blob: b430d4dd3f4bf706432ee85b141ff47faa55032e [file] [log] [blame]
Misha Brukman8eb67192004-09-06 22:58:13 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
Bill Wendlinge6b48792009-04-05 00:44:06 +00005 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
Chris Lattner78975382008-11-11 19:30:41 +00006 <title>Writing an LLVM Compiler Backend</title>
Misha Brukman8eb67192004-09-06 22:58:13 +00007 <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9
10<body>
11
Chris Lattner611944b2008-11-11 19:31:26 +000012<div class="doc_title">
Chris Lattner78975382008-11-11 19:30:41 +000013 Writing an LLVM Compiler Backend
Misha Brukman8eb67192004-09-06 22:58:13 +000014</div>
15
16<ol>
17 <li><a href="#intro">Introduction</a>
Chris Lattner78975382008-11-11 19:30:41 +000018 <ul>
19 <li><a href="#Audience">Audience</a></li>
20 <li><a href="#Prerequisite">Prerequisite Reading</a></li>
21 <li><a href="#Basic">Basic Steps</a></li>
22 <li><a href="#Preliminaries">Preliminaries</a></li>
23 </ul>
24 <li><a href="#TargetMachine">Target Machine</a></li>
Chris Lattner528875c2008-11-11 19:34:28 +000025 <li><a href="#RegisterSet">Register Set and Register Classes</a>
Chris Lattner78975382008-11-11 19:30:41 +000026 <ul>
27 <li><a href="#RegisterDef">Defining a Register</a></li>
28 <li><a href="#RegisterClassDef">Defining a Register Class</a></li>
29 <li><a href="#implementRegister">Implement a subclass of TargetRegisterInfo</a></li>
Chris Lattner528875c2008-11-11 19:34:28 +000030 </ul></li>
31 <li><a href="#InstructionSet">Instruction Set</a>
Chris Lattner78975382008-11-11 19:30:41 +000032 <ul>
Chris Lattner7a152732008-11-22 19:10:48 +000033 <li><a href="#operandMapping">Instruction Operand Mapping</a></li>
Chris Lattner78975382008-11-11 19:30:41 +000034 <li><a href="#implementInstr">Implement a subclass of TargetInstrInfo</a></li>
35 <li><a href="#branchFolding">Branch Folding and If Conversion</a></li>
Chris Lattner528875c2008-11-11 19:34:28 +000036 </ul></li>
37 <li><a href="#InstructionSelector">Instruction Selector</a>
Chris Lattner78975382008-11-11 19:30:41 +000038 <ul>
Chris Lattner528875c2008-11-11 19:34:28 +000039 <li><a href="#LegalizePhase">The SelectionDAG Legalize Phase</a>
Chris Lattner78975382008-11-11 19:30:41 +000040 <ul>
41 <li><a href="#promote">Promote</a></li>
42 <li><a href="#expand">Expand</a></li>
43 <li><a href="#custom">Custom</a></li>
44 <li><a href="#legal">Legal</a></li>
Chris Lattner528875c2008-11-11 19:34:28 +000045 </ul></li>
Chris Lattner78975382008-11-11 19:30:41 +000046 <li><a href="#callingConventions">Calling Conventions</a></li>
Chris Lattner528875c2008-11-11 19:34:28 +000047 </ul></li>
Chris Lattner78975382008-11-11 19:30:41 +000048 <li><a href="#assemblyPrinter">Assembly Printer</a></li>
49 <li><a href="#subtargetSupport">Subtarget Support</a></li>
Chris Lattner528875c2008-11-11 19:34:28 +000050 <li><a href="#jitSupport">JIT Support</a>
Chris Lattner78975382008-11-11 19:30:41 +000051 <ul>
52 <li><a href="#mce">Machine Code Emitter</a></li>
53 <li><a href="#targetJITInfo">Target JIT Info</a></li>
Chris Lattner528875c2008-11-11 19:34:28 +000054 </ul></li>
Misha Brukman8eb67192004-09-06 22:58:13 +000055</ol>
56
57<div class="doc_author">
Bill Wendling4a2bca82009-04-05 00:41:19 +000058 <p>Written by <a href="http://www.woo.com">Mason Woo</a> and
59 <a href="http://misha.brukman.net">Misha Brukman</a></p>
Misha Brukman8eb67192004-09-06 22:58:13 +000060</div>
61
62<!-- *********************************************************************** -->
63<div class="doc_section">
64 <a name="intro">Introduction</a>
65</div>
66<!-- *********************************************************************** -->
67
68<div class="doc_text">
69
Bill Wendling4a2bca82009-04-05 00:41:19 +000070<p>
71This document describes techniques for writing compiler backends that convert
72the LLVM Intermediate Representation (IR) to code for a specified machine or
73other languages. Code intended for a specific machine can take the form of
74either assembly code or binary code (usable for a JIT compiler).
75</p>
Misha Brukman8eb67192004-09-06 22:58:13 +000076
Bill Wendling4a2bca82009-04-05 00:41:19 +000077<p>
78The backend of LLVM features a target-independent code generator that may create
79output for several types of target CPUs &mdash; including X86, PowerPC, Alpha,
80and SPARC. The backend may also be used to generate code targeted at SPUs of the
81Cell processor or GPUs to support the execution of compute kernels.
82</p>
83
84<p>
85The document focuses on existing examples found in subdirectories
86of <tt>llvm/lib/Target</tt> in a downloaded LLVM release. In particular, this
87document focuses on the example of creating a static compiler (one that emits
88text assembly) for a SPARC target, because SPARC has fairly standard
Chris Lattner78975382008-11-11 19:30:41 +000089characteristics, such as a RISC instruction set and straightforward calling
Bill Wendling4a2bca82009-04-05 00:41:19 +000090conventions.
91</p>
92
Misha Brukman8eb67192004-09-06 22:58:13 +000093</div>
94
Misha Brukman8eb67192004-09-06 22:58:13 +000095<div class="doc_subsection">
Chris Lattner78975382008-11-11 19:30:41 +000096 <a name="Audience">Audience</a>
97</div>
Misha Brukman8eb67192004-09-06 22:58:13 +000098
99<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +0000100
101<p>
102The audience for this document is anyone who needs to write an LLVM backend to
103generate code for a specific hardware or software target.
104</p>
105
Chris Lattner78975382008-11-11 19:30:41 +0000106</div>
Misha Brukman8eb67192004-09-06 22:58:13 +0000107
Chris Lattner78975382008-11-11 19:30:41 +0000108<div class="doc_subsection">
109 <a name="Prerequisite">Prerequisite Reading</a>
110</div>
Misha Brukman8eb67192004-09-06 22:58:13 +0000111
Chris Lattner78975382008-11-11 19:30:41 +0000112<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +0000113
114<p>
115These essential documents must be read before reading this document:
116</p>
117
Chris Lattner78975382008-11-11 19:30:41 +0000118<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000119<li><i><a href="http://www.llvm.org/docs/LangRef.html">LLVM Language Reference
120 Manual</a></i> &mdash; a reference manual for the LLVM assembly language.</li>
121
122<li><i><a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM
123 Target-Independent Code Generator</a></i> &mdash; a guide to the components
124 (classes and code generation algorithms) for translating the LLVM internal
125 representation into machine code for a specified target. Pay particular
126 attention to the descriptions of code generation stages: Instruction
127 Selection, Scheduling and Formation, SSA-based Optimization, Register
128 Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations,
129 and Code Emission.</li>
130
131<li><i><a href="http://www.llvm.org/docs/TableGenFundamentals.html">TableGen
132 Fundamentals</a></i> &mdash;a document that describes the TableGen
133 (<tt>tblgen</tt>) application that manages domain-specific information to
134 support LLVM code generation. TableGen processes input from a target
135 description file (<tt>.td</tt> suffix) and generates C++ code that can be
136 used for code generation.</li>
137
138<li><i><a href="http://www.llvm.org/docs/WritingAnLLVMPass.html">Writing an LLVM
139 Pass</a></i> &mdash; The assembly printer is a <tt>FunctionPass</tt>, as are
140 several SelectionDAG processing steps.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000141</ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000142
143<p>
144To follow the SPARC examples in this document, have a copy of
145<i><a href="http://www.sparc.org/standards/V8.pdf">The SPARC Architecture
146Manual, Version 8</a></i> for reference. For details about the ARM instruction
147set, refer to the <i><a href="http://infocenter.arm.com/">ARM Architecture
148Reference Manual</a></i>. For more about the GNU Assembler format
149(<tt>GAS</tt>), see
150<i><a href="http://sourceware.org/binutils/docs/as/index.html">Using As</a></i>,
151especially for the assembly printer. <i>Using As</i> contains a list of target
152machine dependent features.
153</p>
154
Chris Lattner78975382008-11-11 19:30:41 +0000155</div>
156
157<div class="doc_subsection">
158 <a name="Basic">Basic Steps</a>
159</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000160
Chris Lattner78975382008-11-11 19:30:41 +0000161<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +0000162
163<p>
164To write a compiler backend for LLVM that converts the LLVM IR to code for a
165specified target (machine or other language), follow these steps:
166</p>
Misha Brukman8eb67192004-09-06 22:58:13 +0000167
168<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000169<li>Create a subclass of the TargetMachine class that describes characteristics
170 of your target machine. Copy existing examples of specific TargetMachine
171 class and header files; for example, start with
172 <tt>SparcTargetMachine.cpp</tt> and <tt>SparcTargetMachine.h</tt>, but
173 change the file names for your target. Similarly, change code that
174 references "Sparc" to reference your target. </li>
Misha Brukman8eb67192004-09-06 22:58:13 +0000175
Bill Wendling4a2bca82009-04-05 00:41:19 +0000176<li>Describe the register set of the target. Use TableGen to generate code for
177 register definition, register aliases, and register classes from a
178 target-specific <tt>RegisterInfo.td</tt> input file. You should also write
179 additional code for a subclass of the TargetRegisterInfo class that
180 represents the class register file data used for register allocation and
181 also describes the interactions between registers.</li>
Misha Brukman8eb67192004-09-06 22:58:13 +0000182
Bill Wendling4a2bca82009-04-05 00:41:19 +0000183<li>Describe the instruction set of the target. Use TableGen to generate code
184 for target-specific instructions from target-specific versions of
185 <tt>TargetInstrFormats.td</tt> and <tt>TargetInstrInfo.td</tt>. You should
186 write additional code for a subclass of the TargetInstrInfo class to
187 represent machine instructions supported by the target machine. </li>
Misha Brukman8eb67192004-09-06 22:58:13 +0000188
Bill Wendling4a2bca82009-04-05 00:41:19 +0000189<li>Describe the selection and conversion of the LLVM IR from a Directed Acyclic
190 Graph (DAG) representation of instructions to native target-specific
191 instructions. Use TableGen to generate code that matches patterns and
192 selects instructions based on additional information in a target-specific
193 version of <tt>TargetInstrInfo.td</tt>. Write code
194 for <tt>XXXISelDAGToDAG.cpp</tt>, where XXX identifies the specific target,
195 to perform pattern matching and DAG-to-DAG instruction selection. Also write
196 code in <tt>XXXISelLowering.cpp</tt> to replace or remove operations and
197 data types that are not supported natively in a SelectionDAG. </li>
Misha Brukman8eb67192004-09-06 22:58:13 +0000198
Bill Wendling4a2bca82009-04-05 00:41:19 +0000199<li>Write code for an assembly printer that converts LLVM IR to a GAS format for
200 your target machine. You should add assembly strings to the instructions
201 defined in your target-specific version of <tt>TargetInstrInfo.td</tt>. You
202 should also write code for a subclass of AsmPrinter that performs the
203 LLVM-to-assembly conversion and a trivial subclass of TargetAsmInfo.</li>
Misha Brukman8eb67192004-09-06 22:58:13 +0000204
Bill Wendling4a2bca82009-04-05 00:41:19 +0000205<li>Optionally, add support for subtargets (i.e., variants with different
206 capabilities). You should also write code for a subclass of the
207 TargetSubtarget class, which allows you to use the <tt>-mcpu=</tt>
208 and <tt>-mattr=</tt> command-line options.</li>
Misha Brukman8eb67192004-09-06 22:58:13 +0000209
Bill Wendling4a2bca82009-04-05 00:41:19 +0000210<li>Optionally, add JIT support and create a machine code emitter (subclass of
211 TargetJITInfo) that is used to emit binary code directly into memory. </li>
Misha Brukman8eb67192004-09-06 22:58:13 +0000212</ul>
213
Bill Wendling4a2bca82009-04-05 00:41:19 +0000214<p>
215In the <tt>.cpp</tt> and <tt>.h</tt>. files, initially stub up these methods and
Chris Lattner78975382008-11-11 19:30:41 +0000216then implement them later. Initially, you may not know which private members
Bill Wendling4a2bca82009-04-05 00:41:19 +0000217that the class will need and which components will need to be subclassed.
218</p>
219
Misha Brukman8eb67192004-09-06 22:58:13 +0000220</div>
221
Misha Brukman8eb67192004-09-06 22:58:13 +0000222<div class="doc_subsection">
Chris Lattner78975382008-11-11 19:30:41 +0000223 <a name="Preliminaries">Preliminaries</a>
Misha Brukman8eb67192004-09-06 22:58:13 +0000224</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000225
Misha Brukman8eb67192004-09-06 22:58:13 +0000226<div class="doc_text">
227
Bill Wendling4a2bca82009-04-05 00:41:19 +0000228<p>
229To actually create your compiler backend, you need to create and modify a few
230files. The absolute minimum is discussed here. But to actually use the LLVM
231target-independent code generator, you must perform the steps described in
232the <a href="http://www.llvm.org/docs/CodeGenerator.html">LLVM
233Target-Independent Code Generator</a> document.
234</p>
Matthijs Kooijman6aa81272008-09-29 11:52:22 +0000235
Bill Wendling4a2bca82009-04-05 00:41:19 +0000236<p>
237First, you should create a subdirectory under <tt>lib/Target</tt> to hold all
238the files related to your target. If your target is called "Dummy," create the
239directory <tt>lib/Target/Dummy</tt>.
240</p>
Matthijs Kooijman6aa81272008-09-29 11:52:22 +0000241
Bill Wendling4a2bca82009-04-05 00:41:19 +0000242<p>
243In this new
244directory, create a <tt>Makefile</tt>. It is easiest to copy a
245<tt>Makefile</tt> of another target and modify it. It should at least contain
246the <tt>LEVEL</tt>, <tt>LIBRARYNAME</tt> and <tt>TARGET</tt> variables, and then
247include <tt>$(LEVEL)/Makefile.common</tt>. The library can be
248named <tt>LLVMDummy</tt> (for example, see the MIPS target). Alternatively, you
249can split the library into <tt>LLVMDummyCodeGen</tt>
250and <tt>LLVMDummyAsmPrinter</tt>, the latter of which should be implemented in a
251subdirectory below <tt>lib/Target/Dummy</tt> (for example, see the PowerPC
252target).
253</p>
Matthijs Kooijman6aa81272008-09-29 11:52:22 +0000254
Bill Wendling4a2bca82009-04-05 00:41:19 +0000255<p>
256Note that these two naming schemes are hardcoded into <tt>llvm-config</tt>.
257Using any other naming scheme will confuse <tt>llvm-config</tt> and produce a
258lot of (seemingly unrelated) linker errors when linking <tt>llc</tt>.
259</p>
Matthijs Kooijman6aa81272008-09-29 11:52:22 +0000260
Bill Wendling4a2bca82009-04-05 00:41:19 +0000261<p>
262To make your target actually do something, you need to implement a subclass of
263<tt>TargetMachine</tt>. This implementation should typically be in the file
264<tt>lib/Target/DummyTargetMachine.cpp</tt>, but any file in
265the <tt>lib/Target</tt> directory will be built and should work. To use LLVM's
266target independent code generator, you should do what all current machine
267backends do: create a subclass of <tt>LLVMTargetMachine</tt>. (To create a
268target from scratch, create a subclass of <tt>TargetMachine</tt>.)
269</p>
270
271<p>
272To get LLVM to actually build and link your target, you need to add it to
273the <tt>TARGETS_TO_BUILD</tt> variable. To do this, you modify the configure
274script to know about your target when parsing the <tt>--enable-targets</tt>
275option. Search the configure script for <tt>TARGETS_TO_BUILD</tt>, add your
276target to the lists there (some creativity required), and then
Chris Lattner78975382008-11-11 19:30:41 +0000277reconfigure. Alternatively, you can change <tt>autotools/configure.ac</tt> and
Bill Wendling4a2bca82009-04-05 00:41:19 +0000278regenerate configure by running <tt>./autoconf/AutoRegen.sh</tt>.
279</p>
280
Matthijs Kooijman6aa81272008-09-29 11:52:22 +0000281</div>
Misha Brukman8eb67192004-09-06 22:58:13 +0000282
283<!-- *********************************************************************** -->
284<div class="doc_section">
Chris Lattner78975382008-11-11 19:30:41 +0000285 <a name="TargetMachine">Target Machine</a>
286</div>
287<!-- *********************************************************************** -->
Bill Wendling4a2bca82009-04-05 00:41:19 +0000288
Chris Lattner78975382008-11-11 19:30:41 +0000289<div class="doc_text">
Chris Lattner78975382008-11-11 19:30:41 +0000290
Bill Wendling4a2bca82009-04-05 00:41:19 +0000291<p>
292<tt>LLVMTargetMachine</tt> is designed as a base class for targets implemented
293with the LLVM target-independent code generator. The <tt>LLVMTargetMachine</tt>
294class should be specialized by a concrete target class that implements the
295various virtual methods. <tt>LLVMTargetMachine</tt> is defined as a subclass of
296<tt>TargetMachine</tt> in <tt>include/llvm/Target/TargetMachine.h</tt>. The
297<tt>TargetMachine</tt> class implementation (<tt>TargetMachine.cpp</tt>) also
298processes numerous command-line options.
299</p>
300
301<p>
302To create a concrete target-specific subclass of <tt>LLVMTargetMachine</tt>,
303start by copying an existing <tt>TargetMachine</tt> class and header. You
304should name the files that you create to reflect your specific target. For
Chris Lattner78975382008-11-11 19:30:41 +0000305instance, for the SPARC target, name the files <tt>SparcTargetMachine.h</tt> and
Bill Wendling4a2bca82009-04-05 00:41:19 +0000306<tt>SparcTargetMachine.cpp</tt>.
307</p>
Chris Lattner78975382008-11-11 19:30:41 +0000308
Bill Wendling4a2bca82009-04-05 00:41:19 +0000309<p>
310For a target machine <tt>XXX</tt>, the implementation of
311<tt>XXXTargetMachine</tt> must have access methods to obtain objects that
312represent target components. These methods are named <tt>get*Info</tt>, and are
313intended to obtain the instruction set (<tt>getInstrInfo</tt>), register set
314(<tt>getRegisterInfo</tt>), stack frame layout (<tt>getFrameInfo</tt>), and
315similar information. <tt>XXXTargetMachine</tt> must also implement the
316<tt>getTargetData</tt> method to access an object with target-specific data
317characteristics, such as data type size and alignment requirements.
318</p>
Chris Lattner78975382008-11-11 19:30:41 +0000319
Bill Wendling4a2bca82009-04-05 00:41:19 +0000320<p>
321For instance, for the SPARC target, the header file
322<tt>SparcTargetMachine.h</tt> declares prototypes for several <tt>get*Info</tt>
323and <tt>getTargetData</tt> methods that simply return a class member.
324</p>
Chris Lattner78975382008-11-11 19:30:41 +0000325
326<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +0000327<pre>
328namespace llvm {
Chris Lattner78975382008-11-11 19:30:41 +0000329
330class Module;
331
332class SparcTargetMachine : public LLVMTargetMachine {
333 const TargetData DataLayout; // Calculates type size &amp; alignment
334 SparcSubtarget Subtarget;
335 SparcInstrInfo InstrInfo;
336 TargetFrameInfo FrameInfo;
337
338protected:
Bill Wendling4a2bca82009-04-05 00:41:19 +0000339 virtual const TargetAsmInfo *createTargetAsmInfo() const;
Chris Lattner78975382008-11-11 19:30:41 +0000340
341public:
342 SparcTargetMachine(const Module &amp;M, const std::string &amp;FS);
343
344 virtual const SparcInstrInfo *getInstrInfo() const {return &amp;InstrInfo; }
345 virtual const TargetFrameInfo *getFrameInfo() const {return &amp;FrameInfo; }
346 virtual const TargetSubtarget *getSubtargetImpl() const{return &amp;Subtarget; }
347 virtual const TargetRegisterInfo *getRegisterInfo() const {
348 return &amp;InstrInfo.getRegisterInfo();
349 }
350 virtual const TargetData *getTargetData() const { return &amp;DataLayout; }
351 static unsigned getModuleMatchQuality(const Module &amp;M);
352
353 // Pass Pipeline Configuration
354 virtual bool addInstSelector(PassManagerBase &amp;PM, bool Fast);
355 virtual bool addPreEmitPass(PassManagerBase &amp;PM, bool Fast);
356 virtual bool addAssemblyEmitter(PassManagerBase &amp;PM, bool Fast,
357 std::ostream &amp;Out);
358};
359
360} // end namespace llvm
361</pre>
362</div>
363
Bill Wendling4a2bca82009-04-05 00:41:19 +0000364</div>
365
366
Chris Lattner78975382008-11-11 19:30:41 +0000367<div class="doc_text">
Chris Lattner78975382008-11-11 19:30:41 +0000368
369<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000370<li><tt>getInstrInfo()</tt></li>
371<li><tt>getRegisterInfo()</tt></li>
372<li><tt>getFrameInfo()</tt></li>
373<li><tt>getTargetData()</tt></li>
374<li><tt>getSubtargetImpl()</tt></li>
Chris Lattner78975382008-11-11 19:30:41 +0000375</ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000376
377<p>For some targets, you also need to support the following methods:</p>
378
379<ul>
380<li><tt>getTargetLowering()</tt></li>
381<li><tt>getJITInfo()</tt></li>
382</ul>
383
384<p>
385In addition, the <tt>XXXTargetMachine</tt> constructor should specify a
386<tt>TargetDescription</tt> string that determines the data layout for the target
387machine, including characteristics such as pointer size, alignment, and
388endianness. For example, the constructor for SparcTargetMachine contains the
389following:
390</p>
Chris Lattner78975382008-11-11 19:30:41 +0000391
392<div class="doc_code">
393<pre>
394SparcTargetMachine::SparcTargetMachine(const Module &amp;M, const std::string &amp;FS)
Bill Wendling4a2bca82009-04-05 00:41:19 +0000395 : DataLayout("E-p:32:32-f128:128:128"),
Chris Lattner78975382008-11-11 19:30:41 +0000396 Subtarget(M, FS), InstrInfo(Subtarget),
397 FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
398}
399</pre>
400</div>
401
Chris Lattner78975382008-11-11 19:30:41 +0000402</div>
403
Bill Wendling4a2bca82009-04-05 00:41:19 +0000404<div class="doc_text">
405
406<p>Hyphens separate portions of the <tt>TargetDescription</tt> string.</p>
407
408<ul>
409<li>An upper-case "<tt>E</tt>" in the string indicates a big-endian target data
410 model. a lower-case "<tt>e</tt>" indicates little-endian.</li>
411
412<li>"<tt>p:</tt>" is followed by pointer information: size, ABI alignment, and
413 preferred alignment. If only two figures follow "<tt>p:</tt>", then the
414 first value is pointer size, and the second value is both ABI and preferred
415 alignment.</li>
416
417<li>Then a letter for numeric type alignment: "<tt>i</tt>", "<tt>f</tt>",
418 "<tt>v</tt>", or "<tt>a</tt>" (corresponding to integer, floating point,
419 vector, or aggregate). "<tt>i</tt>", "<tt>v</tt>", or "<tt>a</tt>" are
420 followed by ABI alignment and preferred alignment. "<tt>f</tt>" is followed
421 by three values: the first indicates the size of a long double, then ABI
422 alignment, and then ABI preferred alignment.</li>
423</ul>
424
425<p>
426You must also register your target using the <tt>RegisterTarget</tt>
427template. (See the <tt>TargetMachineRegistry</tt> class.) For example,
428in <tt>SparcTargetMachine.cpp</tt>, the target is registered with:
429</p>
430
Chris Lattner78975382008-11-11 19:30:41 +0000431<div class="doc_code">
432<pre>
433namespace {
434 // Register the target.
Bill Wendling4a2bca82009-04-05 00:41:19 +0000435 RegisterTarget&lt;SparcTargetMachine&gt;X("sparc", "SPARC");
Chris Lattner78975382008-11-11 19:30:41 +0000436}
437</pre>
438</div>
439
Bill Wendling4a2bca82009-04-05 00:41:19 +0000440</div>
441
Chris Lattner78975382008-11-11 19:30:41 +0000442<!-- *********************************************************************** -->
443<div class="doc_section">
444 <a name="RegisterSet">Register Set and Register Classes</a>
445</div>
446<!-- *********************************************************************** -->
Chris Lattner78975382008-11-11 19:30:41 +0000447
Bill Wendling4a2bca82009-04-05 00:41:19 +0000448<div class="doc_text">
449
450<p>
451You should describe a concrete target-specific class that represents the
452register file of a target machine. This class is called <tt>XXXRegisterInfo</tt>
453(where <tt>XXX</tt> identifies the target) and represents the class register
454file data that is used for register allocation. It also describes the
455interactions between registers.
456</p>
457
458<p>
459You also need to define register classes to categorize related registers. A
460register class should be added for groups of registers that are all treated the
461same way for some instruction. Typical examples are register classes for
462integer, floating-point, or vector registers. A register allocator allows an
Chris Lattner78975382008-11-11 19:30:41 +0000463instruction to use any register in a specified register class to perform the
464instruction in a similar manner. Register classes allocate virtual registers to
465instructions from these sets, and register classes let the target-independent
Bill Wendling4a2bca82009-04-05 00:41:19 +0000466register allocator automatically choose the actual registers.
467</p>
Chris Lattner78975382008-11-11 19:30:41 +0000468
Bill Wendling4a2bca82009-04-05 00:41:19 +0000469<p>
470Much of the code for registers, including register definition, register aliases,
471and register classes, is generated by TableGen from <tt>XXXRegisterInfo.td</tt>
472input files and placed in <tt>XXXGenRegisterInfo.h.inc</tt> and
473<tt>XXXGenRegisterInfo.inc</tt> output files. Some of the code in the
474implementation of <tt>XXXRegisterInfo</tt> requires hand-coding.
475</p>
476
Chris Lattner78975382008-11-11 19:30:41 +0000477</div>
478
479<!-- ======================================================================= -->
480<div class="doc_subsection">
481 <a name="RegisterDef">Defining a Register</a>
482</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000483
Chris Lattner78975382008-11-11 19:30:41 +0000484<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +0000485
486<p>
487The <tt>XXXRegisterInfo.td</tt> file typically starts with register definitions
488for a target machine. The <tt>Register</tt> class (specified
489in <tt>Target.td</tt>) is used to define an object for each register. The
490specified string <tt>n</tt> becomes the <tt>Name</tt> of the register. The
491basic <tt>Register</tt> object does not have any subregisters and does not
492specify any aliases.
493</p>
494
Chris Lattner78975382008-11-11 19:30:41 +0000495<div class="doc_code">
496<pre>
497class Register&lt;string n&gt; {
Bill Wendling4a2bca82009-04-05 00:41:19 +0000498 string Namespace = "";
Chris Lattner78975382008-11-11 19:30:41 +0000499 string AsmName = n;
500 string Name = n;
501 int SpillSize = 0;
502 int SpillAlignment = 0;
503 list&lt;Register&gt; Aliases = [];
504 list&lt;Register&gt; SubRegs = [];
505 list&lt;int&gt; DwarfNumbers = [];
506}
507</pre>
508</div>
509
Bill Wendling4a2bca82009-04-05 00:41:19 +0000510<p>
511For example, in the <tt>X86RegisterInfo.td</tt> file, there are register
512definitions that utilize the Register class, such as:
513</p>
514
Chris Lattner78975382008-11-11 19:30:41 +0000515<div class="doc_code">
516<pre>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000517def AL : Register&lt;"AL"&gt;, DwarfRegNum&lt;[0, 0, 0]&gt;;
Chris Lattner78975382008-11-11 19:30:41 +0000518</pre>
519</div>
520
Bill Wendling4a2bca82009-04-05 00:41:19 +0000521<p>
522This defines the register <tt>AL</tt> and assigns it values (with
523<tt>DwarfRegNum</tt>) that are used by <tt>gcc</tt>, <tt>gdb</tt>, or a debug
524information writer (such as <tt>DwarfWriter</tt>
525in <tt>llvm/lib/CodeGen/AsmPrinter</tt>) to identify a register. For register
526<tt>AL</tt>, <tt>DwarfRegNum</tt> takes an array of 3 values representing 3
527different modes: the first element is for X86-64, the second for exception
528handling (EH) on X86-32, and the third is generic. -1 is a special Dwarf number
529that indicates the gcc number is undefined, and -2 indicates the register number
530is invalid for this mode.
531</p>
Chris Lattner78975382008-11-11 19:30:41 +0000532
Bill Wendling4a2bca82009-04-05 00:41:19 +0000533<p>
534From the previously described line in the <tt>X86RegisterInfo.td</tt> file,
535TableGen generates this code in the <tt>X86GenRegisterInfo.inc</tt> file:
536</p>
537
Chris Lattner78975382008-11-11 19:30:41 +0000538<div class="doc_code">
539<pre>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000540static const unsigned GR8[] = { X86::AL, ... };
541
542const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
543
544const TargetRegisterDesc RegisterDescriptors[] = {
545 ...
546{ "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
Chris Lattner78975382008-11-11 19:30:41 +0000547</pre>
548</div>
549
Bill Wendling4a2bca82009-04-05 00:41:19 +0000550<p>
551From the register info file, TableGen generates a <tt>TargetRegisterDesc</tt>
552object for each register. <tt>TargetRegisterDesc</tt> is defined in
553<tt>include/llvm/Target/TargetRegisterInfo.h</tt> with the following fields:
554</p>
Chris Lattner78975382008-11-11 19:30:41 +0000555
556<div class="doc_code">
557<pre>
558struct TargetRegisterDesc {
559 const char *AsmName; // Assembly language name for the register
560 const char *Name; // Printable name for the reg (for debugging)
561 const unsigned *AliasSet; // Register Alias Set
562 const unsigned *SubRegs; // Sub-register set
563 const unsigned *ImmSubRegs; // Immediate sub-register set
564 const unsigned *SuperRegs; // Super-register set
565};</pre>
566</div>
567
Bill Wendling4a2bca82009-04-05 00:41:19 +0000568<p>
569TableGen uses the entire target description file (<tt>.td</tt>) to determine
570text names for the register (in the <tt>AsmName</tt> and <tt>Name</tt> fields of
571<tt>TargetRegisterDesc</tt>) and the relationships of other registers to the
572defined register (in the other <tt>TargetRegisterDesc</tt> fields). In this
573example, other definitions establish the registers "<tt>AX</tt>",
574"<tt>EAX</tt>", and "<tt>RAX</tt>" as aliases for one another, so TableGen
575generates a null-terminated array (<tt>AL_AliasSet</tt>) for this register alias
576set.
577</p>
Chris Lattner78975382008-11-11 19:30:41 +0000578
Bill Wendling4a2bca82009-04-05 00:41:19 +0000579<p>
580The <tt>Register</tt> class is commonly used as a base class for more complex
581classes. In <tt>Target.td</tt>, the <tt>Register</tt> class is the base for the
582<tt>RegisterWithSubRegs</tt> class that is used to define registers that need to
583specify subregisters in the <tt>SubRegs</tt> list, as shown here:
584</p>
585
Chris Lattner78975382008-11-11 19:30:41 +0000586<div class="doc_code">
587<pre>
588class RegisterWithSubRegs&lt;string n,
589list&lt;Register&gt; subregs&gt; : Register&lt;n&gt; {
590 let SubRegs = subregs;
Bill Wendling4a2bca82009-04-05 00:41:19 +0000591}
592</pre>
Chris Lattner78975382008-11-11 19:30:41 +0000593</div>
594
Bill Wendling4a2bca82009-04-05 00:41:19 +0000595<p>
596In <tt>SparcRegisterInfo.td</tt>, additional register classes are defined for
597SPARC: a Register subclass, SparcReg, and further subclasses: <tt>Ri</tt>,
598<tt>Rf</tt>, and <tt>Rd</tt>. SPARC registers are identified by 5-bit ID
599numbers, which is a feature common to these subclasses. Note the use of
600'<tt>let</tt>' expressions to override values that are initially defined in a
601superclass (such as <tt>SubRegs</tt> field in the <tt>Rd</tt> class).
602</p>
603
Chris Lattner78975382008-11-11 19:30:41 +0000604<div class="doc_code">
605<pre>
606class SparcReg&lt;string n&gt; : Register&lt;n&gt; {
607 field bits&lt;5&gt; Num;
Bill Wendling4a2bca82009-04-05 00:41:19 +0000608 let Namespace = "SP";
Chris Lattner78975382008-11-11 19:30:41 +0000609}
610// Ri - 32-bit integer registers
611class Ri&lt;bits&lt;5&gt; num, string n&gt; :
612SparcReg&lt;n&gt; {
613 let Num = num;
614}
615// Rf - 32-bit floating-point registers
616class Rf&lt;bits&lt;5&gt; num, string n&gt; :
617SparcReg&lt;n&gt; {
618 let Num = num;
619}
620// Rd - Slots in the FP register file for 64-bit
621floating-point values.
622class Rd&lt;bits&lt;5&gt; num, string n,
623list&lt;Register&gt; subregs&gt; : SparcReg&lt;n&gt; {
624 let Num = num;
625 let SubRegs = subregs;
Bill Wendling4a2bca82009-04-05 00:41:19 +0000626}
627</pre>
Chris Lattner78975382008-11-11 19:30:41 +0000628</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000629
630<p>
631In the <tt>SparcRegisterInfo.td</tt> file, there are register definitions that
632utilize these subclasses of <tt>Register</tt>, such as:
633</p>
634
Chris Lattner78975382008-11-11 19:30:41 +0000635<div class="doc_code">
636<pre>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000637def G0 : Ri&lt; 0, "G0"&gt;,
Chris Lattner78975382008-11-11 19:30:41 +0000638DwarfRegNum&lt;[0]&gt;;
Bill Wendling4a2bca82009-04-05 00:41:19 +0000639def G1 : Ri&lt; 1, "G1"&gt;, DwarfRegNum&lt;[1]&gt;;
Chris Lattner78975382008-11-11 19:30:41 +0000640...
Bill Wendling4a2bca82009-04-05 00:41:19 +0000641def F0 : Rf&lt; 0, "F0"&gt;,
Chris Lattner78975382008-11-11 19:30:41 +0000642DwarfRegNum&lt;[32]&gt;;
Bill Wendling4a2bca82009-04-05 00:41:19 +0000643def F1 : Rf&lt; 1, "F1"&gt;,
Chris Lattner78975382008-11-11 19:30:41 +0000644DwarfRegNum&lt;[33]&gt;;
645...
Bill Wendling4a2bca82009-04-05 00:41:19 +0000646def D0 : Rd&lt; 0, "F0", [F0, F1]&gt;,
Chris Lattner78975382008-11-11 19:30:41 +0000647DwarfRegNum&lt;[32]&gt;;
Bill Wendling4a2bca82009-04-05 00:41:19 +0000648def D1 : Rd&lt; 2, "F2", [F2, F3]&gt;,
Chris Lattner78975382008-11-11 19:30:41 +0000649DwarfRegNum&lt;[34]&gt;;
650</pre>
651</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000652
653<p>
654The last two registers shown above (<tt>D0</tt> and <tt>D1</tt>) are
655double-precision floating-point registers that are aliases for pairs of
656single-precision floating-point sub-registers. In addition to aliases, the
657sub-register and super-register relationships of the defined register are in
658fields of a register's TargetRegisterDesc.
659</p>
660
Chris Lattner78975382008-11-11 19:30:41 +0000661</div>
662
663<!-- ======================================================================= -->
664<div class="doc_subsection">
665 <a name="RegisterClassDef">Defining a Register Class</a>
666</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000667
Chris Lattner78975382008-11-11 19:30:41 +0000668<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +0000669
670<p>
671The <tt>RegisterClass</tt> class (specified in <tt>Target.td</tt>) is used to
Chris Lattner78975382008-11-11 19:30:41 +0000672define an object that represents a group of related registers and also defines
673the default allocation order of the registers. A target description file
Bill Wendling4a2bca82009-04-05 00:41:19 +0000674<tt>XXXRegisterInfo.td</tt> that uses <tt>Target.td</tt> can construct register
675classes using the following class:
676</p>
Chris Lattner78975382008-11-11 19:30:41 +0000677
678<div class="doc_code">
679<pre>
680class RegisterClass&lt;string namespace,
681list&lt;ValueType&gt; regTypes, int alignment,
682 list&lt;Register&gt; regList&gt; {
683 string Namespace = namespace;
684 list&lt;ValueType&gt; RegTypes = regTypes;
685 int Size = 0; // spill size, in bits; zero lets tblgen pick the size
686 int Alignment = alignment;
Bill Wendling4a2bca82009-04-05 00:41:19 +0000687
Chris Lattner78975382008-11-11 19:30:41 +0000688 // CopyCost is the cost of copying a value between two registers
689 // default value 1 means a single instruction
690 // A negative value means copying is extremely expensive or impossible
691 int CopyCost = 1;
692 list&lt;Register&gt; MemberList = regList;
693
694 // for register classes that are subregisters of this class
695 list&lt;RegisterClass&gt; SubRegClassList = [];
696
697 code MethodProtos = [{}]; // to insert arbitrary code
698 code MethodBodies = [{}];
Bill Wendling4a2bca82009-04-05 00:41:19 +0000699}
700</pre>
Chris Lattner78975382008-11-11 19:30:41 +0000701</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000702
Chris Lattner78975382008-11-11 19:30:41 +0000703<p>To define a RegisterClass, use the following 4 arguments:</p>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000704
Chris Lattner78975382008-11-11 19:30:41 +0000705<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000706<li>The first argument of the definition is the name of the namespace.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000707
Bill Wendling4a2bca82009-04-05 00:41:19 +0000708<li>The second argument is a list of <tt>ValueType</tt> register type values
709 that are defined in <tt>include/llvm/CodeGen/ValueTypes.td</tt>. Defined
710 values include integer types (such as <tt>i16</tt>, <tt>i32</tt>,
711 and <tt>i1</tt> for Boolean), floating-point types
712 (<tt>f32</tt>, <tt>f64</tt>), and vector types (for example, <tt>v8i16</tt>
713 for an <tt>8 x i16</tt> vector). All registers in a <tt>RegisterClass</tt>
714 must have the same <tt>ValueType</tt>, but some registers may store vector
715 data in different configurations. For example a register that can process a
716 128-bit vector may be able to handle 16 8-bit integer elements, 8 16-bit
717 integers, 4 32-bit integers, and so on. </li>
Chris Lattner78975382008-11-11 19:30:41 +0000718
Bill Wendling4a2bca82009-04-05 00:41:19 +0000719<li>The third argument of the <tt>RegisterClass</tt> definition specifies the
720 alignment required of the registers when they are stored or loaded to
721 memory.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000722
Bill Wendling4a2bca82009-04-05 00:41:19 +0000723<li>The final argument, <tt>regList</tt>, specifies which registers are in this
724 class. If an <tt>allocation_order_*</tt> method is not specified,
725 then <tt>regList</tt> also defines the order of allocation used by the
726 register allocator.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000727</ul>
728
Bill Wendling4a2bca82009-04-05 00:41:19 +0000729<p>
730In <tt>SparcRegisterInfo.td</tt>, three RegisterClass objects are defined:
731<tt>FPRegs</tt>, <tt>DFPRegs</tt>, and <tt>IntRegs</tt>. For all three register
732classes, the first argument defines the namespace with the string
733'<tt>SP</tt>'. <tt>FPRegs</tt> defines a group of 32 single-precision
734floating-point registers (<tt>F0</tt> to <tt>F31</tt>); <tt>DFPRegs</tt> defines
735a group of 16 double-precision registers
736(<tt>D0-D15</tt>). For <tt>IntRegs</tt>, the <tt>MethodProtos</tt>
737and <tt>MethodBodies</tt> methods are used by TableGen to insert the specified
738code into generated output.
739</p>
740
Chris Lattner78975382008-11-11 19:30:41 +0000741<div class="doc_code">
742<pre>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000743def FPRegs : RegisterClass&lt;"SP", [f32], 32,
744 [F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15,
745 F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30, F31]&gt;;
746
747def DFPRegs : RegisterClass&lt;"SP", [f64], 64,
748 [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15]&gt;;
Chris Lattner78975382008-11-11 19:30:41 +0000749&nbsp;
Bill Wendling4a2bca82009-04-05 00:41:19 +0000750def IntRegs : RegisterClass&lt;"SP", [i32], 32,
751 [L0, L1, L2, L3, L4, L5, L6, L7,
752 I0, I1, I2, I3, I4, I5,
753 O0, O1, O2, O3, O4, O5, O7,
754 G1,
755 // Non-allocatable regs:
756 G2, G3, G4,
757 O6, // stack ptr
758 I6, // frame ptr
759 I7, // return address
760 G0, // constant zero
761 G5, G6, G7 // reserved for kernel
762 ]&gt; {
Chris Lattner78975382008-11-11 19:30:41 +0000763 let MethodProtos = [{
764 iterator allocation_order_end(const MachineFunction &amp;MF) const;
765 }];
766 let MethodBodies = [{
767 IntRegsClass::iterator
768 IntRegsClass::allocation_order_end(const MachineFunction &amp;MF) const {
Bill Wendling4a2bca82009-04-05 00:41:19 +0000769 return end() - 10 // Don't allocate special registers
770 -1;
Chris Lattner78975382008-11-11 19:30:41 +0000771 }
772 }];
773}
774</pre>
775</div>
776
Bill Wendling4a2bca82009-04-05 00:41:19 +0000777<p>
778Using <tt>SparcRegisterInfo.td</tt> with TableGen generates several output files
779that are intended for inclusion in other source code that you write.
780<tt>SparcRegisterInfo.td</tt> generates <tt>SparcGenRegisterInfo.h.inc</tt>,
781which should be included in the header file for the implementation of the SPARC
782register implementation that you write (<tt>SparcRegisterInfo.h</tt>). In
Chris Lattner78975382008-11-11 19:30:41 +0000783<tt>SparcGenRegisterInfo.h.inc</tt> a new structure is defined called
Bill Wendling4a2bca82009-04-05 00:41:19 +0000784<tt>SparcGenRegisterInfo</tt> that uses <tt>TargetRegisterInfo</tt> as its
785base. It also specifies types, based upon the defined register
786classes: <tt>DFPRegsClass</tt>, <tt>FPRegsClass</tt>, and <tt>IntRegsClass</tt>.
787</p>
Chris Lattner78975382008-11-11 19:30:41 +0000788
Bill Wendling4a2bca82009-04-05 00:41:19 +0000789<p>
790<tt>SparcRegisterInfo.td</tt> also generates <tt>SparcGenRegisterInfo.inc</tt>,
791which is included at the bottom of <tt>SparcRegisterInfo.cpp</tt>, the SPARC
792register implementation. The code below shows only the generated integer
793registers and associated register classes. The order of registers
794in <tt>IntRegs</tt> reflects the order in the definition of <tt>IntRegs</tt> in
795the target description file. Take special note of the use
796of <tt>MethodBodies</tt> in <tt>SparcRegisterInfo.td</tt> to create code in
797<tt>SparcGenRegisterInfo.inc</tt>. <tt>MethodProtos</tt> generates similar code
798in <tt>SparcGenRegisterInfo.h.inc</tt>.
799</p>
Chris Lattner78975382008-11-11 19:30:41 +0000800
801<div class="doc_code">
802<pre> // IntRegs Register Class...
803 static const unsigned IntRegs[] = {
804 SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
Bill Wendling4a2bca82009-04-05 00:41:19 +0000805 SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
806 SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
807 SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
808 SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
809 SP::G6, SP::G7,
Chris Lattner78975382008-11-11 19:30:41 +0000810 };
Bill Wendling4a2bca82009-04-05 00:41:19 +0000811
Chris Lattner78975382008-11-11 19:30:41 +0000812 // IntRegsVTs Register Class Value Types...
813 static const MVT::ValueType IntRegsVTs[] = {
814 MVT::i32, MVT::Other
815 };
Bill Wendling4a2bca82009-04-05 00:41:19 +0000816
Chris Lattner78975382008-11-11 19:30:41 +0000817namespace SP { // Register class instances
818 DFPRegsClass&nbsp;&nbsp;&nbsp; DFPRegsRegClass;
819 FPRegsClass&nbsp;&nbsp;&nbsp;&nbsp; FPRegsRegClass;
820 IntRegsClass&nbsp;&nbsp;&nbsp; IntRegsRegClass;
821...
Bill Wendling4a2bca82009-04-05 00:41:19 +0000822 // IntRegs Sub-register Classess...
Chris Lattner78975382008-11-11 19:30:41 +0000823 static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
824 NULL
825 };
826...
Bill Wendling4a2bca82009-04-05 00:41:19 +0000827 // IntRegs Super-register Classess...
Chris Lattner78975382008-11-11 19:30:41 +0000828 static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
829 NULL
830 };
Bill Wendling4a2bca82009-04-05 00:41:19 +0000831...
832 // IntRegs Register Class sub-classes...
Chris Lattner78975382008-11-11 19:30:41 +0000833 static const TargetRegisterClass* const IntRegsSubclasses [] = {
834 NULL
835 };
836...
Bill Wendling4a2bca82009-04-05 00:41:19 +0000837 // IntRegs Register Class super-classes...
Chris Lattner78975382008-11-11 19:30:41 +0000838 static const TargetRegisterClass* const IntRegsSuperclasses [] = {
839 NULL
840 };
841...
Chris Lattner78975382008-11-11 19:30:41 +0000842 IntRegsClass::iterator
843 IntRegsClass::allocation_order_end(const MachineFunction &amp;MF) const {
Chris Lattner78975382008-11-11 19:30:41 +0000844 return end()-10 // Don't allocate special registers
Bill Wendling4a2bca82009-04-05 00:41:19 +0000845 -1;
Chris Lattner78975382008-11-11 19:30:41 +0000846 }
847
Bill Wendling4a2bca82009-04-05 00:41:19 +0000848 IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
849 IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
850 IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
Chris Lattner78975382008-11-11 19:30:41 +0000851}
852</pre>
853</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000854
855</div>
856
Chris Lattner78975382008-11-11 19:30:41 +0000857<!-- ======================================================================= -->
858<div class="doc_subsection">
Chris Lattner7d12b4b2008-11-11 19:36:31 +0000859 <a name="implementRegister">Implement a subclass of</a>
860 <a href="http://www.llvm.org/docs/CodeGenerator.html#targetregisterinfo">TargetRegisterInfo</a>
Chris Lattner78975382008-11-11 19:30:41 +0000861</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000862
Chris Lattner78975382008-11-11 19:30:41 +0000863<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +0000864
865<p>
866The final step is to hand code portions of <tt>XXXRegisterInfo</tt>, which
867implements the interface described in <tt>TargetRegisterInfo.h</tt>. These
868functions return <tt>0</tt>, <tt>NULL</tt>, or <tt>false</tt>, unless
869overridden. Here is a list of functions that are overridden for the SPARC
870implementation in <tt>SparcRegisterInfo.cpp</tt>:
871</p>
872
Chris Lattner78975382008-11-11 19:30:41 +0000873<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000874<li><tt>getCalleeSavedRegs</tt> &mdash; Returns a list of callee-saved registers
875 in the order of the desired callee-save stack frame offset.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000876
Bill Wendling4a2bca82009-04-05 00:41:19 +0000877<li><tt>getCalleeSavedRegClasses</tt> &mdash; Returns a list of preferred
878 register classes with which to spill each callee saved register.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000879
Bill Wendling4a2bca82009-04-05 00:41:19 +0000880<li><tt>getReservedRegs</tt> &mdash; Returns a bitset indexed by physical
881 register numbers, indicating if a particular register is unavailable.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000882
Bill Wendling4a2bca82009-04-05 00:41:19 +0000883<li><tt>hasFP</tt> &mdash; Return a Boolean indicating if a function should have
884 a dedicated frame pointer register.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000885
Bill Wendling4a2bca82009-04-05 00:41:19 +0000886<li><tt>eliminateCallFramePseudoInstr</tt> &mdash; If call frame setup or
887 destroy pseudo instructions are used, this can be called to eliminate
888 them.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000889
Bill Wendling4a2bca82009-04-05 00:41:19 +0000890<li><tt>eliminateFrameIndex</tt> &mdash; Eliminate abstract frame indices from
891 instructions that may use them.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000892
Bill Wendling4a2bca82009-04-05 00:41:19 +0000893<li><tt>emitPrologue</tt> &mdash; Insert prologue code into the function.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000894
Bill Wendling4a2bca82009-04-05 00:41:19 +0000895<li><tt>emitEpilogue</tt> &mdash; Insert epilogue code into the function.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000896</ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000897
Chris Lattner78975382008-11-11 19:30:41 +0000898</div>
899
900<!-- *********************************************************************** -->
901<div class="doc_section">
902 <a name="InstructionSet">Instruction Set</a>
903</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000904
Chris Lattner78975382008-11-11 19:30:41 +0000905<!-- *********************************************************************** -->
906<div class="doc_text">
Chris Lattner78975382008-11-11 19:30:41 +0000907
Bill Wendling4a2bca82009-04-05 00:41:19 +0000908<p>
909During the early stages of code generation, the LLVM IR code is converted to a
910<tt>SelectionDAG</tt> with nodes that are instances of the <tt>SDNode</tt> class
911containing target instructions. An <tt>SDNode</tt> has an opcode, operands, type
912requirements, and operation properties. For example, is an operation
913commutative, does an operation load from memory. The various operation node
914types are described in the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
915file (values of the <tt>NodeType</tt> enum in the <tt>ISD</tt> namespace).
916</p>
917
918<p>
919TableGen uses the following target description (<tt>.td</tt>) input files to
920generate much of the code for instruction definition:
921</p>
922
Chris Lattner78975382008-11-11 19:30:41 +0000923<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +0000924<li><tt>Target.td</tt> &mdash; Where the <tt>Instruction</tt>, <tt>Operand</tt>,
925 <tt>InstrInfo</tt>, and other fundamental classes are defined.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000926
Bill Wendling4a2bca82009-04-05 00:41:19 +0000927<li><tt>TargetSelectionDAG.td</tt>&mdash; Used by <tt>SelectionDAG</tt>
928 instruction selection generators, contains <tt>SDTC*</tt> classes (selection
929 DAG type constraint), definitions of <tt>SelectionDAG</tt> nodes (such as
930 <tt>imm</tt>, <tt>cond</tt>, <tt>bb</tt>, <tt>add</tt>, <tt>fadd</tt>,
931 <tt>sub</tt>), and pattern support (<tt>Pattern</tt>, <tt>Pat</tt>,
932 <tt>PatFrag</tt>, <tt>PatLeaf</tt>, <tt>ComplexPattern</tt>.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000933
Bill Wendling4a2bca82009-04-05 00:41:19 +0000934<li><tt>XXXInstrFormats.td</tt> &mdash; Patterns for definitions of
935 target-specific instructions.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000936
Bill Wendling4a2bca82009-04-05 00:41:19 +0000937<li><tt>XXXInstrInfo.td</tt> &mdash; Target-specific definitions of instruction
938 templates, condition codes, and instructions of an instruction set. For
939 architecture modifications, a different file name may be used. For example,
940 for Pentium with SSE instruction, this file is <tt>X86InstrSSE.td</tt>, and
941 for Pentium with MMX, this file is <tt>X86InstrMMX.td</tt>.</li>
Chris Lattner78975382008-11-11 19:30:41 +0000942</ul>
943
Bill Wendling4a2bca82009-04-05 00:41:19 +0000944<p>
945There is also a target-specific <tt>XXX.td</tt> file, where <tt>XXX</tt> is the
946name of the target. The <tt>XXX.td</tt> file includes the other <tt>.td</tt>
947input files, but its contents are only directly important for subtargets.
948</p>
949
950<p>
951You should describe a concrete target-specific class <tt>XXXInstrInfo</tt> that
952represents machine instructions supported by a target machine.
953<tt>XXXInstrInfo</tt> contains an array of <tt>XXXInstrDescriptor</tt> objects,
954each of which describes one instruction. An instruction descriptor defines:</p>
955
956<ul>
957<li>Opcode mnemonic</li>
958
959<li>Number of operands</li>
960
961<li>List of implicit register definitions and uses</li>
962
963<li>Target-independent properties (such as memory access, is commutable)</li>
964
965<li>Target-specific flags </li>
966</ul>
967
968<p>
969The Instruction class (defined in <tt>Target.td</tt>) is mostly used as a base
970for more complex instruction classes.
971</p>
Chris Lattner78975382008-11-11 19:30:41 +0000972
973<div class="doc_code">
974<pre>class Instruction {
Bill Wendling4a2bca82009-04-05 00:41:19 +0000975 string Namespace = "";
Chris Lattner78975382008-11-11 19:30:41 +0000976 dag OutOperandList; // An dag containing the MI def operand list.
977 dag InOperandList; // An dag containing the MI use operand list.
Bill Wendling4a2bca82009-04-05 00:41:19 +0000978 string AsmString = ""; // The .s format to print the instruction with.
Chris Lattner78975382008-11-11 19:30:41 +0000979 list&lt;dag&gt; Pattern; // Set to the DAG pattern for this instruction
980 list&lt;Register&gt; Uses = [];
981 list&lt;Register&gt; Defs = [];
982 list&lt;Predicate&gt; Predicates = []; // predicates turned into isel match code
983 ... remainder not shown for space ...
984}
985</pre>
986</div>
Chris Lattner78975382008-11-11 19:30:41 +0000987
Bill Wendling4a2bca82009-04-05 00:41:19 +0000988<p>
989A <tt>SelectionDAG</tt> node (<tt>SDNode</tt>) should contain an object
990representing a target-specific instruction that is defined
991in <tt>XXXInstrInfo.td</tt>. The instruction objects should represent
992instructions from the architecture manual of the target machine (such as the
993SPARC Architecture Manual for the SPARC target).
994</p>
995
996<p>
997A single instruction from the architecture manual is often modeled as multiple
998target instructions, depending upon its operands. For example, a manual might
Chris Lattner78975382008-11-11 19:30:41 +0000999describe an add instruction that takes a register or an immediate operand. An
Bill Wendling4a2bca82009-04-05 00:41:19 +00001000LLVM target could model this with two instructions named <tt>ADDri</tt> and
1001<tt>ADDrr</tt>.
1002</p>
Chris Lattner78975382008-11-11 19:30:41 +00001003
Bill Wendling4a2bca82009-04-05 00:41:19 +00001004<p>
1005You should define a class for each instruction category and define each opcode
1006as a subclass of the category with appropriate parameters such as the fixed
1007binary encoding of opcodes and extended opcodes. You should map the register
1008bits to the bits of the instruction in which they are encoded (for the
1009JIT). Also you should specify how the instruction should be printed when the
1010automatic assembly printer is used.
1011</p>
Chris Lattner78975382008-11-11 19:30:41 +00001012
Bill Wendling4a2bca82009-04-05 00:41:19 +00001013<p>
1014As is described in the SPARC Architecture Manual, Version 8, there are three
1015major 32-bit formats for instructions. Format 1 is only for the <tt>CALL</tt>
1016instruction. Format 2 is for branch on condition codes and <tt>SETHI</tt> (set
1017high bits of a register) instructions. Format 3 is for other instructions.
1018</p>
Chris Lattner78975382008-11-11 19:30:41 +00001019
Bill Wendling4a2bca82009-04-05 00:41:19 +00001020<p>
1021Each of these formats has corresponding classes in <tt>SparcInstrFormat.td</tt>.
1022<tt>InstSP</tt> is a base class for other instruction classes. Additional base
1023classes are specified for more precise formats: for example
1024in <tt>SparcInstrFormat.td</tt>, <tt>F2_1</tt> is for <tt>SETHI</tt>,
1025and <tt>F2_2</tt> is for branches. There are three other base
1026classes: <tt>F3_1</tt> for register/register operations, <tt>F3_2</tt> for
1027register/immediate operations, and <tt>F3_3</tt> for floating-point
1028operations. <tt>SparcInstrInfo.td</tt> also adds the base class Pseudo for
1029synthetic SPARC instructions.
1030</p>
Chris Lattner78975382008-11-11 19:30:41 +00001031
Bill Wendling4a2bca82009-04-05 00:41:19 +00001032<p>
1033<tt>SparcInstrInfo.td</tt> largely consists of operand and instruction
1034definitions for the SPARC target. In <tt>SparcInstrInfo.td</tt>, the following
1035target description file entry, <tt>LDrr</tt>, defines the Load Integer
1036instruction for a Word (the <tt>LD</tt> SPARC opcode) from a memory address to a
1037register. The first parameter, the value 3 (<tt>11<sub>2</sub></tt>), is the
1038operation value for this category of operation. The second parameter
1039(<tt>000000<sub>2</sub></tt>) is the specific operation value
1040for <tt>LD</tt>/Load Word. The third parameter is the output destination, which
1041is a register operand and defined in the <tt>Register</tt> target description
1042file (<tt>IntRegs</tt>).
1043</p>
1044
Chris Lattner78975382008-11-11 19:30:41 +00001045<div class="doc_code">
1046<pre>def LDrr : F3_1 &lt;3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
Bill Wendling4a2bca82009-04-05 00:41:19 +00001047 "ld [$addr], $dst",
Chris Lattner78975382008-11-11 19:30:41 +00001048 [(set IntRegs:$dst, (load ADDRrr:$addr))]&gt;;
1049</pre>
1050</div>
1051
Bill Wendling4a2bca82009-04-05 00:41:19 +00001052<p>
1053The fourth parameter is the input source, which uses the address
1054operand <tt>MEMrr</tt> that is defined earlier in <tt>SparcInstrInfo.td</tt>:
1055</p>
1056
Chris Lattner78975382008-11-11 19:30:41 +00001057<div class="doc_code">
1058<pre>def MEMrr : Operand&lt;i32&gt; {
Bill Wendling4a2bca82009-04-05 00:41:19 +00001059 let PrintMethod = "printMemOperand";
Chris Lattner78975382008-11-11 19:30:41 +00001060 let MIOperandInfo = (ops IntRegs, IntRegs);
1061}
1062</pre>
1063</div>
Chris Lattner78975382008-11-11 19:30:41 +00001064
Bill Wendling4a2bca82009-04-05 00:41:19 +00001065<p>
1066The fifth parameter is a string that is used by the assembly printer and can be
1067left as an empty string until the assembly printer interface is implemented. The
1068sixth and final parameter is the pattern used to match the instruction during
1069the SelectionDAG Select Phase described in
1070(<a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM
1071Target-Independent Code Generator</a>). This parameter is detailed in the next
1072section, <a href="#InstructionSelector">Instruction Selector</a>.
1073</p>
1074
1075<p>
1076Instruction class definitions are not overloaded for different operand types, so
1077separate versions of instructions are needed for register, memory, or immediate
1078value operands. For example, to perform a Load Integer instruction for a Word
Chris Lattner78975382008-11-11 19:30:41 +00001079from an immediate operand to a register, the following instruction class is
Bill Wendling4a2bca82009-04-05 00:41:19 +00001080defined:
1081</p>
1082
Chris Lattner78975382008-11-11 19:30:41 +00001083<div class="doc_code">
1084<pre>def LDri : F3_2 &lt;3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
Bill Wendling4a2bca82009-04-05 00:41:19 +00001085 "ld [$addr], $dst",
Chris Lattner78975382008-11-11 19:30:41 +00001086 [(set IntRegs:$dst, (load ADDRri:$addr))]&gt;;
1087</pre>
1088</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001089
1090<p>
1091Writing these definitions for so many similar instructions can involve a lot of
1092cut and paste. In td files, the <tt>multiclass</tt> directive enables the
1093creation of templates to define several instruction classes at once (using
1094the <tt>defm</tt> directive). For example in <tt>SparcInstrInfo.td</tt>, the
1095<tt>multiclass</tt> pattern <tt>F3_12</tt> is defined to create 2 instruction
1096classes each time <tt>F3_12</tt> is invoked:
1097</p>
1098
Chris Lattner78975382008-11-11 19:30:41 +00001099<div class="doc_code">
1100<pre>multiclass F3_12 &lt;string OpcStr, bits&lt;6&gt; Op3Val, SDNode OpNode&gt; {
1101 def rr : F3_1 &lt;2, Op3Val,
1102 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
Bill Wendling4a2bca82009-04-05 00:41:19 +00001103 !strconcat(OpcStr, " $b, $c, $dst"),
Chris Lattner78975382008-11-11 19:30:41 +00001104 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]&gt;;
1105 def ri : F3_2 &lt;2, Op3Val,
1106 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
Bill Wendling4a2bca82009-04-05 00:41:19 +00001107 !strconcat(OpcStr, " $b, $c, $dst"),
Chris Lattner78975382008-11-11 19:30:41 +00001108 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]&gt;;
1109}
1110</pre>
1111</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001112
1113<p>
1114So when the <tt>defm</tt> directive is used for the <tt>XOR</tt>
1115and <tt>ADD</tt> instructions, as seen below, it creates four instruction
1116objects: <tt>XORrr</tt>, <tt>XORri</tt>, <tt>ADDrr</tt>, and <tt>ADDri</tt>.
1117</p>
1118
Chris Lattner78975382008-11-11 19:30:41 +00001119<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001120<pre>
1121defm XOR : F3_12&lt;"xor", 0b000011, xor&gt;;
1122defm ADD : F3_12&lt;"add", 0b000000, add&gt;;
Chris Lattner78975382008-11-11 19:30:41 +00001123</pre>
1124</div>
1125
Bill Wendling4a2bca82009-04-05 00:41:19 +00001126<p>
1127<tt>SparcInstrInfo.td</tt> also includes definitions for condition codes that
1128are referenced by branch instructions. The following definitions
1129in <tt>SparcInstrInfo.td</tt> indicate the bit location of the SPARC condition
1130code. For example, the 10<sup>th</sup> bit represents the 'greater than'
1131condition for integers, and the 22<sup>nd</sup> bit represents the 'greater
1132than' condition for floats.
1133</p>
Chris Lattner78975382008-11-11 19:30:41 +00001134
1135<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001136<pre>
1137def ICC_NE : ICC_VAL&lt; 9&gt;; // Not Equal
Chris Lattner78975382008-11-11 19:30:41 +00001138def ICC_E : ICC_VAL&lt; 1&gt;; // Equal
1139def ICC_G : ICC_VAL&lt;10&gt;; // Greater
1140...
1141def FCC_U : FCC_VAL&lt;23&gt;; // Unordered
1142def FCC_G : FCC_VAL&lt;22&gt;; // Greater
1143def FCC_UG : FCC_VAL&lt;21&gt;; // Unordered or Greater
1144...
1145</pre>
1146</div>
1147
Bill Wendling4a2bca82009-04-05 00:41:19 +00001148<p>
1149(Note that <tt>Sparc.h</tt> also defines enums that correspond to the same SPARC
1150condition codes. Care must be taken to ensure the values in <tt>Sparc.h</tt>
1151correspond to the values in <tt>SparcInstrInfo.td</tt>. I.e.,
1152<tt>SPCC::ICC_NE = 9</tt>, <tt>SPCC::FCC_U = 23</tt> and so on.)
1153</p>
1154
Chris Lattner78975382008-11-11 19:30:41 +00001155</div>
1156
1157<!-- ======================================================================= -->
1158<div class="doc_subsection">
Chris Lattner7a152732008-11-22 19:10:48 +00001159 <a name="operandMapping">Instruction Operand Mapping</a>
1160</div>
Chris Lattner7a152732008-11-22 19:10:48 +00001161
Bill Wendling4a2bca82009-04-05 00:41:19 +00001162<div class="doc_text">
1163
1164<p>
1165The code generator backend maps instruction operands to fields in the
1166instruction. Operands are assigned to unbound fields in the instruction in the
1167order they are defined. Fields are bound when they are assigned a value. For
1168example, the Sparc target defines the <tt>XNORrr</tt> instruction as
1169a <tt>F3_1</tt> format instruction having three operands.
1170</p>
1171
1172<div class="doc_code">
1173<pre>
Chris Lattner7a152732008-11-22 19:10:48 +00001174def XNORrr : F3_1&lt;2, 0b000111,
1175 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
1176 "xnor $b, $c, $dst",
1177 [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]&gt;;
Bill Wendling4a2bca82009-04-05 00:41:19 +00001178</pre>
Chris Lattner7a152732008-11-22 19:10:48 +00001179</div>
1180
Bill Wendling4a2bca82009-04-05 00:41:19 +00001181<p>
1182The instruction templates in <tt>SparcInstrFormats.td</tt> show the base class
1183for <tt>F3_1</tt> is <tt>InstSP</tt>.
1184</p>
1185
1186<div class="doc_code">
1187<pre>
Chris Lattner7a152732008-11-22 19:10:48 +00001188class InstSP&lt;dag outs, dag ins, string asmstr, list&lt;dag&gt; pattern&gt; : Instruction {
1189 field bits&lt;32&gt; Inst;
1190 let Namespace = "SP";
1191 bits&lt;2&gt; op;
1192 let Inst{31-30} = op;
1193 dag OutOperandList = outs;
1194 dag InOperandList = ins;
1195 let AsmString = asmstr;
1196 let Pattern = pattern;
1197}
Bill Wendling4a2bca82009-04-05 00:41:19 +00001198</pre>
Chris Lattner7a152732008-11-22 19:10:48 +00001199</div>
1200
Bill Wendling4a2bca82009-04-05 00:41:19 +00001201<p><tt>InstSP</tt> leaves the <tt>op</tt> field unbound.</p>
1202
1203<div class="doc_code">
1204<pre>
Chris Lattner7a152732008-11-22 19:10:48 +00001205class F3&lt;dag outs, dag ins, string asmstr, list&lt;dag&gt; pattern&gt;
1206 : InstSP&lt;outs, ins, asmstr, pattern&gt; {
1207 bits&lt;5&gt; rd;
1208 bits&lt;6&gt; op3;
1209 bits&lt;5&gt; rs1;
1210 let op{1} = 1; // Op = 2 or 3
1211 let Inst{29-25} = rd;
1212 let Inst{24-19} = op3;
1213 let Inst{18-14} = rs1;
1214}
Bill Wendling4a2bca82009-04-05 00:41:19 +00001215</pre>
Chris Lattner7a152732008-11-22 19:10:48 +00001216</div>
1217
Bill Wendling4a2bca82009-04-05 00:41:19 +00001218<p>
1219<tt>F3</tt> binds the <tt>op</tt> field and defines the <tt>rd</tt>,
1220<tt>op3</tt>, and <tt>rs1</tt> fields. <tt>F3</tt> format instructions will
1221bind the operands <tt>rd</tt>, <tt>op3</tt>, and <tt>rs1</tt> fields.
1222</p>
1223
1224<div class="doc_code">
1225<pre>
Chris Lattner7a152732008-11-22 19:10:48 +00001226class F3_1&lt;bits&lt;2&gt; opVal, bits&lt;6&gt; op3val, dag outs, dag ins,
1227 string asmstr, list&lt;dag&gt; pattern&gt; : F3&lt;outs, ins, asmstr, pattern&gt; {
1228 bits&lt;8&gt; asi = 0; // asi not currently used
1229 bits&lt;5&gt; rs2;
1230 let op = opVal;
1231 let op3 = op3val;
1232 let Inst{13} = 0; // i field = 0
1233 let Inst{12-5} = asi; // address space identifier
1234 let Inst{4-0} = rs2;
1235}
Bill Wendling4a2bca82009-04-05 00:41:19 +00001236</pre>
Chris Lattner7a152732008-11-22 19:10:48 +00001237</div>
1238
Bill Wendling4a2bca82009-04-05 00:41:19 +00001239<p>
1240<tt>F3_1</tt> binds the <tt>op3</tt> field and defines the <tt>rs2</tt>
1241fields. <tt>F3_1</tt> format instructions will bind the operands to the <tt>rd</tt>,
1242<tt>rs1</tt>, and <tt>rs2</tt> fields. This results in the <tt>XNORrr</tt>
1243instruction binding <tt>$dst</tt>, <tt>$b</tt>, and <tt>$c</tt> operands to
1244the <tt>rd</tt>, <tt>rs1</tt>, and <tt>rs2</tt> fields respectively.
1245</p>
Chris Lattner7a152732008-11-22 19:10:48 +00001246
Bill Wendling4a2bca82009-04-05 00:41:19 +00001247</div>
Chris Lattner7a152732008-11-22 19:10:48 +00001248
1249<!-- ======================================================================= -->
1250<div class="doc_subsection">
Chris Lattner7d12b4b2008-11-11 19:36:31 +00001251 <a name="implementInstr">Implement a subclass of </a>
1252 <a href="http://www.llvm.org/docs/CodeGenerator.html#targetinstrinfo">TargetInstrInfo</a>
Chris Lattner78975382008-11-11 19:30:41 +00001253</div>
1254
1255<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001256
1257<p>
1258The final step is to hand code portions of <tt>XXXInstrInfo</tt>, which
1259implements the interface described in <tt>TargetInstrInfo.h</tt>. These
1260functions return <tt>0</tt> or a Boolean or they assert, unless
1261overridden. Here's a list of functions that are overridden for the SPARC
1262implementation in <tt>SparcInstrInfo.cpp</tt>:
1263</p>
1264
Chris Lattner78975382008-11-11 19:30:41 +00001265<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001266<li><tt>isMoveInstr</tt> &mdash; Return true if the instruction is a register to
1267 register move; false, otherwise.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001268
Bill Wendling4a2bca82009-04-05 00:41:19 +00001269<li><tt>isLoadFromStackSlot</tt> &mdash; If the specified machine instruction is
1270 a direct load from a stack slot, return the register number of the
1271 destination and the <tt>FrameIndex</tt> of the stack slot.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001272
Bill Wendling4a2bca82009-04-05 00:41:19 +00001273<li><tt>isStoreToStackSlot</tt> &mdash; If the specified machine instruction is
1274 a direct store to a stack slot, return the register number of the
1275 destination and the <tt>FrameIndex</tt> of the stack slot.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001276
Bill Wendling4a2bca82009-04-05 00:41:19 +00001277<li><tt>copyRegToReg</tt> &mdash; Copy values between a pair of registers.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001278
Bill Wendling4a2bca82009-04-05 00:41:19 +00001279<li><tt>storeRegToStackSlot</tt> &mdash; Store a register value to a stack
1280 slot.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001281
Bill Wendling4a2bca82009-04-05 00:41:19 +00001282<li><tt>loadRegFromStackSlot</tt> &mdash; Load a register value from a stack
1283 slot.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001284
Bill Wendling4a2bca82009-04-05 00:41:19 +00001285<li><tt>storeRegToAddr</tt> &mdash; Store a register value to memory.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001286
Bill Wendling4a2bca82009-04-05 00:41:19 +00001287<li><tt>loadRegFromAddr</tt> &mdash; Load a register value from memory.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001288
Bill Wendling4a2bca82009-04-05 00:41:19 +00001289<li><tt>foldMemoryOperand</tt> &mdash; Attempt to combine instructions of any
1290 load or store instruction for the specified operand(s).</li>
Chris Lattner78975382008-11-11 19:30:41 +00001291</ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001292
Chris Lattner78975382008-11-11 19:30:41 +00001293</div>
1294
1295<!-- ======================================================================= -->
1296<div class="doc_subsection">
1297 <a name="branchFolding">Branch Folding and If Conversion</a>
1298</div>
1299<div class="doc_text">
Chris Lattner78975382008-11-11 19:30:41 +00001300
Bill Wendling4a2bca82009-04-05 00:41:19 +00001301<p>
1302Performance can be improved by combining instructions or by eliminating
1303instructions that are never reached. The <tt>AnalyzeBranch</tt> method
1304in <tt>XXXInstrInfo</tt> may be implemented to examine conditional instructions
1305and remove unnecessary instructions. <tt>AnalyzeBranch</tt> looks at the end of
1306a machine basic block (MBB) for opportunities for improvement, such as branch
1307folding and if conversion. The <tt>BranchFolder</tt> and <tt>IfConverter</tt>
1308machine function passes (see the source files <tt>BranchFolding.cpp</tt> and
1309<tt>IfConversion.cpp</tt> in the <tt>lib/CodeGen</tt> directory) call
1310<tt>AnalyzeBranch</tt> to improve the control flow graph that represents the
1311instructions.
1312</p>
1313
1314<p>
1315Several implementations of <tt>AnalyzeBranch</tt> (for ARM, Alpha, and X86) can
1316be examined as models for your own <tt>AnalyzeBranch</tt> implementation. Since
1317SPARC does not implement a useful <tt>AnalyzeBranch</tt>, the ARM target
1318implementation is shown below.
1319</p>
Chris Lattner78975382008-11-11 19:30:41 +00001320
1321<p><tt>AnalyzeBranch</tt> returns a Boolean value and takes four parameters:</p>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001322
Chris Lattner78975382008-11-11 19:30:41 +00001323<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001324<li><tt>MachineBasicBlock &amp;MBB</tt> &mdash; The incoming block to be
1325 examined.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001326
Bill Wendling4a2bca82009-04-05 00:41:19 +00001327<li><tt>MachineBasicBlock *&amp;TBB</tt> &mdash; A destination block that is
1328 returned. For a conditional branch that evaluates to true, <tt>TBB</tt> is
1329 the destination.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001330
Bill Wendling4a2bca82009-04-05 00:41:19 +00001331<li><tt>MachineBasicBlock *&amp;FBB</tt> &mdash; For a conditional branch that
1332 evaluates to false, <tt>FBB</tt> is returned as the destination.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001333
Bill Wendling4a2bca82009-04-05 00:41:19 +00001334<li><tt>std::vector&lt;MachineOperand&gt; &amp;Cond</tt> &mdash; List of
1335 operands to evaluate a condition for a conditional branch.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001336</ul>
1337
Bill Wendling4a2bca82009-04-05 00:41:19 +00001338<p>
1339In the simplest case, if a block ends without a branch, then it falls through to
1340the successor block. No destination blocks are specified for either <tt>TBB</tt>
1341or <tt>FBB</tt>, so both parameters return <tt>NULL</tt>. The start of
1342the <tt>AnalyzeBranch</tt> (see code below for the ARM target) shows the
1343function parameters and the code for the simplest case.
1344</p>
Chris Lattner78975382008-11-11 19:30:41 +00001345
1346<div class="doc_code">
1347<pre>bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &amp;MBB,
1348 MachineBasicBlock *&amp;TBB, MachineBasicBlock *&amp;FBB,
1349 std::vector&lt;MachineOperand&gt; &amp;Cond) const
1350{
1351 MachineBasicBlock::iterator I = MBB.end();
1352 if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
1353 return false;
1354</pre>
1355</div>
1356
Bill Wendling4a2bca82009-04-05 00:41:19 +00001357<p>
1358If a block ends with a single unconditional branch instruction, then
1359<tt>AnalyzeBranch</tt> (shown below) should return the destination of that
1360branch in the <tt>TBB</tt> parameter.
1361</p>
Chris Lattner78975382008-11-11 19:30:41 +00001362
1363<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001364<pre>
1365 if (LastOpc == ARM::B || LastOpc == ARM::tB) {
1366 TBB = LastInst-&gt;getOperand(0).getMBB();
1367 return false;
1368 }
Chris Lattner78975382008-11-11 19:30:41 +00001369</pre>
1370</div>
1371
Bill Wendling4a2bca82009-04-05 00:41:19 +00001372<p>
1373If a block ends with two unconditional branches, then the second branch is never
1374reached. In that situation, as shown below, remove the last branch instruction
1375and return the penultimate branch in the <tt>TBB</tt> parameter.
1376</p>
Chris Lattner78975382008-11-11 19:30:41 +00001377
1378<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001379<pre>
1380 if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) &amp;&amp;
Chris Lattner78975382008-11-11 19:30:41 +00001381 (LastOpc == ARM::B || LastOpc == ARM::tB)) {
1382 TBB = SecondLastInst-&gt;getOperand(0).getMBB();
1383 I = LastInst;
1384 I-&gt;eraseFromParent();
1385 return false;
1386 }
1387</pre>
1388</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001389
1390<p>
1391A block may end with a single conditional branch instruction that falls through
1392to successor block if the condition evaluates to false. In that case,
1393<tt>AnalyzeBranch</tt> (shown below) should return the destination of that
1394conditional branch in the <tt>TBB</tt> parameter and a list of operands in
1395the <tt>Cond</tt> parameter to evaluate the condition.
1396</p>
Chris Lattner78975382008-11-11 19:30:41 +00001397
1398<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001399<pre>
1400 if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
1401 // Block ends with fall-through condbranch.
1402 TBB = LastInst-&gt;getOperand(0).getMBB();
1403 Cond.push_back(LastInst-&gt;getOperand(1));
1404 Cond.push_back(LastInst-&gt;getOperand(2));
1405 return false;
1406 }
Chris Lattner78975382008-11-11 19:30:41 +00001407</pre>
1408</div>
1409
Bill Wendling4a2bca82009-04-05 00:41:19 +00001410<p>
1411If a block ends with both a conditional branch and an ensuing unconditional
1412branch, then <tt>AnalyzeBranch</tt> (shown below) should return the conditional
1413branch destination (assuming it corresponds to a conditional evaluation of
1414'<tt>true</tt>') in the <tt>TBB</tt> parameter and the unconditional branch
1415destination in the <tt>FBB</tt> (corresponding to a conditional evaluation of
1416'<tt>false</tt>'). A list of operands to evaluate the condition should be
1417returned in the <tt>Cond</tt> parameter.
1418</p>
Chris Lattner78975382008-11-11 19:30:41 +00001419
1420<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001421<pre>
1422 unsigned SecondLastOpc = SecondLastInst-&gt;getOpcode();
1423
Chris Lattner78975382008-11-11 19:30:41 +00001424 if ((SecondLastOpc == ARM::Bcc &amp;&amp; LastOpc == ARM::B) ||
1425 (SecondLastOpc == ARM::tBcc &amp;&amp; LastOpc == ARM::tB)) {
1426 TBB = SecondLastInst-&gt;getOperand(0).getMBB();
1427 Cond.push_back(SecondLastInst-&gt;getOperand(1));
1428 Cond.push_back(SecondLastInst-&gt;getOperand(2));
1429 FBB = LastInst-&gt;getOperand(0).getMBB();
1430 return false;
1431 }
1432</pre>
1433</div>
1434
Bill Wendling4a2bca82009-04-05 00:41:19 +00001435<p>
1436For the last two cases (ending with a single conditional branch or ending with
1437one conditional and one unconditional branch), the operands returned in
1438the <tt>Cond</tt> parameter can be passed to methods of other instructions to
1439create new branches or perform other operations. An implementation
1440of <tt>AnalyzeBranch</tt> requires the helper methods <tt>RemoveBranch</tt>
1441and <tt>InsertBranch</tt> to manage subsequent operations.
1442</p>
Chris Lattner78975382008-11-11 19:30:41 +00001443
Bill Wendling4a2bca82009-04-05 00:41:19 +00001444<p>
1445<tt>AnalyzeBranch</tt> should return false indicating success in most circumstances.
Chris Lattner78975382008-11-11 19:30:41 +00001446<tt>AnalyzeBranch</tt> should only return true when the method is stumped about what to
1447do, for example, if a block has three terminating branches. <tt>AnalyzeBranch</tt> may
1448return true if it encounters a terminator it cannot handle, such as an indirect
Bill Wendling4a2bca82009-04-05 00:41:19 +00001449branch.
1450</p>
1451
Chris Lattner78975382008-11-11 19:30:41 +00001452</div>
1453
1454<!-- *********************************************************************** -->
1455<div class="doc_section">
1456 <a name="InstructionSelector">Instruction Selector</a>
Misha Brukman8eb67192004-09-06 22:58:13 +00001457</div>
1458<!-- *********************************************************************** -->
1459
1460<div class="doc_text">
1461
Bill Wendling4a2bca82009-04-05 00:41:19 +00001462<p>
1463LLVM uses a <tt>SelectionDAG</tt> to represent LLVM IR instructions, and nodes
1464of the <tt>SelectionDAG</tt> ideally represent native target
1465instructions. During code generation, instruction selection passes are performed
1466to convert non-native DAG instructions into native target-specific
1467instructions. The pass described in <tt>XXXISelDAGToDAG.cpp</tt> is used to
1468match patterns and perform DAG-to-DAG instruction selection. Optionally, a pass
1469may be defined (in <tt>XXXBranchSelector.cpp</tt>) to perform similar DAG-to-DAG
1470operations for branch instructions. Later, the code in
1471<tt>XXXISelLowering.cpp</tt> replaces or removes operations and data types not
1472supported natively (legalizes) in a <tt>SelectionDAG</tt>.
1473</p>
1474
1475<p>
1476TableGen generates code for instruction selection using the following target
1477description input files:
1478</p>
1479
Misha Brukman8eb67192004-09-06 22:58:13 +00001480<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001481<li><tt>XXXInstrInfo.td</tt> &mdash; Contains definitions of instructions in a
1482 target-specific instruction set, generates <tt>XXXGenDAGISel.inc</tt>, which
1483 is included in <tt>XXXISelDAGToDAG.cpp</tt>.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001484
Bill Wendling4a2bca82009-04-05 00:41:19 +00001485<li><tt>XXXCallingConv.td</tt> &mdash; Contains the calling and return value
1486 conventions for the target architecture, and it generates
1487 <tt>XXXGenCallingConv.inc</tt>, which is included in
1488 <tt>XXXISelLowering.cpp</tt>.</li>
Misha Brukman8eb67192004-09-06 22:58:13 +00001489</ul>
1490
Bill Wendling4a2bca82009-04-05 00:41:19 +00001491<p>
1492The implementation of an instruction selection pass must include a header that
1493declares the <tt>FunctionPass</tt> class or a subclass of <tt>FunctionPass</tt>. In
1494<tt>XXXTargetMachine.cpp</tt>, a Pass Manager (PM) should add each instruction
1495selection pass into the queue of passes to run.
1496</p>
Chris Lattner78975382008-11-11 19:30:41 +00001497
Bill Wendling4a2bca82009-04-05 00:41:19 +00001498<p>
1499The LLVM static compiler (<tt>llc</tt>) is an excellent tool for visualizing the
1500contents of DAGs. To display the <tt>SelectionDAG</tt> before or after specific
1501processing phases, use the command line options for <tt>llc</tt>, described
1502at <a href="http://llvm.org/docs/CodeGenerator.html#selectiondag_process">
Chris Lattner78975382008-11-11 19:30:41 +00001503SelectionDAG Instruction Selection Process</a>.
1504</p>
1505
Bill Wendling4a2bca82009-04-05 00:41:19 +00001506<p>
1507To describe instruction selector behavior, you should add patterns for lowering
1508LLVM code into a <tt>SelectionDAG</tt> as the last parameter of the instruction
1509definitions in <tt>XXXInstrInfo.td</tt>. For example, in
1510<tt>SparcInstrInfo.td</tt>, this entry defines a register store operation, and
1511the last parameter describes a pattern with the store DAG operator.
1512</p>
Chris Lattner78975382008-11-11 19:30:41 +00001513
1514<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001515<pre>
1516def STrr : F3_1&lt; 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
1517 "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]&gt;;
Chris Lattner78975382008-11-11 19:30:41 +00001518</pre>
1519</div>
1520
Bill Wendling4a2bca82009-04-05 00:41:19 +00001521<p>
1522<tt>ADDRrr</tt> is a memory mode that is also defined in
1523<tt>SparcInstrInfo.td</tt>:
1524</p>
Chris Lattner78975382008-11-11 19:30:41 +00001525
1526<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001527<pre>
1528def ADDRrr : ComplexPattern&lt;i32, 2, "SelectADDRrr", [], []&gt;;
Chris Lattner78975382008-11-11 19:30:41 +00001529</pre>
1530</div>
1531
Bill Wendling4a2bca82009-04-05 00:41:19 +00001532<p>
1533The definition of <tt>ADDRrr</tt> refers to <tt>SelectADDRrr</tt>, which is a
1534function defined in an implementation of the Instructor Selector (such
1535as <tt>SparcISelDAGToDAG.cpp</tt>).
1536</p>
Chris Lattner78975382008-11-11 19:30:41 +00001537
Bill Wendling4a2bca82009-04-05 00:41:19 +00001538<p>
1539In <tt>lib/Target/TargetSelectionDAG.td</tt>, the DAG operator for store is
1540defined below:
1541</p>
Chris Lattner78975382008-11-11 19:30:41 +00001542
1543<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001544<pre>
1545def store : PatFrag&lt;(ops node:$val, node:$ptr),
Chris Lattner78975382008-11-11 19:30:41 +00001546 (st node:$val, node:$ptr), [{
1547 if (StoreSDNode *ST = dyn_cast&lt;StoreSDNode&gt;(N))
1548 return !ST-&gt;isTruncatingStore() &amp;&amp;
1549 ST-&gt;getAddressingMode() == ISD::UNINDEXED;
1550 return false;
1551}]&gt;;
1552</pre>
1553</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001554
1555<p>
1556<tt>XXXInstrInfo.td</tt> also generates (in <tt>XXXGenDAGISel.inc</tt>) the
1557<tt>SelectCode</tt> method that is used to call the appropriate processing
1558method for an instruction. In this example, <tt>SelectCode</tt>
1559calls <tt>Select_ISD_STORE</tt> for the <tt>ISD::STORE</tt> opcode.
1560</p>
Chris Lattner78975382008-11-11 19:30:41 +00001561
1562<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001563<pre>
1564SDNode *SelectCode(SDValue N) {
Chris Lattner78975382008-11-11 19:30:41 +00001565 ...
Dan Gohman50ef90d2009-01-28 21:36:46 +00001566 MVT::ValueType NVT = N.getNode()-&gt;getValueType(0);
Chris Lattner78975382008-11-11 19:30:41 +00001567 switch (N.getOpcode()) {
1568 case ISD::STORE: {
1569 switch (NVT) {
1570 default:
1571 return Select_ISD_STORE(N);
1572 break;
1573 }
1574 break;
1575 }
1576 ...
1577</pre>
1578</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001579
1580<p>
1581The pattern for <tt>STrr</tt> is matched, so elsewhere in
1582<tt>XXXGenDAGISel.inc</tt>, code for <tt>STrr</tt> is created for
1583<tt>Select_ISD_STORE</tt>. The <tt>Emit_22</tt> method is also generated
1584in <tt>XXXGenDAGISel.inc</tt> to complete the processing of this
1585instruction.
1586</p>
Chris Lattner78975382008-11-11 19:30:41 +00001587
1588<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001589<pre>
1590SDNode *Select_ISD_STORE(const SDValue &amp;N) {
Dan Gohman50ef90d2009-01-28 21:36:46 +00001591 SDValue Chain = N.getOperand(0);
1592 if (Predicate_store(N.getNode())) {
1593 SDValue N1 = N.getOperand(1);
1594 SDValue N2 = N.getOperand(2);
1595 SDValue CPTmp0;
1596 SDValue CPTmp1;
Bill Wendling4a2bca82009-04-05 00:41:19 +00001597
Chris Lattner78975382008-11-11 19:30:41 +00001598 // Pattern: (st:void IntRegs:i32:$src,
1599 // ADDRrr:i32:$addr)&lt;&lt;P:Predicate_store&gt;&gt;
1600 // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
1601 // Pattern complexity = 13 cost = 1 size = 0
1602 if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &amp;&amp;
Dan Gohman50ef90d2009-01-28 21:36:46 +00001603 N1.getNode()-&gt;getValueType(0) == MVT::i32 &amp;&amp;
1604 N2.getNode()-&gt;getValueType(0) == MVT::i32) {
Chris Lattner78975382008-11-11 19:30:41 +00001605 return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
1606 }
1607...
1608</pre>
1609</div>
1610
Bill Wendling4a2bca82009-04-05 00:41:19 +00001611</div>
1612
Chris Lattner78975382008-11-11 19:30:41 +00001613<!-- ======================================================================= -->
1614<div class="doc_subsection">
1615 <a name="LegalizePhase">The SelectionDAG Legalize Phase</a>
1616</div>
Chris Lattner78975382008-11-11 19:30:41 +00001617
Bill Wendling4a2bca82009-04-05 00:41:19 +00001618<div class="doc_text">
1619
1620<p>
1621The Legalize phase converts a DAG to use types and operations that are natively
1622supported by the target. For natively unsupported types and operations, you need
1623to add code to the target-specific XXXTargetLowering implementation to convert
1624unsupported types and operations to supported ones.
1625</p>
1626
1627<p>
1628In the constructor for the <tt>XXXTargetLowering</tt> class, first use the
1629<tt>addRegisterClass</tt> method to specify which types are supports and which
1630register classes are associated with them. The code for the register classes are
1631generated by TableGen from <tt>XXXRegisterInfo.td</tt> and placed
1632in <tt>XXXGenRegisterInfo.h.inc</tt>. For example, the implementation of the
1633constructor for the SparcTargetLowering class (in
1634<tt>SparcISelLowering.cpp</tt>) starts with the following code:
1635</p>
Chris Lattner78975382008-11-11 19:30:41 +00001636
1637<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001638<pre>
1639addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
Chris Lattner78975382008-11-11 19:30:41 +00001640addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
1641addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
1642</pre>
1643</div>
1644
Bill Wendling4a2bca82009-04-05 00:41:19 +00001645<p>
1646You should examine the node types in the <tt>ISD</tt> namespace
1647(<tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>) and determine which
1648operations the target natively supports. For operations that do <b>not</b> have
1649native support, add a callback to the constructor for the XXXTargetLowering
1650class, so the instruction selection process knows what to do. The TargetLowering
1651class callback methods (declared in <tt>llvm/Target/TargetLowering.h</tt>) are:
1652</p>
1653
Chris Lattner78975382008-11-11 19:30:41 +00001654<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001655<li><tt>setOperationAction</tt> &mdash; General operation.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001656
Bill Wendling4a2bca82009-04-05 00:41:19 +00001657<li><tt>setLoadExtAction</tt> &mdash; Load with extension.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001658
Bill Wendling4a2bca82009-04-05 00:41:19 +00001659<li><tt>setTruncStoreAction</tt> &mdash; Truncating store.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001660
Bill Wendling4a2bca82009-04-05 00:41:19 +00001661<li><tt>setIndexedLoadAction</tt> &mdash; Indexed load.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001662
Bill Wendling4a2bca82009-04-05 00:41:19 +00001663<li><tt>setIndexedStoreAction</tt> &mdash; Indexed store.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001664
Bill Wendling4a2bca82009-04-05 00:41:19 +00001665<li><tt>setConvertAction</tt> &mdash; Type conversion.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001666
Bill Wendling4a2bca82009-04-05 00:41:19 +00001667<li><tt>setCondCodeAction</tt> &mdash; Support for a given condition code.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001668</ul>
1669
Bill Wendling4a2bca82009-04-05 00:41:19 +00001670<p>
1671Note: on older releases, <tt>setLoadXAction</tt> is used instead
1672of <tt>setLoadExtAction</tt>. Also, on older releases,
1673<tt>setCondCodeAction</tt> may not be supported. Examine your release
1674to see what methods are specifically supported.
1675</p>
Chris Lattner78975382008-11-11 19:30:41 +00001676
Bill Wendling4a2bca82009-04-05 00:41:19 +00001677<p>
1678These callbacks are used to determine that an operation does or does not work
1679with a specified type (or types). And in all cases, the third parameter is
1680a <tt>LegalAction</tt> type enum value: <tt>Promote</tt>, <tt>Expand</tt>,
Chris Lattner78975382008-11-11 19:30:41 +00001681<tt>Custom</tt>, or <tt>Legal</tt>. <tt>SparcISelLowering.cpp</tt>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001682contains examples of all four <tt>LegalAction</tt> values.
1683</p>
1684
Chris Lattner78975382008-11-11 19:30:41 +00001685</div>
1686
1687<!-- _______________________________________________________________________ -->
1688<div class="doc_subsubsection">
1689 <a name="promote">Promote</a>
1690</div>
1691
1692<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001693
1694<p>
1695For an operation without native support for a given type, the specified type may
1696be promoted to a larger type that is supported. For example, SPARC does not
1697support a sign-extending load for Boolean values (<tt>i1</tt> type), so
1698in <tt>SparcISelLowering.cpp</tt> the third parameter below, <tt>Promote</tt>,
1699changes <tt>i1</tt> type values to a large type before loading.
1700</p>
Chris Lattner78975382008-11-11 19:30:41 +00001701
1702<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001703<pre>
1704setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
Chris Lattner78975382008-11-11 19:30:41 +00001705</pre>
1706</div>
1707
Bill Wendling4a2bca82009-04-05 00:41:19 +00001708</div>
1709
Chris Lattner78975382008-11-11 19:30:41 +00001710<!-- _______________________________________________________________________ -->
1711<div class="doc_subsubsection">
1712 <a name="expand">Expand</a>
1713</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001714
Chris Lattner78975382008-11-11 19:30:41 +00001715<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001716
1717<p>
1718For a type without native support, a value may need to be broken down further,
1719rather than promoted. For an operation without native support, a combination of
1720other operations may be used to similar effect. In SPARC, the floating-point
1721sine and cosine trig operations are supported by expansion to other operations,
1722as indicated by the third parameter, <tt>Expand</tt>, to
1723<tt>setOperationAction</tt>:
1724</p>
Chris Lattner78975382008-11-11 19:30:41 +00001725
1726<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001727<pre>
1728setOperationAction(ISD::FSIN, MVT::f32, Expand);
Chris Lattner78975382008-11-11 19:30:41 +00001729setOperationAction(ISD::FCOS, MVT::f32, Expand);
1730</pre>
1731</div>
1732
Bill Wendling4a2bca82009-04-05 00:41:19 +00001733</div>
1734
Chris Lattner78975382008-11-11 19:30:41 +00001735<!-- _______________________________________________________________________ -->
1736<div class="doc_subsubsection">
1737 <a name="custom">Custom</a>
1738</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001739
Chris Lattner78975382008-11-11 19:30:41 +00001740<div class="doc_text">
Chris Lattner78975382008-11-11 19:30:41 +00001741
Bill Wendling4a2bca82009-04-05 00:41:19 +00001742<p>
1743For some operations, simple type promotion or operation expansion may be
1744insufficient. In some cases, a special intrinsic function must be implemented.
1745</p>
Chris Lattner78975382008-11-11 19:30:41 +00001746
Bill Wendling4a2bca82009-04-05 00:41:19 +00001747<p>
1748For example, a constant value may require special treatment, or an operation may
1749require spilling and restoring registers in the stack and working with register
1750allocators.
1751</p>
1752
1753<p>
1754As seen in <tt>SparcISelLowering.cpp</tt> code below, to perform a type
Chris Lattner78975382008-11-11 19:30:41 +00001755conversion from a floating point value to a signed integer, first the
Bill Wendling4a2bca82009-04-05 00:41:19 +00001756<tt>setOperationAction</tt> should be called with <tt>Custom</tt> as the third
1757parameter:
1758</p>
Chris Lattner78975382008-11-11 19:30:41 +00001759
1760<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001761<pre>
1762setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
Chris Lattner78975382008-11-11 19:30:41 +00001763</pre>
1764</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001765
1766<p>
1767In the <tt>LowerOperation</tt> method, for each <tt>Custom</tt> operation, a
1768case statement should be added to indicate what function to call. In the
1769following code, an <tt>FP_TO_SINT</tt> opcode will call
1770the <tt>LowerFP_TO_SINT</tt> method:
1771</p>
Chris Lattner78975382008-11-11 19:30:41 +00001772
1773<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001774<pre>
1775SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &amp;DAG) {
Chris Lattner78975382008-11-11 19:30:41 +00001776 switch (Op.getOpcode()) {
1777 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1778 ...
1779 }
1780}
1781</pre>
Chris Lattner78975382008-11-11 19:30:41 +00001782</div>
1783
Bill Wendling4a2bca82009-04-05 00:41:19 +00001784<p>
1785Finally, the <tt>LowerFP_TO_SINT</tt> method is implemented, using an FP
1786register to convert the floating-point value to an integer.
1787</p>
1788
Chris Lattner78975382008-11-11 19:30:41 +00001789<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001790<pre>
1791static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &amp;DAG) {
1792 assert(Op.getValueType() == MVT::i32);
Chris Lattner78975382008-11-11 19:30:41 +00001793 Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
1794 return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
1795}
1796</pre>
1797</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001798
1799</div>
1800
Chris Lattner78975382008-11-11 19:30:41 +00001801<!-- _______________________________________________________________________ -->
1802<div class="doc_subsubsection">
1803 <a name="legal">Legal</a>
1804</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001805
Chris Lattner78975382008-11-11 19:30:41 +00001806<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001807
1808<p>
1809The <tt>Legal</tt> LegalizeAction enum value simply indicates that an
1810operation <b>is</b> natively supported. <tt>Legal</tt> represents the default
1811condition, so it is rarely used. In <tt>SparcISelLowering.cpp</tt>, the action
1812for <tt>CTPOP</tt> (an operation to count the bits set in an integer) is
1813natively supported only for SPARC v9. The following code enables
1814the <tt>Expand</tt> conversion technique for non-v9 SPARC implementations.
1815</p>
Chris Lattner78975382008-11-11 19:30:41 +00001816
1817<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001818<pre>
1819setOperationAction(ISD::CTPOP, MVT::i32, Expand);
Chris Lattner78975382008-11-11 19:30:41 +00001820...
1821if (TM.getSubtarget&lt;SparcSubtarget&gt;().isV9())
1822 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
1823 case ISD::SETULT: return SPCC::ICC_CS;
1824 case ISD::SETULE: return SPCC::ICC_LEU;
1825 case ISD::SETUGT: return SPCC::ICC_GU;
1826 case ISD::SETUGE: return SPCC::ICC_CC;
1827 }
1828}
1829</pre>
1830</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001831
1832</div>
1833
Chris Lattner78975382008-11-11 19:30:41 +00001834<!-- ======================================================================= -->
1835<div class="doc_subsection">
1836 <a name="callingConventions">Calling Conventions</a>
1837</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001838
Chris Lattner78975382008-11-11 19:30:41 +00001839<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001840
1841<p>
1842To support target-specific calling conventions, <tt>XXXGenCallingConv.td</tt>
Chris Lattner78975382008-11-11 19:30:41 +00001843uses interfaces (such as CCIfType and CCAssignToReg) that are defined in
Bill Wendling4a2bca82009-04-05 00:41:19 +00001844<tt>lib/Target/TargetCallingConv.td</tt>. TableGen can take the target
1845descriptor file <tt>XXXGenCallingConv.td</tt> and generate the header
1846file <tt>XXXGenCallingConv.inc</tt>, which is typically included
1847in <tt>XXXISelLowering.cpp</tt>. You can use the interfaces in
1848<tt>TargetCallingConv.td</tt> to specify:
1849</p>
1850
Chris Lattner78975382008-11-11 19:30:41 +00001851<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001852<li>The order of parameter allocation.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001853
Bill Wendling4a2bca82009-04-05 00:41:19 +00001854<li>Where parameters and return values are placed (that is, on the stack or in
1855 registers).</li>
Chris Lattner78975382008-11-11 19:30:41 +00001856
Bill Wendling4a2bca82009-04-05 00:41:19 +00001857<li>Which registers may be used.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001858
Bill Wendling4a2bca82009-04-05 00:41:19 +00001859<li>Whether the caller or callee unwinds the stack.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001860</ul>
1861
Bill Wendling4a2bca82009-04-05 00:41:19 +00001862<p>
1863The following example demonstrates the use of the <tt>CCIfType</tt> and
1864<tt>CCAssignToReg</tt> interfaces. If the <tt>CCIfType</tt> predicate is true
1865(that is, if the current argument is of type <tt>f32</tt> or <tt>f64</tt>), then
1866the action is performed. In this case, the <tt>CCAssignToReg</tt> action assigns
1867the argument value to the first available register: either <tt>R0</tt>
1868or <tt>R1</tt>.
1869</p>
Chris Lattner78975382008-11-11 19:30:41 +00001870
1871<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001872<pre>
1873CCIfType&lt;[f32,f64], CCAssignToReg&lt;[R0, R1]&gt;&gt;
1874</pre>
1875</div>
1876
1877<p>
1878<tt>SparcCallingConv.td</tt> contains definitions for a target-specific
1879return-value calling convention (RetCC_Sparc32) and a basic 32-bit C calling
1880convention (<tt>CC_Sparc32</tt>). The definition of <tt>RetCC_Sparc32</tt>
1881(shown below) indicates which registers are used for specified scalar return
1882types. A single-precision float is returned to register <tt>F0</tt>, and a
1883double-precision float goes to register <tt>D0</tt>. A 32-bit integer is
1884returned in register <tt>I0</tt> or <tt>I1</tt>.
1885</p>
1886
1887<div class="doc_code">
1888<pre>
1889def RetCC_Sparc32 : CallingConv&lt;[
Chris Lattner78975382008-11-11 19:30:41 +00001890 CCIfType&lt;[i32], CCAssignToReg&lt;[I0, I1]&gt;&gt;,
1891 CCIfType&lt;[f32], CCAssignToReg&lt;[F0]&gt;&gt;,
1892 CCIfType&lt;[f64], CCAssignToReg&lt;[D0]&gt;&gt;
1893]&gt;;
1894</pre>
1895</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001896
1897<p>
1898The definition of <tt>CC_Sparc32</tt> in <tt>SparcCallingConv.td</tt> introduces
1899<tt>CCAssignToStack</tt>, which assigns the value to a stack slot with the
1900specified size and alignment. In the example below, the first parameter, 4,
1901indicates the size of the slot, and the second parameter, also 4, indicates the
1902stack alignment along 4-byte units. (Special cases: if size is zero, then the
1903ABI size is used; if alignment is zero, then the ABI alignment is used.)
1904</p>
Chris Lattner78975382008-11-11 19:30:41 +00001905
1906<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001907<pre>
1908def CC_Sparc32 : CallingConv&lt;[
Chris Lattner78975382008-11-11 19:30:41 +00001909 // All arguments get passed in integer registers if there is space.
1910 CCIfType&lt;[i32, f32, f64], CCAssignToReg&lt;[I0, I1, I2, I3, I4, I5]&gt;&gt;,
1911 CCAssignToStack&lt;4, 4&gt;
1912]&gt;;
1913</pre>
1914</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001915
1916<p>
1917<tt>CCDelegateTo</tt> is another commonly used interface, which tries to find a
1918specified sub-calling convention, and, if a match is found, it is invoked. In
1919the following example (in <tt>X86CallingConv.td</tt>), the definition of
1920<tt>RetCC_X86_32_C</tt> ends with <tt>CCDelegateTo</tt>. After the current value
1921is assigned to the register <tt>ST0</tt> or <tt>ST1</tt>,
1922the <tt>RetCC_X86Common</tt> is invoked.
1923</p>
Chris Lattner78975382008-11-11 19:30:41 +00001924
1925<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001926<pre>
1927def RetCC_X86_32_C : CallingConv&lt;[
Chris Lattner78975382008-11-11 19:30:41 +00001928 CCIfType&lt;[f32], CCAssignToReg&lt;[ST0, ST1]&gt;&gt;,
1929 CCIfType&lt;[f64], CCAssignToReg&lt;[ST0, ST1]&gt;&gt;,
1930 CCDelegateTo&lt;RetCC_X86Common&gt;
1931]&gt;;
1932</pre>
1933</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001934
1935<p>
1936<tt>CCIfCC</tt> is an interface that attempts to match the given name to the
1937current calling convention. If the name identifies the current calling
Chris Lattner78975382008-11-11 19:30:41 +00001938convention, then a specified action is invoked. In the following example (in
Bill Wendling4a2bca82009-04-05 00:41:19 +00001939<tt>X86CallingConv.td</tt>), if the <tt>Fast</tt> calling convention is in use,
1940then <tt>RetCC_X86_32_Fast</tt> is invoked. If the <tt>SSECall</tt> calling
1941convention is in use, then <tt>RetCC_X86_32_SSE</tt> is invoked.
1942</p>
Chris Lattner78975382008-11-11 19:30:41 +00001943
1944<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00001945<pre>
1946def RetCC_X86_32 : CallingConv&lt;[
1947 CCIfCC&lt;"CallingConv::Fast", CCDelegateTo&lt;RetCC_X86_32_Fast&gt;&gt;,
1948 CCIfCC&lt;"CallingConv::X86_SSECall", CCDelegateTo&lt;RetCC_X86_32_SSE&gt;&gt;,
Chris Lattner78975382008-11-11 19:30:41 +00001949 CCDelegateTo&lt;RetCC_X86_32_C&gt;
1950]&gt;;
1951</pre>
1952</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001953
Chris Lattner78975382008-11-11 19:30:41 +00001954<p>Other calling convention interfaces include:</p>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001955
Chris Lattner78975382008-11-11 19:30:41 +00001956<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001957<li><tt>CCIf &lt;predicate, action&gt;</tt> &mdash; If the predicate matches,
1958 apply the action.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001959
Bill Wendling4a2bca82009-04-05 00:41:19 +00001960<li><tt>CCIfInReg &lt;action&gt;</tt> &mdash; If the argument is marked with the
1961 '<tt>inreg</tt>' attribute, then apply the action.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001962
Bill Wendling4a2bca82009-04-05 00:41:19 +00001963<li><tt>CCIfNest &lt;action&gt;</tt> &mdash; Inf the argument is marked with the
1964 '<tt>nest</tt>' attribute, then apply the action.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001965
Bill Wendling4a2bca82009-04-05 00:41:19 +00001966<li><tt>CCIfNotVarArg &lt;action&gt;</tt> &mdash; If the current function does
1967 not take a variable number of arguments, apply the action.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001968
Bill Wendling4a2bca82009-04-05 00:41:19 +00001969<li><tt>CCAssignToRegWithShadow &lt;registerList, shadowList&gt;</tt> &mdash;
1970 similar to <tt>CCAssignToReg</tt>, but with a shadow list of registers.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001971
Bill Wendling4a2bca82009-04-05 00:41:19 +00001972<li><tt>CCPassByVal &lt;size, align&gt;</tt> &mdash; Assign value to a stack
1973 slot with the minimum specified size and alignment.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001974
Bill Wendling4a2bca82009-04-05 00:41:19 +00001975<li><tt>CCPromoteToType &lt;type&gt;</tt> &mdash; Promote the current value to
1976 the specified type.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001977
Bill Wendling4a2bca82009-04-05 00:41:19 +00001978<li><tt>CallingConv &lt;[actions]&gt;</tt> &mdash; Define each calling
1979 convention that is supported.</li>
Chris Lattner78975382008-11-11 19:30:41 +00001980</ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +00001981
Chris Lattner78975382008-11-11 19:30:41 +00001982</div>
1983
1984<!-- *********************************************************************** -->
1985<div class="doc_section">
1986 <a name="assemblyPrinter">Assembly Printer</a>
1987</div>
1988<!-- *********************************************************************** -->
1989
1990<div class="doc_text">
Chris Lattner78975382008-11-11 19:30:41 +00001991
Bill Wendling4a2bca82009-04-05 00:41:19 +00001992<p>
1993During the code emission stage, the code generator may utilize an LLVM pass to
1994produce assembly output. To do this, you want to implement the code for a
1995printer that converts LLVM IR to a GAS-format assembly language for your target
1996machine, using the following steps:
1997</p>
1998
1999<ul>
2000<li>Define all the assembly strings for your target, adding them to the
2001 instructions defined in the <tt>XXXInstrInfo.td</tt> file.
2002 (See <a href="#InstructionSet">Instruction Set</a>.) TableGen will produce
2003 an output file (<tt>XXXGenAsmWriter.inc</tt>) with an implementation of
2004 the <tt>printInstruction</tt> method for the XXXAsmPrinter class.</li>
2005
2006<li>Write <tt>XXXTargetAsmInfo.h</tt>, which contains the bare-bones declaration
2007 of the <tt>XXXTargetAsmInfo</tt> class (a subclass
2008 of <tt>TargetAsmInfo</tt>).</li>
Chris Lattner78975382008-11-11 19:30:41 +00002009
2010<li>Write <tt>XXXTargetAsmInfo.cpp</tt>, which contains target-specific values
Bill Wendling4a2bca82009-04-05 00:41:19 +00002011 for <tt>TargetAsmInfo</tt> properties and sometimes new implementations for
2012 methods.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002013
Bill Wendling4a2bca82009-04-05 00:41:19 +00002014<li>Write <tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt>
2015 class that performs the LLVM-to-assembly conversion.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002016</ul>
2017
Bill Wendling4a2bca82009-04-05 00:41:19 +00002018<p>
2019The code in <tt>XXXTargetAsmInfo.h</tt> is usually a trivial declaration of the
2020<tt>XXXTargetAsmInfo</tt> class for use in <tt>XXXTargetAsmInfo.cpp</tt>.
2021Similarly, <tt>XXXTargetAsmInfo.cpp</tt> usually has a few declarations of
2022<tt>XXXTargetAsmInfo</tt> replacement values that override the default values
2023in <tt>TargetAsmInfo.cpp</tt>. For example in <tt>SparcTargetAsmInfo.cpp</tt>:
2024</p>
Chris Lattner78975382008-11-11 19:30:41 +00002025
2026<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002027<pre>
2028SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &amp;TM) {
2029 Data16bitsDirective = "\t.half\t";
2030 Data32bitsDirective = "\t.word\t";
Chris Lattner78975382008-11-11 19:30:41 +00002031 Data64bitsDirective = 0; // .xword is only supported by V9.
Bill Wendling4a2bca82009-04-05 00:41:19 +00002032 ZeroDirective = "\t.skip\t";
2033 CommentString = "!";
2034 ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
Chris Lattner78975382008-11-11 19:30:41 +00002035}
2036</pre>
2037</div>
Chris Lattner78975382008-11-11 19:30:41 +00002038
Bill Wendling4a2bca82009-04-05 00:41:19 +00002039<p>
2040The X86 assembly printer implementation (<tt>X86TargetAsmInfo</tt>) is an
2041example where the target specific <tt>TargetAsmInfo</tt> class uses overridden
2042methods: <tt>ExpandInlineAsm</tt> and <tt>PreferredEHDataFormat</tt>.
2043</p>
2044
2045<p>
2046A target-specific implementation of AsmPrinter is written in
2047<tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt> class that
2048converts the LLVM to printable assembly. The implementation must include the
2049following headers that have declarations for the <tt>AsmPrinter</tt> and
2050<tt>MachineFunctionPass</tt> classes. The <tt>MachineFunctionPass</tt> is a
2051subclass of <tt>FunctionPass</tt>.
2052</p>
Chris Lattner78975382008-11-11 19:30:41 +00002053
2054<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002055<pre>
2056#include "llvm/CodeGen/AsmPrinter.h"
2057#include "llvm/CodeGen/MachineFunctionPass.h"
Chris Lattner78975382008-11-11 19:30:41 +00002058</pre>
2059</div>
2060
Bill Wendling4a2bca82009-04-05 00:41:19 +00002061<p>
2062As a <tt>FunctionPass</tt>, <tt>AsmPrinter</tt> first
2063calls <tt>doInitialization</tt> to set up the <tt>AsmPrinter</tt>. In
2064<tt>SparcAsmPrinter</tt>, a <tt>Mangler</tt> object is instantiated to process
2065variable names.
2066</p>
Chris Lattner78975382008-11-11 19:30:41 +00002067
Bill Wendling4a2bca82009-04-05 00:41:19 +00002068<p>
2069In <tt>XXXAsmPrinter.cpp</tt>, the <tt>runOnMachineFunction</tt> method
2070(declared in <tt>MachineFunctionPass</tt>) must be implemented
2071for <tt>XXXAsmPrinter</tt>. In <tt>MachineFunctionPass</tt>,
2072the <tt>runOnFunction</tt> method invokes <tt>runOnMachineFunction</tt>.
2073Target-specific implementations of <tt>runOnMachineFunction</tt> differ, but
2074generally do the following to process each machine function:
2075</p>
2076
Chris Lattner78975382008-11-11 19:30:41 +00002077<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +00002078<li>Call <tt>SetupMachineFunction</tt> to perform initialization.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002079
Bill Wendling4a2bca82009-04-05 00:41:19 +00002080<li>Call <tt>EmitConstantPool</tt> to print out (to the output stream) constants
2081 which have been spilled to memory.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002082
Bill Wendling4a2bca82009-04-05 00:41:19 +00002083<li>Call <tt>EmitJumpTableInfo</tt> to print out jump tables used by the current
2084 function.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002085
Bill Wendling4a2bca82009-04-05 00:41:19 +00002086<li>Print out the label for the current function.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002087
Bill Wendling4a2bca82009-04-05 00:41:19 +00002088<li>Print out the code for the function, including basic block labels and the
2089 assembly for the instruction (using <tt>printInstruction</tt>)</li>
Chris Lattner78975382008-11-11 19:30:41 +00002090</ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +00002091
2092<p>
2093The <tt>XXXAsmPrinter</tt> implementation must also include the code generated
2094by TableGen that is output in the <tt>XXXGenAsmWriter.inc</tt> file. The code
2095in <tt>XXXGenAsmWriter.inc</tt> contains an implementation of the
2096<tt>printInstruction</tt> method that may call these methods:
2097</p>
2098
Chris Lattner78975382008-11-11 19:30:41 +00002099<ul>
2100<li><tt>printOperand</tt></li>
2101
2102<li><tt>printMemOperand</tt></li>
2103
2104<li><tt>printCCOperand (for conditional statements)</tt></li>
2105
2106<li><tt>printDataDirective</tt></li>
2107
2108<li><tt>printDeclare</tt></li>
2109
2110<li><tt>printImplicitDef</tt></li>
2111
2112<li><tt>printInlineAsm</tt></li>
2113
2114<li><tt>printLabel</tt></li>
2115
2116<li><tt>printPICJumpTableEntry</tt></li>
2117
2118<li><tt>printPICJumpTableSetLabel</tt></li>
2119</ul>
2120
Bill Wendling4a2bca82009-04-05 00:41:19 +00002121<p>
2122The implementations of <tt>printDeclare</tt>, <tt>printImplicitDef</tt>,
2123<tt>printInlineAsm</tt>, and <tt>printLabel</tt> in <tt>AsmPrinter.cpp</tt> are
2124generally adequate for printing assembly and do not need to be
2125overridden. (<tt>printBasicBlockLabel</tt> is another method that is implemented
2126in <tt>AsmPrinter.cpp</tt> that may be directly used in an implementation of
2127<tt>XXXAsmPrinter</tt>.)
2128</p>
Chris Lattner78975382008-11-11 19:30:41 +00002129
Bill Wendling4a2bca82009-04-05 00:41:19 +00002130<p>
2131The <tt>printOperand</tt> method is implemented with a long switch/case
Chris Lattner78975382008-11-11 19:30:41 +00002132statement for the type of operand: register, immediate, basic block, external
2133symbol, global address, constant pool index, or jump table index. For an
Bill Wendling4a2bca82009-04-05 00:41:19 +00002134instruction with a memory address operand, the <tt>printMemOperand</tt> method
2135should be implemented to generate the proper output. Similarly,
2136<tt>printCCOperand</tt> should be used to print a conditional operand.
2137</p>
Chris Lattner78975382008-11-11 19:30:41 +00002138
Bill Wendling4a2bca82009-04-05 00:41:19 +00002139<p><tt>doFinalization</tt> should be overridden in <tt>XXXAsmPrinter</tt>, and
2140it should be called to shut down the assembly printer. During
2141<tt>doFinalization</tt>, global variables and constants are printed to
2142output.
2143</p>
2144
Chris Lattner78975382008-11-11 19:30:41 +00002145</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00002146
Chris Lattner78975382008-11-11 19:30:41 +00002147<!-- *********************************************************************** -->
2148<div class="doc_section">
2149 <a name="subtargetSupport">Subtarget Support</a>
2150</div>
2151<!-- *********************************************************************** -->
2152
2153<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002154
2155<p>
2156Subtarget support is used to inform the code generation process of instruction
2157set variations for a given chip set. For example, the LLVM SPARC implementation
2158provided covers three major versions of the SPARC microprocessor architecture:
2159Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a 64-bit
2160architecture), and the UltraSPARC architecture. V8 has 16 double-precision
2161floating-point registers that are also usable as either 32 single-precision or 8
2162quad-precision registers. V8 is also purely big-endian. V9 has 32
2163double-precision floating-point registers that are also usable as 16
Chris Lattner78975382008-11-11 19:30:41 +00002164quad-precision registers, but cannot be used as single-precision registers. The
2165UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
Bill Wendling4a2bca82009-04-05 00:41:19 +00002166extensions.
2167</p>
Chris Lattner78975382008-11-11 19:30:41 +00002168
Bill Wendling4a2bca82009-04-05 00:41:19 +00002169<p>
2170If subtarget support is needed, you should implement a target-specific
2171XXXSubtarget class for your architecture. This class should process the
2172command-line options <tt>-mcpu=</tt> and <tt>-mattr=</tt>.
2173</p>
Chris Lattner78975382008-11-11 19:30:41 +00002174
Bill Wendling4a2bca82009-04-05 00:41:19 +00002175<p>
2176TableGen uses definitions in the <tt>Target.td</tt> and <tt>Sparc.td</tt> files
2177to generate code in <tt>SparcGenSubtarget.inc</tt>. In <tt>Target.td</tt>, shown
2178below, the <tt>SubtargetFeature</tt> interface is defined. The first 4 string
2179parameters of the <tt>SubtargetFeature</tt> interface are a feature name, an
2180attribute set by the feature, the value of the attribute, and a description of
2181the feature. (The fifth parameter is a list of features whose presence is
2182implied, and its default value is an empty array.)
2183</p>
Chris Lattner78975382008-11-11 19:30:41 +00002184
2185<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002186<pre>
2187class SubtargetFeature&lt;string n, string a, string v, string d,
Chris Lattner78975382008-11-11 19:30:41 +00002188 list&lt;SubtargetFeature&gt; i = []&gt; {
2189 string Name = n;
2190 string Attribute = a;
2191 string Value = v;
2192 string Desc = d;
2193 list&lt;SubtargetFeature&gt; Implies = i;
2194}
2195</pre>
2196</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00002197
2198<p>
2199In the <tt>Sparc.td</tt> file, the SubtargetFeature is used to define the
2200following features.
2201</p>
Chris Lattner78975382008-11-11 19:30:41 +00002202
2203<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002204<pre>
2205def FeatureV9 : SubtargetFeature&lt;"v9", "IsV9", "true",
2206 "Enable SPARC-V9 instructions"&gt;;
2207def FeatureV8Deprecated : SubtargetFeature&lt;"deprecated-v8",
2208 "V8DeprecatedInsts", "true",
2209 "Enable deprecated V8 instructions in V9 mode"&gt;;
2210def FeatureVIS : SubtargetFeature&lt;"vis", "IsVIS", "true",
2211 "Enable UltraSPARC Visual Instruction Set extensions"&gt;;
Chris Lattner78975382008-11-11 19:30:41 +00002212</pre>
2213</div>
2214
Bill Wendling4a2bca82009-04-05 00:41:19 +00002215<p>
2216Elsewhere in <tt>Sparc.td</tt>, the Proc class is defined and then is used to
2217define particular SPARC processor subtypes that may have the previously
2218described features.
2219</p>
Chris Lattner78975382008-11-11 19:30:41 +00002220
2221<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002222<pre>
2223class Proc&lt;string Name, list&lt;SubtargetFeature&gt; Features&gt;
2224 : Processor&lt;Name, NoItineraries, Features&gt;;
Chris Lattner78975382008-11-11 19:30:41 +00002225&nbsp;
Bill Wendling4a2bca82009-04-05 00:41:19 +00002226def : Proc&lt;"generic", []&gt;;
2227def : Proc&lt;"v8", []&gt;;
2228def : Proc&lt;"supersparc", []&gt;;
2229def : Proc&lt;"sparclite", []&gt;;
2230def : Proc&lt;"f934", []&gt;;
2231def : Proc&lt;"hypersparc", []&gt;;
2232def : Proc&lt;"sparclite86x", []&gt;;
2233def : Proc&lt;"sparclet", []&gt;;
2234def : Proc&lt;"tsc701", []&gt;;
2235def : Proc&lt;"v9", [FeatureV9]&gt;;
2236def : Proc&lt;"ultrasparc", [FeatureV9, FeatureV8Deprecated]&gt;;
2237def : Proc&lt;"ultrasparc3", [FeatureV9, FeatureV8Deprecated]&gt;;
2238def : Proc&lt;"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]&gt;;
Chris Lattner78975382008-11-11 19:30:41 +00002239</pre>
2240</div>
2241
Bill Wendling4a2bca82009-04-05 00:41:19 +00002242<p>
2243From <tt>Target.td</tt> and <tt>Sparc.td</tt> files, the resulting
Chris Lattner78975382008-11-11 19:30:41 +00002244SparcGenSubtarget.inc specifies enum values to identify the features, arrays of
2245constants to represent the CPU features and CPU subtypes, and the
2246ParseSubtargetFeatures method that parses the features string that sets
Bill Wendling4a2bca82009-04-05 00:41:19 +00002247specified subtarget options. The generated <tt>SparcGenSubtarget.inc</tt> file
2248should be included in the <tt>SparcSubtarget.cpp</tt>. The target-specific
2249implementation of the XXXSubtarget method should follow this pseudocode:
2250</p>
Chris Lattner78975382008-11-11 19:30:41 +00002251
2252<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002253<pre>
2254XXXSubtarget::XXXSubtarget(const Module &amp;M, const std::string &amp;FS) {
Chris Lattner78975382008-11-11 19:30:41 +00002255 // Set the default features
2256 // Determine default and user specified characteristics of the CPU
2257 // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
2258 // Perform any additional operations
2259}
2260</pre>
2261</div>
2262
Bill Wendlinge9e6fd92009-04-05 00:43:04 +00002263</div>
2264
Chris Lattner78975382008-11-11 19:30:41 +00002265<!-- *********************************************************************** -->
2266<div class="doc_section">
2267 <a name="jitSupport">JIT Support</a>
2268</div>
2269<!-- *********************************************************************** -->
2270
2271<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002272
2273<p>
2274The implementation of a target machine optionally includes a Just-In-Time (JIT)
2275code generator that emits machine code and auxiliary structures as binary output
2276that can be written directly to memory. To do this, implement JIT code
2277generation by performing the following steps:
2278</p>
2279
Chris Lattner78975382008-11-11 19:30:41 +00002280<ul>
2281<li>Write an <tt>XXXCodeEmitter.cpp</tt> file that contains a machine function
Bill Wendling4a2bca82009-04-05 00:41:19 +00002282 pass that transforms target-machine instructions into relocatable machine
2283 code.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002284
Bill Wendling4a2bca82009-04-05 00:41:19 +00002285<li>Write an <tt>XXXJITInfo.cpp</tt> file that implements the JIT interfaces for
2286 target-specific code-generation activities, such as emitting machine code
2287 and stubs.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002288
Bill Wendling4a2bca82009-04-05 00:41:19 +00002289<li>Modify <tt>XXXTargetMachine</tt> so that it provides a
2290 <tt>TargetJITInfo</tt> object through its <tt>getJITInfo</tt> method.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002291</ul>
2292
Bill Wendling4a2bca82009-04-05 00:41:19 +00002293<p>
2294There are several different approaches to writing the JIT support code. For
2295instance, TableGen and target descriptor files may be used for creating a JIT
2296code generator, but are not mandatory. For the Alpha and PowerPC target
2297machines, TableGen is used to generate <tt>XXXGenCodeEmitter.inc</tt>, which
Chris Lattner78975382008-11-11 19:30:41 +00002298contains the binary coding of machine instructions and the
Bill Wendling4a2bca82009-04-05 00:41:19 +00002299<tt>getBinaryCodeForInstr</tt> method to access those codes. Other JIT
2300implementations do not.
2301</p>
Chris Lattner78975382008-11-11 19:30:41 +00002302
Bill Wendling4a2bca82009-04-05 00:41:19 +00002303<p>
2304Both <tt>XXXJITInfo.cpp</tt> and <tt>XXXCodeEmitter.cpp</tt> must include the
2305<tt>llvm/CodeGen/MachineCodeEmitter.h</tt> header file that defines the
2306<tt>MachineCodeEmitter</tt> class containing code for several callback functions
2307that write data (in bytes, words, strings, etc.) to the output stream.
2308</p>
2309
Chris Lattner78975382008-11-11 19:30:41 +00002310</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00002311
Chris Lattner78975382008-11-11 19:30:41 +00002312<!-- ======================================================================= -->
2313<div class="doc_subsection">
2314 <a name="mce">Machine Code Emitter</a>
2315</div>
2316
2317<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002318
2319<p>
2320In <tt>XXXCodeEmitter.cpp</tt>, a target-specific of the <tt>Emitter</tt> class
2321is implemented as a function pass (subclass
2322of <tt>MachineFunctionPass</tt>). The target-specific implementation
2323of <tt>runOnMachineFunction</tt> (invoked by
2324<tt>runOnFunction</tt> in <tt>MachineFunctionPass</tt>) iterates through the
2325<tt>MachineBasicBlock</tt> calls <tt>emitInstruction</tt> to process each
2326instruction and emit binary code. <tt>emitInstruction</tt> is largely
2327implemented with case statements on the instruction types defined in
2328<tt>XXXInstrInfo.h</tt>. For example, in <tt>X86CodeEmitter.cpp</tt>,
2329the <tt>emitInstruction</tt> method is built around the following switch/case
2330statements:
2331</p>
Chris Lattner78975382008-11-11 19:30:41 +00002332
2333<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002334<pre>
2335switch (Desc-&gt;TSFlags &amp; X86::FormMask) {
Chris Lattner78975382008-11-11 19:30:41 +00002336case X86II::Pseudo: // for not yet implemented instructions
2337 ... // or pseudo-instructions
2338 break;
2339case X86II::RawFrm: // for instructions with a fixed opcode value
2340 ...
2341 break;
2342case X86II::AddRegFrm: // for instructions that have one register operand
2343 ... // added to their opcode
2344 break;
2345case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
2346 ... // to specify a destination (register)
2347 break;
2348case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
2349 ... // to specify a destination (memory)
2350 break;
2351case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
2352 ... // to specify a source (register)
2353 break;
2354case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
2355 ... // to specify a source (memory)
2356 break;
2357case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on
2358case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and
2359case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field
2360case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data
2361 ...
2362 break;
2363case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on
2364case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and
2365case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field
2366case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data
2367 ...
2368 break;
2369case X86II::MRMInitReg: // for instructions whose source and
2370 ... // destination are the same register
2371 break;
2372}
2373</pre>
2374</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00002375
2376<p>
2377The implementations of these case statements often first emit the opcode and
2378then get the operand(s). Then depending upon the operand, helper methods may be
2379called to process the operand(s). For example, in <tt>X86CodeEmitter.cpp</tt>,
2380for the <tt>X86II::AddRegFrm</tt> case, the first data emitted
2381(by <tt>emitByte</tt>) is the opcode added to the register operand. Then an
2382object representing the machine operand, <tt>MO1</tt>, is extracted. The helper
2383methods such as <tt>isImmediate</tt>,
Chris Lattner78975382008-11-11 19:30:41 +00002384<tt>isGlobalAddress</tt>, <tt>isExternalSymbol</tt>, <tt>isConstantPoolIndex</tt>, and
Bill Wendling4a2bca82009-04-05 00:41:19 +00002385<tt>isJumpTableIndex</tt> determine the operand
2386type. (<tt>X86CodeEmitter.cpp</tt> also has private methods such
2387as <tt>emitConstant</tt>, <tt>emitGlobalAddress</tt>,
Chris Lattner78975382008-11-11 19:30:41 +00002388<tt>emitExternalSymbolAddress</tt>, <tt>emitConstPoolAddress</tt>,
Bill Wendling4a2bca82009-04-05 00:41:19 +00002389and <tt>emitJumpTableAddress</tt> that emit the data into the output stream.)
2390</p>
Chris Lattner78975382008-11-11 19:30:41 +00002391
2392<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002393<pre>
2394case X86II::AddRegFrm:
Chris Lattner78975382008-11-11 19:30:41 +00002395 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
2396
2397 if (CurOp != NumOps) {
2398 const MachineOperand &amp;MO1 = MI.getOperand(CurOp++);
2399 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2400 if (MO1.isImmediate())
2401 emitConstant(MO1.getImm(), Size);
2402 else {
2403 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
2404 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
2405 if (Opcode == X86::MOV64ri)
2406 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
2407 if (MO1.isGlobalAddress()) {
2408 bool NeedStub = isa&lt;Function&gt;(MO1.getGlobal());
2409 bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
2410 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
2411 NeedStub, isLazy);
2412 } else if (MO1.isExternalSymbol())
2413 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
2414 else if (MO1.isConstantPoolIndex())
2415 emitConstPoolAddress(MO1.getIndex(), rt);
2416 else if (MO1.isJumpTableIndex())
2417 emitJumpTableAddress(MO1.getIndex(), rt);
2418 }
2419 }
2420 break;
2421</pre>
2422</div>
Chris Lattner78975382008-11-11 19:30:41 +00002423
Bill Wendling4a2bca82009-04-05 00:41:19 +00002424<p>
2425In the previous example, <tt>XXXCodeEmitter.cpp</tt> uses the
2426variable <tt>rt</tt>, which is a RelocationType enum that may be used to
2427relocate addresses (for example, a global address with a PIC base offset). The
2428<tt>RelocationType</tt> enum for that target is defined in the short
2429target-specific <tt>XXXRelocations.h</tt> file. The <tt>RelocationType</tt> is used by
2430the <tt>relocate</tt> method defined in <tt>XXXJITInfo.cpp</tt> to rewrite
2431addresses for referenced global symbols.
2432</p>
2433
2434<p>
2435For example, <tt>X86Relocations.h</tt> specifies the following relocation types
2436for the X86 addresses. In all four cases, the relocated value is added to the
2437value already in memory. For <tt>reloc_pcrel_word</tt>
2438and <tt>reloc_picrel_word</tt>, there is an additional initial adjustment.
2439</p>
Chris Lattner78975382008-11-11 19:30:41 +00002440
2441<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002442<pre>
2443enum RelocationType {
2444 reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc
2445 reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base
Chris Lattner78975382008-11-11 19:30:41 +00002446 reloc_absolute_word = 2, // absolute relocation; no additional adjustment
2447 reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
2448};
2449</pre>
2450</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00002451
2452</div>
2453
Chris Lattner78975382008-11-11 19:30:41 +00002454<!-- ======================================================================= -->
2455<div class="doc_subsection">
2456 <a name="targetJITInfo">Target JIT Info</a>
2457</div>
Bill Wendling4a2bca82009-04-05 00:41:19 +00002458
Chris Lattner78975382008-11-11 19:30:41 +00002459<div class="doc_text">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002460
2461<p>
2462<tt>XXXJITInfo.cpp</tt> implements the JIT interfaces for target-specific
2463code-generation activities, such as emitting machine code and stubs. At minimum,
2464a target-specific version of <tt>XXXJITInfo</tt> implements the following:
2465</p>
2466
Chris Lattner78975382008-11-11 19:30:41 +00002467<ul>
Bill Wendling4a2bca82009-04-05 00:41:19 +00002468<li><tt>getLazyResolverFunction</tt> &mdash; Initializes the JIT, gives the
2469 target a function that is used for compilation.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002470
Bill Wendling4a2bca82009-04-05 00:41:19 +00002471<li><tt>emitFunctionStub</tt> &mdash; Returns a native function with a specified
2472 address for a callback function.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002473
Bill Wendling4a2bca82009-04-05 00:41:19 +00002474<li><tt>relocate</tt> &mdash; Changes the addresses of referenced globals, based
2475 on relocation types.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002476
Bill Wendling4a2bca82009-04-05 00:41:19 +00002477<li>Callback function that are wrappers to a function stub that is used when the
2478 real target is not initially known.</li>
Chris Lattner78975382008-11-11 19:30:41 +00002479</ul>
2480
Bill Wendling4a2bca82009-04-05 00:41:19 +00002481<p>
2482<tt>getLazyResolverFunction</tt> is generally trivial to implement. It makes the
2483incoming parameter as the global <tt>JITCompilerFunction</tt> and returns the
Chris Lattner78975382008-11-11 19:30:41 +00002484callback function that will be used a function wrapper. For the Alpha target
Bill Wendling4a2bca82009-04-05 00:41:19 +00002485(in <tt>AlphaJITInfo.cpp</tt>), the <tt>getLazyResolverFunction</tt>
2486implementation is simply:
2487</p>
Chris Lattner78975382008-11-11 19:30:41 +00002488
2489<div class="doc_code">
Bill Wendling4a2bca82009-04-05 00:41:19 +00002490<pre>
2491TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
2492 JITCompilerFn F) {
Chris Lattner78975382008-11-11 19:30:41 +00002493 JITCompilerFunction = F;
2494 return AlphaCompilationCallback;
2495}
2496</pre>
2497</div>
Chris Lattner78975382008-11-11 19:30:41 +00002498
Bill Wendling4a2bca82009-04-05 00:41:19 +00002499<p>
2500For the X86 target, the <tt>getLazyResolverFunction</tt> implementation is a
2501little more complication, because it returns a different callback function for
2502processors with SSE instructions and XMM registers.
2503</p>
2504
2505<p>
2506The callback function initially saves and later restores the callee register
2507values, incoming arguments, and frame and return address. The callback function
2508needs low-level access to the registers or stack, so it is typically implemented
2509with assembler.
2510</p>
2511
Misha Brukman8eb67192004-09-06 22:58:13 +00002512</div>
2513
2514<!-- *********************************************************************** -->
2515
2516<hr>
2517<address>
2518 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00002519 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukman8eb67192004-09-06 22:58:13 +00002520 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00002521 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukman8eb67192004-09-06 22:58:13 +00002522
Chris Lattner78975382008-11-11 19:30:41 +00002523 <a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00002524 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a>
Misha Brukman8eb67192004-09-06 22:58:13 +00002525 <br>
2526 Last modified: $Date$
2527</address>
2528
2529</body>
2530</html>