If |
| 1894 | // not, we are just pessimizing the code by making an i1 phi. |
| 1895 | if (LHSI->getParent() == I.getParent()) |
| 1896 | if (Instruction *NV = FoldOpIntoPhi(I, true)) |
| 1897 | return NV; |
| 1898 | break; |
| 1899 | case Instruction::Select: { |
| 1900 | // If either operand of the select is a constant, we can fold the |
| 1901 | // comparison into the select arms, which will cause one to be |
| 1902 | // constant folded and the select turned into a bitwise or. |
| 1903 | Value *Op1 = 0, *Op2 = 0; |
| 1904 | if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) |
| 1905 | Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); |
| 1906 | if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) |
| 1907 | Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); |
| 1908 | |
| 1909 | // We only want to perform this transformation if it will not lead to |
| 1910 | // additional code. This is true if either both sides of the select |
| 1911 | // fold to a constant (in which case the icmp is replaced with a select |
| 1912 | // which will usually simplify) or this is the only user of the |
| 1913 | // select (in which case we are trading a select+icmp for a simpler |
| 1914 | // select+icmp). |
| 1915 | if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) { |
| 1916 | if (!Op1) |
| 1917 | Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), |
| 1918 | RHSC, I.getName()); |
| 1919 | if (!Op2) |
| 1920 | Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), |
| 1921 | RHSC, I.getName()); |
| 1922 | return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); |
| 1923 | } |
| 1924 | break; |
| 1925 | } |
| 1926 | case Instruction::Call: |
| 1927 | // If we have (malloc != null), and if the malloc has a single use, we |
| 1928 | // can assume it is successful and remove the malloc. |
| 1929 | if (isMalloc(LHSI) && LHSI->hasOneUse() && |
| 1930 | isa<ConstantPointerNull>(RHSC)) { |
| 1931 | // Need to explicitly erase malloc call here, instead of adding it to |
| 1932 | // Worklist, because it won't get DCE'd from the Worklist since |
| 1933 | // isInstructionTriviallyDead() returns false for function calls. |
| 1934 | // It is OK to replace LHSI/MallocCall with Undef because the |
| 1935 | // instruction that uses it will be erased via Worklist. |
| 1936 | if (extractMallocCall(LHSI)) { |
| 1937 | LHSI->replaceAllUsesWith(UndefValue::get(LHSI->getType())); |
| 1938 | EraseInstFromFunction(*LHSI); |
| 1939 | return ReplaceInstUsesWith(I, |
| 1940 | ConstantInt::get(Type::getInt1Ty(I.getContext()), |
| 1941 | !I.isTrueWhenEqual())); |
| 1942 | } |
| 1943 | if (CallInst* MallocCall = extractMallocCallFromBitCast(LHSI)) |
| 1944 | if (MallocCall->hasOneUse()) { |
| 1945 | MallocCall->replaceAllUsesWith( |
| 1946 | UndefValue::get(MallocCall->getType())); |
| 1947 | EraseInstFromFunction(*MallocCall); |
| 1948 | Worklist.Add(LHSI); // The malloc's bitcast use. |
| 1949 | return ReplaceInstUsesWith(I, |
| 1950 | ConstantInt::get(Type::getInt1Ty(I.getContext()), |
| 1951 | !I.isTrueWhenEqual())); |
| 1952 | } |
| 1953 | } |
| 1954 | break; |
| 1955 | case Instruction::IntToPtr: |
| 1956 | // icmp pred inttoptr(X), null -> icmp pred X, 0 |
| 1957 | if (RHSC->isNullValue() && TD && |
| 1958 | TD->getIntPtrType(RHSC->getContext()) == |
| 1959 | LHSI->getOperand(0)->getType()) |
| 1960 | return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), |
| 1961 | Constant::getNullValue(LHSI->getOperand(0)->getType())); |
| 1962 | break; |
| 1963 | |
| 1964 | case Instruction::Load: |
| 1965 | // Try to optimize things like "A[i] > 4" to index computations. |
| 1966 | if (GetElementPtrInst *GEP = |
| 1967 | dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { |
| 1968 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) |
| 1969 | if (GV->isConstant() && GV->hasDefinitiveInitializer() && |
| 1970 | !cast<LoadInst>(LHSI)->isVolatile()) |
| 1971 | if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) |
| 1972 | return Res; |
| 1973 | } |
| 1974 | break; |
| 1975 | } |
| 1976 | } |
| 1977 | |
| 1978 | // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. |
| 1979 | if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) |
| 1980 | if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) |
| 1981 | return NI; |
| 1982 | if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) |
| 1983 | if (Instruction *NI = FoldGEPICmp(GEP, Op0, |
| 1984 | ICmpInst::getSwappedPredicate(I.getPredicate()), I)) |
| 1985 | return NI; |
| 1986 | |
| 1987 | // Test to see if the operands of the icmp are casted versions of other |
| 1988 | // values. If the ptr->ptr cast can be stripped off both arguments, we do so |
| 1989 | // now. |
| 1990 | if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 1991 | if (Op0->getType()->isPointerTy() && |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 1992 | (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { |
| 1993 | // We keep moving the cast from the left operand over to the right |
| 1994 | // operand, where it can often be eliminated completely. |
| 1995 | Op0 = CI->getOperand(0); |
| 1996 | |
| 1997 | // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast |
| 1998 | // so eliminate it as well. |
| 1999 | if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) |
| 2000 | Op1 = CI2->getOperand(0); |
| 2001 | |
| 2002 | // If Op1 is a constant, we can fold the cast into the constant. |
| 2003 | if (Op0->getType() != Op1->getType()) { |
| 2004 | if (Constant *Op1C = dyn_cast<Constant>(Op1)) { |
| 2005 | Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); |
| 2006 | } else { |
| 2007 | // Otherwise, cast the RHS right before the icmp |
| 2008 | Op1 = Builder->CreateBitCast(Op1, Op0->getType()); |
| 2009 | } |
| 2010 | } |
| 2011 | return new ICmpInst(I.getPredicate(), Op0, Op1); |
| 2012 | } |
| 2013 | } |
| 2014 | |
| 2015 | if (isa<CastInst>(Op0)) { |
| 2016 | // Handle the special case of: icmp (cast bool to X), <cst> |
| 2017 | // This comes up when you have code like |
| 2018 | // int X = A < B; |
| 2019 | // if (X) ... |
| 2020 | // For generality, we handle any zero-extension of any operand comparison |
| 2021 | // with a constant or another cast from the same type. |
| 2022 | if (isa<Constant>(Op1) || isa<CastInst>(Op1)) |
| 2023 | if (Instruction *R = visitICmpInstWithCastAndCast(I)) |
| 2024 | return R; |
| 2025 | } |
| 2026 | |
| 2027 | // See if it's the same type of instruction on the left and right. |
| 2028 | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { |
| 2029 | if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) { |
| 2030 | if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() && |
| 2031 | Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) { |
| 2032 | switch (Op0I->getOpcode()) { |
| 2033 | default: break; |
| 2034 | case Instruction::Add: |
| 2035 | case Instruction::Sub: |
| 2036 | case Instruction::Xor: |
| 2037 | if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b |
| 2038 | return new ICmpInst(I.getPredicate(), Op0I->getOperand(0), |
| 2039 | Op1I->getOperand(0)); |
| 2040 | // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b |
| 2041 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { |
| 2042 | if (CI->getValue().isSignBit()) { |
| 2043 | ICmpInst::Predicate Pred = I.isSigned() |
| 2044 | ? I.getUnsignedPredicate() |
| 2045 | : I.getSignedPredicate(); |
| 2046 | return new ICmpInst(Pred, Op0I->getOperand(0), |
| 2047 | Op1I->getOperand(0)); |
| 2048 | } |
| 2049 | |
| 2050 | if (CI->getValue().isMaxSignedValue()) { |
| 2051 | ICmpInst::Predicate Pred = I.isSigned() |
| 2052 | ? I.getUnsignedPredicate() |
| 2053 | : I.getSignedPredicate(); |
| 2054 | Pred = I.getSwappedPredicate(Pred); |
| 2055 | return new ICmpInst(Pred, Op0I->getOperand(0), |
| 2056 | Op1I->getOperand(0)); |
| 2057 | } |
| 2058 | } |
| 2059 | break; |
| 2060 | case Instruction::Mul: |
| 2061 | if (!I.isEquality()) |
| 2062 | break; |
| 2063 | |
| 2064 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { |
| 2065 | // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask |
| 2066 | // Mask = -1 >> count-trailing-zeros(Cst). |
| 2067 | if (!CI->isZero() && !CI->isOne()) { |
| 2068 | const APInt &AP = CI->getValue(); |
| 2069 | ConstantInt *Mask = ConstantInt::get(I.getContext(), |
| 2070 | APInt::getLowBitsSet(AP.getBitWidth(), |
| 2071 | AP.getBitWidth() - |
| 2072 | AP.countTrailingZeros())); |
| 2073 | Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask); |
| 2074 | Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask); |
| 2075 | return new ICmpInst(I.getPredicate(), And1, And2); |
| 2076 | } |
| 2077 | } |
| 2078 | break; |
| 2079 | } |
| 2080 | } |
| 2081 | } |
| 2082 | } |
| 2083 | |
| 2084 | // ~x < ~y --> y < x |
| 2085 | { Value *A, *B; |
| 2086 | if (match(Op0, m_Not(m_Value(A))) && |
| 2087 | match(Op1, m_Not(m_Value(B)))) |
| 2088 | return new ICmpInst(I.getPredicate(), B, A); |
| 2089 | } |
| 2090 | |
| 2091 | if (I.isEquality()) { |
| 2092 | Value *A, *B, *C, *D; |
| 2093 | |
| 2094 | // -x == -y --> x == y |
| 2095 | if (match(Op0, m_Neg(m_Value(A))) && |
| 2096 | match(Op1, m_Neg(m_Value(B)))) |
| 2097 | return new ICmpInst(I.getPredicate(), A, B); |
| 2098 | |
| 2099 | if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { |
| 2100 | if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 |
| 2101 | Value *OtherVal = A == Op1 ? B : A; |
| 2102 | return new ICmpInst(I.getPredicate(), OtherVal, |
| 2103 | Constant::getNullValue(A->getType())); |
| 2104 | } |
| 2105 | |
| 2106 | if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { |
| 2107 | // A^c1 == C^c2 --> A == C^(c1^c2) |
| 2108 | ConstantInt *C1, *C2; |
| 2109 | if (match(B, m_ConstantInt(C1)) && |
| 2110 | match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { |
| 2111 | Constant *NC = ConstantInt::get(I.getContext(), |
| 2112 | C1->getValue() ^ C2->getValue()); |
| 2113 | Value *Xor = Builder->CreateXor(C, NC, "tmp"); |
| 2114 | return new ICmpInst(I.getPredicate(), A, Xor); |
| 2115 | } |
| 2116 | |
| 2117 | // A^B == A^D -> B == D |
| 2118 | if (A == C) return new ICmpInst(I.getPredicate(), B, D); |
| 2119 | if (A == D) return new ICmpInst(I.getPredicate(), B, C); |
| 2120 | if (B == C) return new ICmpInst(I.getPredicate(), A, D); |
| 2121 | if (B == D) return new ICmpInst(I.getPredicate(), A, C); |
| 2122 | } |
| 2123 | } |
| 2124 | |
| 2125 | if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && |
| 2126 | (A == Op0 || B == Op0)) { |
| 2127 | // A == (A^B) -> B == 0 |
| 2128 | Value *OtherVal = A == Op0 ? B : A; |
| 2129 | return new ICmpInst(I.getPredicate(), OtherVal, |
| 2130 | Constant::getNullValue(A->getType())); |
| 2131 | } |
| 2132 | |
| 2133 | // (A-B) == A -> B == 0 |
| 2134 | if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B)))) |
| 2135 | return new ICmpInst(I.getPredicate(), B, |
| 2136 | Constant::getNullValue(B->getType())); |
| 2137 | |
| 2138 | // A == (A-B) -> B == 0 |
| 2139 | if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B)))) |
| 2140 | return new ICmpInst(I.getPredicate(), B, |
| 2141 | Constant::getNullValue(B->getType())); |
| 2142 | |
| 2143 | // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 |
| 2144 | if (Op0->hasOneUse() && Op1->hasOneUse() && |
| 2145 | match(Op0, m_And(m_Value(A), m_Value(B))) && |
| 2146 | match(Op1, m_And(m_Value(C), m_Value(D)))) { |
| 2147 | Value *X = 0, *Y = 0, *Z = 0; |
| 2148 | |
| 2149 | if (A == C) { |
| 2150 | X = B; Y = D; Z = A; |
| 2151 | } else if (A == D) { |
| 2152 | X = B; Y = C; Z = A; |
| 2153 | } else if (B == C) { |
| 2154 | X = A; Y = D; Z = B; |
| 2155 | } else if (B == D) { |
| 2156 | X = A; Y = C; Z = B; |
| 2157 | } |
| 2158 | |
| 2159 | if (X) { // Build (X^Y) & Z |
| 2160 | Op1 = Builder->CreateXor(X, Y, "tmp"); |
| 2161 | Op1 = Builder->CreateAnd(Op1, Z, "tmp"); |
| 2162 | I.setOperand(0, Op1); |
| 2163 | I.setOperand(1, Constant::getNullValue(Op1->getType())); |
| 2164 | return &I; |
| 2165 | } |
| 2166 | } |
| 2167 | } |
| 2168 | |
| 2169 | { |
| 2170 | Value *X; ConstantInt *Cst; |
| 2171 | // icmp X+Cst, X |
| 2172 | if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X) |
| 2173 | return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0); |
| 2174 | |
| 2175 | // icmp X, X+Cst |
| 2176 | if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X) |
| 2177 | return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1); |
| 2178 | } |
| 2179 | return Changed ? &I : 0; |
| 2180 | } |
| 2181 | |
| 2182 | |
| 2183 | |
| 2184 | |
| 2185 | |
| 2186 | |
| 2187 | /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible. |
| 2188 | /// |
| 2189 | Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, |
| 2190 | Instruction *LHSI, |
| 2191 | Constant *RHSC) { |
| 2192 | if (!isa<ConstantFP>(RHSC)) return 0; |
| 2193 | const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); |
| 2194 | |
| 2195 | // Get the width of the mantissa. We don't want to hack on conversions that |
| 2196 | // might lose information from the integer, e.g. "i64 -> float" |
| 2197 | int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); |
| 2198 | if (MantissaWidth == -1) return 0; // Unknown. |
| 2199 | |
| 2200 | // Check to see that the input is converted from an integer type that is small |
| 2201 | // enough that preserves all bits. TODO: check here for "known" sign bits. |
| 2202 | // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. |
| 2203 | unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits(); |
| 2204 | |
| 2205 | // If this is a uitofp instruction, we need an extra bit to hold the sign. |
| 2206 | bool LHSUnsigned = isa<UIToFPInst>(LHSI); |
| 2207 | if (LHSUnsigned) |
| 2208 | ++InputSize; |
| 2209 | |
| 2210 | // If the conversion would lose info, don't hack on this. |
| 2211 | if ((int)InputSize > MantissaWidth) |
| 2212 | return 0; |
| 2213 | |
| 2214 | // Otherwise, we can potentially simplify the comparison. We know that it |
| 2215 | // will always come through as an integer value and we know the constant is |
| 2216 | // not a NAN (it would have been previously simplified). |
| 2217 | assert(!RHS.isNaN() && "NaN comparison not already folded!"); |
| 2218 | |
| 2219 | ICmpInst::Predicate Pred; |
| 2220 | switch (I.getPredicate()) { |
| 2221 | default: llvm_unreachable("Unexpected predicate!"); |
| 2222 | case FCmpInst::FCMP_UEQ: |
| 2223 | case FCmpInst::FCMP_OEQ: |
| 2224 | Pred = ICmpInst::ICMP_EQ; |
| 2225 | break; |
| 2226 | case FCmpInst::FCMP_UGT: |
| 2227 | case FCmpInst::FCMP_OGT: |
| 2228 | Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; |
| 2229 | break; |
| 2230 | case FCmpInst::FCMP_UGE: |
| 2231 | case FCmpInst::FCMP_OGE: |
| 2232 | Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; |
| 2233 | break; |
| 2234 | case FCmpInst::FCMP_ULT: |
| 2235 | case FCmpInst::FCMP_OLT: |
| 2236 | Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; |
| 2237 | break; |
| 2238 | case FCmpInst::FCMP_ULE: |
| 2239 | case FCmpInst::FCMP_OLE: |
| 2240 | Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; |
| 2241 | break; |
| 2242 | case FCmpInst::FCMP_UNE: |
| 2243 | case FCmpInst::FCMP_ONE: |
| 2244 | Pred = ICmpInst::ICMP_NE; |
| 2245 | break; |
| 2246 | case FCmpInst::FCMP_ORD: |
| 2247 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 2248 | case FCmpInst::FCMP_UNO: |
| 2249 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 2250 | } |
| 2251 | |
| 2252 | const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); |
| 2253 | |
| 2254 | // Now we know that the APFloat is a normal number, zero or inf. |
| 2255 | |
| 2256 | // See if the FP constant is too large for the integer. For example, |
| 2257 | // comparing an i8 to 300.0. |
| 2258 | unsigned IntWidth = IntTy->getScalarSizeInBits(); |
| 2259 | |
| 2260 | if (!LHSUnsigned) { |
| 2261 | // If the RHS value is > SignedMax, fold the comparison. This handles +INF |
| 2262 | // and large values. |
| 2263 | APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false); |
| 2264 | SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, |
| 2265 | APFloat::rmNearestTiesToEven); |
| 2266 | if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 |
| 2267 | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || |
| 2268 | Pred == ICmpInst::ICMP_SLE) |
| 2269 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 2270 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 2271 | } |
| 2272 | } else { |
| 2273 | // If the RHS value is > UnsignedMax, fold the comparison. This handles |
| 2274 | // +INF and large values. |
| 2275 | APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false); |
| 2276 | UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, |
| 2277 | APFloat::rmNearestTiesToEven); |
| 2278 | if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 |
| 2279 | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || |
| 2280 | Pred == ICmpInst::ICMP_ULE) |
| 2281 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 2282 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 2283 | } |
| 2284 | } |
| 2285 | |
| 2286 | if (!LHSUnsigned) { |
| 2287 | // See if the RHS value is < SignedMin. |
| 2288 | APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false); |
| 2289 | SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, |
| 2290 | APFloat::rmNearestTiesToEven); |
| 2291 | if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 |
| 2292 | if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || |
| 2293 | Pred == ICmpInst::ICMP_SGE) |
| 2294 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 2295 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 2296 | } |
| 2297 | } |
| 2298 | |
| 2299 | // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or |
| 2300 | // [0, UMAX], but it may still be fractional. See if it is fractional by |
| 2301 | // casting the FP value to the integer value and back, checking for equality. |
| 2302 | // Don't do this for zero, because -0.0 is not fractional. |
| 2303 | Constant *RHSInt = LHSUnsigned |
| 2304 | ? ConstantExpr::getFPToUI(RHSC, IntTy) |
| 2305 | : ConstantExpr::getFPToSI(RHSC, IntTy); |
| 2306 | if (!RHS.isZero()) { |
| 2307 | bool Equal = LHSUnsigned |
| 2308 | ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC |
| 2309 | : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; |
| 2310 | if (!Equal) { |
| 2311 | // If we had a comparison against a fractional value, we have to adjust |
| 2312 | // the compare predicate and sometimes the value. RHSC is rounded towards |
| 2313 | // zero at this point. |
| 2314 | switch (Pred) { |
| 2315 | default: llvm_unreachable("Unexpected integer comparison!"); |
| 2316 | case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true |
| 2317 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 2318 | case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false |
| 2319 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 2320 | case ICmpInst::ICMP_ULE: |
| 2321 | // (float)int <= 4.4 --> int <= 4 |
| 2322 | // (float)int <= -4.4 --> false |
| 2323 | if (RHS.isNegative()) |
| 2324 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 2325 | break; |
| 2326 | case ICmpInst::ICMP_SLE: |
| 2327 | // (float)int <= 4.4 --> int <= 4 |
| 2328 | // (float)int <= -4.4 --> int < -4 |
| 2329 | if (RHS.isNegative()) |
| 2330 | Pred = ICmpInst::ICMP_SLT; |
| 2331 | break; |
| 2332 | case ICmpInst::ICMP_ULT: |
| 2333 | // (float)int < -4.4 --> false |
| 2334 | // (float)int < 4.4 --> int <= 4 |
| 2335 | if (RHS.isNegative()) |
| 2336 | return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| 2337 | Pred = ICmpInst::ICMP_ULE; |
| 2338 | break; |
| 2339 | case ICmpInst::ICMP_SLT: |
| 2340 | // (float)int < -4.4 --> int < -4 |
| 2341 | // (float)int < 4.4 --> int <= 4 |
| 2342 | if (!RHS.isNegative()) |
| 2343 | Pred = ICmpInst::ICMP_SLE; |
| 2344 | break; |
| 2345 | case ICmpInst::ICMP_UGT: |
| 2346 | // (float)int > 4.4 --> int > 4 |
| 2347 | // (float)int > -4.4 --> true |
| 2348 | if (RHS.isNegative()) |
| 2349 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 2350 | break; |
| 2351 | case ICmpInst::ICMP_SGT: |
| 2352 | // (float)int > 4.4 --> int > 4 |
| 2353 | // (float)int > -4.4 --> int >= -4 |
| 2354 | if (RHS.isNegative()) |
| 2355 | Pred = ICmpInst::ICMP_SGE; |
| 2356 | break; |
| 2357 | case ICmpInst::ICMP_UGE: |
| 2358 | // (float)int >= -4.4 --> true |
| 2359 | // (float)int >= 4.4 --> int > 4 |
| 2360 | if (!RHS.isNegative()) |
| 2361 | return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| 2362 | Pred = ICmpInst::ICMP_UGT; |
| 2363 | break; |
| 2364 | case ICmpInst::ICMP_SGE: |
| 2365 | // (float)int >= -4.4 --> int >= -4 |
| 2366 | // (float)int >= 4.4 --> int > 4 |
| 2367 | if (!RHS.isNegative()) |
| 2368 | Pred = ICmpInst::ICMP_SGT; |
| 2369 | break; |
| 2370 | } |
| 2371 | } |
| 2372 | } |
| 2373 | |
| 2374 | // Lower this FP comparison into an appropriate integer version of the |
| 2375 | // comparison. |
| 2376 | return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); |
| 2377 | } |
| 2378 | |
| 2379 | Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { |
| 2380 | bool Changed = false; |
| 2381 | |
| 2382 | /// Orders the operands of the compare so that they are listed from most |
| 2383 | /// complex to least complex. This puts constants before unary operators, |
| 2384 | /// before binary operators. |
| 2385 | if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { |
| 2386 | I.swapOperands(); |
| 2387 | Changed = true; |
| 2388 | } |
| 2389 | |
| 2390 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 2391 | |
| 2392 | if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD)) |
| 2393 | return ReplaceInstUsesWith(I, V); |
| 2394 | |
| 2395 | // Simplify 'fcmp pred X, X' |
| 2396 | if (Op0 == Op1) { |
| 2397 | switch (I.getPredicate()) { |
| 2398 | default: llvm_unreachable("Unknown predicate!"); |
| 2399 | case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) |
| 2400 | case FCmpInst::FCMP_ULT: // True if unordered or less than |
| 2401 | case FCmpInst::FCMP_UGT: // True if unordered or greater than |
| 2402 | case FCmpInst::FCMP_UNE: // True if unordered or not equal |
| 2403 | // Canonicalize these to be 'fcmp uno %X, 0.0'. |
| 2404 | I.setPredicate(FCmpInst::FCMP_UNO); |
| 2405 | I.setOperand(1, Constant::getNullValue(Op0->getType())); |
| 2406 | return &I; |
| 2407 | |
| 2408 | case FCmpInst::FCMP_ORD: // True if ordered (no nans) |
| 2409 | case FCmpInst::FCMP_OEQ: // True if ordered and equal |
| 2410 | case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal |
| 2411 | case FCmpInst::FCMP_OLE: // True if ordered and less than or equal |
| 2412 | // Canonicalize these to be 'fcmp ord %X, 0.0'. |
| 2413 | I.setPredicate(FCmpInst::FCMP_ORD); |
| 2414 | I.setOperand(1, Constant::getNullValue(Op0->getType())); |
| 2415 | return &I; |
| 2416 | } |
| 2417 | } |
| 2418 | |
| 2419 | // Handle fcmp with constant RHS |
| 2420 | if (Constant *RHSC = dyn_cast<Constant>(Op1)) { |
| 2421 | if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) |
| 2422 | switch (LHSI->getOpcode()) { |
| 2423 | case Instruction::PHI: |
| 2424 | // Only fold fcmp into the PHI if the phi and fcmp are in the same |
| 2425 | // block. If in the same block, we're encouraging jump threading. If |
| 2426 | // not, we are just pessimizing the code by making an i1 phi. |
| 2427 | if (LHSI->getParent() == I.getParent()) |
| 2428 | if (Instruction *NV = FoldOpIntoPhi(I, true)) |
| 2429 | return NV; |
| 2430 | break; |
| 2431 | case Instruction::SIToFP: |
| 2432 | case Instruction::UIToFP: |
| 2433 | if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) |
| 2434 | return NV; |
| 2435 | break; |
| 2436 | case Instruction::Select: { |
| 2437 | // If either operand of the select is a constant, we can fold the |
| 2438 | // comparison into the select arms, which will cause one to be |
| 2439 | // constant folded and the select turned into a bitwise or. |
| 2440 | Value *Op1 = 0, *Op2 = 0; |
| 2441 | if (LHSI->hasOneUse()) { |
| 2442 | if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { |
| 2443 | // Fold the known value into the constant operand. |
| 2444 | Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); |
| 2445 | // Insert a new FCmp of the other select operand. |
| 2446 | Op2 = Builder->CreateFCmp(I.getPredicate(), |
| 2447 | LHSI->getOperand(2), RHSC, I.getName()); |
| 2448 | } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { |
| 2449 | // Fold the known value into the constant operand. |
| 2450 | Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); |
| 2451 | // Insert a new FCmp of the other select operand. |
| 2452 | Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1), |
| 2453 | RHSC, I.getName()); |
| 2454 | } |
| 2455 | } |
| 2456 | |
| 2457 | if (Op1) |
| 2458 | return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); |
| 2459 | break; |
| 2460 | } |
Dan Gohman | 39516a6 | 2010-02-24 06:46:09 +0000 | [diff] [blame^] | 2461 | case Instruction::Load: |
| 2462 | if (GetElementPtrInst *GEP = |
| 2463 | dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { |
| 2464 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) |
| 2465 | if (GV->isConstant() && GV->hasDefinitiveInitializer() && |
| 2466 | !cast<LoadInst>(LHSI)->isVolatile()) |
| 2467 | if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) |
| 2468 | return Res; |
| 2469 | } |
| 2470 | break; |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 2471 | } |
Chris Lattner | 02446fc | 2010-01-04 07:37:31 +0000 | [diff] [blame] | 2472 | } |
| 2473 | |
| 2474 | return Changed ? &I : 0; |
| 2475 | } |