blob: 58ba380053e73fbbba0b9c3f8475ab0e39b5daa0 [file] [log] [blame]
Chris Lattner233f7dc2002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner8a2a3112001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Chris Lattner62b14df2002-09-02 04:59:56 +000011// instructions. This pass does not modify the CFG This pass is where algebraic
12// simplification happens.
Chris Lattner8a2a3112001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner32ed46b2004-05-04 15:19:33 +000015// %Y = add int %X, 1
16// %Z = add int %Y, 1
Chris Lattner8a2a3112001-12-14 16:52:21 +000017// into:
Chris Lattner32ed46b2004-05-04 15:19:33 +000018// %Z = add int %X, 2
Chris Lattner8a2a3112001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner065a6162003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattner2cd91962003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdf17af12003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Chris Lattner2cd91962003-07-23 21:41:57 +000027// 3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All SetCC instructions on boolean values are replaced with logical ops
Chris Lattnere92d2f42003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattnerbac32862004-11-14 19:13:23 +000032// ... etc.
Chris Lattner2cd91962003-07-23 21:41:57 +000033//
Chris Lattner8a2a3112001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner0cea42a2004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattner022103b2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattner35b9e482004-10-12 04:52:52 +000038#include "llvm/IntrinsicInst.h"
Chris Lattnerbd0ef772002-02-26 21:46:54 +000039#include "llvm/Pass.h"
Chris Lattner0864acf2002-11-04 16:18:53 +000040#include "llvm/DerivedTypes.h"
Chris Lattner833b8a42003-06-26 05:06:25 +000041#include "llvm/GlobalVariable.h"
Chris Lattnerbc61e662003-11-02 05:57:39 +000042#include "llvm/Target/TargetData.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Transforms/Utils/Local.h"
Chris Lattner28977af2004-04-05 01:30:19 +000045#include "llvm/Support/CallSite.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000046#include "llvm/Support/Debug.h"
Chris Lattner28977af2004-04-05 01:30:19 +000047#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerdd841ae2002-04-18 17:39:14 +000048#include "llvm/Support/InstVisitor.h"
Chris Lattnerbcd7db52005-08-02 19:16:58 +000049#include "llvm/Support/MathExtras.h"
Chris Lattneracd1f0f2004-07-30 07:50:03 +000050#include "llvm/Support/PatternMatch.h"
Chris Lattnerb3d59702005-07-07 20:40:38 +000051#include "llvm/ADT/DepthFirstIterator.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000052#include "llvm/ADT/Statistic.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000053#include "llvm/ADT/STLExtras.h"
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000054#include <algorithm>
Chris Lattnerdac58ad2006-01-22 23:32:06 +000055#include <iostream>
Chris Lattner67b1e1b2003-12-07 01:24:23 +000056using namespace llvm;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000057using namespace llvm::PatternMatch;
Brian Gaeked0fde302003-11-11 22:41:34 +000058
Chris Lattnerdd841ae2002-04-18 17:39:14 +000059namespace {
Chris Lattnera92f6962002-10-01 22:38:41 +000060 Statistic<> NumCombined ("instcombine", "Number of insts combined");
61 Statistic<> NumConstProp("instcombine", "Number of constant folds");
62 Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");
Chris Lattner9ca96412006-02-08 03:25:32 +000063 Statistic<> NumDeadStore("instcombine", "Number of dead stores eliminated");
Chris Lattnerea1c4542004-12-08 23:43:58 +000064 Statistic<> NumSunkInst ("instcombine", "Number of instructions sunk");
Chris Lattnera92f6962002-10-01 22:38:41 +000065
Chris Lattnerf57b8452002-04-27 06:56:12 +000066 class InstCombiner : public FunctionPass,
Chris Lattnerdd841ae2002-04-18 17:39:14 +000067 public InstVisitor<InstCombiner, Instruction*> {
68 // Worklist of all of the instructions that need to be simplified.
69 std::vector<Instruction*> WorkList;
Chris Lattnerbc61e662003-11-02 05:57:39 +000070 TargetData *TD;
Chris Lattnerdd841ae2002-04-18 17:39:14 +000071
Chris Lattner7bcc0e72004-02-28 05:22:00 +000072 /// AddUsersToWorkList - When an instruction is simplified, add all users of
73 /// the instruction to the work lists because they might get more simplified
74 /// now.
75 ///
Chris Lattner6dce1a72006-02-07 06:56:34 +000076 void AddUsersToWorkList(Value &I) {
Chris Lattner7e708292002-06-25 16:13:24 +000077 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
Chris Lattnerdd841ae2002-04-18 17:39:14 +000078 UI != UE; ++UI)
79 WorkList.push_back(cast<Instruction>(*UI));
80 }
81
Chris Lattner7bcc0e72004-02-28 05:22:00 +000082 /// AddUsesToWorkList - When an instruction is simplified, add operands to
83 /// the work lists because they might get more simplified now.
84 ///
85 void AddUsesToWorkList(Instruction &I) {
86 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
87 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
88 WorkList.push_back(Op);
89 }
90
Chris Lattner62b14df2002-09-02 04:59:56 +000091 // removeFromWorkList - remove all instances of I from the worklist.
92 void removeFromWorkList(Instruction *I);
Chris Lattnerdd841ae2002-04-18 17:39:14 +000093 public:
Chris Lattner7e708292002-06-25 16:13:24 +000094 virtual bool runOnFunction(Function &F);
Chris Lattnerdd841ae2002-04-18 17:39:14 +000095
Chris Lattner97e52e42002-04-28 21:27:06 +000096 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnerbc61e662003-11-02 05:57:39 +000097 AU.addRequired<TargetData>();
Chris Lattnercb2610e2002-10-21 20:00:28 +000098 AU.setPreservesCFG();
Chris Lattner97e52e42002-04-28 21:27:06 +000099 }
100
Chris Lattner28977af2004-04-05 01:30:19 +0000101 TargetData &getTargetData() const { return *TD; }
102
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000103 // Visitation implementation - Implement instruction combining for different
104 // instruction types. The semantics are as follows:
105 // Return Value:
106 // null - No change was made
Chris Lattner233f7dc2002-08-12 21:17:25 +0000107 // I - Change was made, I is still valid, I may be dead though
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000108 // otherwise - Change was made, replace I with returned instruction
Misha Brukmanfd939082005-04-21 23:48:37 +0000109 //
Chris Lattner7e708292002-06-25 16:13:24 +0000110 Instruction *visitAdd(BinaryOperator &I);
111 Instruction *visitSub(BinaryOperator &I);
112 Instruction *visitMul(BinaryOperator &I);
113 Instruction *visitDiv(BinaryOperator &I);
114 Instruction *visitRem(BinaryOperator &I);
115 Instruction *visitAnd(BinaryOperator &I);
116 Instruction *visitOr (BinaryOperator &I);
117 Instruction *visitXor(BinaryOperator &I);
Chris Lattner484d3cf2005-04-24 06:59:08 +0000118 Instruction *visitSetCondInst(SetCondInst &I);
119 Instruction *visitSetCondInstWithCastAndCast(SetCondInst &SCI);
120
Chris Lattner574da9b2005-01-13 20:14:25 +0000121 Instruction *FoldGEPSetCC(User *GEPLHS, Value *RHS,
122 Instruction::BinaryOps Cond, Instruction &I);
Chris Lattnerea340052003-03-10 19:16:08 +0000123 Instruction *visitShiftInst(ShiftInst &I);
Chris Lattner4d5542c2006-01-06 07:12:35 +0000124 Instruction *FoldShiftByConstant(Value *Op0, ConstantUInt *Op1,
125 ShiftInst &I);
Chris Lattner7e708292002-06-25 16:13:24 +0000126 Instruction *visitCastInst(CastInst &CI);
Chris Lattner6fb5a4a2005-01-19 21:50:18 +0000127 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
128 Instruction *FI);
Chris Lattner3d69f462004-03-12 05:52:32 +0000129 Instruction *visitSelectInst(SelectInst &CI);
Chris Lattner9fe38862003-06-19 17:00:31 +0000130 Instruction *visitCallInst(CallInst &CI);
131 Instruction *visitInvokeInst(InvokeInst &II);
Chris Lattner7e708292002-06-25 16:13:24 +0000132 Instruction *visitPHINode(PHINode &PN);
133 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Chris Lattner0864acf2002-11-04 16:18:53 +0000134 Instruction *visitAllocationInst(AllocationInst &AI);
Chris Lattner67b1e1b2003-12-07 01:24:23 +0000135 Instruction *visitFreeInst(FreeInst &FI);
Chris Lattner833b8a42003-06-26 05:06:25 +0000136 Instruction *visitLoadInst(LoadInst &LI);
Chris Lattner2f503e62005-01-31 05:36:43 +0000137 Instruction *visitStoreInst(StoreInst &SI);
Chris Lattnerc4d10eb2003-06-04 04:46:00 +0000138 Instruction *visitBranchInst(BranchInst &BI);
Chris Lattner46238a62004-07-03 00:26:11 +0000139 Instruction *visitSwitchInst(SwitchInst &SI);
Robert Bocchino1d7456d2006-01-13 22:48:06 +0000140 Instruction *visitExtractElementInst(ExtractElementInst &EI);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000141
142 // visitInstruction - Specify what to return for unhandled instructions...
Chris Lattner7e708292002-06-25 16:13:24 +0000143 Instruction *visitInstruction(Instruction &I) { return 0; }
Chris Lattner8b170942002-08-09 23:47:40 +0000144
Chris Lattner9fe38862003-06-19 17:00:31 +0000145 private:
Chris Lattnera44d8a22003-10-07 22:32:43 +0000146 Instruction *visitCallSite(CallSite CS);
Chris Lattner9fe38862003-06-19 17:00:31 +0000147 bool transformConstExprCastCall(CallSite CS);
148
Chris Lattner28977af2004-04-05 01:30:19 +0000149 public:
Chris Lattner8b170942002-08-09 23:47:40 +0000150 // InsertNewInstBefore - insert an instruction New before instruction Old
151 // in the program. Add the new instruction to the worklist.
152 //
Chris Lattner955f3312004-09-28 21:48:02 +0000153 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
Chris Lattnere6f9a912002-08-23 18:32:43 +0000154 assert(New && New->getParent() == 0 &&
155 "New instruction already inserted into a basic block!");
Chris Lattner8b170942002-08-09 23:47:40 +0000156 BasicBlock *BB = Old.getParent();
157 BB->getInstList().insert(&Old, New); // Insert inst
158 WorkList.push_back(New); // Add to worklist
Chris Lattner4cb170c2004-02-23 06:38:22 +0000159 return New;
Chris Lattner8b170942002-08-09 23:47:40 +0000160 }
161
Chris Lattner0c967662004-09-24 15:21:34 +0000162 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
163 /// This also adds the cast to the worklist. Finally, this returns the
164 /// cast.
165 Value *InsertCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
166 if (V->getType() == Ty) return V;
Misha Brukmanfd939082005-04-21 23:48:37 +0000167
Chris Lattner0c967662004-09-24 15:21:34 +0000168 Instruction *C = new CastInst(V, Ty, V->getName(), &Pos);
169 WorkList.push_back(C);
170 return C;
171 }
172
Chris Lattner8b170942002-08-09 23:47:40 +0000173 // ReplaceInstUsesWith - This method is to be used when an instruction is
174 // found to be dead, replacable with another preexisting expression. Here
175 // we add all uses of I to the worklist, replace all uses of I with the new
176 // value, then return I, so that the inst combiner will know that I was
177 // modified.
178 //
179 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000180 AddUsersToWorkList(I); // Add all modified instrs to worklist
Chris Lattner15a76c02004-04-05 02:10:19 +0000181 if (&I != V) {
182 I.replaceAllUsesWith(V);
183 return &I;
184 } else {
185 // If we are replacing the instruction with itself, this must be in a
186 // segment of unreachable code, so just clobber the instruction.
Chris Lattner17be6352004-10-18 02:59:09 +0000187 I.replaceAllUsesWith(UndefValue::get(I.getType()));
Chris Lattner15a76c02004-04-05 02:10:19 +0000188 return &I;
189 }
Chris Lattner8b170942002-08-09 23:47:40 +0000190 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000191
Chris Lattner6dce1a72006-02-07 06:56:34 +0000192 // UpdateValueUsesWith - This method is to be used when an value is
193 // found to be replacable with another preexisting expression or was
194 // updated. Here we add all uses of I to the worklist, replace all uses of
195 // I with the new value (unless the instruction was just updated), then
196 // return true, so that the inst combiner will know that I was modified.
197 //
198 bool UpdateValueUsesWith(Value *Old, Value *New) {
199 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
200 if (Old != New)
201 Old->replaceAllUsesWith(New);
202 if (Instruction *I = dyn_cast<Instruction>(Old))
203 WorkList.push_back(I);
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000204 if (Instruction *I = dyn_cast<Instruction>(New))
205 WorkList.push_back(I);
Chris Lattner6dce1a72006-02-07 06:56:34 +0000206 return true;
207 }
208
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000209 // EraseInstFromFunction - When dealing with an instruction that has side
210 // effects or produces a void value, we can't rely on DCE to delete the
211 // instruction. Instead, visit methods should return the value returned by
212 // this function.
213 Instruction *EraseInstFromFunction(Instruction &I) {
214 assert(I.use_empty() && "Cannot erase instruction that is used!");
215 AddUsesToWorkList(I);
216 removeFromWorkList(&I);
Chris Lattner954f66a2004-11-18 21:41:39 +0000217 I.eraseFromParent();
Chris Lattner7bcc0e72004-02-28 05:22:00 +0000218 return 0; // Don't do anything with FI
219 }
220
Chris Lattneraa9c1f12003-08-13 20:16:26 +0000221 private:
Chris Lattner24c8e382003-07-24 17:35:25 +0000222 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
223 /// InsertBefore instruction. This is specialized a bit to avoid inserting
224 /// casts that are known to not do anything...
225 ///
226 Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
227 Instruction *InsertBefore);
228
Chris Lattnerc8802d22003-03-11 00:12:48 +0000229 // SimplifyCommutative - This performs a few simplifications for commutative
Chris Lattner4e998b22004-09-29 05:07:12 +0000230 // operators.
Chris Lattnerc8802d22003-03-11 00:12:48 +0000231 bool SimplifyCommutative(BinaryOperator &I);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +0000232
Chris Lattner255d8912006-02-11 09:31:47 +0000233 bool SimplifyDemandedBits(Value *V, uint64_t Mask,
234 uint64_t &KnownZero, uint64_t &KnownOne,
235 unsigned Depth = 0);
Chris Lattner4e998b22004-09-29 05:07:12 +0000236
237 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
238 // PHI node as operand #0, see if we can fold the instruction into the PHI
239 // (which is only possible if all operands to the PHI are constants).
240 Instruction *FoldOpIntoPhi(Instruction &I);
241
Chris Lattnerbac32862004-11-14 19:13:23 +0000242 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
243 // operator and they all are only used by the PHI, PHI together their
244 // inputs, and do the operation once, to the result of the PHI.
245 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
246
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +0000247 Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS,
248 ConstantIntegral *AndRHS, BinaryOperator &TheAnd);
Chris Lattnerc8e77562005-09-18 04:24:45 +0000249
250 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantIntegral *Mask,
251 bool isSub, Instruction &I);
Chris Lattnera96879a2004-09-29 17:40:11 +0000252 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
253 bool Inside, Instruction &IB);
Chris Lattnerb3f83972005-10-24 06:03:58 +0000254 Instruction *PromoteCastOfAllocation(CastInst &CI, AllocationInst &AI);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000255 };
Chris Lattnerf6293092002-07-23 18:06:35 +0000256
Chris Lattnera6275cc2002-07-26 21:12:46 +0000257 RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000258}
259
Chris Lattner4f98c562003-03-10 21:43:22 +0000260// getComplexity: Assign a complexity or rank value to LLVM Values...
Chris Lattnere87597f2004-10-16 18:11:37 +0000261// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
Chris Lattner4f98c562003-03-10 21:43:22 +0000262static unsigned getComplexity(Value *V) {
263 if (isa<Instruction>(V)) {
264 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
Chris Lattnere87597f2004-10-16 18:11:37 +0000265 return 3;
266 return 4;
Chris Lattner4f98c562003-03-10 21:43:22 +0000267 }
Chris Lattnere87597f2004-10-16 18:11:37 +0000268 if (isa<Argument>(V)) return 3;
269 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
Chris Lattner4f98c562003-03-10 21:43:22 +0000270}
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000271
Chris Lattnerc8802d22003-03-11 00:12:48 +0000272// isOnlyUse - Return true if this instruction will be deleted if we stop using
273// it.
274static bool isOnlyUse(Value *V) {
Chris Lattnerfd059242003-10-15 16:48:29 +0000275 return V->hasOneUse() || isa<Constant>(V);
Chris Lattnerc8802d22003-03-11 00:12:48 +0000276}
277
Chris Lattner4cb170c2004-02-23 06:38:22 +0000278// getPromotedType - Return the specified type promoted as it would be to pass
279// though a va_arg area...
280static const Type *getPromotedType(const Type *Ty) {
Chris Lattner5dd04022004-06-17 18:16:02 +0000281 switch (Ty->getTypeID()) {
Chris Lattner4cb170c2004-02-23 06:38:22 +0000282 case Type::SByteTyID:
283 case Type::ShortTyID: return Type::IntTy;
284 case Type::UByteTyID:
285 case Type::UShortTyID: return Type::UIntTy;
286 case Type::FloatTyID: return Type::DoubleTy;
287 default: return Ty;
288 }
289}
290
Chris Lattnereed48272005-09-13 00:40:14 +0000291/// isCast - If the specified operand is a CastInst or a constant expr cast,
292/// return the operand value, otherwise return null.
293static Value *isCast(Value *V) {
294 if (CastInst *I = dyn_cast<CastInst>(V))
295 return I->getOperand(0);
296 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
297 if (CE->getOpcode() == Instruction::Cast)
298 return CE->getOperand(0);
299 return 0;
300}
301
Chris Lattner4f98c562003-03-10 21:43:22 +0000302// SimplifyCommutative - This performs a few simplifications for commutative
303// operators:
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000304//
Chris Lattner4f98c562003-03-10 21:43:22 +0000305// 1. Order operands such that they are listed from right (least complex) to
306// left (most complex). This puts constants before unary operators before
307// binary operators.
308//
Chris Lattnerc8802d22003-03-11 00:12:48 +0000309// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
310// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner4f98c562003-03-10 21:43:22 +0000311//
Chris Lattnerc8802d22003-03-11 00:12:48 +0000312bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +0000313 bool Changed = false;
314 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
315 Changed = !I.swapOperands();
Misha Brukmanfd939082005-04-21 23:48:37 +0000316
Chris Lattner4f98c562003-03-10 21:43:22 +0000317 if (!I.isAssociative()) return Changed;
318 Instruction::BinaryOps Opcode = I.getOpcode();
Chris Lattnerc8802d22003-03-11 00:12:48 +0000319 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
320 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
321 if (isa<Constant>(I.getOperand(1))) {
Chris Lattner2a9c8472003-05-27 16:40:51 +0000322 Constant *Folded = ConstantExpr::get(I.getOpcode(),
323 cast<Constant>(I.getOperand(1)),
324 cast<Constant>(Op->getOperand(1)));
Chris Lattnerc8802d22003-03-11 00:12:48 +0000325 I.setOperand(0, Op->getOperand(0));
326 I.setOperand(1, Folded);
327 return true;
328 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
329 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
330 isOnlyUse(Op) && isOnlyUse(Op1)) {
331 Constant *C1 = cast<Constant>(Op->getOperand(1));
332 Constant *C2 = cast<Constant>(Op1->getOperand(1));
333
334 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Chris Lattner2a9c8472003-05-27 16:40:51 +0000335 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Chris Lattnerc8802d22003-03-11 00:12:48 +0000336 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
337 Op1->getOperand(0),
338 Op1->getName(), &I);
339 WorkList.push_back(New);
340 I.setOperand(0, New);
341 I.setOperand(1, Folded);
342 return true;
Misha Brukmanfd939082005-04-21 23:48:37 +0000343 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000344 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000345 return Changed;
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000346}
Chris Lattner8a2a3112001-12-14 16:52:21 +0000347
Chris Lattner8d969642003-03-10 23:06:50 +0000348// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
349// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattnerb35dde12002-05-06 16:49:18 +0000350//
Chris Lattner8d969642003-03-10 23:06:50 +0000351static inline Value *dyn_castNegVal(Value *V) {
352 if (BinaryOperator::isNeg(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000353 return BinaryOperator::getNegArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000354
Chris Lattner0ce85802004-12-14 20:08:06 +0000355 // Constants can be considered to be negated values if they can be folded.
356 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
357 return ConstantExpr::getNeg(C);
Chris Lattner8d969642003-03-10 23:06:50 +0000358 return 0;
Chris Lattnerb35dde12002-05-06 16:49:18 +0000359}
360
Chris Lattner8d969642003-03-10 23:06:50 +0000361static inline Value *dyn_castNotVal(Value *V) {
362 if (BinaryOperator::isNot(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000363 return BinaryOperator::getNotArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000364
365 // Constants can be considered to be not'ed values...
Chris Lattner3f2ec392003-04-30 22:34:06 +0000366 if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
Chris Lattner448c3232004-06-10 02:12:35 +0000367 return ConstantExpr::getNot(C);
Chris Lattner8d969642003-03-10 23:06:50 +0000368 return 0;
369}
370
Chris Lattnerc8802d22003-03-11 00:12:48 +0000371// dyn_castFoldableMul - If this value is a multiply that can be folded into
372// other computations (because it has a constant operand), return the
Chris Lattner50af16a2004-11-13 19:50:12 +0000373// non-constant operand of the multiply, and set CST to point to the multiplier.
374// Otherwise, return null.
Chris Lattnerc8802d22003-03-11 00:12:48 +0000375//
Chris Lattner50af16a2004-11-13 19:50:12 +0000376static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
Chris Lattnerfd059242003-10-15 16:48:29 +0000377 if (V->hasOneUse() && V->getType()->isInteger())
Chris Lattner50af16a2004-11-13 19:50:12 +0000378 if (Instruction *I = dyn_cast<Instruction>(V)) {
Chris Lattnerc8802d22003-03-11 00:12:48 +0000379 if (I->getOpcode() == Instruction::Mul)
Chris Lattner50e60c72004-11-15 05:54:07 +0000380 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
Chris Lattnerc8802d22003-03-11 00:12:48 +0000381 return I->getOperand(0);
Chris Lattner50af16a2004-11-13 19:50:12 +0000382 if (I->getOpcode() == Instruction::Shl)
Chris Lattner50e60c72004-11-15 05:54:07 +0000383 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
Chris Lattner50af16a2004-11-13 19:50:12 +0000384 // The multiplier is really 1 << CST.
385 Constant *One = ConstantInt::get(V->getType(), 1);
386 CST = cast<ConstantInt>(ConstantExpr::getShl(One, CST));
387 return I->getOperand(0);
388 }
389 }
Chris Lattnerc8802d22003-03-11 00:12:48 +0000390 return 0;
Chris Lattnera2881962003-02-18 19:28:33 +0000391}
Chris Lattneraf2930e2002-08-14 17:51:49 +0000392
Chris Lattner574da9b2005-01-13 20:14:25 +0000393/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
394/// expression, return it.
395static User *dyn_castGetElementPtr(Value *V) {
396 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
397 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
398 if (CE->getOpcode() == Instruction::GetElementPtr)
399 return cast<User>(V);
400 return false;
401}
402
Chris Lattner955f3312004-09-28 21:48:02 +0000403// AddOne, SubOne - Add or subtract a constant one from an integer constant...
Chris Lattnera96879a2004-09-29 17:40:11 +0000404static ConstantInt *AddOne(ConstantInt *C) {
405 return cast<ConstantInt>(ConstantExpr::getAdd(C,
406 ConstantInt::get(C->getType(), 1)));
Chris Lattner955f3312004-09-28 21:48:02 +0000407}
Chris Lattnera96879a2004-09-29 17:40:11 +0000408static ConstantInt *SubOne(ConstantInt *C) {
409 return cast<ConstantInt>(ConstantExpr::getSub(C,
410 ConstantInt::get(C->getType(), 1)));
Chris Lattner955f3312004-09-28 21:48:02 +0000411}
412
Chris Lattner255d8912006-02-11 09:31:47 +0000413/// GetConstantInType - Return a ConstantInt with the specified type and value.
414///
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000415static ConstantIntegral *GetConstantInType(const Type *Ty, uint64_t Val) {
Chris Lattner255d8912006-02-11 09:31:47 +0000416 if (Ty->isUnsigned())
417 return ConstantUInt::get(Ty, Val);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000418 else if (Ty->getTypeID() == Type::BoolTyID)
419 return ConstantBool::get(Val);
Chris Lattner255d8912006-02-11 09:31:47 +0000420 int64_t SVal = Val;
421 SVal <<= 64-Ty->getPrimitiveSizeInBits();
422 SVal >>= 64-Ty->getPrimitiveSizeInBits();
423 return ConstantSInt::get(Ty, SVal);
424}
425
426
Chris Lattner68d5ff22006-02-09 07:38:58 +0000427/// ComputeMaskedBits - Determine which of the bits specified in Mask are
428/// known to be either zero or one and return them in the KnownZero/KnownOne
429/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
430/// processing.
431static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero,
432 uint64_t &KnownOne, unsigned Depth = 0) {
Chris Lattner5931c542005-09-24 23:43:33 +0000433 // Note, we cannot consider 'undef' to be "IsZero" here. The problem is that
434 // we cannot optimize based on the assumption that it is zero without changing
Chris Lattner3bedbd92006-02-07 07:27:52 +0000435 // it to be an explicit zero. If we don't change it to zero, other code could
Chris Lattner5931c542005-09-24 23:43:33 +0000436 // optimized based on the contradictory assumption that it is non-zero.
437 // Because instcombine aggressively folds operations with undef args anyway,
438 // this won't lose us code quality.
Chris Lattner68d5ff22006-02-09 07:38:58 +0000439 if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
440 // We know all of the bits for a constant!
Chris Lattner255d8912006-02-11 09:31:47 +0000441 KnownOne = CI->getZExtValue() & Mask;
Chris Lattner68d5ff22006-02-09 07:38:58 +0000442 KnownZero = ~KnownOne & Mask;
443 return;
444 }
445
446 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner74c51a02006-02-07 08:05:22 +0000447 if (Depth == 6 || Mask == 0)
Chris Lattner68d5ff22006-02-09 07:38:58 +0000448 return; // Limit search depth.
449
450 uint64_t KnownZero2, KnownOne2;
Chris Lattner255d8912006-02-11 09:31:47 +0000451 Instruction *I = dyn_cast<Instruction>(V);
452 if (!I) return;
453
454 switch (I->getOpcode()) {
455 case Instruction::And:
456 // If either the LHS or the RHS are Zero, the result is zero.
457 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
458 Mask &= ~KnownZero;
459 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
460 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
461 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
462
463 // Output known-1 bits are only known if set in both the LHS & RHS.
464 KnownOne &= KnownOne2;
465 // Output known-0 are known to be clear if zero in either the LHS | RHS.
466 KnownZero |= KnownZero2;
467 return;
468 case Instruction::Or:
469 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
470 Mask &= ~KnownOne;
471 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
472 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
473 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
474
475 // Output known-0 bits are only known if clear in both the LHS & RHS.
476 KnownZero &= KnownZero2;
477 // Output known-1 are known to be set if set in either the LHS | RHS.
478 KnownOne |= KnownOne2;
479 return;
480 case Instruction::Xor: {
481 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
482 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
483 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
484 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
485
486 // Output known-0 bits are known if clear or set in both the LHS & RHS.
487 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
488 // Output known-1 are known to be set if set in only one of the LHS, RHS.
489 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
490 KnownZero = KnownZeroOut;
491 return;
492 }
493 case Instruction::Select:
494 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
495 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
496 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
497 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
498
499 // Only known if known in both the LHS and RHS.
500 KnownOne &= KnownOne2;
501 KnownZero &= KnownZero2;
502 return;
503 case Instruction::Cast: {
504 const Type *SrcTy = I->getOperand(0)->getType();
505 if (!SrcTy->isIntegral()) return;
506
507 // If this is an integer truncate or noop, just look in the input.
508 if (SrcTy->getPrimitiveSizeInBits() >=
509 I->getType()->getPrimitiveSizeInBits()) {
510 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
Chris Lattner68d5ff22006-02-09 07:38:58 +0000511 return;
512 }
Chris Lattner68d5ff22006-02-09 07:38:58 +0000513
Chris Lattner255d8912006-02-11 09:31:47 +0000514 // Sign or Zero extension. Compute the bits in the result that are not
515 // present in the input.
516 uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
517 uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
Chris Lattner60de63d2005-10-09 06:36:35 +0000518
Chris Lattner255d8912006-02-11 09:31:47 +0000519 // Handle zero extension.
520 if (!SrcTy->isSigned()) {
521 Mask &= SrcTy->getIntegralTypeMask();
522 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
523 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
524 // The top bits are known to be zero.
525 KnownZero |= NewBits;
526 } else {
527 // Sign extension.
528 Mask &= SrcTy->getIntegralTypeMask();
529 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
530 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner74c51a02006-02-07 08:05:22 +0000531
Chris Lattner255d8912006-02-11 09:31:47 +0000532 // If the sign bit of the input is known set or clear, then we know the
533 // top bits of the result.
534 uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
535 if (KnownZero & InSignBit) { // Input sign bit known zero
Chris Lattner68d5ff22006-02-09 07:38:58 +0000536 KnownZero |= NewBits;
Chris Lattner255d8912006-02-11 09:31:47 +0000537 KnownOne &= ~NewBits;
538 } else if (KnownOne & InSignBit) { // Input sign bit known set
539 KnownOne |= NewBits;
540 KnownZero &= ~NewBits;
541 } else { // Input sign bit unknown
542 KnownZero &= ~NewBits;
543 KnownOne &= ~NewBits;
544 }
545 }
546 return;
547 }
548 case Instruction::Shl:
549 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
550 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
551 Mask >>= SA->getValue();
552 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
553 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
554 KnownZero <<= SA->getValue();
555 KnownOne <<= SA->getValue();
556 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
557 return;
558 }
559 break;
560 case Instruction::Shr:
561 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
562 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
563 // Compute the new bits that are at the top now.
564 uint64_t HighBits = (1ULL << SA->getValue())-1;
565 HighBits <<= I->getType()->getPrimitiveSizeInBits()-SA->getValue();
566
567 if (I->getType()->isUnsigned()) { // Unsigned shift right.
568 Mask <<= SA->getValue();
569 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
570 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
571 KnownZero >>= SA->getValue();
572 KnownOne >>= SA->getValue();
573 KnownZero |= HighBits; // high bits known zero.
Chris Lattner68d5ff22006-02-09 07:38:58 +0000574 } else {
Chris Lattner255d8912006-02-11 09:31:47 +0000575 Mask <<= SA->getValue();
576 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
577 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
578 KnownZero >>= SA->getValue();
579 KnownOne >>= SA->getValue();
580
581 // Handle the sign bits.
582 uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
583 SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
584
585 if (KnownZero & SignBit) { // New bits are known zero.
586 KnownZero |= HighBits;
587 } else if (KnownOne & SignBit) { // New bits are known one.
588 KnownOne |= HighBits;
Chris Lattner68d5ff22006-02-09 07:38:58 +0000589 }
590 }
591 return;
Chris Lattner60de63d2005-10-09 06:36:35 +0000592 }
Chris Lattner255d8912006-02-11 09:31:47 +0000593 break;
Chris Lattner5931c542005-09-24 23:43:33 +0000594 }
Chris Lattner74c51a02006-02-07 08:05:22 +0000595}
596
597/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
598/// this predicate to simplify operations downstream. Mask is known to be zero
599/// for bits that V cannot have.
600static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
Chris Lattner68d5ff22006-02-09 07:38:58 +0000601 uint64_t KnownZero, KnownOne;
602 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
603 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
604 return (KnownZero & Mask) == Mask;
Chris Lattner5931c542005-09-24 23:43:33 +0000605}
606
Chris Lattner255d8912006-02-11 09:31:47 +0000607/// ShrinkDemandedConstant - Check to see if the specified operand of the
608/// specified instruction is a constant integer. If so, check to see if there
609/// are any bits set in the constant that are not demanded. If so, shrink the
610/// constant and return true.
611static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
612 uint64_t Demanded) {
613 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
614 if (!OpC) return false;
615
616 // If there are no bits set that aren't demanded, nothing to do.
617 if ((~Demanded & OpC->getZExtValue()) == 0)
618 return false;
619
620 // This is producing any bits that are not needed, shrink the RHS.
621 uint64_t Val = Demanded & OpC->getZExtValue();
622 I->setOperand(OpNo, GetConstantInType(OpC->getType(), Val));
623 return true;
624}
625
Chris Lattnerbf5d8a82006-02-12 02:07:56 +0000626// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
627// set of known zero and one bits, compute the maximum and minimum values that
628// could have the specified known zero and known one bits, returning them in
629// min/max.
630static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
631 uint64_t KnownZero,
632 uint64_t KnownOne,
633 int64_t &Min, int64_t &Max) {
634 uint64_t TypeBits = Ty->getIntegralTypeMask();
635 uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
636
637 uint64_t SignBit = 1ULL << (Ty->getPrimitiveSizeInBits()-1);
638
639 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
640 // bit if it is unknown.
641 Min = KnownOne;
642 Max = KnownOne|UnknownBits;
643
644 if (SignBit & UnknownBits) { // Sign bit is unknown
645 Min |= SignBit;
646 Max &= ~SignBit;
647 }
648
649 // Sign extend the min/max values.
650 int ShAmt = 64-Ty->getPrimitiveSizeInBits();
651 Min = (Min << ShAmt) >> ShAmt;
652 Max = (Max << ShAmt) >> ShAmt;
653}
654
655// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
656// a set of known zero and one bits, compute the maximum and minimum values that
657// could have the specified known zero and known one bits, returning them in
658// min/max.
659static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
660 uint64_t KnownZero,
661 uint64_t KnownOne,
662 uint64_t &Min,
663 uint64_t &Max) {
664 uint64_t TypeBits = Ty->getIntegralTypeMask();
665 uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits;
666
667 // The minimum value is when the unknown bits are all zeros.
668 Min = KnownOne;
669 // The maximum value is when the unknown bits are all ones.
670 Max = KnownOne|UnknownBits;
671}
Chris Lattner255d8912006-02-11 09:31:47 +0000672
673
674/// SimplifyDemandedBits - Look at V. At this point, we know that only the
675/// DemandedMask bits of the result of V are ever used downstream. If we can
676/// use this information to simplify V, do so and return true. Otherwise,
677/// analyze the expression and return a mask of KnownOne and KnownZero bits for
678/// the expression (used to simplify the caller). The KnownZero/One bits may
679/// only be accurate for those bits in the DemandedMask.
680bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
681 uint64_t &KnownZero, uint64_t &KnownOne,
Chris Lattner6dce1a72006-02-07 06:56:34 +0000682 unsigned Depth) {
Chris Lattner255d8912006-02-11 09:31:47 +0000683 if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
684 // We know all of the bits for a constant!
685 KnownOne = CI->getZExtValue() & DemandedMask;
686 KnownZero = ~KnownOne & DemandedMask;
687 return false;
688 }
689
690 KnownZero = KnownOne = 0;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000691 if (!V->hasOneUse()) { // Other users may use these bits.
Chris Lattner255d8912006-02-11 09:31:47 +0000692 if (Depth != 0) { // Not at the root.
693 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
694 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattner6dce1a72006-02-07 06:56:34 +0000695 return false;
Chris Lattner255d8912006-02-11 09:31:47 +0000696 }
Chris Lattner6dce1a72006-02-07 06:56:34 +0000697 // If this is the root being simplified, allow it to have multiple uses,
Chris Lattner255d8912006-02-11 09:31:47 +0000698 // just set the DemandedMask to all bits.
699 DemandedMask = V->getType()->getIntegralTypeMask();
700 } else if (DemandedMask == 0) { // Not demanding any bits from V.
Chris Lattner74c51a02006-02-07 08:05:22 +0000701 if (V != UndefValue::get(V->getType()))
702 return UpdateValueUsesWith(V, UndefValue::get(V->getType()));
703 return false;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000704 } else if (Depth == 6) { // Limit search depth.
705 return false;
706 }
707
708 Instruction *I = dyn_cast<Instruction>(V);
709 if (!I) return false; // Only analyze instructions.
710
Chris Lattner255d8912006-02-11 09:31:47 +0000711 uint64_t KnownZero2, KnownOne2;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000712 switch (I->getOpcode()) {
713 default: break;
714 case Instruction::And:
Chris Lattner255d8912006-02-11 09:31:47 +0000715 // If either the LHS or the RHS are Zero, the result is zero.
716 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
717 KnownZero, KnownOne, Depth+1))
718 return true;
719 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
720
721 // If something is known zero on the RHS, the bits aren't demanded on the
722 // LHS.
723 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownZero,
724 KnownZero2, KnownOne2, Depth+1))
725 return true;
726 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
727
728 // If all of the demanded bits are known one on one side, return the other.
729 // These bits cannot contribute to the result of the 'and'.
730 if ((DemandedMask & ~KnownZero2 & KnownOne) == (DemandedMask & ~KnownZero2))
731 return UpdateValueUsesWith(I, I->getOperand(0));
732 if ((DemandedMask & ~KnownZero & KnownOne2) == (DemandedMask & ~KnownZero))
733 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000734
735 // If all of the demanded bits in the inputs are known zeros, return zero.
736 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
737 return UpdateValueUsesWith(I, Constant::getNullValue(I->getType()));
738
Chris Lattner255d8912006-02-11 09:31:47 +0000739 // If the RHS is a constant, see if we can simplify it.
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000740 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~KnownZero2))
Chris Lattner255d8912006-02-11 09:31:47 +0000741 return UpdateValueUsesWith(I, I);
742
743 // Output known-1 bits are only known if set in both the LHS & RHS.
744 KnownOne &= KnownOne2;
745 // Output known-0 are known to be clear if zero in either the LHS | RHS.
746 KnownZero |= KnownZero2;
747 break;
748 case Instruction::Or:
749 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
750 KnownZero, KnownOne, Depth+1))
751 return true;
752 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
753 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownOne,
754 KnownZero2, KnownOne2, Depth+1))
755 return true;
756 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
757
758 // If all of the demanded bits are known zero on one side, return the other.
759 // These bits cannot contribute to the result of the 'or'.
Jeff Cohenbce48052006-02-18 03:20:33 +0000760 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Chris Lattner255d8912006-02-11 09:31:47 +0000761 return UpdateValueUsesWith(I, I->getOperand(0));
Jeff Cohenbce48052006-02-18 03:20:33 +0000762 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Chris Lattner255d8912006-02-11 09:31:47 +0000763 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000764
765 // If all of the potentially set bits on one side are known to be set on
766 // the other side, just use the 'other' side.
767 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
768 (DemandedMask & (~KnownZero)))
769 return UpdateValueUsesWith(I, I->getOperand(0));
Nate Begeman368e18d2006-02-16 21:11:51 +0000770 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
771 (DemandedMask & (~KnownZero2)))
772 return UpdateValueUsesWith(I, I->getOperand(1));
Chris Lattner255d8912006-02-11 09:31:47 +0000773
774 // If the RHS is a constant, see if we can simplify it.
775 if (ShrinkDemandedConstant(I, 1, DemandedMask))
776 return UpdateValueUsesWith(I, I);
777
778 // Output known-0 bits are only known if clear in both the LHS & RHS.
779 KnownZero &= KnownZero2;
780 // Output known-1 are known to be set if set in either the LHS | RHS.
781 KnownOne |= KnownOne2;
782 break;
783 case Instruction::Xor: {
784 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
785 KnownZero, KnownOne, Depth+1))
786 return true;
787 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
788 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
789 KnownZero2, KnownOne2, Depth+1))
790 return true;
791 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
792
793 // If all of the demanded bits are known zero on one side, return the other.
794 // These bits cannot contribute to the result of the 'xor'.
795 if ((DemandedMask & KnownZero) == DemandedMask)
796 return UpdateValueUsesWith(I, I->getOperand(0));
797 if ((DemandedMask & KnownZero2) == DemandedMask)
798 return UpdateValueUsesWith(I, I->getOperand(1));
799
800 // Output known-0 bits are known if clear or set in both the LHS & RHS.
801 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
802 // Output known-1 are known to be set if set in only one of the LHS, RHS.
803 uint64_t KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
804
805 // If all of the unknown bits are known to be zero on one side or the other
806 // (but not both) turn this into an *inclusive* or.
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000807 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattner255d8912006-02-11 09:31:47 +0000808 if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut)) {
809 if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits) {
810 Instruction *Or =
811 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
812 I->getName());
813 InsertNewInstBefore(Or, *I);
814 return UpdateValueUsesWith(I, Or);
Chris Lattner6dce1a72006-02-07 06:56:34 +0000815 }
816 }
Chris Lattner255d8912006-02-11 09:31:47 +0000817
Chris Lattnerf8c36f52006-02-12 08:02:11 +0000818 // If all of the demanded bits on one side are known, and all of the set
819 // bits on that side are also known to be set on the other side, turn this
820 // into an AND, as we know the bits will be cleared.
821 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
822 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
823 if ((KnownOne & KnownOne2) == KnownOne) {
824 Constant *AndC = GetConstantInType(I->getType(),
825 ~KnownOne & DemandedMask);
826 Instruction *And =
827 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
828 InsertNewInstBefore(And, *I);
829 return UpdateValueUsesWith(I, And);
830 }
831 }
832
Chris Lattner255d8912006-02-11 09:31:47 +0000833 // If the RHS is a constant, see if we can simplify it.
834 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
835 if (ShrinkDemandedConstant(I, 1, DemandedMask))
836 return UpdateValueUsesWith(I, I);
837
838 KnownZero = KnownZeroOut;
839 KnownOne = KnownOneOut;
840 break;
841 }
842 case Instruction::Select:
843 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
844 KnownZero, KnownOne, Depth+1))
845 return true;
846 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
847 KnownZero2, KnownOne2, Depth+1))
848 return true;
849 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
850 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
851
852 // If the operands are constants, see if we can simplify them.
853 if (ShrinkDemandedConstant(I, 1, DemandedMask))
854 return UpdateValueUsesWith(I, I);
855 if (ShrinkDemandedConstant(I, 2, DemandedMask))
856 return UpdateValueUsesWith(I, I);
857
858 // Only known if known in both the LHS and RHS.
859 KnownOne &= KnownOne2;
860 KnownZero &= KnownZero2;
861 break;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000862 case Instruction::Cast: {
863 const Type *SrcTy = I->getOperand(0)->getType();
Chris Lattner255d8912006-02-11 09:31:47 +0000864 if (!SrcTy->isIntegral()) return false;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000865
Chris Lattner255d8912006-02-11 09:31:47 +0000866 // If this is an integer truncate or noop, just look in the input.
867 if (SrcTy->getPrimitiveSizeInBits() >=
868 I->getType()->getPrimitiveSizeInBits()) {
869 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
870 KnownZero, KnownOne, Depth+1))
871 return true;
872 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
873 break;
874 }
875
876 // Sign or Zero extension. Compute the bits in the result that are not
877 // present in the input.
878 uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
879 uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
880
881 // Handle zero extension.
882 if (!SrcTy->isSigned()) {
883 DemandedMask &= SrcTy->getIntegralTypeMask();
884 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
885 KnownZero, KnownOne, Depth+1))
886 return true;
887 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
888 // The top bits are known to be zero.
889 KnownZero |= NewBits;
890 } else {
891 // Sign extension.
Chris Lattnerf345fe42006-02-13 22:41:07 +0000892 uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
893 int64_t InputDemandedBits = DemandedMask & SrcTy->getIntegralTypeMask();
894
895 // If any of the sign extended bits are demanded, we know that the sign
896 // bit is demanded.
897 if (NewBits & DemandedMask)
898 InputDemandedBits |= InSignBit;
899
900 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
Chris Lattner255d8912006-02-11 09:31:47 +0000901 KnownZero, KnownOne, Depth+1))
902 return true;
903 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
904
905 // If the sign bit of the input is known set or clear, then we know the
906 // top bits of the result.
Chris Lattner6dce1a72006-02-07 06:56:34 +0000907
Chris Lattner255d8912006-02-11 09:31:47 +0000908 // If the input sign bit is known zero, or if the NewBits are not demanded
909 // convert this into a zero extension.
910 if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) {
Chris Lattner6dce1a72006-02-07 06:56:34 +0000911 // Convert to unsigned first.
Chris Lattnerd89d8882006-02-07 19:07:40 +0000912 Instruction *NewVal;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000913 NewVal = new CastInst(I->getOperand(0), SrcTy->getUnsignedVersion(),
Chris Lattnerd89d8882006-02-07 19:07:40 +0000914 I->getOperand(0)->getName());
915 InsertNewInstBefore(NewVal, *I);
Chris Lattner255d8912006-02-11 09:31:47 +0000916 // Then cast that to the destination type.
Chris Lattnerd89d8882006-02-07 19:07:40 +0000917 NewVal = new CastInst(NewVal, I->getType(), I->getName());
918 InsertNewInstBefore(NewVal, *I);
Chris Lattner6dce1a72006-02-07 06:56:34 +0000919 return UpdateValueUsesWith(I, NewVal);
Chris Lattner255d8912006-02-11 09:31:47 +0000920 } else if (KnownOne & InSignBit) { // Input sign bit known set
921 KnownOne |= NewBits;
922 KnownZero &= ~NewBits;
923 } else { // Input sign bit unknown
924 KnownZero &= ~NewBits;
925 KnownOne &= ~NewBits;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000926 }
Chris Lattner6dce1a72006-02-07 06:56:34 +0000927 }
Chris Lattner255d8912006-02-11 09:31:47 +0000928 break;
Chris Lattner6dce1a72006-02-07 06:56:34 +0000929 }
Chris Lattner6dce1a72006-02-07 06:56:34 +0000930 case Instruction::Shl:
Chris Lattner255d8912006-02-11 09:31:47 +0000931 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
932 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask >> SA->getValue(),
933 KnownZero, KnownOne, Depth+1))
934 return true;
935 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
936 KnownZero <<= SA->getValue();
937 KnownOne <<= SA->getValue();
938 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
939 }
Chris Lattner6dce1a72006-02-07 06:56:34 +0000940 break;
941 case Instruction::Shr:
Chris Lattner255d8912006-02-11 09:31:47 +0000942 if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
943 unsigned ShAmt = SA->getValue();
944
945 // Compute the new bits that are at the top now.
946 uint64_t HighBits = (1ULL << ShAmt)-1;
947 HighBits <<= I->getType()->getPrimitiveSizeInBits() - ShAmt;
Chris Lattnerc15637b2006-02-13 06:09:08 +0000948 uint64_t TypeMask = I->getType()->getIntegralTypeMask();
Chris Lattner255d8912006-02-11 09:31:47 +0000949 if (I->getType()->isUnsigned()) { // Unsigned shift right.
Chris Lattnerc15637b2006-02-13 06:09:08 +0000950 if (SimplifyDemandedBits(I->getOperand(0),
951 (DemandedMask << ShAmt) & TypeMask,
Chris Lattner255d8912006-02-11 09:31:47 +0000952 KnownZero, KnownOne, Depth+1))
953 return true;
954 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattnerc15637b2006-02-13 06:09:08 +0000955 KnownZero &= TypeMask;
956 KnownOne &= TypeMask;
Chris Lattner255d8912006-02-11 09:31:47 +0000957 KnownZero >>= ShAmt;
958 KnownOne >>= ShAmt;
959 KnownZero |= HighBits; // high bits known zero.
960 } else { // Signed shift right.
Chris Lattnerc15637b2006-02-13 06:09:08 +0000961 if (SimplifyDemandedBits(I->getOperand(0),
962 (DemandedMask << ShAmt) & TypeMask,
Chris Lattner255d8912006-02-11 09:31:47 +0000963 KnownZero, KnownOne, Depth+1))
964 return true;
965 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattnerc15637b2006-02-13 06:09:08 +0000966 KnownZero &= TypeMask;
967 KnownOne &= TypeMask;
Chris Lattner255d8912006-02-11 09:31:47 +0000968 KnownZero >>= SA->getValue();
969 KnownOne >>= SA->getValue();
970
971 // Handle the sign bits.
972 uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
973 SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
974
975 // If the input sign bit is known to be zero, or if none of the top bits
976 // are demanded, turn this into an unsigned shift right.
977 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
978 // Convert the input to unsigned.
979 Instruction *NewVal;
980 NewVal = new CastInst(I->getOperand(0),
981 I->getType()->getUnsignedVersion(),
982 I->getOperand(0)->getName());
983 InsertNewInstBefore(NewVal, *I);
984 // Perform the unsigned shift right.
985 NewVal = new ShiftInst(Instruction::Shr, NewVal, SA, I->getName());
986 InsertNewInstBefore(NewVal, *I);
987 // Then cast that to the destination type.
988 NewVal = new CastInst(NewVal, I->getType(), I->getName());
989 InsertNewInstBefore(NewVal, *I);
990 return UpdateValueUsesWith(I, NewVal);
991 } else if (KnownOne & SignBit) { // New bits are known one.
992 KnownOne |= HighBits;
993 }
Chris Lattner6dce1a72006-02-07 06:56:34 +0000994 }
Chris Lattner255d8912006-02-11 09:31:47 +0000995 }
Chris Lattner6dce1a72006-02-07 06:56:34 +0000996 break;
997 }
Chris Lattner255d8912006-02-11 09:31:47 +0000998
999 // If the client is only demanding bits that we know, return the known
1000 // constant.
1001 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
1002 return UpdateValueUsesWith(I, GetConstantInType(I->getType(), KnownOne));
Chris Lattner6dce1a72006-02-07 06:56:34 +00001003 return false;
1004}
1005
Chris Lattner955f3312004-09-28 21:48:02 +00001006// isTrueWhenEqual - Return true if the specified setcondinst instruction is
1007// true when both operands are equal...
1008//
1009static bool isTrueWhenEqual(Instruction &I) {
1010 return I.getOpcode() == Instruction::SetEQ ||
1011 I.getOpcode() == Instruction::SetGE ||
1012 I.getOpcode() == Instruction::SetLE;
1013}
Chris Lattner564a7272003-08-13 19:01:45 +00001014
1015/// AssociativeOpt - Perform an optimization on an associative operator. This
1016/// function is designed to check a chain of associative operators for a
1017/// potential to apply a certain optimization. Since the optimization may be
1018/// applicable if the expression was reassociated, this checks the chain, then
1019/// reassociates the expression as necessary to expose the optimization
1020/// opportunity. This makes use of a special Functor, which must define
1021/// 'shouldApply' and 'apply' methods.
1022///
1023template<typename Functor>
1024Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
1025 unsigned Opcode = Root.getOpcode();
1026 Value *LHS = Root.getOperand(0);
1027
1028 // Quick check, see if the immediate LHS matches...
1029 if (F.shouldApply(LHS))
1030 return F.apply(Root);
1031
1032 // Otherwise, if the LHS is not of the same opcode as the root, return.
1033 Instruction *LHSI = dyn_cast<Instruction>(LHS);
Chris Lattnerfd059242003-10-15 16:48:29 +00001034 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
Chris Lattner564a7272003-08-13 19:01:45 +00001035 // Should we apply this transform to the RHS?
1036 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1037
1038 // If not to the RHS, check to see if we should apply to the LHS...
1039 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1040 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1041 ShouldApply = true;
1042 }
1043
1044 // If the functor wants to apply the optimization to the RHS of LHSI,
1045 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1046 if (ShouldApply) {
1047 BasicBlock *BB = Root.getParent();
Misha Brukmanfd939082005-04-21 23:48:37 +00001048
Chris Lattner564a7272003-08-13 19:01:45 +00001049 // Now all of the instructions are in the current basic block, go ahead
1050 // and perform the reassociation.
1051 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1052
1053 // First move the selected RHS to the LHS of the root...
1054 Root.setOperand(0, LHSI->getOperand(1));
1055
1056 // Make what used to be the LHS of the root be the user of the root...
1057 Value *ExtraOperand = TmpLHSI->getOperand(1);
Chris Lattner65725312004-04-16 18:08:07 +00001058 if (&Root == TmpLHSI) {
Chris Lattner15a76c02004-04-05 02:10:19 +00001059 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1060 return 0;
1061 }
Chris Lattner65725312004-04-16 18:08:07 +00001062 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
Chris Lattner564a7272003-08-13 19:01:45 +00001063 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
Chris Lattner65725312004-04-16 18:08:07 +00001064 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
1065 BasicBlock::iterator ARI = &Root; ++ARI;
1066 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
1067 ARI = Root;
Chris Lattner564a7272003-08-13 19:01:45 +00001068
1069 // Now propagate the ExtraOperand down the chain of instructions until we
1070 // get to LHSI.
1071 while (TmpLHSI != LHSI) {
1072 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
Chris Lattner65725312004-04-16 18:08:07 +00001073 // Move the instruction to immediately before the chain we are
1074 // constructing to avoid breaking dominance properties.
1075 NextLHSI->getParent()->getInstList().remove(NextLHSI);
1076 BB->getInstList().insert(ARI, NextLHSI);
1077 ARI = NextLHSI;
1078
Chris Lattner564a7272003-08-13 19:01:45 +00001079 Value *NextOp = NextLHSI->getOperand(1);
1080 NextLHSI->setOperand(1, ExtraOperand);
1081 TmpLHSI = NextLHSI;
1082 ExtraOperand = NextOp;
1083 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001084
Chris Lattner564a7272003-08-13 19:01:45 +00001085 // Now that the instructions are reassociated, have the functor perform
1086 // the transformation...
1087 return F.apply(Root);
1088 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001089
Chris Lattner564a7272003-08-13 19:01:45 +00001090 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1091 }
1092 return 0;
1093}
1094
1095
1096// AddRHS - Implements: X + X --> X << 1
1097struct AddRHS {
1098 Value *RHS;
1099 AddRHS(Value *rhs) : RHS(rhs) {}
1100 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1101 Instruction *apply(BinaryOperator &Add) const {
1102 return new ShiftInst(Instruction::Shl, Add.getOperand(0),
1103 ConstantInt::get(Type::UByteTy, 1));
1104 }
1105};
1106
1107// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1108// iff C1&C2 == 0
1109struct AddMaskingAnd {
1110 Constant *C2;
1111 AddMaskingAnd(Constant *c) : C2(c) {}
1112 bool shouldApply(Value *LHS) const {
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001113 ConstantInt *C1;
Misha Brukmanfd939082005-04-21 23:48:37 +00001114 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001115 ConstantExpr::getAnd(C1, C2)->isNullValue();
Chris Lattner564a7272003-08-13 19:01:45 +00001116 }
1117 Instruction *apply(BinaryOperator &Add) const {
Chris Lattner48595f12004-06-10 02:07:29 +00001118 return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
Chris Lattner564a7272003-08-13 19:01:45 +00001119 }
1120};
1121
Chris Lattner6e7ba452005-01-01 16:22:27 +00001122static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner2eefe512004-04-09 19:05:30 +00001123 InstCombiner *IC) {
Chris Lattner6e7ba452005-01-01 16:22:27 +00001124 if (isa<CastInst>(I)) {
1125 if (Constant *SOC = dyn_cast<Constant>(SO))
1126 return ConstantExpr::getCast(SOC, I.getType());
Misha Brukmanfd939082005-04-21 23:48:37 +00001127
Chris Lattner6e7ba452005-01-01 16:22:27 +00001128 return IC->InsertNewInstBefore(new CastInst(SO, I.getType(),
1129 SO->getName() + ".cast"), I);
1130 }
1131
Chris Lattner2eefe512004-04-09 19:05:30 +00001132 // Figure out if the constant is the left or the right argument.
Chris Lattner6e7ba452005-01-01 16:22:27 +00001133 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1134 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattner564a7272003-08-13 19:01:45 +00001135
Chris Lattner2eefe512004-04-09 19:05:30 +00001136 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1137 if (ConstIsRHS)
Chris Lattner6e7ba452005-01-01 16:22:27 +00001138 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1139 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner2eefe512004-04-09 19:05:30 +00001140 }
1141
1142 Value *Op0 = SO, *Op1 = ConstOperand;
1143 if (!ConstIsRHS)
1144 std::swap(Op0, Op1);
1145 Instruction *New;
Chris Lattner6e7ba452005-01-01 16:22:27 +00001146 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
1147 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
1148 else if (ShiftInst *SI = dyn_cast<ShiftInst>(&I))
1149 New = new ShiftInst(SI->getOpcode(), Op0, Op1, SO->getName()+".sh");
Chris Lattner326c0f32004-04-10 19:15:56 +00001150 else {
Chris Lattner2eefe512004-04-09 19:05:30 +00001151 assert(0 && "Unknown binary instruction type!");
Chris Lattner326c0f32004-04-10 19:15:56 +00001152 abort();
1153 }
Chris Lattner6e7ba452005-01-01 16:22:27 +00001154 return IC->InsertNewInstBefore(New, I);
1155}
1156
1157// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1158// constant as the other operand, try to fold the binary operator into the
1159// select arguments. This also works for Cast instructions, which obviously do
1160// not have a second operand.
1161static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1162 InstCombiner *IC) {
1163 // Don't modify shared select instructions
1164 if (!SI->hasOneUse()) return 0;
1165 Value *TV = SI->getOperand(1);
1166 Value *FV = SI->getOperand(2);
1167
1168 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner956db272005-04-21 05:43:13 +00001169 // Bool selects with constant operands can be folded to logical ops.
1170 if (SI->getType() == Type::BoolTy) return 0;
1171
Chris Lattner6e7ba452005-01-01 16:22:27 +00001172 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1173 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1174
1175 return new SelectInst(SI->getCondition(), SelectTrueVal,
1176 SelectFalseVal);
1177 }
1178 return 0;
Chris Lattner2eefe512004-04-09 19:05:30 +00001179}
1180
Chris Lattner4e998b22004-09-29 05:07:12 +00001181
1182/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1183/// node as operand #0, see if we can fold the instruction into the PHI (which
1184/// is only possible if all operands to the PHI are constants).
1185Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1186 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattnerbac32862004-11-14 19:13:23 +00001187 unsigned NumPHIValues = PN->getNumIncomingValues();
1188 if (!PN->hasOneUse() || NumPHIValues == 0 ||
1189 !isa<Constant>(PN->getIncomingValue(0))) return 0;
Chris Lattner4e998b22004-09-29 05:07:12 +00001190
1191 // Check to see if all of the operands of the PHI are constants. If not, we
1192 // cannot do the transformation.
Chris Lattnerbac32862004-11-14 19:13:23 +00001193 for (unsigned i = 1; i != NumPHIValues; ++i)
Chris Lattner4e998b22004-09-29 05:07:12 +00001194 if (!isa<Constant>(PN->getIncomingValue(i)))
1195 return 0;
1196
1197 // Okay, we can do the transformation: create the new PHI node.
1198 PHINode *NewPN = new PHINode(I.getType(), I.getName());
1199 I.setName("");
Chris Lattner55517062005-01-29 00:39:08 +00001200 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
Chris Lattner4e998b22004-09-29 05:07:12 +00001201 InsertNewInstBefore(NewPN, *PN);
1202
1203 // Next, add all of the operands to the PHI.
1204 if (I.getNumOperands() == 2) {
1205 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattnerbac32862004-11-14 19:13:23 +00001206 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner4e998b22004-09-29 05:07:12 +00001207 Constant *InV = cast<Constant>(PN->getIncomingValue(i));
1208 NewPN->addIncoming(ConstantExpr::get(I.getOpcode(), InV, C),
1209 PN->getIncomingBlock(i));
1210 }
1211 } else {
1212 assert(isa<CastInst>(I) && "Unary op should be a cast!");
1213 const Type *RetTy = I.getType();
Chris Lattnerbac32862004-11-14 19:13:23 +00001214 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner4e998b22004-09-29 05:07:12 +00001215 Constant *InV = cast<Constant>(PN->getIncomingValue(i));
1216 NewPN->addIncoming(ConstantExpr::getCast(InV, RetTy),
1217 PN->getIncomingBlock(i));
1218 }
1219 }
1220 return ReplaceInstUsesWith(I, NewPN);
1221}
1222
Chris Lattner7e708292002-06-25 16:13:24 +00001223Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00001224 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00001225 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Chris Lattnerb35dde12002-05-06 16:49:18 +00001226
Chris Lattner66331a42004-04-10 22:01:55 +00001227 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
Chris Lattnere87597f2004-10-16 18:11:37 +00001228 // X + undef -> undef
1229 if (isa<UndefValue>(RHS))
1230 return ReplaceInstUsesWith(I, RHS);
1231
Chris Lattner66331a42004-04-10 22:01:55 +00001232 // X + 0 --> X
Chris Lattner5e678e02005-10-17 17:56:38 +00001233 if (!I.getType()->isFloatingPoint()) { // NOTE: -0 + +0 = +0.
1234 if (RHSC->isNullValue())
1235 return ReplaceInstUsesWith(I, LHS);
Chris Lattner8532cf62005-10-17 20:18:38 +00001236 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1237 if (CFP->isExactlyValue(-0.0))
1238 return ReplaceInstUsesWith(I, LHS);
Chris Lattner5e678e02005-10-17 17:56:38 +00001239 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001240
Chris Lattner66331a42004-04-10 22:01:55 +00001241 // X + (signbit) --> X ^ signbit
1242 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
Chris Lattner74c51a02006-02-07 08:05:22 +00001243 uint64_t Val = CI->getZExtValue();
Chris Lattner1a074fc2006-02-07 07:00:41 +00001244 if (Val == (1ULL << (CI->getType()->getPrimitiveSizeInBits()-1)))
Chris Lattner48595f12004-06-10 02:07:29 +00001245 return BinaryOperator::createXor(LHS, RHS);
Chris Lattner66331a42004-04-10 22:01:55 +00001246 }
Chris Lattner4e998b22004-09-29 05:07:12 +00001247
1248 if (isa<PHINode>(LHS))
1249 if (Instruction *NV = FoldOpIntoPhi(I))
1250 return NV;
Chris Lattner5931c542005-09-24 23:43:33 +00001251
Chris Lattner4f637d42006-01-06 17:59:59 +00001252 ConstantInt *XorRHS = 0;
1253 Value *XorLHS = 0;
Chris Lattner5931c542005-09-24 23:43:33 +00001254 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1255 unsigned TySizeBits = I.getType()->getPrimitiveSizeInBits();
1256 int64_t RHSSExt = cast<ConstantInt>(RHSC)->getSExtValue();
1257 uint64_t RHSZExt = cast<ConstantInt>(RHSC)->getZExtValue();
1258
1259 uint64_t C0080Val = 1ULL << 31;
1260 int64_t CFF80Val = -C0080Val;
1261 unsigned Size = 32;
1262 do {
1263 if (TySizeBits > Size) {
1264 bool Found = false;
1265 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1266 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1267 if (RHSSExt == CFF80Val) {
1268 if (XorRHS->getZExtValue() == C0080Val)
1269 Found = true;
1270 } else if (RHSZExt == C0080Val) {
1271 if (XorRHS->getSExtValue() == CFF80Val)
1272 Found = true;
1273 }
1274 if (Found) {
1275 // This is a sign extend if the top bits are known zero.
Chris Lattner68d5ff22006-02-09 07:38:58 +00001276 uint64_t Mask = ~0ULL;
Chris Lattner3bedbd92006-02-07 07:27:52 +00001277 Mask <<= 64-(TySizeBits-Size);
Chris Lattner68d5ff22006-02-09 07:38:58 +00001278 Mask &= XorLHS->getType()->getIntegralTypeMask();
Chris Lattner3bedbd92006-02-07 07:27:52 +00001279 if (!MaskedValueIsZero(XorLHS, Mask))
Chris Lattner5931c542005-09-24 23:43:33 +00001280 Size = 0; // Not a sign ext, but can't be any others either.
1281 goto FoundSExt;
1282 }
1283 }
1284 Size >>= 1;
1285 C0080Val >>= Size;
1286 CFF80Val >>= Size;
1287 } while (Size >= 8);
1288
1289FoundSExt:
1290 const Type *MiddleType = 0;
1291 switch (Size) {
1292 default: break;
1293 case 32: MiddleType = Type::IntTy; break;
1294 case 16: MiddleType = Type::ShortTy; break;
1295 case 8: MiddleType = Type::SByteTy; break;
1296 }
1297 if (MiddleType) {
1298 Instruction *NewTrunc = new CastInst(XorLHS, MiddleType, "sext");
1299 InsertNewInstBefore(NewTrunc, I);
1300 return new CastInst(NewTrunc, I.getType());
1301 }
1302 }
Chris Lattner66331a42004-04-10 22:01:55 +00001303 }
Chris Lattnerb35dde12002-05-06 16:49:18 +00001304
Chris Lattner564a7272003-08-13 19:01:45 +00001305 // X + X --> X << 1
Robert Bocchino71698282004-07-27 21:02:21 +00001306 if (I.getType()->isInteger()) {
Chris Lattner564a7272003-08-13 19:01:45 +00001307 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
Chris Lattner7edc8c22005-04-07 17:14:51 +00001308
1309 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
1310 if (RHSI->getOpcode() == Instruction::Sub)
1311 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
1312 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
1313 }
1314 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
1315 if (LHSI->getOpcode() == Instruction::Sub)
1316 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
1317 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
1318 }
Robert Bocchino71698282004-07-27 21:02:21 +00001319 }
Chris Lattnere92d2f42003-08-13 04:18:28 +00001320
Chris Lattner5c4afb92002-05-08 22:46:53 +00001321 // -A + B --> B - A
Chris Lattner8d969642003-03-10 23:06:50 +00001322 if (Value *V = dyn_castNegVal(LHS))
Chris Lattner48595f12004-06-10 02:07:29 +00001323 return BinaryOperator::createSub(RHS, V);
Chris Lattnerb35dde12002-05-06 16:49:18 +00001324
1325 // A + -B --> A - B
Chris Lattner8d969642003-03-10 23:06:50 +00001326 if (!isa<Constant>(RHS))
1327 if (Value *V = dyn_castNegVal(RHS))
Chris Lattner48595f12004-06-10 02:07:29 +00001328 return BinaryOperator::createSub(LHS, V);
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001329
Misha Brukmanfd939082005-04-21 23:48:37 +00001330
Chris Lattner50af16a2004-11-13 19:50:12 +00001331 ConstantInt *C2;
1332 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
1333 if (X == RHS) // X*C + X --> X * (C+1)
1334 return BinaryOperator::createMul(RHS, AddOne(C2));
1335
1336 // X*C1 + X*C2 --> X * (C1+C2)
1337 ConstantInt *C1;
1338 if (X == dyn_castFoldableMul(RHS, C1))
1339 return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2));
Chris Lattnerad3448c2003-02-18 19:57:07 +00001340 }
1341
1342 // X + X*C --> X * (C+1)
Chris Lattner50af16a2004-11-13 19:50:12 +00001343 if (dyn_castFoldableMul(RHS, C2) == LHS)
1344 return BinaryOperator::createMul(LHS, AddOne(C2));
1345
Chris Lattnerad3448c2003-02-18 19:57:07 +00001346
Chris Lattner564a7272003-08-13 19:01:45 +00001347 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001348 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
Chris Lattner564a7272003-08-13 19:01:45 +00001349 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;
Chris Lattnerc8802d22003-03-11 00:12:48 +00001350
Chris Lattner6b032052003-10-02 15:11:26 +00001351 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Chris Lattner4f637d42006-01-06 17:59:59 +00001352 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001353 if (match(LHS, m_Not(m_Value(X)))) { // ~X + C --> (C-1) - X
1354 Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1));
1355 return BinaryOperator::createSub(C, X);
Chris Lattner6b032052003-10-02 15:11:26 +00001356 }
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001357
Chris Lattnerb99d6b12004-10-08 05:07:56 +00001358 // (X & FF00) + xx00 -> (X+xx00) & FF00
1359 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
1360 Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
1361 if (Anded == CRHS) {
1362 // See if all bits from the first bit set in the Add RHS up are included
1363 // in the mask. First, get the rightmost bit.
1364 uint64_t AddRHSV = CRHS->getRawValue();
1365
1366 // Form a mask of all bits from the lowest bit added through the top.
1367 uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1);
Chris Lattner1a074fc2006-02-07 07:00:41 +00001368 AddRHSHighBits &= C2->getType()->getIntegralTypeMask();
Chris Lattnerb99d6b12004-10-08 05:07:56 +00001369
1370 // See if the and mask includes all of these bits.
1371 uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getRawValue();
Misha Brukmanfd939082005-04-21 23:48:37 +00001372
Chris Lattnerb99d6b12004-10-08 05:07:56 +00001373 if (AddRHSHighBits == AddRHSHighBitsAnd) {
1374 // Okay, the xform is safe. Insert the new add pronto.
1375 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
1376 LHS->getName()), I);
1377 return BinaryOperator::createAnd(NewAdd, C2);
1378 }
1379 }
1380 }
1381
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001382 // Try to fold constant add into select arguments.
1383 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
Chris Lattner6e7ba452005-01-01 16:22:27 +00001384 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001385 return R;
Chris Lattner6b032052003-10-02 15:11:26 +00001386 }
1387
Chris Lattner7e708292002-06-25 16:13:24 +00001388 return Changed ? &I : 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001389}
1390
Chris Lattner1ba5bcd2003-07-22 21:46:59 +00001391// isSignBit - Return true if the value represented by the constant only has the
1392// highest order bit set.
1393static bool isSignBit(ConstantInt *CI) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00001394 unsigned NumBits = CI->getType()->getPrimitiveSizeInBits();
Chris Lattnerf52d6812005-04-24 17:46:05 +00001395 return (CI->getRawValue() & (~0ULL >> (64-NumBits))) == (1ULL << (NumBits-1));
Chris Lattner1ba5bcd2003-07-22 21:46:59 +00001396}
1397
Chris Lattnerbfe492b2004-03-13 00:11:49 +00001398/// RemoveNoopCast - Strip off nonconverting casts from the value.
1399///
1400static Value *RemoveNoopCast(Value *V) {
1401 if (CastInst *CI = dyn_cast<CastInst>(V)) {
1402 const Type *CTy = CI->getType();
1403 const Type *OpTy = CI->getOperand(0)->getType();
1404 if (CTy->isInteger() && OpTy->isInteger()) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00001405 if (CTy->getPrimitiveSizeInBits() == OpTy->getPrimitiveSizeInBits())
Chris Lattnerbfe492b2004-03-13 00:11:49 +00001406 return RemoveNoopCast(CI->getOperand(0));
1407 } else if (isa<PointerType>(CTy) && isa<PointerType>(OpTy))
1408 return RemoveNoopCast(CI->getOperand(0));
1409 }
1410 return V;
1411}
1412
Chris Lattner7e708292002-06-25 16:13:24 +00001413Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Chris Lattner7e708292002-06-25 16:13:24 +00001414 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00001415
Chris Lattner233f7dc2002-08-12 21:17:25 +00001416 if (Op0 == Op1) // sub X, X -> 0
1417 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001418
Chris Lattner233f7dc2002-08-12 21:17:25 +00001419 // If this is a 'B = x-(-A)', change to B = x+A...
Chris Lattner8d969642003-03-10 23:06:50 +00001420 if (Value *V = dyn_castNegVal(Op1))
Chris Lattner48595f12004-06-10 02:07:29 +00001421 return BinaryOperator::createAdd(Op0, V);
Chris Lattnerb35dde12002-05-06 16:49:18 +00001422
Chris Lattnere87597f2004-10-16 18:11:37 +00001423 if (isa<UndefValue>(Op0))
1424 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
1425 if (isa<UndefValue>(Op1))
1426 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
1427
Chris Lattnerd65460f2003-11-05 01:06:05 +00001428 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1429 // Replace (-1 - A) with (~A)...
Chris Lattnera2881962003-02-18 19:28:33 +00001430 if (C->isAllOnesValue())
1431 return BinaryOperator::createNot(Op1);
Chris Lattner40371712002-05-09 01:29:19 +00001432
Chris Lattnerd65460f2003-11-05 01:06:05 +00001433 // C - ~X == X + (1+C)
Reid Spencer4b828e62005-06-18 17:37:34 +00001434 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001435 if (match(Op1, m_Not(m_Value(X))))
1436 return BinaryOperator::createAdd(X,
Chris Lattner48595f12004-06-10 02:07:29 +00001437 ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1)));
Chris Lattner9c290672004-03-12 23:53:13 +00001438 // -((uint)X >> 31) -> ((int)X >> 31)
1439 // -((int)X >> 31) -> ((uint)X >> 31)
Chris Lattnerbfe492b2004-03-13 00:11:49 +00001440 if (C->isNullValue()) {
1441 Value *NoopCastedRHS = RemoveNoopCast(Op1);
1442 if (ShiftInst *SI = dyn_cast<ShiftInst>(NoopCastedRHS))
Chris Lattner9c290672004-03-12 23:53:13 +00001443 if (SI->getOpcode() == Instruction::Shr)
1444 if (ConstantUInt *CU = dyn_cast<ConstantUInt>(SI->getOperand(1))) {
1445 const Type *NewTy;
Chris Lattnerbfe492b2004-03-13 00:11:49 +00001446 if (SI->getType()->isSigned())
Chris Lattner5dd04022004-06-17 18:16:02 +00001447 NewTy = SI->getType()->getUnsignedVersion();
Chris Lattner9c290672004-03-12 23:53:13 +00001448 else
Chris Lattner5dd04022004-06-17 18:16:02 +00001449 NewTy = SI->getType()->getSignedVersion();
Chris Lattner9c290672004-03-12 23:53:13 +00001450 // Check to see if we are shifting out everything but the sign bit.
Chris Lattner484d3cf2005-04-24 06:59:08 +00001451 if (CU->getValue() == SI->getType()->getPrimitiveSizeInBits()-1) {
Chris Lattner9c290672004-03-12 23:53:13 +00001452 // Ok, the transformation is safe. Insert a cast of the incoming
1453 // value, then the new shift, then the new cast.
1454 Instruction *FirstCast = new CastInst(SI->getOperand(0), NewTy,
1455 SI->getOperand(0)->getName());
1456 Value *InV = InsertNewInstBefore(FirstCast, I);
1457 Instruction *NewShift = new ShiftInst(Instruction::Shr, FirstCast,
1458 CU, SI->getName());
Chris Lattnerbfe492b2004-03-13 00:11:49 +00001459 if (NewShift->getType() == I.getType())
1460 return NewShift;
1461 else {
1462 InV = InsertNewInstBefore(NewShift, I);
1463 return new CastInst(NewShift, I.getType());
1464 }
Chris Lattner9c290672004-03-12 23:53:13 +00001465 }
1466 }
Chris Lattnerbfe492b2004-03-13 00:11:49 +00001467 }
Chris Lattner2eefe512004-04-09 19:05:30 +00001468
1469 // Try to fold constant sub into select arguments.
1470 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner6e7ba452005-01-01 16:22:27 +00001471 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00001472 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00001473
1474 if (isa<PHINode>(Op0))
1475 if (Instruction *NV = FoldOpIntoPhi(I))
1476 return NV;
Chris Lattnerd65460f2003-11-05 01:06:05 +00001477 }
1478
Chris Lattner43d84d62005-04-07 16:15:25 +00001479 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
1480 if (Op1I->getOpcode() == Instruction::Add &&
1481 !Op0->getType()->isFloatingPoint()) {
Chris Lattner08954a22005-04-07 16:28:01 +00001482 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
Chris Lattner43d84d62005-04-07 16:15:25 +00001483 return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
Chris Lattner08954a22005-04-07 16:28:01 +00001484 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
Chris Lattner43d84d62005-04-07 16:15:25 +00001485 return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
Chris Lattner08954a22005-04-07 16:28:01 +00001486 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
1487 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
1488 // C1-(X+C2) --> (C1-C2)-X
1489 return BinaryOperator::createSub(ConstantExpr::getSub(CI1, CI2),
1490 Op1I->getOperand(0));
1491 }
Chris Lattner43d84d62005-04-07 16:15:25 +00001492 }
1493
Chris Lattnerfd059242003-10-15 16:48:29 +00001494 if (Op1I->hasOneUse()) {
Chris Lattnera2881962003-02-18 19:28:33 +00001495 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
1496 // is not used by anyone else...
1497 //
Chris Lattner0517e722004-02-02 20:09:56 +00001498 if (Op1I->getOpcode() == Instruction::Sub &&
1499 !Op1I->getType()->isFloatingPoint()) {
Chris Lattnera2881962003-02-18 19:28:33 +00001500 // Swap the two operands of the subexpr...
1501 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
1502 Op1I->setOperand(0, IIOp1);
1503 Op1I->setOperand(1, IIOp0);
Misha Brukmanfd939082005-04-21 23:48:37 +00001504
Chris Lattnera2881962003-02-18 19:28:33 +00001505 // Create the new top level add instruction...
Chris Lattner48595f12004-06-10 02:07:29 +00001506 return BinaryOperator::createAdd(Op0, Op1);
Chris Lattnera2881962003-02-18 19:28:33 +00001507 }
1508
1509 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
1510 //
1511 if (Op1I->getOpcode() == Instruction::And &&
1512 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
1513 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
1514
Chris Lattnerf523d062004-06-09 05:08:07 +00001515 Value *NewNot =
1516 InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
Chris Lattner48595f12004-06-10 02:07:29 +00001517 return BinaryOperator::createAnd(Op0, NewNot);
Chris Lattnera2881962003-02-18 19:28:33 +00001518 }
Chris Lattnerad3448c2003-02-18 19:57:07 +00001519
Chris Lattner91ccc152004-10-06 15:08:25 +00001520 // -(X sdiv C) -> (X sdiv -C)
1521 if (Op1I->getOpcode() == Instruction::Div)
1522 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
Chris Lattner43d84d62005-04-07 16:15:25 +00001523 if (CSI->isNullValue())
Chris Lattner91ccc152004-10-06 15:08:25 +00001524 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
Misha Brukmanfd939082005-04-21 23:48:37 +00001525 return BinaryOperator::createDiv(Op1I->getOperand(0),
Chris Lattner91ccc152004-10-06 15:08:25 +00001526 ConstantExpr::getNeg(DivRHS));
1527
Chris Lattnerad3448c2003-02-18 19:57:07 +00001528 // X - X*C --> X * (1-C)
Reid Spencer4b828e62005-06-18 17:37:34 +00001529 ConstantInt *C2 = 0;
Chris Lattner50af16a2004-11-13 19:50:12 +00001530 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
Misha Brukmanfd939082005-04-21 23:48:37 +00001531 Constant *CP1 =
Chris Lattner50af16a2004-11-13 19:50:12 +00001532 ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2);
Chris Lattner48595f12004-06-10 02:07:29 +00001533 return BinaryOperator::createMul(Op0, CP1);
Chris Lattnerad3448c2003-02-18 19:57:07 +00001534 }
Chris Lattner40371712002-05-09 01:29:19 +00001535 }
Chris Lattner43d84d62005-04-07 16:15:25 +00001536 }
Chris Lattnera2881962003-02-18 19:28:33 +00001537
Chris Lattner7edc8c22005-04-07 17:14:51 +00001538 if (!Op0->getType()->isFloatingPoint())
1539 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
1540 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00001541 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
1542 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
1543 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
1544 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattner7edc8c22005-04-07 17:14:51 +00001545 } else if (Op0I->getOpcode() == Instruction::Sub) {
1546 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
1547 return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00001548 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001549
Chris Lattner50af16a2004-11-13 19:50:12 +00001550 ConstantInt *C1;
1551 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
1552 if (X == Op1) { // X*C - X --> X * (C-1)
1553 Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1));
1554 return BinaryOperator::createMul(Op1, CP1);
1555 }
Chris Lattnerad3448c2003-02-18 19:57:07 +00001556
Chris Lattner50af16a2004-11-13 19:50:12 +00001557 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
1558 if (X == dyn_castFoldableMul(Op1, C2))
1559 return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2));
1560 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00001561 return 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001562}
1563
Chris Lattner4cb170c2004-02-23 06:38:22 +00001564/// isSignBitCheck - Given an exploded setcc instruction, return true if it is
1565/// really just returns true if the most significant (sign) bit is set.
1566static bool isSignBitCheck(unsigned Opcode, Value *LHS, ConstantInt *RHS) {
1567 if (RHS->getType()->isSigned()) {
1568 // True if source is LHS < 0 or LHS <= -1
1569 return Opcode == Instruction::SetLT && RHS->isNullValue() ||
1570 Opcode == Instruction::SetLE && RHS->isAllOnesValue();
1571 } else {
1572 ConstantUInt *RHSC = cast<ConstantUInt>(RHS);
1573 // True if source is LHS > 127 or LHS >= 128, where the constants depend on
1574 // the size of the integer type.
1575 if (Opcode == Instruction::SetGE)
Chris Lattner484d3cf2005-04-24 06:59:08 +00001576 return RHSC->getValue() ==
1577 1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1);
Chris Lattner4cb170c2004-02-23 06:38:22 +00001578 if (Opcode == Instruction::SetGT)
1579 return RHSC->getValue() ==
Chris Lattner484d3cf2005-04-24 06:59:08 +00001580 (1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1))-1;
Chris Lattner4cb170c2004-02-23 06:38:22 +00001581 }
1582 return false;
1583}
1584
Chris Lattner7e708292002-06-25 16:13:24 +00001585Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00001586 bool Changed = SimplifyCommutative(I);
Chris Lattnera2881962003-02-18 19:28:33 +00001587 Value *Op0 = I.getOperand(0);
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001588
Chris Lattnere87597f2004-10-16 18:11:37 +00001589 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
1590 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1591
Chris Lattner233f7dc2002-08-12 21:17:25 +00001592 // Simplify mul instructions with a constant RHS...
Chris Lattnera2881962003-02-18 19:28:33 +00001593 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
1594 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere92d2f42003-08-13 04:18:28 +00001595
1596 // ((X << C1)*C2) == (X * (C2 << C1))
1597 if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
1598 if (SI->getOpcode() == Instruction::Shl)
1599 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
Chris Lattner48595f12004-06-10 02:07:29 +00001600 return BinaryOperator::createMul(SI->getOperand(0),
1601 ConstantExpr::getShl(CI, ShOp));
Misha Brukmanfd939082005-04-21 23:48:37 +00001602
Chris Lattner515c97c2003-09-11 22:24:54 +00001603 if (CI->isNullValue())
1604 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
1605 if (CI->equalsInt(1)) // X * 1 == X
1606 return ReplaceInstUsesWith(I, Op0);
1607 if (CI->isAllOnesValue()) // X * -1 == 0 - X
Chris Lattner0af1fab2003-06-25 17:09:20 +00001608 return BinaryOperator::createNeg(Op0, I.getName());
Chris Lattner6c1ce212002-04-29 22:24:47 +00001609
Chris Lattner515c97c2003-09-11 22:24:54 +00001610 int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
Chris Lattnerbcd7db52005-08-02 19:16:58 +00001611 if (isPowerOf2_64(Val)) { // Replace X*(2^C) with X << C
1612 uint64_t C = Log2_64(Val);
Chris Lattnera2881962003-02-18 19:28:33 +00001613 return new ShiftInst(Instruction::Shl, Op0,
1614 ConstantUInt::get(Type::UByteTy, C));
Chris Lattnerbcd7db52005-08-02 19:16:58 +00001615 }
Robert Bocchino71698282004-07-27 21:02:21 +00001616 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
Chris Lattnera2881962003-02-18 19:28:33 +00001617 if (Op1F->isNullValue())
1618 return ReplaceInstUsesWith(I, Op1);
Chris Lattner6c1ce212002-04-29 22:24:47 +00001619
Chris Lattnera2881962003-02-18 19:28:33 +00001620 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
1621 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
1622 if (Op1F->getValue() == 1.0)
1623 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
1624 }
Chris Lattner2eefe512004-04-09 19:05:30 +00001625
1626 // Try to fold constant mul into select arguments.
1627 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00001628 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00001629 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00001630
1631 if (isa<PHINode>(Op0))
1632 if (Instruction *NV = FoldOpIntoPhi(I))
1633 return NV;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001634 }
1635
Chris Lattnera4f445b2003-03-10 23:23:04 +00001636 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
1637 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
Chris Lattner48595f12004-06-10 02:07:29 +00001638 return BinaryOperator::createMul(Op0v, Op1v);
Chris Lattnera4f445b2003-03-10 23:23:04 +00001639
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00001640 // If one of the operands of the multiply is a cast from a boolean value, then
1641 // we know the bool is either zero or one, so this is a 'masking' multiply.
1642 // See if we can simplify things based on how the boolean was originally
1643 // formed.
1644 CastInst *BoolCast = 0;
1645 if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(0)))
1646 if (CI->getOperand(0)->getType() == Type::BoolTy)
1647 BoolCast = CI;
1648 if (!BoolCast)
1649 if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(1)))
1650 if (CI->getOperand(0)->getType() == Type::BoolTy)
1651 BoolCast = CI;
1652 if (BoolCast) {
1653 if (SetCondInst *SCI = dyn_cast<SetCondInst>(BoolCast->getOperand(0))) {
1654 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
1655 const Type *SCOpTy = SCIOp0->getType();
1656
Chris Lattner4cb170c2004-02-23 06:38:22 +00001657 // If the setcc is true iff the sign bit of X is set, then convert this
1658 // multiply into a shift/and combination.
1659 if (isa<ConstantInt>(SCIOp1) &&
1660 isSignBitCheck(SCI->getOpcode(), SCIOp0, cast<ConstantInt>(SCIOp1))) {
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00001661 // Shift the X value right to turn it into "all signbits".
1662 Constant *Amt = ConstantUInt::get(Type::UByteTy,
Chris Lattner484d3cf2005-04-24 06:59:08 +00001663 SCOpTy->getPrimitiveSizeInBits()-1);
Chris Lattner4cb170c2004-02-23 06:38:22 +00001664 if (SCIOp0->getType()->isUnsigned()) {
Chris Lattner5dd04022004-06-17 18:16:02 +00001665 const Type *NewTy = SCIOp0->getType()->getSignedVersion();
Chris Lattner4cb170c2004-02-23 06:38:22 +00001666 SCIOp0 = InsertNewInstBefore(new CastInst(SCIOp0, NewTy,
1667 SCIOp0->getName()), I);
1668 }
1669
1670 Value *V =
1671 InsertNewInstBefore(new ShiftInst(Instruction::Shr, SCIOp0, Amt,
1672 BoolCast->getOperand(0)->getName()+
1673 ".mask"), I);
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00001674
1675 // If the multiply type is not the same as the source type, sign extend
1676 // or truncate to the multiply type.
1677 if (I.getType() != V->getType())
Chris Lattner4cb170c2004-02-23 06:38:22 +00001678 V = InsertNewInstBefore(new CastInst(V, I.getType(), V->getName()),I);
Misha Brukmanfd939082005-04-21 23:48:37 +00001679
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00001680 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
Chris Lattner48595f12004-06-10 02:07:29 +00001681 return BinaryOperator::createAnd(V, OtherOp);
Chris Lattnerfb54b2b2004-02-23 05:39:21 +00001682 }
1683 }
1684 }
1685
Chris Lattner7e708292002-06-25 16:13:24 +00001686 return Changed ? &I : 0;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00001687}
1688
Chris Lattner7e708292002-06-25 16:13:24 +00001689Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
Chris Lattner857e8cd2004-12-12 21:48:58 +00001690 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnere87597f2004-10-16 18:11:37 +00001691
Chris Lattner857e8cd2004-12-12 21:48:58 +00001692 if (isa<UndefValue>(Op0)) // undef / X -> 0
1693 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1694 if (isa<UndefValue>(Op1))
1695 return ReplaceInstUsesWith(I, Op1); // X / undef -> undef
1696
1697 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner83a2e6e2004-04-26 14:01:59 +00001698 // div X, 1 == X
Chris Lattner233f7dc2002-08-12 21:17:25 +00001699 if (RHS->equalsInt(1))
Chris Lattner857e8cd2004-12-12 21:48:58 +00001700 return ReplaceInstUsesWith(I, Op0);
Chris Lattnera2881962003-02-18 19:28:33 +00001701
Chris Lattner83a2e6e2004-04-26 14:01:59 +00001702 // div X, -1 == -X
1703 if (RHS->isAllOnesValue())
Chris Lattner857e8cd2004-12-12 21:48:58 +00001704 return BinaryOperator::createNeg(Op0);
Chris Lattner83a2e6e2004-04-26 14:01:59 +00001705
Chris Lattner857e8cd2004-12-12 21:48:58 +00001706 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
Chris Lattner18d19ca2004-09-28 18:22:15 +00001707 if (LHS->getOpcode() == Instruction::Div)
1708 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
Chris Lattner18d19ca2004-09-28 18:22:15 +00001709 // (X / C1) / C2 -> X / (C1*C2)
1710 return BinaryOperator::createDiv(LHS->getOperand(0),
1711 ConstantExpr::getMul(RHS, LHSRHS));
1712 }
1713
Chris Lattnera2881962003-02-18 19:28:33 +00001714 // Check to see if this is an unsigned division with an exact power of 2,
1715 // if so, convert to a right shift.
1716 if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
1717 if (uint64_t Val = C->getValue()) // Don't break X / 0
Chris Lattnerbcd7db52005-08-02 19:16:58 +00001718 if (isPowerOf2_64(Val)) {
1719 uint64_t C = Log2_64(Val);
Chris Lattner857e8cd2004-12-12 21:48:58 +00001720 return new ShiftInst(Instruction::Shr, Op0,
Chris Lattnera2881962003-02-18 19:28:33 +00001721 ConstantUInt::get(Type::UByteTy, C));
Chris Lattnerbcd7db52005-08-02 19:16:58 +00001722 }
Chris Lattner4e998b22004-09-29 05:07:12 +00001723
Chris Lattnera052f822004-10-09 02:50:40 +00001724 // -X/C -> X/-C
1725 if (RHS->getType()->isSigned())
Chris Lattner857e8cd2004-12-12 21:48:58 +00001726 if (Value *LHSNeg = dyn_castNegVal(Op0))
Chris Lattnera052f822004-10-09 02:50:40 +00001727 return BinaryOperator::createDiv(LHSNeg, ConstantExpr::getNeg(RHS));
1728
Chris Lattner857e8cd2004-12-12 21:48:58 +00001729 if (!RHS->isNullValue()) {
1730 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00001731 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner857e8cd2004-12-12 21:48:58 +00001732 return R;
1733 if (isa<PHINode>(Op0))
1734 if (Instruction *NV = FoldOpIntoPhi(I))
1735 return NV;
1736 }
Chris Lattnera2881962003-02-18 19:28:33 +00001737 }
1738
Chris Lattner857e8cd2004-12-12 21:48:58 +00001739 // If this is 'udiv X, (Cond ? C1, C2)' where C1&C2 are powers of two,
1740 // transform this into: '(Cond ? (udiv X, C1) : (udiv X, C2))'.
1741 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1742 if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
1743 if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
1744 if (STO->getValue() == 0) { // Couldn't be this argument.
1745 I.setOperand(1, SFO);
Misha Brukmanfd939082005-04-21 23:48:37 +00001746 return &I;
Chris Lattner857e8cd2004-12-12 21:48:58 +00001747 } else if (SFO->getValue() == 0) {
Chris Lattnerf9c775c2005-06-16 04:55:52 +00001748 I.setOperand(1, STO);
Misha Brukmanfd939082005-04-21 23:48:37 +00001749 return &I;
Chris Lattner857e8cd2004-12-12 21:48:58 +00001750 }
1751
Chris Lattnerbf70b832005-04-08 04:03:26 +00001752 uint64_t TVA = STO->getValue(), FVA = SFO->getValue();
Chris Lattnerbcd7db52005-08-02 19:16:58 +00001753 if (isPowerOf2_64(TVA) && isPowerOf2_64(FVA)) {
1754 unsigned TSA = Log2_64(TVA), FSA = Log2_64(FVA);
Chris Lattnerbf70b832005-04-08 04:03:26 +00001755 Constant *TC = ConstantUInt::get(Type::UByteTy, TSA);
1756 Instruction *TSI = new ShiftInst(Instruction::Shr, Op0,
1757 TC, SI->getName()+".t");
1758 TSI = InsertNewInstBefore(TSI, I);
Misha Brukmanfd939082005-04-21 23:48:37 +00001759
Chris Lattnerbf70b832005-04-08 04:03:26 +00001760 Constant *FC = ConstantUInt::get(Type::UByteTy, FSA);
1761 Instruction *FSI = new ShiftInst(Instruction::Shr, Op0,
1762 FC, SI->getName()+".f");
1763 FSI = InsertNewInstBefore(FSI, I);
1764 return new SelectInst(SI->getOperand(0), TSI, FSI);
1765 }
Chris Lattner857e8cd2004-12-12 21:48:58 +00001766 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001767
Chris Lattnera2881962003-02-18 19:28:33 +00001768 // 0 / X == 0, we don't need to preserve faults!
Chris Lattner857e8cd2004-12-12 21:48:58 +00001769 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
Chris Lattnera2881962003-02-18 19:28:33 +00001770 if (LHS->equalsInt(0))
1771 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1772
Chris Lattnerc812e5d2005-11-05 07:40:31 +00001773 if (I.getType()->isSigned()) {
Chris Lattner3bedbd92006-02-07 07:27:52 +00001774 // If the sign bits of both operands are zero (i.e. we can prove they are
Chris Lattnerc812e5d2005-11-05 07:40:31 +00001775 // unsigned inputs), turn this into a udiv.
Chris Lattner3bedbd92006-02-07 07:27:52 +00001776 uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
1777 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Chris Lattnerc812e5d2005-11-05 07:40:31 +00001778 const Type *NTy = Op0->getType()->getUnsignedVersion();
1779 Instruction *LHS = new CastInst(Op0, NTy, Op0->getName());
1780 InsertNewInstBefore(LHS, I);
1781 Value *RHS;
1782 if (Constant *R = dyn_cast<Constant>(Op1))
1783 RHS = ConstantExpr::getCast(R, NTy);
1784 else
1785 RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I);
1786 Instruction *Div = BinaryOperator::createDiv(LHS, RHS, I.getName());
1787 InsertNewInstBefore(Div, I);
1788 return new CastInst(Div, I.getType());
1789 }
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00001790 } else {
1791 // Known to be an unsigned division.
1792 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
1793 // Turn A / (C1 << N), where C1 is "1<<C2" into A >> (N+C2) [udiv only].
1794 if (RHSI->getOpcode() == Instruction::Shl &&
1795 isa<ConstantUInt>(RHSI->getOperand(0))) {
1796 unsigned C1 = cast<ConstantUInt>(RHSI->getOperand(0))->getRawValue();
1797 if (isPowerOf2_64(C1)) {
1798 unsigned C2 = Log2_64(C1);
1799 Value *Add = RHSI->getOperand(1);
1800 if (C2) {
1801 Constant *C2V = ConstantUInt::get(Add->getType(), C2);
1802 Add = InsertNewInstBefore(BinaryOperator::createAdd(Add, C2V,
1803 "tmp"), I);
1804 }
1805 return new ShiftInst(Instruction::Shr, Op0, Add);
1806 }
1807 }
1808 }
Chris Lattnerc812e5d2005-11-05 07:40:31 +00001809 }
1810
Chris Lattner3f5b8772002-05-06 16:14:14 +00001811 return 0;
1812}
1813
1814
Chris Lattner7e708292002-06-25 16:13:24 +00001815Instruction *InstCombiner::visitRem(BinaryOperator &I) {
Chris Lattner857e8cd2004-12-12 21:48:58 +00001816 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner11a49f22005-11-05 07:28:37 +00001817 if (I.getType()->isSigned()) {
Chris Lattner857e8cd2004-12-12 21:48:58 +00001818 if (Value *RHSNeg = dyn_castNegVal(Op1))
Chris Lattner1e3564e2004-07-06 07:11:42 +00001819 if (!isa<ConstantSInt>(RHSNeg) ||
Chris Lattnerb49f3062004-08-09 21:05:48 +00001820 cast<ConstantSInt>(RHSNeg)->getValue() > 0) {
Chris Lattner5b73c082004-07-06 07:01:22 +00001821 // X % -Y -> X % Y
1822 AddUsesToWorkList(I);
1823 I.setOperand(1, RHSNeg);
1824 return &I;
1825 }
Chris Lattner11a49f22005-11-05 07:28:37 +00001826
1827 // If the top bits of both operands are zero (i.e. we can prove they are
1828 // unsigned inputs), turn this into a urem.
Chris Lattner3bedbd92006-02-07 07:27:52 +00001829 uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1);
1830 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Chris Lattner11a49f22005-11-05 07:28:37 +00001831 const Type *NTy = Op0->getType()->getUnsignedVersion();
1832 Instruction *LHS = new CastInst(Op0, NTy, Op0->getName());
1833 InsertNewInstBefore(LHS, I);
1834 Value *RHS;
1835 if (Constant *R = dyn_cast<Constant>(Op1))
1836 RHS = ConstantExpr::getCast(R, NTy);
1837 else
1838 RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I);
1839 Instruction *Rem = BinaryOperator::createRem(LHS, RHS, I.getName());
1840 InsertNewInstBefore(Rem, I);
1841 return new CastInst(Rem, I.getType());
1842 }
1843 }
Chris Lattner5b73c082004-07-06 07:01:22 +00001844
Chris Lattner857e8cd2004-12-12 21:48:58 +00001845 if (isa<UndefValue>(Op0)) // undef % X -> 0
Chris Lattnere87597f2004-10-16 18:11:37 +00001846 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner857e8cd2004-12-12 21:48:58 +00001847 if (isa<UndefValue>(Op1))
1848 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
Chris Lattnere87597f2004-10-16 18:11:37 +00001849
Chris Lattner857e8cd2004-12-12 21:48:58 +00001850 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnera2881962003-02-18 19:28:33 +00001851 if (RHS->equalsInt(1)) // X % 1 == 0
1852 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1853
1854 // Check to see if this is an unsigned remainder with an exact power of 2,
1855 // if so, convert to a bitwise and.
1856 if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
1857 if (uint64_t Val = C->getValue()) // Don't break X % 0 (divide by zero)
Chris Lattner546516c2004-05-07 15:35:56 +00001858 if (!(Val & (Val-1))) // Power of 2
Chris Lattner857e8cd2004-12-12 21:48:58 +00001859 return BinaryOperator::createAnd(Op0,
1860 ConstantUInt::get(I.getType(), Val-1));
1861
1862 if (!RHS->isNullValue()) {
1863 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00001864 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner857e8cd2004-12-12 21:48:58 +00001865 return R;
1866 if (isa<PHINode>(Op0))
1867 if (Instruction *NV = FoldOpIntoPhi(I))
1868 return NV;
1869 }
Chris Lattnera2881962003-02-18 19:28:33 +00001870 }
1871
Chris Lattner857e8cd2004-12-12 21:48:58 +00001872 // If this is 'urem X, (Cond ? C1, C2)' where C1&C2 are powers of two,
1873 // transform this into: '(Cond ? (urem X, C1) : (urem X, C2))'.
1874 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1875 if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
1876 if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
1877 if (STO->getValue() == 0) { // Couldn't be this argument.
1878 I.setOperand(1, SFO);
Misha Brukmanfd939082005-04-21 23:48:37 +00001879 return &I;
Chris Lattner857e8cd2004-12-12 21:48:58 +00001880 } else if (SFO->getValue() == 0) {
1881 I.setOperand(1, STO);
Misha Brukmanfd939082005-04-21 23:48:37 +00001882 return &I;
Chris Lattner857e8cd2004-12-12 21:48:58 +00001883 }
1884
1885 if (!(STO->getValue() & (STO->getValue()-1)) &&
1886 !(SFO->getValue() & (SFO->getValue()-1))) {
1887 Value *TrueAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
1888 SubOne(STO), SI->getName()+".t"), I);
1889 Value *FalseAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
1890 SubOne(SFO), SI->getName()+".f"), I);
1891 return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
1892 }
1893 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001894
Chris Lattnera2881962003-02-18 19:28:33 +00001895 // 0 % X == 0, we don't need to preserve faults!
Chris Lattner857e8cd2004-12-12 21:48:58 +00001896 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
Chris Lattnera2881962003-02-18 19:28:33 +00001897 if (LHS->equalsInt(0))
Chris Lattner233f7dc2002-08-12 21:17:25 +00001898 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1899
Chris Lattner5f3b0ee2006-02-05 07:54:04 +00001900
1901 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
1902 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) [urem only].
1903 if (I.getType()->isUnsigned() &&
1904 RHSI->getOpcode() == Instruction::Shl &&
1905 isa<ConstantUInt>(RHSI->getOperand(0))) {
1906 unsigned C1 = cast<ConstantUInt>(RHSI->getOperand(0))->getRawValue();
1907 if (isPowerOf2_64(C1)) {
1908 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
1909 Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
1910 "tmp"), I);
1911 return BinaryOperator::createAnd(Op0, Add);
1912 }
1913 }
1914 }
1915
Chris Lattner3f5b8772002-05-06 16:14:14 +00001916 return 0;
1917}
1918
Chris Lattner8b170942002-08-09 23:47:40 +00001919// isMaxValueMinusOne - return true if this is Max-1
Chris Lattner233f7dc2002-08-12 21:17:25 +00001920static bool isMaxValueMinusOne(const ConstantInt *C) {
Chris Lattner1a074fc2006-02-07 07:00:41 +00001921 if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
1922 return CU->getValue() == C->getType()->getIntegralTypeMask()-1;
Chris Lattner8b170942002-08-09 23:47:40 +00001923
1924 const ConstantSInt *CS = cast<ConstantSInt>(C);
Misha Brukmanfd939082005-04-21 23:48:37 +00001925
Chris Lattner8b170942002-08-09 23:47:40 +00001926 // Calculate 0111111111..11111
Chris Lattner484d3cf2005-04-24 06:59:08 +00001927 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
Chris Lattner8b170942002-08-09 23:47:40 +00001928 int64_t Val = INT64_MAX; // All ones
1929 Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
1930 return CS->getValue() == Val-1;
1931}
1932
1933// isMinValuePlusOne - return true if this is Min+1
Chris Lattner233f7dc2002-08-12 21:17:25 +00001934static bool isMinValuePlusOne(const ConstantInt *C) {
Chris Lattner8b170942002-08-09 23:47:40 +00001935 if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
1936 return CU->getValue() == 1;
1937
1938 const ConstantSInt *CS = cast<ConstantSInt>(C);
Misha Brukmanfd939082005-04-21 23:48:37 +00001939
1940 // Calculate 1111111111000000000000
Chris Lattner484d3cf2005-04-24 06:59:08 +00001941 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits();
Chris Lattner8b170942002-08-09 23:47:40 +00001942 int64_t Val = -1; // All ones
1943 Val <<= TypeBits-1; // Shift over to the right spot
1944 return CS->getValue() == Val+1;
1945}
1946
Chris Lattner457dd822004-06-09 07:59:58 +00001947// isOneBitSet - Return true if there is exactly one bit set in the specified
1948// constant.
1949static bool isOneBitSet(const ConstantInt *CI) {
1950 uint64_t V = CI->getRawValue();
1951 return V && (V & (V-1)) == 0;
1952}
1953
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00001954#if 0 // Currently unused
1955// isLowOnes - Return true if the constant is of the form 0+1+.
1956static bool isLowOnes(const ConstantInt *CI) {
1957 uint64_t V = CI->getRawValue();
1958
1959 // There won't be bits set in parts that the type doesn't contain.
1960 V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
1961
1962 uint64_t U = V+1; // If it is low ones, this should be a power of two.
1963 return U && V && (U & V) == 0;
1964}
1965#endif
1966
1967// isHighOnes - Return true if the constant is of the form 1+0+.
1968// This is the same as lowones(~X).
1969static bool isHighOnes(const ConstantInt *CI) {
1970 uint64_t V = ~CI->getRawValue();
Chris Lattner2b83af22005-08-07 07:03:10 +00001971 if (~V == 0) return false; // 0's does not match "1+"
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00001972
1973 // There won't be bits set in parts that the type doesn't contain.
1974 V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue();
1975
1976 uint64_t U = V+1; // If it is low ones, this should be a power of two.
1977 return U && V && (U & V) == 0;
1978}
1979
1980
Chris Lattneraa9c1f12003-08-13 20:16:26 +00001981/// getSetCondCode - Encode a setcc opcode into a three bit mask. These bits
1982/// are carefully arranged to allow folding of expressions such as:
1983///
1984/// (A < B) | (A > B) --> (A != B)
1985///
1986/// Bit value '4' represents that the comparison is true if A > B, bit value '2'
1987/// represents that the comparison is true if A == B, and bit value '1' is true
1988/// if A < B.
1989///
1990static unsigned getSetCondCode(const SetCondInst *SCI) {
1991 switch (SCI->getOpcode()) {
1992 // False -> 0
1993 case Instruction::SetGT: return 1;
1994 case Instruction::SetEQ: return 2;
1995 case Instruction::SetGE: return 3;
1996 case Instruction::SetLT: return 4;
1997 case Instruction::SetNE: return 5;
1998 case Instruction::SetLE: return 6;
1999 // True -> 7
2000 default:
2001 assert(0 && "Invalid SetCC opcode!");
2002 return 0;
2003 }
2004}
2005
2006/// getSetCCValue - This is the complement of getSetCondCode, which turns an
2007/// opcode and two operands into either a constant true or false, or a brand new
2008/// SetCC instruction.
2009static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
2010 switch (Opcode) {
2011 case 0: return ConstantBool::False;
2012 case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
2013 case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
2014 case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
2015 case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
2016 case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
2017 case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
2018 case 7: return ConstantBool::True;
2019 default: assert(0 && "Illegal SetCCCode!"); return 0;
2020 }
2021}
2022
2023// FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
2024struct FoldSetCCLogical {
2025 InstCombiner &IC;
2026 Value *LHS, *RHS;
2027 FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
2028 : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
2029 bool shouldApply(Value *V) const {
2030 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
2031 return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
2032 SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
2033 return false;
2034 }
2035 Instruction *apply(BinaryOperator &Log) const {
2036 SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
2037 if (SCI->getOperand(0) != LHS) {
2038 assert(SCI->getOperand(1) == LHS);
2039 SCI->swapOperands(); // Swap the LHS and RHS of the SetCC
2040 }
2041
2042 unsigned LHSCode = getSetCondCode(SCI);
2043 unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
2044 unsigned Code;
2045 switch (Log.getOpcode()) {
2046 case Instruction::And: Code = LHSCode & RHSCode; break;
2047 case Instruction::Or: Code = LHSCode | RHSCode; break;
2048 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
Chris Lattner021c1902003-09-22 20:33:34 +00002049 default: assert(0 && "Illegal logical opcode!"); return 0;
Chris Lattneraa9c1f12003-08-13 20:16:26 +00002050 }
2051
2052 Value *RV = getSetCCValue(Code, LHS, RHS);
2053 if (Instruction *I = dyn_cast<Instruction>(RV))
2054 return I;
2055 // Otherwise, it's a constant boolean value...
2056 return IC.ReplaceInstUsesWith(Log, RV);
2057 }
2058};
2059
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002060// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
2061// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
2062// guaranteed to be either a shift instruction or a binary operator.
2063Instruction *InstCombiner::OptAndOp(Instruction *Op,
2064 ConstantIntegral *OpRHS,
2065 ConstantIntegral *AndRHS,
2066 BinaryOperator &TheAnd) {
2067 Value *X = Op->getOperand(0);
Chris Lattner76f7fe22004-01-12 19:47:05 +00002068 Constant *Together = 0;
2069 if (!isa<ShiftInst>(Op))
Chris Lattner48595f12004-06-10 02:07:29 +00002070 Together = ConstantExpr::getAnd(AndRHS, OpRHS);
Chris Lattner7c4049c2004-01-12 19:35:11 +00002071
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002072 switch (Op->getOpcode()) {
2073 case Instruction::Xor:
Chris Lattner6e7ba452005-01-01 16:22:27 +00002074 if (Op->hasOneUse()) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002075 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
2076 std::string OpName = Op->getName(); Op->setName("");
Chris Lattner48595f12004-06-10 02:07:29 +00002077 Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002078 InsertNewInstBefore(And, TheAnd);
Chris Lattner48595f12004-06-10 02:07:29 +00002079 return BinaryOperator::createXor(And, Together);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002080 }
2081 break;
2082 case Instruction::Or:
Chris Lattner6e7ba452005-01-01 16:22:27 +00002083 if (Together == AndRHS) // (X | C) & C --> C
2084 return ReplaceInstUsesWith(TheAnd, AndRHS);
Misha Brukmanfd939082005-04-21 23:48:37 +00002085
Chris Lattner6e7ba452005-01-01 16:22:27 +00002086 if (Op->hasOneUse() && Together != OpRHS) {
2087 // (X | C1) & C2 --> (X | (C1&C2)) & C2
2088 std::string Op0Name = Op->getName(); Op->setName("");
2089 Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name);
2090 InsertNewInstBefore(Or, TheAnd);
2091 return BinaryOperator::createAnd(Or, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002092 }
2093 break;
2094 case Instruction::Add:
Chris Lattnerfd059242003-10-15 16:48:29 +00002095 if (Op->hasOneUse()) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002096 // Adding a one to a single bit bit-field should be turned into an XOR
2097 // of the bit. First thing to check is to see if this AND is with a
2098 // single bit constant.
Chris Lattner457dd822004-06-09 07:59:58 +00002099 uint64_t AndRHSV = cast<ConstantInt>(AndRHS)->getRawValue();
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002100
2101 // Clear bits that are not part of the constant.
Chris Lattner1a074fc2006-02-07 07:00:41 +00002102 AndRHSV &= AndRHS->getType()->getIntegralTypeMask();
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002103
2104 // If there is only one bit set...
Chris Lattner457dd822004-06-09 07:59:58 +00002105 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002106 // Ok, at this point, we know that we are masking the result of the
2107 // ADD down to exactly one bit. If the constant we are adding has
2108 // no bits set below this bit, then we can eliminate the ADD.
Chris Lattner457dd822004-06-09 07:59:58 +00002109 uint64_t AddRHS = cast<ConstantInt>(OpRHS)->getRawValue();
Misha Brukmanfd939082005-04-21 23:48:37 +00002110
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002111 // Check to see if any bits below the one bit set in AndRHSV are set.
2112 if ((AddRHS & (AndRHSV-1)) == 0) {
2113 // If not, the only thing that can effect the output of the AND is
2114 // the bit specified by AndRHSV. If that bit is set, the effect of
2115 // the XOR is to toggle the bit. If it is clear, then the ADD has
2116 // no effect.
2117 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
2118 TheAnd.setOperand(0, X);
2119 return &TheAnd;
2120 } else {
2121 std::string Name = Op->getName(); Op->setName("");
2122 // Pull the XOR out of the AND.
Chris Lattner48595f12004-06-10 02:07:29 +00002123 Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002124 InsertNewInstBefore(NewAnd, TheAnd);
Chris Lattner48595f12004-06-10 02:07:29 +00002125 return BinaryOperator::createXor(NewAnd, AndRHS);
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002126 }
2127 }
2128 }
2129 }
2130 break;
Chris Lattner62a355c2003-09-19 19:05:02 +00002131
2132 case Instruction::Shl: {
2133 // We know that the AND will not produce any of the bits shifted in, so if
2134 // the anded constant includes them, clear them now!
2135 //
2136 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
Chris Lattner0c967662004-09-24 15:21:34 +00002137 Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS);
2138 Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask);
Misha Brukmanfd939082005-04-21 23:48:37 +00002139
Chris Lattner0c967662004-09-24 15:21:34 +00002140 if (CI == ShlMask) { // Masking out bits that the shift already masks
2141 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
2142 } else if (CI != AndRHS) { // Reducing bits set in and.
Chris Lattner62a355c2003-09-19 19:05:02 +00002143 TheAnd.setOperand(1, CI);
2144 return &TheAnd;
2145 }
2146 break;
Misha Brukmanfd939082005-04-21 23:48:37 +00002147 }
Chris Lattner62a355c2003-09-19 19:05:02 +00002148 case Instruction::Shr:
2149 // We know that the AND will not produce any of the bits shifted in, so if
2150 // the anded constant includes them, clear them now! This only applies to
2151 // unsigned shifts, because a signed shr may bring in set bits!
2152 //
2153 if (AndRHS->getType()->isUnsigned()) {
2154 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
Chris Lattner0c967662004-09-24 15:21:34 +00002155 Constant *ShrMask = ConstantExpr::getShr(AllOne, OpRHS);
2156 Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
2157
2158 if (CI == ShrMask) { // Masking out bits that the shift already masks.
2159 return ReplaceInstUsesWith(TheAnd, Op);
2160 } else if (CI != AndRHS) {
2161 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
Chris Lattner62a355c2003-09-19 19:05:02 +00002162 return &TheAnd;
2163 }
Chris Lattner0c967662004-09-24 15:21:34 +00002164 } else { // Signed shr.
2165 // See if this is shifting in some sign extension, then masking it out
2166 // with an and.
2167 if (Op->hasOneUse()) {
2168 Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
2169 Constant *ShrMask = ConstantExpr::getUShr(AllOne, OpRHS);
2170 Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask);
Chris Lattner9b991822004-10-22 04:53:16 +00002171 if (CI == AndRHS) { // Masking out bits shifted in.
Chris Lattner0c967662004-09-24 15:21:34 +00002172 // Make the argument unsigned.
2173 Value *ShVal = Op->getOperand(0);
2174 ShVal = InsertCastBefore(ShVal,
2175 ShVal->getType()->getUnsignedVersion(),
2176 TheAnd);
2177 ShVal = InsertNewInstBefore(new ShiftInst(Instruction::Shr, ShVal,
2178 OpRHS, Op->getName()),
2179 TheAnd);
Chris Lattnerdc781222004-10-27 05:57:15 +00002180 Value *AndRHS2 = ConstantExpr::getCast(AndRHS, ShVal->getType());
2181 ShVal = InsertNewInstBefore(BinaryOperator::createAnd(ShVal, AndRHS2,
2182 TheAnd.getName()),
2183 TheAnd);
Chris Lattner0c967662004-09-24 15:21:34 +00002184 return new CastInst(ShVal, Op->getType());
2185 }
2186 }
Chris Lattner62a355c2003-09-19 19:05:02 +00002187 }
2188 break;
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002189 }
2190 return 0;
2191}
2192
Chris Lattner8b170942002-08-09 23:47:40 +00002193
Chris Lattnera96879a2004-09-29 17:40:11 +00002194/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
2195/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
2196/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. IB is the location to
2197/// insert new instructions.
2198Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
2199 bool Inside, Instruction &IB) {
2200 assert(cast<ConstantBool>(ConstantExpr::getSetLE(Lo, Hi))->getValue() &&
2201 "Lo is not <= Hi in range emission code!");
2202 if (Inside) {
2203 if (Lo == Hi) // Trivially false.
2204 return new SetCondInst(Instruction::SetNE, V, V);
2205 if (cast<ConstantIntegral>(Lo)->isMinValue())
2206 return new SetCondInst(Instruction::SetLT, V, Hi);
Misha Brukmanfd939082005-04-21 23:48:37 +00002207
Chris Lattnera96879a2004-09-29 17:40:11 +00002208 Constant *AddCST = ConstantExpr::getNeg(Lo);
2209 Instruction *Add = BinaryOperator::createAdd(V, AddCST,V->getName()+".off");
2210 InsertNewInstBefore(Add, IB);
2211 // Convert to unsigned for the comparison.
2212 const Type *UnsType = Add->getType()->getUnsignedVersion();
2213 Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
2214 AddCST = ConstantExpr::getAdd(AddCST, Hi);
2215 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2216 return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
2217 }
2218
2219 if (Lo == Hi) // Trivially true.
2220 return new SetCondInst(Instruction::SetEQ, V, V);
2221
2222 Hi = SubOne(cast<ConstantInt>(Hi));
2223 if (cast<ConstantIntegral>(Lo)->isMinValue()) // V < 0 || V >= Hi ->'V > Hi-1'
2224 return new SetCondInst(Instruction::SetGT, V, Hi);
2225
2226 // Emit X-Lo > Hi-Lo-1
2227 Constant *AddCST = ConstantExpr::getNeg(Lo);
2228 Instruction *Add = BinaryOperator::createAdd(V, AddCST, V->getName()+".off");
2229 InsertNewInstBefore(Add, IB);
2230 // Convert to unsigned for the comparison.
2231 const Type *UnsType = Add->getType()->getUnsignedVersion();
2232 Value *OffsetVal = InsertCastBefore(Add, UnsType, IB);
2233 AddCST = ConstantExpr::getAdd(AddCST, Hi);
2234 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2235 return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
2236}
2237
Chris Lattner7203e152005-09-18 07:22:02 +00002238// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
2239// any number of 0s on either side. The 1s are allowed to wrap from LSB to
2240// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
2241// not, since all 1s are not contiguous.
2242static bool isRunOfOnes(ConstantIntegral *Val, unsigned &MB, unsigned &ME) {
2243 uint64_t V = Val->getRawValue();
2244 if (!isShiftedMask_64(V)) return false;
2245
2246 // look for the first zero bit after the run of ones
2247 MB = 64-CountLeadingZeros_64((V - 1) ^ V);
2248 // look for the first non-zero bit
2249 ME = 64-CountLeadingZeros_64(V);
2250 return true;
2251}
2252
2253
2254
2255/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
2256/// where isSub determines whether the operator is a sub. If we can fold one of
2257/// the following xforms:
Chris Lattnerc8e77562005-09-18 04:24:45 +00002258///
2259/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
2260/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
2261/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
2262///
2263/// return (A +/- B).
2264///
2265Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
2266 ConstantIntegral *Mask, bool isSub,
2267 Instruction &I) {
2268 Instruction *LHSI = dyn_cast<Instruction>(LHS);
2269 if (!LHSI || LHSI->getNumOperands() != 2 ||
2270 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
2271
2272 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
2273
2274 switch (LHSI->getOpcode()) {
2275 default: return 0;
2276 case Instruction::And:
Chris Lattner7203e152005-09-18 07:22:02 +00002277 if (ConstantExpr::getAnd(N, Mask) == Mask) {
2278 // If the AndRHS is a power of two minus one (0+1+), this is simple.
2279 if ((Mask->getRawValue() & Mask->getRawValue()+1) == 0)
2280 break;
2281
2282 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
2283 // part, we don't need any explicit masks to take them out of A. If that
2284 // is all N is, ignore it.
2285 unsigned MB, ME;
2286 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
Chris Lattner3bedbd92006-02-07 07:27:52 +00002287 uint64_t Mask = RHS->getType()->getIntegralTypeMask();
2288 Mask >>= 64-MB+1;
2289 if (MaskedValueIsZero(RHS, Mask))
Chris Lattner7203e152005-09-18 07:22:02 +00002290 break;
2291 }
2292 }
Chris Lattnerc8e77562005-09-18 04:24:45 +00002293 return 0;
2294 case Instruction::Or:
2295 case Instruction::Xor:
Chris Lattner7203e152005-09-18 07:22:02 +00002296 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
2297 if ((Mask->getRawValue() & Mask->getRawValue()+1) == 0 &&
2298 ConstantExpr::getAnd(N, Mask)->isNullValue())
Chris Lattnerc8e77562005-09-18 04:24:45 +00002299 break;
2300 return 0;
2301 }
2302
2303 Instruction *New;
2304 if (isSub)
2305 New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
2306 else
2307 New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
2308 return InsertNewInstBefore(New, I);
2309}
2310
Chris Lattner7e708292002-06-25 16:13:24 +00002311Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00002312 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00002313 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002314
Chris Lattnere87597f2004-10-16 18:11:37 +00002315 if (isa<UndefValue>(Op1)) // X & undef -> 0
2316 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2317
Chris Lattner6e7ba452005-01-01 16:22:27 +00002318 // and X, X = X
2319 if (Op0 == Op1)
Chris Lattner233f7dc2002-08-12 21:17:25 +00002320 return ReplaceInstUsesWith(I, Op1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002321
Chris Lattnerf8c36f52006-02-12 08:02:11 +00002322 // See if we can simplify any instructions used by the instruction whose sole
Chris Lattner9ca96412006-02-08 03:25:32 +00002323 // purpose is to compute bits we don't care about.
Chris Lattner255d8912006-02-11 09:31:47 +00002324 uint64_t KnownZero, KnownOne;
2325 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
2326 KnownZero, KnownOne))
Chris Lattner9ca96412006-02-08 03:25:32 +00002327 return &I;
2328
Chris Lattner6e7ba452005-01-01 16:22:27 +00002329 if (ConstantIntegral *AndRHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattner7560c3a2006-02-08 07:34:50 +00002330 uint64_t AndRHSMask = AndRHS->getZExtValue();
2331 uint64_t TypeMask = Op0->getType()->getIntegralTypeMask();
Chris Lattner7560c3a2006-02-08 07:34:50 +00002332 uint64_t NotAndRHS = AndRHSMask^TypeMask;
Chris Lattner6e7ba452005-01-01 16:22:27 +00002333
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002334 // Optimize a variety of ((val OP C1) & C2) combinations...
2335 if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) {
2336 Instruction *Op0I = cast<Instruction>(Op0);
Chris Lattner6e7ba452005-01-01 16:22:27 +00002337 Value *Op0LHS = Op0I->getOperand(0);
2338 Value *Op0RHS = Op0I->getOperand(1);
2339 switch (Op0I->getOpcode()) {
2340 case Instruction::Xor:
2341 case Instruction::Or:
Chris Lattnerad1e3022005-01-23 20:26:55 +00002342 // If the mask is only needed on one incoming arm, push it up.
2343 if (Op0I->hasOneUse()) {
2344 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
2345 // Not masking anything out for the LHS, move to RHS.
2346 Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
2347 Op0RHS->getName()+".masked");
2348 InsertNewInstBefore(NewRHS, I);
2349 return BinaryOperator::create(
2350 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
Misha Brukmanfd939082005-04-21 23:48:37 +00002351 }
Chris Lattner3bedbd92006-02-07 07:27:52 +00002352 if (!isa<Constant>(Op0RHS) &&
Chris Lattnerad1e3022005-01-23 20:26:55 +00002353 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
2354 // Not masking anything out for the RHS, move to LHS.
2355 Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
2356 Op0LHS->getName()+".masked");
2357 InsertNewInstBefore(NewLHS, I);
2358 return BinaryOperator::create(
2359 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
2360 }
2361 }
2362
Chris Lattner6e7ba452005-01-01 16:22:27 +00002363 break;
Chris Lattnerc8e77562005-09-18 04:24:45 +00002364 case Instruction::Add:
Chris Lattner7203e152005-09-18 07:22:02 +00002365 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
2366 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
2367 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
2368 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
2369 return BinaryOperator::createAnd(V, AndRHS);
2370 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
2371 return BinaryOperator::createAnd(V, AndRHS); // Add commutes
Chris Lattnerc8e77562005-09-18 04:24:45 +00002372 break;
2373
2374 case Instruction::Sub:
Chris Lattner7203e152005-09-18 07:22:02 +00002375 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
2376 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
2377 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
2378 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
2379 return BinaryOperator::createAnd(V, AndRHS);
Chris Lattnerc8e77562005-09-18 04:24:45 +00002380 break;
Chris Lattner6e7ba452005-01-01 16:22:27 +00002381 }
2382
Chris Lattner58403262003-07-23 19:25:52 +00002383 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002384 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
Chris Lattnerbd7b5ff2003-09-19 17:17:26 +00002385 return Res;
Chris Lattner6e7ba452005-01-01 16:22:27 +00002386 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
2387 const Type *SrcTy = CI->getOperand(0)->getType();
2388
Chris Lattner2b83af22005-08-07 07:03:10 +00002389 // If this is an integer truncation or change from signed-to-unsigned, and
2390 // if the source is an and/or with immediate, transform it. This
2391 // frequently occurs for bitfield accesses.
2392 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
2393 if (SrcTy->getPrimitiveSizeInBits() >=
2394 I.getType()->getPrimitiveSizeInBits() &&
2395 CastOp->getNumOperands() == 2)
Chris Lattner7560c3a2006-02-08 07:34:50 +00002396 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1)))
Chris Lattner2b83af22005-08-07 07:03:10 +00002397 if (CastOp->getOpcode() == Instruction::And) {
2398 // Change: and (cast (and X, C1) to T), C2
2399 // into : and (cast X to T), trunc(C1)&C2
2400 // This will folds the two ands together, which may allow other
2401 // simplifications.
2402 Instruction *NewCast =
2403 new CastInst(CastOp->getOperand(0), I.getType(),
2404 CastOp->getName()+".shrunk");
2405 NewCast = InsertNewInstBefore(NewCast, I);
2406
2407 Constant *C3=ConstantExpr::getCast(AndCI, I.getType());//trunc(C1)
2408 C3 = ConstantExpr::getAnd(C3, AndRHS); // trunc(C1)&C2
2409 return BinaryOperator::createAnd(NewCast, C3);
2410 } else if (CastOp->getOpcode() == Instruction::Or) {
2411 // Change: and (cast (or X, C1) to T), C2
2412 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
2413 Constant *C3=ConstantExpr::getCast(AndCI, I.getType());//trunc(C1)
2414 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
2415 return ReplaceInstUsesWith(I, AndRHS);
2416 }
2417 }
Chris Lattner06782f82003-07-23 19:36:21 +00002418 }
Chris Lattner2eefe512004-04-09 19:05:30 +00002419
2420 // Try to fold constant and into select arguments.
2421 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002422 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00002423 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00002424 if (isa<PHINode>(Op0))
2425 if (Instruction *NV = FoldOpIntoPhi(I))
2426 return NV;
Chris Lattnerc6a8aff2003-07-23 17:57:01 +00002427 }
2428
Chris Lattner8d969642003-03-10 23:06:50 +00002429 Value *Op0NotVal = dyn_castNotVal(Op0);
2430 Value *Op1NotVal = dyn_castNotVal(Op1);
Chris Lattnera2881962003-02-18 19:28:33 +00002431
Chris Lattner5b62aa72004-06-18 06:07:51 +00002432 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
2433 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2434
Misha Brukmancb6267b2004-07-30 12:50:08 +00002435 // (~A & ~B) == (~(A | B)) - De Morgan's Law
Chris Lattner8d969642003-03-10 23:06:50 +00002436 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
Chris Lattner48595f12004-06-10 02:07:29 +00002437 Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
2438 I.getName()+".demorgan");
Chris Lattnerc6a8aff2003-07-23 17:57:01 +00002439 InsertNewInstBefore(Or, I);
Chris Lattnera2881962003-02-18 19:28:33 +00002440 return BinaryOperator::createNot(Or);
2441 }
Chris Lattner2082ad92006-02-13 23:07:23 +00002442
2443 {
2444 Value *A = 0, *B = 0;
2445 ConstantInt *C1 = 0, *C2 = 0;
2446 if (match(Op0, m_Or(m_Value(A), m_Value(B))))
2447 if (A == Op1 || B == Op1) // (A | ?) & A --> A
2448 return ReplaceInstUsesWith(I, Op1);
2449 if (match(Op1, m_Or(m_Value(A), m_Value(B))))
2450 if (A == Op0 || B == Op0) // A & (A | ?) --> A
2451 return ReplaceInstUsesWith(I, Op0);
2452 }
2453
Chris Lattnera2881962003-02-18 19:28:33 +00002454
Chris Lattner955f3312004-09-28 21:48:02 +00002455 if (SetCondInst *RHS = dyn_cast<SetCondInst>(Op1)) {
2456 // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
Chris Lattneraa9c1f12003-08-13 20:16:26 +00002457 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
2458 return R;
2459
Chris Lattner955f3312004-09-28 21:48:02 +00002460 Value *LHSVal, *RHSVal;
2461 ConstantInt *LHSCst, *RHSCst;
2462 Instruction::BinaryOps LHSCC, RHSCC;
2463 if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
2464 if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
2465 if (LHSVal == RHSVal && // Found (X setcc C1) & (X setcc C2)
2466 // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
Misha Brukmanfd939082005-04-21 23:48:37 +00002467 LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE &&
Chris Lattner955f3312004-09-28 21:48:02 +00002468 RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
2469 // Ensure that the larger constant is on the RHS.
2470 Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
2471 SetCondInst *LHS = cast<SetCondInst>(Op0);
2472 if (cast<ConstantBool>(Cmp)->getValue()) {
2473 std::swap(LHS, RHS);
2474 std::swap(LHSCst, RHSCst);
2475 std::swap(LHSCC, RHSCC);
2476 }
2477
2478 // At this point, we know we have have two setcc instructions
2479 // comparing a value against two constants and and'ing the result
2480 // together. Because of the above check, we know that we only have
2481 // SetEQ, SetNE, SetLT, and SetGT here. We also know (from the
2482 // FoldSetCCLogical check above), that the two constants are not
2483 // equal.
2484 assert(LHSCst != RHSCst && "Compares not folded above?");
2485
2486 switch (LHSCC) {
2487 default: assert(0 && "Unknown integer condition code!");
2488 case Instruction::SetEQ:
2489 switch (RHSCC) {
2490 default: assert(0 && "Unknown integer condition code!");
2491 case Instruction::SetEQ: // (X == 13 & X == 15) -> false
2492 case Instruction::SetGT: // (X == 13 & X > 15) -> false
2493 return ReplaceInstUsesWith(I, ConstantBool::False);
2494 case Instruction::SetNE: // (X == 13 & X != 15) -> X == 13
2495 case Instruction::SetLT: // (X == 13 & X < 15) -> X == 13
2496 return ReplaceInstUsesWith(I, LHS);
2497 }
2498 case Instruction::SetNE:
2499 switch (RHSCC) {
2500 default: assert(0 && "Unknown integer condition code!");
2501 case Instruction::SetLT:
2502 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X < 14) -> X < 13
2503 return new SetCondInst(Instruction::SetLT, LHSVal, LHSCst);
2504 break; // (X != 13 & X < 15) -> no change
2505 case Instruction::SetEQ: // (X != 13 & X == 15) -> X == 15
2506 case Instruction::SetGT: // (X != 13 & X > 15) -> X > 15
2507 return ReplaceInstUsesWith(I, RHS);
2508 case Instruction::SetNE:
2509 if (LHSCst == SubOne(RHSCst)) {// (X != 13 & X != 14) -> X-13 >u 1
2510 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
2511 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
2512 LHSVal->getName()+".off");
2513 InsertNewInstBefore(Add, I);
2514 const Type *UnsType = Add->getType()->getUnsignedVersion();
2515 Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
2516 AddCST = ConstantExpr::getSub(RHSCst, LHSCst);
2517 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2518 return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST);
2519 }
2520 break; // (X != 13 & X != 15) -> no change
2521 }
2522 break;
2523 case Instruction::SetLT:
2524 switch (RHSCC) {
2525 default: assert(0 && "Unknown integer condition code!");
2526 case Instruction::SetEQ: // (X < 13 & X == 15) -> false
2527 case Instruction::SetGT: // (X < 13 & X > 15) -> false
2528 return ReplaceInstUsesWith(I, ConstantBool::False);
2529 case Instruction::SetNE: // (X < 13 & X != 15) -> X < 13
2530 case Instruction::SetLT: // (X < 13 & X < 15) -> X < 13
2531 return ReplaceInstUsesWith(I, LHS);
2532 }
2533 case Instruction::SetGT:
2534 switch (RHSCC) {
2535 default: assert(0 && "Unknown integer condition code!");
2536 case Instruction::SetEQ: // (X > 13 & X == 15) -> X > 13
2537 return ReplaceInstUsesWith(I, LHS);
2538 case Instruction::SetGT: // (X > 13 & X > 15) -> X > 15
2539 return ReplaceInstUsesWith(I, RHS);
2540 case Instruction::SetNE:
2541 if (RHSCst == AddOne(LHSCst)) // (X > 13 & X != 14) -> X > 14
2542 return new SetCondInst(Instruction::SetGT, LHSVal, RHSCst);
2543 break; // (X > 13 & X != 15) -> no change
Chris Lattnera96879a2004-09-29 17:40:11 +00002544 case Instruction::SetLT: // (X > 13 & X < 15) -> (X-14) <u 1
2545 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true, I);
Chris Lattner955f3312004-09-28 21:48:02 +00002546 }
2547 }
2548 }
2549 }
2550
Chris Lattner7e708292002-06-25 16:13:24 +00002551 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00002552}
2553
Chris Lattner7e708292002-06-25 16:13:24 +00002554Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00002555 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00002556 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002557
Chris Lattnere87597f2004-10-16 18:11:37 +00002558 if (isa<UndefValue>(Op1))
2559 return ReplaceInstUsesWith(I, // X | undef -> -1
2560 ConstantIntegral::getAllOnesValue(I.getType()));
2561
Chris Lattnerf8c36f52006-02-12 08:02:11 +00002562 // or X, X = X
2563 if (Op0 == Op1)
Chris Lattner233f7dc2002-08-12 21:17:25 +00002564 return ReplaceInstUsesWith(I, Op0);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002565
Chris Lattnerf8c36f52006-02-12 08:02:11 +00002566 // See if we can simplify any instructions used by the instruction whose sole
2567 // purpose is to compute bits we don't care about.
2568 uint64_t KnownZero, KnownOne;
2569 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
2570 KnownZero, KnownOne))
2571 return &I;
2572
Chris Lattner3f5b8772002-05-06 16:14:14 +00002573 // or X, -1 == -1
Chris Lattnerad44ebf2003-07-23 18:29:44 +00002574 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattner4f637d42006-01-06 17:59:59 +00002575 ConstantInt *C1 = 0; Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002576 // (X & C1) | C2 --> (X | C2) & (C1|C2)
2577 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
Chris Lattner6e4c6492005-05-09 04:58:36 +00002578 Instruction *Or = BinaryOperator::createOr(X, RHS, Op0->getName());
2579 Op0->setName("");
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002580 InsertNewInstBefore(Or, I);
2581 return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1));
2582 }
Chris Lattnerad44ebf2003-07-23 18:29:44 +00002583
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002584 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
2585 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
2586 std::string Op0Name = Op0->getName(); Op0->setName("");
2587 Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name);
2588 InsertNewInstBefore(Or, I);
2589 return BinaryOperator::createXor(Or,
2590 ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS)));
Chris Lattnerad44ebf2003-07-23 18:29:44 +00002591 }
Chris Lattner2eefe512004-04-09 19:05:30 +00002592
2593 // Try to fold constant and into select arguments.
2594 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002595 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00002596 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00002597 if (isa<PHINode>(Op0))
2598 if (Instruction *NV = FoldOpIntoPhi(I))
2599 return NV;
Chris Lattnerad44ebf2003-07-23 18:29:44 +00002600 }
2601
Chris Lattner4f637d42006-01-06 17:59:59 +00002602 Value *A = 0, *B = 0;
2603 ConstantInt *C1 = 0, *C2 = 0;
Chris Lattnerf4d4c872005-05-07 23:49:08 +00002604
2605 if (match(Op0, m_And(m_Value(A), m_Value(B))))
2606 if (A == Op1 || B == Op1) // (A & ?) | A --> A
2607 return ReplaceInstUsesWith(I, Op1);
2608 if (match(Op1, m_And(m_Value(A), m_Value(B))))
2609 if (A == Op0 || B == Op0) // A | (A & ?) --> A
2610 return ReplaceInstUsesWith(I, Op0);
2611
Chris Lattner6e4c6492005-05-09 04:58:36 +00002612 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
2613 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattner3bedbd92006-02-07 07:27:52 +00002614 MaskedValueIsZero(Op1, C1->getZExtValue())) {
Chris Lattner6e4c6492005-05-09 04:58:36 +00002615 Instruction *NOr = BinaryOperator::createOr(A, Op1, Op0->getName());
2616 Op0->setName("");
2617 return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1);
2618 }
2619
2620 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
2621 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattner3bedbd92006-02-07 07:27:52 +00002622 MaskedValueIsZero(Op0, C1->getZExtValue())) {
Chris Lattner6e4c6492005-05-09 04:58:36 +00002623 Instruction *NOr = BinaryOperator::createOr(A, Op0, Op1->getName());
2624 Op0->setName("");
2625 return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1);
2626 }
2627
Chris Lattnere9bed7d2005-09-18 03:42:07 +00002628 // (A & C1)|(B & C2)
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002629 if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) &&
Chris Lattnere9bed7d2005-09-18 03:42:07 +00002630 match(Op1, m_And(m_Value(B), m_ConstantInt(C2)))) {
2631
2632 if (A == B) // (A & C1)|(A & C2) == A & (C1|C2)
2633 return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2));
2634
2635
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00002636 // If we have: ((V + N) & C1) | (V & C2)
2637 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2638 // replace with V+N.
2639 if (C1 == ConstantExpr::getNot(C2)) {
Chris Lattner4f637d42006-01-06 17:59:59 +00002640 Value *V1 = 0, *V2 = 0;
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00002641 if ((C2->getRawValue() & (C2->getRawValue()+1)) == 0 && // C2 == 0+1+
2642 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
2643 // Add commutes, try both ways.
Chris Lattner3bedbd92006-02-07 07:27:52 +00002644 if (V1 == B && MaskedValueIsZero(V2, C2->getZExtValue()))
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00002645 return ReplaceInstUsesWith(I, A);
Chris Lattner3bedbd92006-02-07 07:27:52 +00002646 if (V2 == B && MaskedValueIsZero(V1, C2->getZExtValue()))
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00002647 return ReplaceInstUsesWith(I, A);
2648 }
2649 // Or commutes, try both ways.
2650 if ((C1->getRawValue() & (C1->getRawValue()+1)) == 0 &&
2651 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
2652 // Add commutes, try both ways.
Chris Lattner3bedbd92006-02-07 07:27:52 +00002653 if (V1 == A && MaskedValueIsZero(V2, C1->getZExtValue()))
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00002654 return ReplaceInstUsesWith(I, B);
Chris Lattner3bedbd92006-02-07 07:27:52 +00002655 if (V2 == A && MaskedValueIsZero(V1, C1->getZExtValue()))
Chris Lattner0b7c0bf2005-09-18 06:02:59 +00002656 return ReplaceInstUsesWith(I, B);
Chris Lattnere9bed7d2005-09-18 03:42:07 +00002657 }
2658 }
2659 }
Chris Lattner67ca7682003-08-12 19:11:07 +00002660
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002661 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
2662 if (A == Op1) // ~A | A == -1
Misha Brukmanfd939082005-04-21 23:48:37 +00002663 return ReplaceInstUsesWith(I,
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002664 ConstantIntegral::getAllOnesValue(I.getType()));
2665 } else {
2666 A = 0;
2667 }
Chris Lattnerf4d4c872005-05-07 23:49:08 +00002668 // Note, A is still live here!
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002669 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
2670 if (Op0 == B)
Misha Brukmanfd939082005-04-21 23:48:37 +00002671 return ReplaceInstUsesWith(I,
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002672 ConstantIntegral::getAllOnesValue(I.getType()));
Chris Lattnera27231a2003-03-10 23:13:59 +00002673
Misha Brukmancb6267b2004-07-30 12:50:08 +00002674 // (~A | ~B) == (~(A & B)) - De Morgan's Law
Chris Lattneracd1f0f2004-07-30 07:50:03 +00002675 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
2676 Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
2677 I.getName()+".demorgan"), I);
2678 return BinaryOperator::createNot(And);
2679 }
Chris Lattnera27231a2003-03-10 23:13:59 +00002680 }
Chris Lattnera2881962003-02-18 19:28:33 +00002681
Chris Lattneraa9c1f12003-08-13 20:16:26 +00002682 // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002683 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1))) {
Chris Lattneraa9c1f12003-08-13 20:16:26 +00002684 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
2685 return R;
2686
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002687 Value *LHSVal, *RHSVal;
2688 ConstantInt *LHSCst, *RHSCst;
2689 Instruction::BinaryOps LHSCC, RHSCC;
2690 if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
2691 if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
2692 if (LHSVal == RHSVal && // Found (X setcc C1) | (X setcc C2)
2693 // Set[GL]E X, CST is folded to Set[GL]T elsewhere.
Misha Brukmanfd939082005-04-21 23:48:37 +00002694 LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE &&
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002695 RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) {
2696 // Ensure that the larger constant is on the RHS.
2697 Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst);
2698 SetCondInst *LHS = cast<SetCondInst>(Op0);
2699 if (cast<ConstantBool>(Cmp)->getValue()) {
2700 std::swap(LHS, RHS);
2701 std::swap(LHSCst, RHSCst);
2702 std::swap(LHSCC, RHSCC);
2703 }
2704
2705 // At this point, we know we have have two setcc instructions
2706 // comparing a value against two constants and or'ing the result
2707 // together. Because of the above check, we know that we only have
2708 // SetEQ, SetNE, SetLT, and SetGT here. We also know (from the
2709 // FoldSetCCLogical check above), that the two constants are not
2710 // equal.
2711 assert(LHSCst != RHSCst && "Compares not folded above?");
2712
2713 switch (LHSCC) {
2714 default: assert(0 && "Unknown integer condition code!");
2715 case Instruction::SetEQ:
2716 switch (RHSCC) {
2717 default: assert(0 && "Unknown integer condition code!");
2718 case Instruction::SetEQ:
2719 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
2720 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
2721 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
2722 LHSVal->getName()+".off");
2723 InsertNewInstBefore(Add, I);
2724 const Type *UnsType = Add->getType()->getUnsignedVersion();
2725 Value *OffsetVal = InsertCastBefore(Add, UnsType, I);
2726 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
2727 AddCST = ConstantExpr::getCast(AddCST, UnsType);
2728 return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST);
2729 }
2730 break; // (X == 13 | X == 15) -> no change
2731
Chris Lattner240d6f42005-04-19 06:04:18 +00002732 case Instruction::SetGT: // (X == 13 | X > 14) -> no change
2733 break;
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002734 case Instruction::SetNE: // (X == 13 | X != 15) -> X != 15
2735 case Instruction::SetLT: // (X == 13 | X < 15) -> X < 15
2736 return ReplaceInstUsesWith(I, RHS);
2737 }
2738 break;
2739 case Instruction::SetNE:
2740 switch (RHSCC) {
2741 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002742 case Instruction::SetEQ: // (X != 13 | X == 15) -> X != 13
2743 case Instruction::SetGT: // (X != 13 | X > 15) -> X != 13
2744 return ReplaceInstUsesWith(I, LHS);
2745 case Instruction::SetNE: // (X != 13 | X != 15) -> true
Chris Lattnere88b7532005-06-17 03:59:17 +00002746 case Instruction::SetLT: // (X != 13 | X < 15) -> true
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002747 return ReplaceInstUsesWith(I, ConstantBool::True);
2748 }
2749 break;
2750 case Instruction::SetLT:
2751 switch (RHSCC) {
2752 default: assert(0 && "Unknown integer condition code!");
2753 case Instruction::SetEQ: // (X < 13 | X == 14) -> no change
2754 break;
Chris Lattnera96879a2004-09-29 17:40:11 +00002755 case Instruction::SetGT: // (X < 13 | X > 15) -> (X-13) > 2
2756 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, I);
Chris Lattnerb4f40d22004-09-28 22:33:08 +00002757 case Instruction::SetNE: // (X < 13 | X != 15) -> X != 15
2758 case Instruction::SetLT: // (X < 13 | X < 15) -> X < 15
2759 return ReplaceInstUsesWith(I, RHS);
2760 }
2761 break;
2762 case Instruction::SetGT:
2763 switch (RHSCC) {
2764 default: assert(0 && "Unknown integer condition code!");
2765 case Instruction::SetEQ: // (X > 13 | X == 15) -> X > 13
2766 case Instruction::SetGT: // (X > 13 | X > 15) -> X > 13
2767 return ReplaceInstUsesWith(I, LHS);
2768 case Instruction::SetNE: // (X > 13 | X != 15) -> true
2769 case Instruction::SetLT: // (X > 13 | X < 15) -> true
2770 return ReplaceInstUsesWith(I, ConstantBool::True);
2771 }
2772 }
2773 }
2774 }
Chris Lattnere9bed7d2005-09-18 03:42:07 +00002775
Chris Lattner7e708292002-06-25 16:13:24 +00002776 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00002777}
2778
Chris Lattnerc317d392004-02-16 01:20:27 +00002779// XorSelf - Implements: X ^ X --> 0
2780struct XorSelf {
2781 Value *RHS;
2782 XorSelf(Value *rhs) : RHS(rhs) {}
2783 bool shouldApply(Value *LHS) const { return LHS == RHS; }
2784 Instruction *apply(BinaryOperator &Xor) const {
2785 return &Xor;
2786 }
2787};
Chris Lattner3f5b8772002-05-06 16:14:14 +00002788
2789
Chris Lattner7e708292002-06-25 16:13:24 +00002790Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00002791 bool Changed = SimplifyCommutative(I);
Chris Lattner7e708292002-06-25 16:13:24 +00002792 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner3f5b8772002-05-06 16:14:14 +00002793
Chris Lattnere87597f2004-10-16 18:11:37 +00002794 if (isa<UndefValue>(Op1))
2795 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
2796
Chris Lattnerc317d392004-02-16 01:20:27 +00002797 // xor X, X = 0, even if X is nested in a sequence of Xor's.
2798 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
2799 assert(Result == &I && "AssociativeOpt didn't work?");
Chris Lattner233f7dc2002-08-12 21:17:25 +00002800 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattnerc317d392004-02-16 01:20:27 +00002801 }
Chris Lattnerf8c36f52006-02-12 08:02:11 +00002802
2803 // See if we can simplify any instructions used by the instruction whose sole
2804 // purpose is to compute bits we don't care about.
2805 uint64_t KnownZero, KnownOne;
2806 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
2807 KnownZero, KnownOne))
2808 return &I;
Chris Lattner3f5b8772002-05-06 16:14:14 +00002809
Chris Lattnereca0c5c2003-07-23 21:37:07 +00002810 if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
Chris Lattnereca0c5c2003-07-23 21:37:07 +00002811 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Chris Lattner05bd1b22002-08-20 18:24:26 +00002812 // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
Chris Lattnereca0c5c2003-07-23 21:37:07 +00002813 if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
Chris Lattnerfd059242003-10-15 16:48:29 +00002814 if (RHS == ConstantBool::True && SCI->hasOneUse())
Chris Lattner05bd1b22002-08-20 18:24:26 +00002815 return new SetCondInst(SCI->getInverseCondition(),
2816 SCI->getOperand(0), SCI->getOperand(1));
Chris Lattnerad5b4fb2003-11-04 23:50:51 +00002817
Chris Lattnerd65460f2003-11-05 01:06:05 +00002818 // ~(c-X) == X-c-1 == X+(-c-1)
Chris Lattner7c4049c2004-01-12 19:35:11 +00002819 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2820 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
Chris Lattner48595f12004-06-10 02:07:29 +00002821 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2822 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
Chris Lattner7c4049c2004-01-12 19:35:11 +00002823 ConstantInt::get(I.getType(), 1));
Chris Lattner48595f12004-06-10 02:07:29 +00002824 return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
Chris Lattner7c4049c2004-01-12 19:35:11 +00002825 }
Chris Lattner5b62aa72004-06-18 06:07:51 +00002826
2827 // ~(~X & Y) --> (X | ~Y)
2828 if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) {
2829 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
2830 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2831 Instruction *NotY =
Misha Brukmanfd939082005-04-21 23:48:37 +00002832 BinaryOperator::createNot(Op0I->getOperand(1),
Chris Lattner5b62aa72004-06-18 06:07:51 +00002833 Op0I->getOperand(1)->getName()+".not");
2834 InsertNewInstBefore(NotY, I);
2835 return BinaryOperator::createOr(Op0NotVal, NotY);
2836 }
2837 }
Misha Brukmanfd939082005-04-21 23:48:37 +00002838
Chris Lattnereca0c5c2003-07-23 21:37:07 +00002839 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
Chris Lattnerf8c36f52006-02-12 08:02:11 +00002840 if (Op0I->getOpcode() == Instruction::Add) {
Chris Lattner689d24b2003-11-04 23:37:10 +00002841 // ~(X-c) --> (-c-1)-X
Chris Lattner7c4049c2004-01-12 19:35:11 +00002842 if (RHS->isAllOnesValue()) {
Chris Lattner48595f12004-06-10 02:07:29 +00002843 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2844 return BinaryOperator::createSub(
2845 ConstantExpr::getSub(NegOp0CI,
Chris Lattner7c4049c2004-01-12 19:35:11 +00002846 ConstantInt::get(I.getType(), 1)),
Chris Lattner689d24b2003-11-04 23:37:10 +00002847 Op0I->getOperand(0));
Chris Lattner7c4049c2004-01-12 19:35:11 +00002848 }
Chris Lattner02bd1b32006-02-26 19:57:54 +00002849 } else if (Op0I->getOpcode() == Instruction::Or) {
2850 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2851 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getZExtValue())) {
2852 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2853 // Anything in both C1 and C2 is known to be zero, remove it from
2854 // NewRHS.
2855 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2856 NewRHS = ConstantExpr::getAnd(NewRHS,
2857 ConstantExpr::getNot(CommonBits));
2858 WorkList.push_back(Op0I);
2859 I.setOperand(0, Op0I->getOperand(0));
2860 I.setOperand(1, NewRHS);
2861 return &I;
2862 }
Chris Lattnereca0c5c2003-07-23 21:37:07 +00002863 }
Chris Lattner05bd1b22002-08-20 18:24:26 +00002864 }
Chris Lattner2eefe512004-04-09 19:05:30 +00002865
2866 // Try to fold constant and into select arguments.
2867 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
Chris Lattner6e7ba452005-01-01 16:22:27 +00002868 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00002869 return R;
Chris Lattner4e998b22004-09-29 05:07:12 +00002870 if (isa<PHINode>(Op0))
2871 if (Instruction *NV = FoldOpIntoPhi(I))
2872 return NV;
Chris Lattner3f5b8772002-05-06 16:14:14 +00002873 }
2874
Chris Lattner8d969642003-03-10 23:06:50 +00002875 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
Chris Lattnera2881962003-02-18 19:28:33 +00002876 if (X == Op1)
2877 return ReplaceInstUsesWith(I,
2878 ConstantIntegral::getAllOnesValue(I.getType()));
2879
Chris Lattner8d969642003-03-10 23:06:50 +00002880 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
Chris Lattnera2881962003-02-18 19:28:33 +00002881 if (X == Op0)
2882 return ReplaceInstUsesWith(I,
2883 ConstantIntegral::getAllOnesValue(I.getType()));
2884
Chris Lattnercb40a372003-03-10 18:24:17 +00002885 if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
Chris Lattner26ca7e12004-02-16 03:54:20 +00002886 if (Op1I->getOpcode() == Instruction::Or) {
Chris Lattnercb40a372003-03-10 18:24:17 +00002887 if (Op1I->getOperand(0) == Op0) { // B^(B|A) == (A|B)^B
2888 cast<BinaryOperator>(Op1I)->swapOperands();
2889 I.swapOperands();
2890 std::swap(Op0, Op1);
2891 } else if (Op1I->getOperand(1) == Op0) { // B^(A|B) == (A|B)^B
2892 I.swapOperands();
2893 std::swap(Op0, Op1);
Misha Brukmanfd939082005-04-21 23:48:37 +00002894 }
Chris Lattner26ca7e12004-02-16 03:54:20 +00002895 } else if (Op1I->getOpcode() == Instruction::Xor) {
2896 if (Op0 == Op1I->getOperand(0)) // A^(A^B) == B
2897 return ReplaceInstUsesWith(I, Op1I->getOperand(1));
2898 else if (Op0 == Op1I->getOperand(1)) // A^(B^A) == B
2899 return ReplaceInstUsesWith(I, Op1I->getOperand(0));
2900 }
Chris Lattnercb40a372003-03-10 18:24:17 +00002901
2902 if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
Chris Lattnerfd059242003-10-15 16:48:29 +00002903 if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
Chris Lattnercb40a372003-03-10 18:24:17 +00002904 if (Op0I->getOperand(0) == Op1) // (B|A)^B == (A|B)^B
2905 cast<BinaryOperator>(Op0I)->swapOperands();
Chris Lattner4f98c562003-03-10 21:43:22 +00002906 if (Op0I->getOperand(1) == Op1) { // (A|B)^B == A & ~B
Chris Lattnerf523d062004-06-09 05:08:07 +00002907 Value *NotB = InsertNewInstBefore(BinaryOperator::createNot(Op1,
2908 Op1->getName()+".not"), I);
Chris Lattner48595f12004-06-10 02:07:29 +00002909 return BinaryOperator::createAnd(Op0I->getOperand(0), NotB);
Chris Lattnercb40a372003-03-10 18:24:17 +00002910 }
Chris Lattner26ca7e12004-02-16 03:54:20 +00002911 } else if (Op0I->getOpcode() == Instruction::Xor) {
2912 if (Op1 == Op0I->getOperand(0)) // (A^B)^A == B
2913 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2914 else if (Op1 == Op0I->getOperand(1)) // (B^A)^A == B
2915 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
Chris Lattnercb40a372003-03-10 18:24:17 +00002916 }
2917
Chris Lattneraa9c1f12003-08-13 20:16:26 +00002918 // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
2919 if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
2920 if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
2921 return R;
2922
Chris Lattner7e708292002-06-25 16:13:24 +00002923 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00002924}
2925
Chris Lattnera96879a2004-09-29 17:40:11 +00002926/// MulWithOverflow - Compute Result = In1*In2, returning true if the result
2927/// overflowed for this type.
2928static bool MulWithOverflow(ConstantInt *&Result, ConstantInt *In1,
2929 ConstantInt *In2) {
2930 Result = cast<ConstantInt>(ConstantExpr::getMul(In1, In2));
2931 return !In2->isNullValue() && ConstantExpr::getDiv(Result, In2) != In1;
2932}
2933
2934static bool isPositive(ConstantInt *C) {
2935 return cast<ConstantSInt>(C)->getValue() >= 0;
2936}
2937
2938/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
2939/// overflowed for this type.
2940static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
2941 ConstantInt *In2) {
2942 Result = cast<ConstantInt>(ConstantExpr::getAdd(In1, In2));
2943
2944 if (In1->getType()->isUnsigned())
2945 return cast<ConstantUInt>(Result)->getValue() <
2946 cast<ConstantUInt>(In1)->getValue();
2947 if (isPositive(In1) != isPositive(In2))
2948 return false;
2949 if (isPositive(In1))
2950 return cast<ConstantSInt>(Result)->getValue() <
2951 cast<ConstantSInt>(In1)->getValue();
2952 return cast<ConstantSInt>(Result)->getValue() >
2953 cast<ConstantSInt>(In1)->getValue();
2954}
2955
Chris Lattner574da9b2005-01-13 20:14:25 +00002956/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
2957/// code necessary to compute the offset from the base pointer (without adding
2958/// in the base pointer). Return the result as a signed integer of intptr size.
2959static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
2960 TargetData &TD = IC.getTargetData();
2961 gep_type_iterator GTI = gep_type_begin(GEP);
2962 const Type *UIntPtrTy = TD.getIntPtrType();
2963 const Type *SIntPtrTy = UIntPtrTy->getSignedVersion();
2964 Value *Result = Constant::getNullValue(SIntPtrTy);
2965
2966 // Build a mask for high order bits.
Chris Lattner1a074fc2006-02-07 07:00:41 +00002967 uint64_t PtrSizeMask = ~0ULL >> (64-TD.getPointerSize()*8);
Chris Lattner574da9b2005-01-13 20:14:25 +00002968
Chris Lattner574da9b2005-01-13 20:14:25 +00002969 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
2970 Value *Op = GEP->getOperand(i);
Chris Lattner0b84c802005-01-13 23:26:48 +00002971 uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask;
Chris Lattner574da9b2005-01-13 20:14:25 +00002972 Constant *Scale = ConstantExpr::getCast(ConstantUInt::get(UIntPtrTy, Size),
2973 SIntPtrTy);
2974 if (Constant *OpC = dyn_cast<Constant>(Op)) {
2975 if (!OpC->isNullValue()) {
Chris Lattner5bdf04c2005-01-13 20:40:58 +00002976 OpC = ConstantExpr::getCast(OpC, SIntPtrTy);
Chris Lattner574da9b2005-01-13 20:14:25 +00002977 Scale = ConstantExpr::getMul(OpC, Scale);
2978 if (Constant *RC = dyn_cast<Constant>(Result))
2979 Result = ConstantExpr::getAdd(RC, Scale);
2980 else {
2981 // Emit an add instruction.
2982 Result = IC.InsertNewInstBefore(
2983 BinaryOperator::createAdd(Result, Scale,
2984 GEP->getName()+".offs"), I);
2985 }
2986 }
2987 } else {
Chris Lattner6f7f02f2005-01-14 17:17:59 +00002988 // Convert to correct type.
2989 Op = IC.InsertNewInstBefore(new CastInst(Op, SIntPtrTy,
2990 Op->getName()+".c"), I);
2991 if (Size != 1)
Chris Lattner5bdf04c2005-01-13 20:40:58 +00002992 // We'll let instcombine(mul) convert this to a shl if possible.
2993 Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
2994 GEP->getName()+".idx"), I);
Chris Lattner574da9b2005-01-13 20:14:25 +00002995
2996 // Emit an add instruction.
Chris Lattner5bdf04c2005-01-13 20:40:58 +00002997 Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
Chris Lattner574da9b2005-01-13 20:14:25 +00002998 GEP->getName()+".offs"), I);
2999 }
3000 }
3001 return Result;
3002}
3003
3004/// FoldGEPSetCC - Fold comparisons between a GEP instruction and something
3005/// else. At this point we know that the GEP is on the LHS of the comparison.
3006Instruction *InstCombiner::FoldGEPSetCC(User *GEPLHS, Value *RHS,
3007 Instruction::BinaryOps Cond,
3008 Instruction &I) {
3009 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
Chris Lattnere9d782b2005-01-13 22:25:21 +00003010
3011 if (CastInst *CI = dyn_cast<CastInst>(RHS))
3012 if (isa<PointerType>(CI->getOperand(0)->getType()))
3013 RHS = CI->getOperand(0);
3014
Chris Lattner574da9b2005-01-13 20:14:25 +00003015 Value *PtrBase = GEPLHS->getOperand(0);
3016 if (PtrBase == RHS) {
3017 // As an optimization, we don't actually have to compute the actual value of
3018 // OFFSET if this is a seteq or setne comparison, just return whether each
3019 // index is zero or not.
Chris Lattnere9d782b2005-01-13 22:25:21 +00003020 if (Cond == Instruction::SetEQ || Cond == Instruction::SetNE) {
3021 Instruction *InVal = 0;
Chris Lattnerad5fec12005-01-28 19:32:01 +00003022 gep_type_iterator GTI = gep_type_begin(GEPLHS);
3023 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
Chris Lattnere9d782b2005-01-13 22:25:21 +00003024 bool EmitIt = true;
3025 if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
3026 if (isa<UndefValue>(C)) // undef index -> undef.
3027 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
3028 if (C->isNullValue())
3029 EmitIt = false;
Chris Lattnerad5fec12005-01-28 19:32:01 +00003030 else if (TD->getTypeSize(GTI.getIndexedType()) == 0) {
3031 EmitIt = false; // This is indexing into a zero sized array?
Misha Brukmanfd939082005-04-21 23:48:37 +00003032 } else if (isa<ConstantInt>(C))
Chris Lattnere9d782b2005-01-13 22:25:21 +00003033 return ReplaceInstUsesWith(I, // No comparison is needed here.
3034 ConstantBool::get(Cond == Instruction::SetNE));
3035 }
3036
3037 if (EmitIt) {
Misha Brukmanfd939082005-04-21 23:48:37 +00003038 Instruction *Comp =
Chris Lattnere9d782b2005-01-13 22:25:21 +00003039 new SetCondInst(Cond, GEPLHS->getOperand(i),
3040 Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
3041 if (InVal == 0)
3042 InVal = Comp;
3043 else {
3044 InVal = InsertNewInstBefore(InVal, I);
3045 InsertNewInstBefore(Comp, I);
3046 if (Cond == Instruction::SetNE) // True if any are unequal
3047 InVal = BinaryOperator::createOr(InVal, Comp);
3048 else // True if all are equal
3049 InVal = BinaryOperator::createAnd(InVal, Comp);
3050 }
3051 }
3052 }
3053
3054 if (InVal)
3055 return InVal;
3056 else
3057 ReplaceInstUsesWith(I, // No comparison is needed here, all indexes = 0
3058 ConstantBool::get(Cond == Instruction::SetEQ));
3059 }
Chris Lattner574da9b2005-01-13 20:14:25 +00003060
3061 // Only lower this if the setcc is the only user of the GEP or if we expect
3062 // the result to fold to a constant!
3063 if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
3064 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
3065 Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
3066 return new SetCondInst(Cond, Offset,
3067 Constant::getNullValue(Offset->getType()));
3068 }
3069 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
Chris Lattnera70b66d2005-04-25 20:17:30 +00003070 // If the base pointers are different, but the indices are the same, just
3071 // compare the base pointer.
3072 if (PtrBase != GEPRHS->getOperand(0)) {
3073 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
Jeff Cohen00b168892005-07-27 06:12:32 +00003074 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
Chris Lattner93b94a62005-04-26 14:40:41 +00003075 GEPRHS->getOperand(0)->getType();
Chris Lattnera70b66d2005-04-25 20:17:30 +00003076 if (IndicesTheSame)
3077 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
3078 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
3079 IndicesTheSame = false;
3080 break;
3081 }
3082
3083 // If all indices are the same, just compare the base pointers.
3084 if (IndicesTheSame)
3085 return new SetCondInst(Cond, GEPLHS->getOperand(0),
3086 GEPRHS->getOperand(0));
3087
3088 // Otherwise, the base pointers are different and the indices are
3089 // different, bail out.
Chris Lattner574da9b2005-01-13 20:14:25 +00003090 return 0;
Chris Lattnera70b66d2005-04-25 20:17:30 +00003091 }
Chris Lattner574da9b2005-01-13 20:14:25 +00003092
Chris Lattnere9d782b2005-01-13 22:25:21 +00003093 // If one of the GEPs has all zero indices, recurse.
3094 bool AllZeros = true;
3095 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
3096 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
3097 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
3098 AllZeros = false;
3099 break;
3100 }
3101 if (AllZeros)
3102 return FoldGEPSetCC(GEPRHS, GEPLHS->getOperand(0),
3103 SetCondInst::getSwappedCondition(Cond), I);
Chris Lattner4401c9c2005-01-14 00:20:05 +00003104
3105 // If the other GEP has all zero indices, recurse.
Chris Lattnere9d782b2005-01-13 22:25:21 +00003106 AllZeros = true;
3107 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
3108 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
3109 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
3110 AllZeros = false;
3111 break;
3112 }
3113 if (AllZeros)
3114 return FoldGEPSetCC(GEPLHS, GEPRHS->getOperand(0), Cond, I);
3115
Chris Lattner4401c9c2005-01-14 00:20:05 +00003116 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
3117 // If the GEPs only differ by one index, compare it.
3118 unsigned NumDifferences = 0; // Keep track of # differences.
3119 unsigned DiffOperand = 0; // The operand that differs.
3120 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
3121 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00003122 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
3123 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
Chris Lattner45f57b82005-01-21 23:06:49 +00003124 // Irreconcilable differences.
Chris Lattner4401c9c2005-01-14 00:20:05 +00003125 NumDifferences = 2;
3126 break;
3127 } else {
3128 if (NumDifferences++) break;
3129 DiffOperand = i;
3130 }
3131 }
3132
3133 if (NumDifferences == 0) // SAME GEP?
3134 return ReplaceInstUsesWith(I, // No comparison is needed here.
3135 ConstantBool::get(Cond == Instruction::SetEQ));
3136 else if (NumDifferences == 1) {
Chris Lattner45f57b82005-01-21 23:06:49 +00003137 Value *LHSV = GEPLHS->getOperand(DiffOperand);
3138 Value *RHSV = GEPRHS->getOperand(DiffOperand);
Chris Lattner7911f032005-07-18 23:07:33 +00003139
3140 // Convert the operands to signed values to make sure to perform a
3141 // signed comparison.
3142 const Type *NewTy = LHSV->getType()->getSignedVersion();
3143 if (LHSV->getType() != NewTy)
3144 LHSV = InsertNewInstBefore(new CastInst(LHSV, NewTy,
3145 LHSV->getName()), I);
3146 if (RHSV->getType() != NewTy)
3147 RHSV = InsertNewInstBefore(new CastInst(RHSV, NewTy,
3148 RHSV->getName()), I);
3149 return new SetCondInst(Cond, LHSV, RHSV);
Chris Lattner4401c9c2005-01-14 00:20:05 +00003150 }
3151 }
3152
Chris Lattner574da9b2005-01-13 20:14:25 +00003153 // Only lower this if the setcc is the only user of the GEP or if we expect
3154 // the result to fold to a constant!
3155 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
3156 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
3157 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
3158 Value *L = EmitGEPOffset(GEPLHS, I, *this);
3159 Value *R = EmitGEPOffset(GEPRHS, I, *this);
3160 return new SetCondInst(Cond, L, R);
3161 }
3162 }
3163 return 0;
3164}
3165
3166
Chris Lattner484d3cf2005-04-24 06:59:08 +00003167Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +00003168 bool Changed = SimplifyCommutative(I);
Chris Lattner8b170942002-08-09 23:47:40 +00003169 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3170 const Type *Ty = Op0->getType();
Chris Lattner3f5b8772002-05-06 16:14:14 +00003171
3172 // setcc X, X
Chris Lattner8b170942002-08-09 23:47:40 +00003173 if (Op0 == Op1)
3174 return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));
Chris Lattner53a5b572002-05-09 20:11:54 +00003175
Chris Lattnere87597f2004-10-16 18:11:37 +00003176 if (isa<UndefValue>(Op1)) // X setcc undef -> undef
3177 return ReplaceInstUsesWith(I, UndefValue::get(Type::BoolTy));
3178
Chris Lattner711b3402004-11-14 07:33:16 +00003179 // setcc <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
3180 // addresses never equal each other! We already know that Op0 != Op1.
Misha Brukmanfd939082005-04-21 23:48:37 +00003181 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
3182 isa<ConstantPointerNull>(Op0)) &&
3183 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
Chris Lattner711b3402004-11-14 07:33:16 +00003184 isa<ConstantPointerNull>(Op1)))
Chris Lattner8b170942002-08-09 23:47:40 +00003185 return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));
3186
3187 // setcc's with boolean values can always be turned into bitwise operations
3188 if (Ty == Type::BoolTy) {
Chris Lattner5dbef222004-08-11 00:50:51 +00003189 switch (I.getOpcode()) {
3190 default: assert(0 && "Invalid setcc instruction!");
3191 case Instruction::SetEQ: { // seteq bool %A, %B -> ~(A^B)
Chris Lattner48595f12004-06-10 02:07:29 +00003192 Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
Chris Lattner8b170942002-08-09 23:47:40 +00003193 InsertNewInstBefore(Xor, I);
Chris Lattnerde90b762003-11-03 04:25:02 +00003194 return BinaryOperator::createNot(Xor);
Chris Lattner8b170942002-08-09 23:47:40 +00003195 }
Chris Lattner5dbef222004-08-11 00:50:51 +00003196 case Instruction::SetNE:
3197 return BinaryOperator::createXor(Op0, Op1);
Chris Lattner8b170942002-08-09 23:47:40 +00003198
Chris Lattner5dbef222004-08-11 00:50:51 +00003199 case Instruction::SetGT:
3200 std::swap(Op0, Op1); // Change setgt -> setlt
3201 // FALL THROUGH
3202 case Instruction::SetLT: { // setlt bool A, B -> ~X & Y
3203 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
3204 InsertNewInstBefore(Not, I);
3205 return BinaryOperator::createAnd(Not, Op1);
3206 }
3207 case Instruction::SetGE:
Chris Lattner8b170942002-08-09 23:47:40 +00003208 std::swap(Op0, Op1); // Change setge -> setle
Chris Lattner5dbef222004-08-11 00:50:51 +00003209 // FALL THROUGH
3210 case Instruction::SetLE: { // setle bool %A, %B -> ~A | B
3211 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
3212 InsertNewInstBefore(Not, I);
3213 return BinaryOperator::createOr(Not, Op1);
3214 }
3215 }
Chris Lattner8b170942002-08-09 23:47:40 +00003216 }
3217
Chris Lattner2be51ae2004-06-09 04:24:29 +00003218 // See if we are doing a comparison between a constant and an instruction that
3219 // can be folded into the comparison.
Chris Lattner8b170942002-08-09 23:47:40 +00003220 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnera96879a2004-09-29 17:40:11 +00003221 // Check to see if we are comparing against the minimum or maximum value...
3222 if (CI->isMinValue()) {
3223 if (I.getOpcode() == Instruction::SetLT) // A < MIN -> FALSE
3224 return ReplaceInstUsesWith(I, ConstantBool::False);
3225 if (I.getOpcode() == Instruction::SetGE) // A >= MIN -> TRUE
3226 return ReplaceInstUsesWith(I, ConstantBool::True);
3227 if (I.getOpcode() == Instruction::SetLE) // A <= MIN -> A == MIN
3228 return BinaryOperator::createSetEQ(Op0, Op1);
3229 if (I.getOpcode() == Instruction::SetGT) // A > MIN -> A != MIN
3230 return BinaryOperator::createSetNE(Op0, Op1);
3231
3232 } else if (CI->isMaxValue()) {
3233 if (I.getOpcode() == Instruction::SetGT) // A > MAX -> FALSE
3234 return ReplaceInstUsesWith(I, ConstantBool::False);
3235 if (I.getOpcode() == Instruction::SetLE) // A <= MAX -> TRUE
3236 return ReplaceInstUsesWith(I, ConstantBool::True);
3237 if (I.getOpcode() == Instruction::SetGE) // A >= MAX -> A == MAX
3238 return BinaryOperator::createSetEQ(Op0, Op1);
3239 if (I.getOpcode() == Instruction::SetLT) // A < MAX -> A != MAX
3240 return BinaryOperator::createSetNE(Op0, Op1);
3241
3242 // Comparing against a value really close to min or max?
3243 } else if (isMinValuePlusOne(CI)) {
3244 if (I.getOpcode() == Instruction::SetLT) // A < MIN+1 -> A == MIN
3245 return BinaryOperator::createSetEQ(Op0, SubOne(CI));
3246 if (I.getOpcode() == Instruction::SetGE) // A >= MIN-1 -> A != MIN
3247 return BinaryOperator::createSetNE(Op0, SubOne(CI));
3248
3249 } else if (isMaxValueMinusOne(CI)) {
3250 if (I.getOpcode() == Instruction::SetGT) // A > MAX-1 -> A == MAX
3251 return BinaryOperator::createSetEQ(Op0, AddOne(CI));
3252 if (I.getOpcode() == Instruction::SetLE) // A <= MAX-1 -> A != MAX
3253 return BinaryOperator::createSetNE(Op0, AddOne(CI));
3254 }
3255
3256 // If we still have a setle or setge instruction, turn it into the
3257 // appropriate setlt or setgt instruction. Since the border cases have
3258 // already been handled above, this requires little checking.
3259 //
3260 if (I.getOpcode() == Instruction::SetLE)
3261 return BinaryOperator::createSetLT(Op0, AddOne(CI));
3262 if (I.getOpcode() == Instruction::SetGE)
3263 return BinaryOperator::createSetGT(Op0, SubOne(CI));
3264
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00003265
3266 // See if we can fold the comparison based on bits known to be zero or one
3267 // in the input.
3268 uint64_t KnownZero, KnownOne;
3269 if (SimplifyDemandedBits(Op0, Ty->getIntegralTypeMask(),
3270 KnownZero, KnownOne, 0))
3271 return &I;
3272
3273 // Given the known and unknown bits, compute a range that the LHS could be
3274 // in.
3275 if (KnownOne | KnownZero) {
3276 if (Ty->isUnsigned()) { // Unsigned comparison.
3277 uint64_t Min, Max;
3278 uint64_t RHSVal = CI->getZExtValue();
3279 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,
3280 Min, Max);
3281 switch (I.getOpcode()) { // LE/GE have been folded already.
3282 default: assert(0 && "Unknown setcc opcode!");
3283 case Instruction::SetEQ:
3284 if (Max < RHSVal || Min > RHSVal)
3285 return ReplaceInstUsesWith(I, ConstantBool::False);
3286 break;
3287 case Instruction::SetNE:
3288 if (Max < RHSVal || Min > RHSVal)
3289 return ReplaceInstUsesWith(I, ConstantBool::True);
3290 break;
3291 case Instruction::SetLT:
3292 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3293 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3294 break;
3295 case Instruction::SetGT:
3296 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3297 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3298 break;
3299 }
3300 } else { // Signed comparison.
3301 int64_t Min, Max;
3302 int64_t RHSVal = CI->getSExtValue();
3303 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne,
3304 Min, Max);
3305 switch (I.getOpcode()) { // LE/GE have been folded already.
3306 default: assert(0 && "Unknown setcc opcode!");
3307 case Instruction::SetEQ:
3308 if (Max < RHSVal || Min > RHSVal)
3309 return ReplaceInstUsesWith(I, ConstantBool::False);
3310 break;
3311 case Instruction::SetNE:
3312 if (Max < RHSVal || Min > RHSVal)
3313 return ReplaceInstUsesWith(I, ConstantBool::True);
3314 break;
3315 case Instruction::SetLT:
3316 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3317 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3318 break;
3319 case Instruction::SetGT:
3320 if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True);
3321 if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False);
3322 break;
3323 }
3324 }
3325 }
3326
3327
Chris Lattner3c6a0d42004-05-25 06:32:08 +00003328 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
Chris Lattner648e3bc2004-09-23 21:52:49 +00003329 switch (LHSI->getOpcode()) {
3330 case Instruction::And:
3331 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
3332 LHSI->getOperand(0)->hasOneUse()) {
3333 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
3334 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
3335 // happens a LOT in code produced by the C front-end, for bitfield
3336 // access.
3337 ShiftInst *Shift = dyn_cast<ShiftInst>(LHSI->getOperand(0));
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00003338 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
3339
3340 // Check to see if there is a noop-cast between the shift and the and.
3341 if (!Shift) {
3342 if (CastInst *CI = dyn_cast<CastInst>(LHSI->getOperand(0)))
3343 if (CI->getOperand(0)->getType()->isIntegral() &&
3344 CI->getOperand(0)->getType()->getPrimitiveSizeInBits() ==
3345 CI->getType()->getPrimitiveSizeInBits())
3346 Shift = dyn_cast<ShiftInst>(CI->getOperand(0));
3347 }
3348
Chris Lattner648e3bc2004-09-23 21:52:49 +00003349 ConstantUInt *ShAmt;
3350 ShAmt = Shift ? dyn_cast<ConstantUInt>(Shift->getOperand(1)) : 0;
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00003351 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
3352 const Type *AndTy = AndCST->getType(); // Type of the and.
Misha Brukmanfd939082005-04-21 23:48:37 +00003353
Chris Lattner648e3bc2004-09-23 21:52:49 +00003354 // We can fold this as long as we can't shift unknown bits
3355 // into the mask. This can only happen with signed shift
3356 // rights, as they sign-extend.
3357 if (ShAmt) {
3358 bool CanFold = Shift->getOpcode() != Instruction::Shr ||
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00003359 Ty->isUnsigned();
Chris Lattner648e3bc2004-09-23 21:52:49 +00003360 if (!CanFold) {
3361 // To test for the bad case of the signed shr, see if any
3362 // of the bits shifted in could be tested after the mask.
Chris Lattnerd7e31cf2005-06-17 01:29:28 +00003363 int ShAmtVal = Ty->getPrimitiveSizeInBits()-ShAmt->getValue();
3364 if (ShAmtVal < 0) ShAmtVal = 0; // Out of range shift.
3365
3366 Constant *OShAmt = ConstantUInt::get(Type::UByteTy, ShAmtVal);
Misha Brukmanfd939082005-04-21 23:48:37 +00003367 Constant *ShVal =
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00003368 ConstantExpr::getShl(ConstantInt::getAllOnesValue(AndTy),
3369 OShAmt);
Chris Lattner648e3bc2004-09-23 21:52:49 +00003370 if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue())
3371 CanFold = true;
3372 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003373
Chris Lattner648e3bc2004-09-23 21:52:49 +00003374 if (CanFold) {
Chris Lattner0cba71b2004-09-28 17:54:07 +00003375 Constant *NewCst;
3376 if (Shift->getOpcode() == Instruction::Shl)
3377 NewCst = ConstantExpr::getUShr(CI, ShAmt);
3378 else
3379 NewCst = ConstantExpr::getShl(CI, ShAmt);
Chris Lattner83c4ec02004-09-27 19:29:18 +00003380
Chris Lattner648e3bc2004-09-23 21:52:49 +00003381 // Check to see if we are shifting out any of the bits being
3382 // compared.
3383 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){
3384 // If we shifted bits out, the fold is not going to work out.
3385 // As a special case, check to see if this means that the
3386 // result is always true or false now.
3387 if (I.getOpcode() == Instruction::SetEQ)
3388 return ReplaceInstUsesWith(I, ConstantBool::False);
3389 if (I.getOpcode() == Instruction::SetNE)
3390 return ReplaceInstUsesWith(I, ConstantBool::True);
3391 } else {
3392 I.setOperand(1, NewCst);
Chris Lattner0cba71b2004-09-28 17:54:07 +00003393 Constant *NewAndCST;
3394 if (Shift->getOpcode() == Instruction::Shl)
3395 NewAndCST = ConstantExpr::getUShr(AndCST, ShAmt);
3396 else
3397 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
3398 LHSI->setOperand(1, NewAndCST);
Chris Lattnerbf5d8a82006-02-12 02:07:56 +00003399 if (AndTy == Ty)
3400 LHSI->setOperand(0, Shift->getOperand(0));
3401 else {
3402 Value *NewCast = InsertCastBefore(Shift->getOperand(0), AndTy,
3403 *Shift);
3404 LHSI->setOperand(0, NewCast);
3405 }
Chris Lattner648e3bc2004-09-23 21:52:49 +00003406 WorkList.push_back(Shift); // Shift is dead.
3407 AddUsesToWorkList(I);
3408 return &I;
Chris Lattner5eb91942004-07-21 19:50:44 +00003409 }
3410 }
Chris Lattner457dd822004-06-09 07:59:58 +00003411 }
Chris Lattner648e3bc2004-09-23 21:52:49 +00003412 }
3413 break;
Chris Lattner83c4ec02004-09-27 19:29:18 +00003414
Chris Lattner18d19ca2004-09-28 18:22:15 +00003415 case Instruction::Shl: // (setcc (shl X, ShAmt), CI)
3416 if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
3417 switch (I.getOpcode()) {
3418 default: break;
3419 case Instruction::SetEQ:
3420 case Instruction::SetNE: {
Chris Lattnere17a1282005-06-15 20:53:31 +00003421 unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
3422
3423 // Check that the shift amount is in range. If not, don't perform
3424 // undefined shifts. When the shift is visited it will be
3425 // simplified.
3426 if (ShAmt->getValue() >= TypeBits)
3427 break;
3428
Chris Lattner18d19ca2004-09-28 18:22:15 +00003429 // If we are comparing against bits always shifted out, the
3430 // comparison cannot succeed.
Misha Brukmanfd939082005-04-21 23:48:37 +00003431 Constant *Comp =
Chris Lattner18d19ca2004-09-28 18:22:15 +00003432 ConstantExpr::getShl(ConstantExpr::getShr(CI, ShAmt), ShAmt);
3433 if (Comp != CI) {// Comparing against a bit that we know is zero.
3434 bool IsSetNE = I.getOpcode() == Instruction::SetNE;
3435 Constant *Cst = ConstantBool::get(IsSetNE);
3436 return ReplaceInstUsesWith(I, Cst);
3437 }
3438
3439 if (LHSI->hasOneUse()) {
3440 // Otherwise strength reduce the shift into an and.
Chris Lattner652f3cf2005-01-08 19:42:22 +00003441 unsigned ShAmtVal = (unsigned)ShAmt->getValue();
Chris Lattner18d19ca2004-09-28 18:22:15 +00003442 uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1;
3443
3444 Constant *Mask;
3445 if (CI->getType()->isUnsigned()) {
3446 Mask = ConstantUInt::get(CI->getType(), Val);
3447 } else if (ShAmtVal != 0) {
3448 Mask = ConstantSInt::get(CI->getType(), Val);
3449 } else {
3450 Mask = ConstantInt::getAllOnesValue(CI->getType());
3451 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003452
Chris Lattner18d19ca2004-09-28 18:22:15 +00003453 Instruction *AndI =
3454 BinaryOperator::createAnd(LHSI->getOperand(0),
3455 Mask, LHSI->getName()+".mask");
3456 Value *And = InsertNewInstBefore(AndI, I);
3457 return new SetCondInst(I.getOpcode(), And,
3458 ConstantExpr::getUShr(CI, ShAmt));
3459 }
3460 }
3461 }
3462 }
3463 break;
3464
Chris Lattner83c4ec02004-09-27 19:29:18 +00003465 case Instruction::Shr: // (setcc (shr X, ShAmt), CI)
Chris Lattnerf63f6472004-09-27 16:18:50 +00003466 if (ConstantUInt *ShAmt = dyn_cast<ConstantUInt>(LHSI->getOperand(1))) {
Chris Lattnerf63f6472004-09-27 16:18:50 +00003467 switch (I.getOpcode()) {
3468 default: break;
3469 case Instruction::SetEQ:
3470 case Instruction::SetNE: {
Chris Lattnere17a1282005-06-15 20:53:31 +00003471
3472 // Check that the shift amount is in range. If not, don't perform
3473 // undefined shifts. When the shift is visited it will be
3474 // simplified.
Chris Lattneraa457ac2005-06-16 01:52:07 +00003475 unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits();
Chris Lattnere17a1282005-06-15 20:53:31 +00003476 if (ShAmt->getValue() >= TypeBits)
3477 break;
3478
Chris Lattnerf63f6472004-09-27 16:18:50 +00003479 // If we are comparing against bits always shifted out, the
3480 // comparison cannot succeed.
Misha Brukmanfd939082005-04-21 23:48:37 +00003481 Constant *Comp =
Chris Lattnerf63f6472004-09-27 16:18:50 +00003482 ConstantExpr::getShr(ConstantExpr::getShl(CI, ShAmt), ShAmt);
Misha Brukmanfd939082005-04-21 23:48:37 +00003483
Chris Lattnerf63f6472004-09-27 16:18:50 +00003484 if (Comp != CI) {// Comparing against a bit that we know is zero.
3485 bool IsSetNE = I.getOpcode() == Instruction::SetNE;
3486 Constant *Cst = ConstantBool::get(IsSetNE);
3487 return ReplaceInstUsesWith(I, Cst);
3488 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003489
Chris Lattnerf63f6472004-09-27 16:18:50 +00003490 if (LHSI->hasOneUse() || CI->isNullValue()) {
Chris Lattner652f3cf2005-01-08 19:42:22 +00003491 unsigned ShAmtVal = (unsigned)ShAmt->getValue();
Chris Lattner18d19ca2004-09-28 18:22:15 +00003492
Chris Lattnerf63f6472004-09-27 16:18:50 +00003493 // Otherwise strength reduce the shift into an and.
3494 uint64_t Val = ~0ULL; // All ones.
3495 Val <<= ShAmtVal; // Shift over to the right spot.
3496
3497 Constant *Mask;
3498 if (CI->getType()->isUnsigned()) {
Chris Lattnerf52d6812005-04-24 17:46:05 +00003499 Val &= ~0ULL >> (64-TypeBits);
Chris Lattnerf63f6472004-09-27 16:18:50 +00003500 Mask = ConstantUInt::get(CI->getType(), Val);
3501 } else {
3502 Mask = ConstantSInt::get(CI->getType(), Val);
3503 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003504
Chris Lattnerf63f6472004-09-27 16:18:50 +00003505 Instruction *AndI =
3506 BinaryOperator::createAnd(LHSI->getOperand(0),
3507 Mask, LHSI->getName()+".mask");
3508 Value *And = InsertNewInstBefore(AndI, I);
3509 return new SetCondInst(I.getOpcode(), And,
3510 ConstantExpr::getShl(CI, ShAmt));
3511 }
3512 break;
3513 }
3514 }
3515 }
3516 break;
Chris Lattner0c967662004-09-24 15:21:34 +00003517
Chris Lattnera96879a2004-09-29 17:40:11 +00003518 case Instruction::Div:
3519 // Fold: (div X, C1) op C2 -> range check
3520 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
3521 // Fold this div into the comparison, producing a range check.
3522 // Determine, based on the divide type, what the range is being
3523 // checked. If there is an overflow on the low or high side, remember
3524 // it, otherwise compute the range [low, hi) bounding the new value.
3525 bool LoOverflow = false, HiOverflow = 0;
3526 ConstantInt *LoBound = 0, *HiBound = 0;
3527
3528 ConstantInt *Prod;
3529 bool ProdOV = MulWithOverflow(Prod, CI, DivRHS);
3530
Chris Lattner6a9fdfa2004-10-11 19:40:04 +00003531 Instruction::BinaryOps Opcode = I.getOpcode();
3532
Chris Lattnera96879a2004-09-29 17:40:11 +00003533 if (DivRHS->isNullValue()) { // Don't hack on divide by zeros.
3534 } else if (LHSI->getType()->isUnsigned()) { // udiv
3535 LoBound = Prod;
3536 LoOverflow = ProdOV;
3537 HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS);
3538 } else if (isPositive(DivRHS)) { // Divisor is > 0.
3539 if (CI->isNullValue()) { // (X / pos) op 0
3540 // Can't overflow.
3541 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
3542 HiBound = DivRHS;
3543 } else if (isPositive(CI)) { // (X / pos) op pos
3544 LoBound = Prod;
3545 LoOverflow = ProdOV;
3546 HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS);
3547 } else { // (X / pos) op neg
3548 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
3549 LoOverflow = AddWithOverflow(LoBound, Prod,
3550 cast<ConstantInt>(DivRHSH));
3551 HiBound = Prod;
3552 HiOverflow = ProdOV;
3553 }
3554 } else { // Divisor is < 0.
3555 if (CI->isNullValue()) { // (X / neg) op 0
3556 LoBound = AddOne(DivRHS);
3557 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
Chris Lattner56625032005-06-17 02:05:55 +00003558 if (HiBound == DivRHS)
3559 LoBound = 0; // - INTMIN = INTMIN
Chris Lattnera96879a2004-09-29 17:40:11 +00003560 } else if (isPositive(CI)) { // (X / neg) op pos
3561 HiOverflow = LoOverflow = ProdOV;
3562 if (!LoOverflow)
3563 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS));
3564 HiBound = AddOne(Prod);
3565 } else { // (X / neg) op neg
3566 LoBound = Prod;
3567 LoOverflow = HiOverflow = ProdOV;
3568 HiBound = cast<ConstantInt>(ConstantExpr::getSub(Prod, DivRHS));
3569 }
Chris Lattner340a05f2004-10-08 19:15:44 +00003570
Chris Lattner6a9fdfa2004-10-11 19:40:04 +00003571 // Dividing by a negate swaps the condition.
3572 Opcode = SetCondInst::getSwappedCondition(Opcode);
Chris Lattnera96879a2004-09-29 17:40:11 +00003573 }
3574
3575 if (LoBound) {
3576 Value *X = LHSI->getOperand(0);
Chris Lattner6a9fdfa2004-10-11 19:40:04 +00003577 switch (Opcode) {
Chris Lattnera96879a2004-09-29 17:40:11 +00003578 default: assert(0 && "Unhandled setcc opcode!");
3579 case Instruction::SetEQ:
3580 if (LoOverflow && HiOverflow)
3581 return ReplaceInstUsesWith(I, ConstantBool::False);
3582 else if (HiOverflow)
3583 return new SetCondInst(Instruction::SetGE, X, LoBound);
3584 else if (LoOverflow)
3585 return new SetCondInst(Instruction::SetLT, X, HiBound);
3586 else
3587 return InsertRangeTest(X, LoBound, HiBound, true, I);
3588 case Instruction::SetNE:
3589 if (LoOverflow && HiOverflow)
3590 return ReplaceInstUsesWith(I, ConstantBool::True);
3591 else if (HiOverflow)
3592 return new SetCondInst(Instruction::SetLT, X, LoBound);
3593 else if (LoOverflow)
3594 return new SetCondInst(Instruction::SetGE, X, HiBound);
3595 else
3596 return InsertRangeTest(X, LoBound, HiBound, false, I);
3597 case Instruction::SetLT:
3598 if (LoOverflow)
3599 return ReplaceInstUsesWith(I, ConstantBool::False);
3600 return new SetCondInst(Instruction::SetLT, X, LoBound);
3601 case Instruction::SetGT:
3602 if (HiOverflow)
3603 return ReplaceInstUsesWith(I, ConstantBool::False);
3604 return new SetCondInst(Instruction::SetGE, X, HiBound);
3605 }
3606 }
3607 }
3608 break;
Chris Lattner648e3bc2004-09-23 21:52:49 +00003609 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003610
Chris Lattnerbc5d4142003-07-23 17:02:11 +00003611 // Simplify seteq and setne instructions...
3612 if (I.getOpcode() == Instruction::SetEQ ||
3613 I.getOpcode() == Instruction::SetNE) {
3614 bool isSetNE = I.getOpcode() == Instruction::SetNE;
3615
Chris Lattner00b1a7e2003-07-23 17:26:36 +00003616 // If the first operand is (and|or|xor) with a constant, and the second
Chris Lattnerbc5d4142003-07-23 17:02:11 +00003617 // operand is a constant, simplify a bit.
Chris Lattner934754b2003-08-13 05:33:12 +00003618 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
3619 switch (BO->getOpcode()) {
Chris Lattner3571b722004-07-06 07:38:18 +00003620 case Instruction::Rem:
3621 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3622 if (CI->isNullValue() && isa<ConstantSInt>(BO->getOperand(1)) &&
3623 BO->hasOneUse() &&
Chris Lattnerbcd7db52005-08-02 19:16:58 +00003624 cast<ConstantSInt>(BO->getOperand(1))->getValue() > 1) {
3625 int64_t V = cast<ConstantSInt>(BO->getOperand(1))->getValue();
3626 if (isPowerOf2_64(V)) {
3627 unsigned L2 = Log2_64(V);
Chris Lattner3571b722004-07-06 07:38:18 +00003628 const Type *UTy = BO->getType()->getUnsignedVersion();
3629 Value *NewX = InsertNewInstBefore(new CastInst(BO->getOperand(0),
3630 UTy, "tmp"), I);
3631 Constant *RHSCst = ConstantUInt::get(UTy, 1ULL << L2);
3632 Value *NewRem =InsertNewInstBefore(BinaryOperator::createRem(NewX,
3633 RHSCst, BO->getName()), I);
3634 return BinaryOperator::create(I.getOpcode(), NewRem,
3635 Constant::getNullValue(UTy));
3636 }
Chris Lattnerbcd7db52005-08-02 19:16:58 +00003637 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003638 break;
Chris Lattner3571b722004-07-06 07:38:18 +00003639
Chris Lattner934754b2003-08-13 05:33:12 +00003640 case Instruction::Add:
Chris Lattner15d58b62004-06-27 22:51:36 +00003641 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3642 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattner3d834bf2004-09-21 21:35:23 +00003643 if (BO->hasOneUse())
3644 return new SetCondInst(I.getOpcode(), BO->getOperand(0),
3645 ConstantExpr::getSub(CI, BOp1C));
Chris Lattner15d58b62004-06-27 22:51:36 +00003646 } else if (CI->isNullValue()) {
Chris Lattner934754b2003-08-13 05:33:12 +00003647 // Replace ((add A, B) != 0) with (A != -B) if A or B is
3648 // efficiently invertible, or if the add has just this one use.
3649 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
Misha Brukmanfd939082005-04-21 23:48:37 +00003650
Chris Lattner934754b2003-08-13 05:33:12 +00003651 if (Value *NegVal = dyn_castNegVal(BOp1))
3652 return new SetCondInst(I.getOpcode(), BOp0, NegVal);
3653 else if (Value *NegVal = dyn_castNegVal(BOp0))
3654 return new SetCondInst(I.getOpcode(), NegVal, BOp1);
Chris Lattnerfd059242003-10-15 16:48:29 +00003655 else if (BO->hasOneUse()) {
Chris Lattner934754b2003-08-13 05:33:12 +00003656 Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
3657 BO->setName("");
3658 InsertNewInstBefore(Neg, I);
3659 return new SetCondInst(I.getOpcode(), BOp0, Neg);
3660 }
3661 }
3662 break;
3663 case Instruction::Xor:
3664 // For the xor case, we can xor two constants together, eliminating
3665 // the explicit xor.
3666 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
3667 return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
Chris Lattner48595f12004-06-10 02:07:29 +00003668 ConstantExpr::getXor(CI, BOC));
Chris Lattner934754b2003-08-13 05:33:12 +00003669
3670 // FALLTHROUGH
3671 case Instruction::Sub:
3672 // Replace (([sub|xor] A, B) != 0) with (A != B)
3673 if (CI->isNullValue())
3674 return new SetCondInst(I.getOpcode(), BO->getOperand(0),
3675 BO->getOperand(1));
3676 break;
3677
3678 case Instruction::Or:
3679 // If bits are being or'd in that are not present in the constant we
3680 // are comparing against, then the comparison could never succeed!
Chris Lattner7c4049c2004-01-12 19:35:11 +00003681 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
Chris Lattner448c3232004-06-10 02:12:35 +00003682 Constant *NotCI = ConstantExpr::getNot(CI);
Chris Lattner48595f12004-06-10 02:07:29 +00003683 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
Chris Lattnerbc5d4142003-07-23 17:02:11 +00003684 return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
Chris Lattner7c4049c2004-01-12 19:35:11 +00003685 }
Chris Lattner934754b2003-08-13 05:33:12 +00003686 break;
3687
3688 case Instruction::And:
3689 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattnerbc5d4142003-07-23 17:02:11 +00003690 // If bits are being compared against that are and'd out, then the
3691 // comparison can never succeed!
Chris Lattner448c3232004-06-10 02:12:35 +00003692 if (!ConstantExpr::getAnd(CI,
3693 ConstantExpr::getNot(BOC))->isNullValue())
Chris Lattnerbc5d4142003-07-23 17:02:11 +00003694 return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
Chris Lattner934754b2003-08-13 05:33:12 +00003695
Chris Lattner457dd822004-06-09 07:59:58 +00003696 // If we have ((X & C) == C), turn it into ((X & C) != 0).
Chris Lattner3285a6f2004-06-10 02:33:20 +00003697 if (CI == BOC && isOneBitSet(CI))
Chris Lattner457dd822004-06-09 07:59:58 +00003698 return new SetCondInst(isSetNE ? Instruction::SetEQ :
3699 Instruction::SetNE, Op0,
3700 Constant::getNullValue(CI->getType()));
Chris Lattner457dd822004-06-09 07:59:58 +00003701
Chris Lattner934754b2003-08-13 05:33:12 +00003702 // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
3703 // to be a signed value as appropriate.
3704 if (isSignBit(BOC)) {
3705 Value *X = BO->getOperand(0);
3706 // If 'X' is not signed, insert a cast now...
3707 if (!BOC->getType()->isSigned()) {
Chris Lattner5dd04022004-06-17 18:16:02 +00003708 const Type *DestTy = BOC->getType()->getSignedVersion();
Chris Lattner83c4ec02004-09-27 19:29:18 +00003709 X = InsertCastBefore(X, DestTy, I);
Chris Lattner934754b2003-08-13 05:33:12 +00003710 }
3711 return new SetCondInst(isSetNE ? Instruction::SetLT :
3712 Instruction::SetGE, X,
3713 Constant::getNullValue(X->getType()));
3714 }
Misha Brukmanfd939082005-04-21 23:48:37 +00003715
Chris Lattner83c4ec02004-09-27 19:29:18 +00003716 // ((X & ~7) == 0) --> X < 8
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003717 if (CI->isNullValue() && isHighOnes(BOC)) {
3718 Value *X = BO->getOperand(0);
Chris Lattner83c4ec02004-09-27 19:29:18 +00003719 Constant *NegX = ConstantExpr::getNeg(BOC);
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003720
3721 // If 'X' is signed, insert a cast now.
Chris Lattner83c4ec02004-09-27 19:29:18 +00003722 if (NegX->getType()->isSigned()) {
3723 const Type *DestTy = NegX->getType()->getUnsignedVersion();
3724 X = InsertCastBefore(X, DestTy, I);
3725 NegX = ConstantExpr::getCast(NegX, DestTy);
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003726 }
3727
3728 return new SetCondInst(isSetNE ? Instruction::SetGE :
Chris Lattner83c4ec02004-09-27 19:29:18 +00003729 Instruction::SetLT, X, NegX);
Chris Lattnerb20ba0a2004-09-23 21:46:38 +00003730 }
3731
Chris Lattnerbc5d4142003-07-23 17:02:11 +00003732 }
Chris Lattner934754b2003-08-13 05:33:12 +00003733 default: break;
3734 }
3735 }
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003736 } else { // Not a SetEQ/SetNE
Misha Brukmanfd939082005-04-21 23:48:37 +00003737 // If the LHS is a cast from an integral value of the same size,
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003738 if (CastInst *Cast = dyn_cast<CastInst>(Op0)) {
3739 Value *CastOp = Cast->getOperand(0);
3740 const Type *SrcTy = CastOp->getType();
Chris Lattner484d3cf2005-04-24 06:59:08 +00003741 unsigned SrcTySize = SrcTy->getPrimitiveSizeInBits();
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003742 if (SrcTy != Cast->getType() && SrcTy->isInteger() &&
Chris Lattner484d3cf2005-04-24 06:59:08 +00003743 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
Misha Brukmanfd939082005-04-21 23:48:37 +00003744 assert((SrcTy->isSigned() ^ Cast->getType()->isSigned()) &&
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003745 "Source and destination signednesses should differ!");
3746 if (Cast->getType()->isSigned()) {
3747 // If this is a signed comparison, check for comparisons in the
3748 // vicinity of zero.
3749 if (I.getOpcode() == Instruction::SetLT && CI->isNullValue())
3750 // X < 0 => x > 127
Chris Lattner48595f12004-06-10 02:07:29 +00003751 return BinaryOperator::createSetGT(CastOp,
Chris Lattner484d3cf2005-04-24 06:59:08 +00003752 ConstantUInt::get(SrcTy, (1ULL << (SrcTySize-1))-1));
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003753 else if (I.getOpcode() == Instruction::SetGT &&
3754 cast<ConstantSInt>(CI)->getValue() == -1)
3755 // X > -1 => x < 128
Chris Lattner48595f12004-06-10 02:07:29 +00003756 return BinaryOperator::createSetLT(CastOp,
Chris Lattner484d3cf2005-04-24 06:59:08 +00003757 ConstantUInt::get(SrcTy, 1ULL << (SrcTySize-1)));
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003758 } else {
3759 ConstantUInt *CUI = cast<ConstantUInt>(CI);
3760 if (I.getOpcode() == Instruction::SetLT &&
Chris Lattner484d3cf2005-04-24 06:59:08 +00003761 CUI->getValue() == 1ULL << (SrcTySize-1))
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003762 // X < 128 => X > -1
Chris Lattner48595f12004-06-10 02:07:29 +00003763 return BinaryOperator::createSetGT(CastOp,
3764 ConstantSInt::get(SrcTy, -1));
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003765 else if (I.getOpcode() == Instruction::SetGT &&
Chris Lattner484d3cf2005-04-24 06:59:08 +00003766 CUI->getValue() == (1ULL << (SrcTySize-1))-1)
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003767 // X > 127 => X < 0
Chris Lattner48595f12004-06-10 02:07:29 +00003768 return BinaryOperator::createSetLT(CastOp,
3769 Constant::getNullValue(SrcTy));
Chris Lattnerc5943fb2004-02-23 07:16:20 +00003770 }
3771 }
3772 }
Chris Lattner40f5d702003-06-04 05:10:11 +00003773 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00003774 }
3775
Chris Lattner6970b662005-04-23 15:31:55 +00003776 // Handle setcc with constant RHS's that can be integer, FP or pointer.
3777 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3778 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3779 switch (LHSI->getOpcode()) {
Chris Lattner9fb25db2005-05-01 04:42:15 +00003780 case Instruction::GetElementPtr:
3781 if (RHSC->isNullValue()) {
3782 // Transform setcc GEP P, int 0, int 0, int 0, null -> setcc P, null
3783 bool isAllZeros = true;
3784 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
3785 if (!isa<Constant>(LHSI->getOperand(i)) ||
3786 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
3787 isAllZeros = false;
3788 break;
3789 }
3790 if (isAllZeros)
3791 return new SetCondInst(I.getOpcode(), LHSI->getOperand(0),
3792 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3793 }
3794 break;
3795
Chris Lattner6970b662005-04-23 15:31:55 +00003796 case Instruction::PHI:
3797 if (Instruction *NV = FoldOpIntoPhi(I))
3798 return NV;
3799 break;
3800 case Instruction::Select:
3801 // If either operand of the select is a constant, we can fold the
3802 // comparison into the select arms, which will cause one to be
3803 // constant folded and the select turned into a bitwise or.
3804 Value *Op1 = 0, *Op2 = 0;
3805 if (LHSI->hasOneUse()) {
3806 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3807 // Fold the known value into the constant operand.
3808 Op1 = ConstantExpr::get(I.getOpcode(), C, RHSC);
3809 // Insert a new SetCC of the other select operand.
3810 Op2 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
3811 LHSI->getOperand(2), RHSC,
3812 I.getName()), I);
3813 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3814 // Fold the known value into the constant operand.
3815 Op2 = ConstantExpr::get(I.getOpcode(), C, RHSC);
3816 // Insert a new SetCC of the other select operand.
3817 Op1 = InsertNewInstBefore(new SetCondInst(I.getOpcode(),
3818 LHSI->getOperand(1), RHSC,
3819 I.getName()), I);
3820 }
3821 }
Jeff Cohen9d809302005-04-23 21:38:35 +00003822
Chris Lattner6970b662005-04-23 15:31:55 +00003823 if (Op1)
3824 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
3825 break;
3826 }
3827 }
3828
Chris Lattner574da9b2005-01-13 20:14:25 +00003829 // If we can optimize a 'setcc GEP, P' or 'setcc P, GEP', do so now.
3830 if (User *GEP = dyn_castGetElementPtr(Op0))
3831 if (Instruction *NI = FoldGEPSetCC(GEP, Op1, I.getOpcode(), I))
3832 return NI;
3833 if (User *GEP = dyn_castGetElementPtr(Op1))
3834 if (Instruction *NI = FoldGEPSetCC(GEP, Op0,
3835 SetCondInst::getSwappedCondition(I.getOpcode()), I))
3836 return NI;
3837
Chris Lattnerde90b762003-11-03 04:25:02 +00003838 // Test to see if the operands of the setcc are casted versions of other
3839 // values. If the cast can be stripped off both arguments, we do so now.
Chris Lattner68708052003-11-03 05:17:03 +00003840 if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3841 Value *CastOp0 = CI->getOperand(0);
3842 if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
Chris Lattner0cea42a2004-03-13 23:54:27 +00003843 (isa<Constant>(Op1) || isa<CastInst>(Op1)) &&
Chris Lattnerde90b762003-11-03 04:25:02 +00003844 (I.getOpcode() == Instruction::SetEQ ||
3845 I.getOpcode() == Instruction::SetNE)) {
3846 // We keep moving the cast from the left operand over to the right
3847 // operand, where it can often be eliminated completely.
Chris Lattner68708052003-11-03 05:17:03 +00003848 Op0 = CastOp0;
Misha Brukmanfd939082005-04-21 23:48:37 +00003849
Chris Lattnerde90b762003-11-03 04:25:02 +00003850 // If operand #1 is a cast instruction, see if we can eliminate it as
3851 // well.
Chris Lattner68708052003-11-03 05:17:03 +00003852 if (CastInst *CI2 = dyn_cast<CastInst>(Op1))
3853 if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo(
Chris Lattnerde90b762003-11-03 04:25:02 +00003854 Op0->getType()))
Chris Lattner68708052003-11-03 05:17:03 +00003855 Op1 = CI2->getOperand(0);
Misha Brukmanfd939082005-04-21 23:48:37 +00003856
Chris Lattnerde90b762003-11-03 04:25:02 +00003857 // If Op1 is a constant, we can fold the cast into the constant.
3858 if (Op1->getType() != Op0->getType())
3859 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
3860 Op1 = ConstantExpr::getCast(Op1C, Op0->getType());
3861 } else {
3862 // Otherwise, cast the RHS right before the setcc
3863 Op1 = new CastInst(Op1, Op0->getType(), Op1->getName());
3864 InsertNewInstBefore(cast<Instruction>(Op1), I);
3865 }
3866 return BinaryOperator::create(I.getOpcode(), Op0, Op1);
3867 }
3868
Chris Lattner68708052003-11-03 05:17:03 +00003869 // Handle the special case of: setcc (cast bool to X), <cst>
3870 // This comes up when you have code like
3871 // int X = A < B;
3872 // if (X) ...
3873 // For generality, we handle any zero-extension of any operand comparison
Chris Lattner484d3cf2005-04-24 06:59:08 +00003874 // with a constant or another cast from the same type.
3875 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
3876 if (Instruction *R = visitSetCondInstWithCastAndCast(I))
3877 return R;
Chris Lattner68708052003-11-03 05:17:03 +00003878 }
Chris Lattner26ab9a92006-02-27 01:44:11 +00003879
3880 if (I.getOpcode() == Instruction::SetNE ||
3881 I.getOpcode() == Instruction::SetEQ) {
3882 Value *A, *B;
3883 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
3884 (A == Op1 || B == Op1)) {
3885 // (A^B) == A -> B == 0
3886 Value *OtherVal = A == Op1 ? B : A;
3887 return BinaryOperator::create(I.getOpcode(), OtherVal,
3888 Constant::getNullValue(A->getType()));
3889 } else if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
3890 (A == Op0 || B == Op0)) {
3891 // A == (A^B) -> B == 0
3892 Value *OtherVal = A == Op0 ? B : A;
3893 return BinaryOperator::create(I.getOpcode(), OtherVal,
3894 Constant::getNullValue(A->getType()));
3895 } else if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
3896 // (A-B) == A -> B == 0
3897 return BinaryOperator::create(I.getOpcode(), B,
3898 Constant::getNullValue(B->getType()));
3899 } else if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
3900 // A == (A-B) -> B == 0
3901 return BinaryOperator::create(I.getOpcode(), B,
3902 Constant::getNullValue(B->getType()));
3903 }
3904 }
Chris Lattner7e708292002-06-25 16:13:24 +00003905 return Changed ? &I : 0;
Chris Lattner3f5b8772002-05-06 16:14:14 +00003906}
3907
Chris Lattner484d3cf2005-04-24 06:59:08 +00003908// visitSetCondInstWithCastAndCast - Handle setcond (cast x to y), (cast/cst).
3909// We only handle extending casts so far.
3910//
3911Instruction *InstCombiner::visitSetCondInstWithCastAndCast(SetCondInst &SCI) {
3912 Value *LHSCIOp = cast<CastInst>(SCI.getOperand(0))->getOperand(0);
3913 const Type *SrcTy = LHSCIOp->getType();
3914 const Type *DestTy = SCI.getOperand(0)->getType();
3915 Value *RHSCIOp;
3916
3917 if (!DestTy->isIntegral() || !SrcTy->isIntegral())
Chris Lattnerb352fa52005-01-17 03:20:02 +00003918 return 0;
3919
Chris Lattner484d3cf2005-04-24 06:59:08 +00003920 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
3921 unsigned DestBits = DestTy->getPrimitiveSizeInBits();
3922 if (SrcBits >= DestBits) return 0; // Only handle extending cast.
3923
3924 // Is this a sign or zero extension?
3925 bool isSignSrc = SrcTy->isSigned();
3926 bool isSignDest = DestTy->isSigned();
3927
3928 if (CastInst *CI = dyn_cast<CastInst>(SCI.getOperand(1))) {
3929 // Not an extension from the same type?
3930 RHSCIOp = CI->getOperand(0);
3931 if (RHSCIOp->getType() != LHSCIOp->getType()) return 0;
3932 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(SCI.getOperand(1))) {
3933 // Compute the constant that would happen if we truncated to SrcTy then
3934 // reextended to DestTy.
3935 Constant *Res = ConstantExpr::getCast(CI, SrcTy);
3936
3937 if (ConstantExpr::getCast(Res, DestTy) == CI) {
3938 RHSCIOp = Res;
3939 } else {
3940 // If the value cannot be represented in the shorter type, we cannot emit
3941 // a simple comparison.
3942 if (SCI.getOpcode() == Instruction::SetEQ)
3943 return ReplaceInstUsesWith(SCI, ConstantBool::False);
3944 if (SCI.getOpcode() == Instruction::SetNE)
3945 return ReplaceInstUsesWith(SCI, ConstantBool::True);
3946
Chris Lattner484d3cf2005-04-24 06:59:08 +00003947 // Evaluate the comparison for LT.
3948 Value *Result;
3949 if (DestTy->isSigned()) {
3950 // We're performing a signed comparison.
3951 if (isSignSrc) {
3952 // Signed extend and signed comparison.
3953 if (cast<ConstantSInt>(CI)->getValue() < 0) // X < (small) --> false
3954 Result = ConstantBool::False;
3955 else
3956 Result = ConstantBool::True; // X < (large) --> true
3957 } else {
3958 // Unsigned extend and signed comparison.
3959 if (cast<ConstantSInt>(CI)->getValue() < 0)
3960 Result = ConstantBool::False;
3961 else
3962 Result = ConstantBool::True;
3963 }
3964 } else {
3965 // We're performing an unsigned comparison.
3966 if (!isSignSrc) {
3967 // Unsigned extend & compare -> always true.
3968 Result = ConstantBool::True;
3969 } else {
3970 // We're performing an unsigned comp with a sign extended value.
3971 // This is true if the input is >= 0. [aka >s -1]
3972 Constant *NegOne = ConstantIntegral::getAllOnesValue(SrcTy);
3973 Result = InsertNewInstBefore(BinaryOperator::createSetGT(LHSCIOp,
3974 NegOne, SCI.getName()), SCI);
3975 }
Reid Spencer6731d5c2004-11-28 21:31:15 +00003976 }
Chris Lattnerb352fa52005-01-17 03:20:02 +00003977
Jeff Cohen00b168892005-07-27 06:12:32 +00003978 // Finally, return the value computed.
Chris Lattner484d3cf2005-04-24 06:59:08 +00003979 if (SCI.getOpcode() == Instruction::SetLT) {
3980 return ReplaceInstUsesWith(SCI, Result);
3981 } else {
3982 assert(SCI.getOpcode()==Instruction::SetGT &&"SetCC should be folded!");
3983 if (Constant *CI = dyn_cast<Constant>(Result))
3984 return ReplaceInstUsesWith(SCI, ConstantExpr::getNot(CI));
3985 else
3986 return BinaryOperator::createNot(Result);
3987 }
Chris Lattnerb352fa52005-01-17 03:20:02 +00003988 }
Chris Lattner484d3cf2005-04-24 06:59:08 +00003989 } else {
3990 return 0;
Reid Spencer6731d5c2004-11-28 21:31:15 +00003991 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00003992
Chris Lattner8d7089e2005-06-16 03:00:08 +00003993 // Okay, just insert a compare of the reduced operands now!
Chris Lattner484d3cf2005-04-24 06:59:08 +00003994 return BinaryOperator::create(SCI.getOpcode(), LHSCIOp, RHSCIOp);
3995}
Chris Lattner3f5b8772002-05-06 16:14:14 +00003996
Chris Lattnerea340052003-03-10 19:16:08 +00003997Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
Chris Lattner7e708292002-06-25 16:13:24 +00003998 assert(I.getOperand(1)->getType() == Type::UByteTy);
3999 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerdf17af12003-08-12 21:53:41 +00004000 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3f5b8772002-05-06 16:14:14 +00004001
4002 // shl X, 0 == X and shr X, 0 == X
4003 // shl 0, X == 0 and shr 0, X == 0
4004 if (Op1 == Constant::getNullValue(Type::UByteTy) ||
Chris Lattner233f7dc2002-08-12 21:17:25 +00004005 Op0 == Constant::getNullValue(Op0->getType()))
4006 return ReplaceInstUsesWith(I, Op0);
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00004007
Chris Lattnere87597f2004-10-16 18:11:37 +00004008 if (isa<UndefValue>(Op0)) { // undef >>s X -> undef
4009 if (!isLeftShift && I.getType()->isSigned())
Chris Lattner79a564c2004-10-16 23:28:04 +00004010 return ReplaceInstUsesWith(I, Op0);
Chris Lattnere87597f2004-10-16 18:11:37 +00004011 else // undef << X -> 0 AND undef >>u X -> 0
4012 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4013 }
4014 if (isa<UndefValue>(Op1)) {
Chris Lattnerf9944f12005-07-20 18:49:28 +00004015 if (isLeftShift || I.getType()->isUnsigned())// X << undef, X >>u undef -> 0
Chris Lattnere87597f2004-10-16 18:11:37 +00004016 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4017 else
4018 return ReplaceInstUsesWith(I, Op0); // X >>s undef -> X
4019 }
4020
Chris Lattnerdf17af12003-08-12 21:53:41 +00004021 // shr int -1, X = -1 (for any arithmetic shift rights of ~0)
4022 if (!isLeftShift)
4023 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
4024 if (CSI->isAllOnesValue())
4025 return ReplaceInstUsesWith(I, CSI);
4026
Chris Lattner2eefe512004-04-09 19:05:30 +00004027 // Try to fold constant and into select arguments.
4028 if (isa<Constant>(Op0))
4029 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
Chris Lattner6e7ba452005-01-01 16:22:27 +00004030 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
Chris Lattner2eefe512004-04-09 19:05:30 +00004031 return R;
4032
Chris Lattner120347e2005-05-08 17:34:56 +00004033 // See if we can turn a signed shr into an unsigned shr.
4034 if (!isLeftShift && I.getType()->isSigned()) {
Chris Lattner3bedbd92006-02-07 07:27:52 +00004035 if (MaskedValueIsZero(Op0,
4036 1ULL << (I.getType()->getPrimitiveSizeInBits()-1))) {
Chris Lattner120347e2005-05-08 17:34:56 +00004037 Value *V = InsertCastBefore(Op0, I.getType()->getUnsignedVersion(), I);
4038 V = InsertNewInstBefore(new ShiftInst(Instruction::Shr, V, Op1,
4039 I.getName()), I);
4040 return new CastInst(V, I.getType());
4041 }
4042 }
Jeff Cohen00b168892005-07-27 06:12:32 +00004043
Chris Lattner4d5542c2006-01-06 07:12:35 +00004044 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1))
4045 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
4046 return Res;
4047 return 0;
4048}
4049
4050Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantUInt *Op1,
4051 ShiftInst &I) {
4052 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner830ed032006-01-06 07:22:22 +00004053 bool isSignedShift = Op0->getType()->isSigned();
4054 bool isUnsignedShift = !isSignedShift;
Chris Lattner4d5542c2006-01-06 07:12:35 +00004055
Chris Lattner8d6bbdb2006-02-12 08:07:37 +00004056 // See if we can simplify any instructions used by the instruction whose sole
4057 // purpose is to compute bits we don't care about.
4058 uint64_t KnownZero, KnownOne;
4059 if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(),
4060 KnownZero, KnownOne))
4061 return &I;
4062
Chris Lattner4d5542c2006-01-06 07:12:35 +00004063 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
4064 // of a signed value.
4065 //
4066 unsigned TypeBits = Op0->getType()->getPrimitiveSizeInBits();
4067 if (Op1->getValue() >= TypeBits) {
Chris Lattner830ed032006-01-06 07:22:22 +00004068 if (isUnsignedShift || isLeftShift)
Chris Lattner4d5542c2006-01-06 07:12:35 +00004069 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
4070 else {
4071 I.setOperand(1, ConstantUInt::get(Type::UByteTy, TypeBits-1));
4072 return &I;
Chris Lattner8adac752004-02-23 20:30:06 +00004073 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00004074 }
4075
4076 // ((X*C1) << C2) == (X * (C1 << C2))
4077 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
4078 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
4079 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
4080 return BinaryOperator::createMul(BO->getOperand(0),
4081 ConstantExpr::getShl(BOOp, Op1));
4082
4083 // Try to fold constant and into select arguments.
4084 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4085 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4086 return R;
4087 if (isa<PHINode>(Op0))
4088 if (Instruction *NV = FoldOpIntoPhi(I))
4089 return NV;
4090
4091 if (Op0->hasOneUse()) {
Chris Lattner4d5542c2006-01-06 07:12:35 +00004092 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
4093 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
4094 Value *V1, *V2;
4095 ConstantInt *CC;
4096 switch (Op0BO->getOpcode()) {
Chris Lattner11021cb2005-09-18 05:12:10 +00004097 default: break;
4098 case Instruction::Add:
4099 case Instruction::And:
4100 case Instruction::Or:
4101 case Instruction::Xor:
4102 // These operators commute.
4103 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00004104 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
4105 match(Op0BO->getOperand(1),
Chris Lattner4d5542c2006-01-06 07:12:35 +00004106 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Chris Lattner150f12a2005-09-18 06:30:59 +00004107 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner4d5542c2006-01-06 07:12:35 +00004108 Op0BO->getOperand(0), Op1,
Chris Lattner150f12a2005-09-18 06:30:59 +00004109 Op0BO->getName());
4110 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner9a4cacb2006-02-09 07:41:14 +00004111 Instruction *X =
4112 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
4113 Op0BO->getOperand(1)->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00004114 InsertNewInstBefore(X, I); // (X + (Y << C))
4115 Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
Chris Lattner4d5542c2006-01-06 07:12:35 +00004116 C2 = ConstantExpr::getShl(C2, Op1);
Chris Lattner150f12a2005-09-18 06:30:59 +00004117 return BinaryOperator::createAnd(X, C2);
4118 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00004119
Chris Lattner150f12a2005-09-18 06:30:59 +00004120 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
4121 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
4122 match(Op0BO->getOperand(1),
4123 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner4d5542c2006-01-06 07:12:35 +00004124 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner9a4cacb2006-02-09 07:41:14 +00004125 cast<BinaryOperator>(Op0BO->getOperand(1))->getOperand(0)->hasOneUse()) {
Chris Lattner150f12a2005-09-18 06:30:59 +00004126 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner4d5542c2006-01-06 07:12:35 +00004127 Op0BO->getOperand(0), Op1,
Chris Lattner150f12a2005-09-18 06:30:59 +00004128 Op0BO->getName());
4129 InsertNewInstBefore(YS, I); // (Y << C)
4130 Instruction *XM =
Chris Lattner4d5542c2006-01-06 07:12:35 +00004131 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner150f12a2005-09-18 06:30:59 +00004132 V1->getName()+".mask");
4133 InsertNewInstBefore(XM, I); // X & (CC << C)
4134
4135 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
4136 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00004137
Chris Lattner150f12a2005-09-18 06:30:59 +00004138 // FALL THROUGH.
Chris Lattner11021cb2005-09-18 05:12:10 +00004139 case Instruction::Sub:
4140 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
Chris Lattner150f12a2005-09-18 06:30:59 +00004141 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
4142 match(Op0BO->getOperand(0),
Chris Lattner4d5542c2006-01-06 07:12:35 +00004143 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
Chris Lattner150f12a2005-09-18 06:30:59 +00004144 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner4d5542c2006-01-06 07:12:35 +00004145 Op0BO->getOperand(1), Op1,
Chris Lattner150f12a2005-09-18 06:30:59 +00004146 Op0BO->getName());
4147 InsertNewInstBefore(YS, I); // (Y << C)
Chris Lattner9a4cacb2006-02-09 07:41:14 +00004148 Instruction *X =
4149 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
4150 Op0BO->getOperand(0)->getName());
Chris Lattner150f12a2005-09-18 06:30:59 +00004151 InsertNewInstBefore(X, I); // (X + (Y << C))
4152 Constant *C2 = ConstantInt::getAllOnesValue(X->getType());
Chris Lattner4d5542c2006-01-06 07:12:35 +00004153 C2 = ConstantExpr::getShl(C2, Op1);
Chris Lattner150f12a2005-09-18 06:30:59 +00004154 return BinaryOperator::createAnd(X, C2);
4155 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00004156
Chris Lattner150f12a2005-09-18 06:30:59 +00004157 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
4158 match(Op0BO->getOperand(0),
4159 m_And(m_Shr(m_Value(V1), m_Value(V2)),
Chris Lattner4d5542c2006-01-06 07:12:35 +00004160 m_ConstantInt(CC))) && V2 == Op1 &&
Chris Lattner9a4cacb2006-02-09 07:41:14 +00004161 cast<BinaryOperator>(Op0BO->getOperand(0))
4162 ->getOperand(0)->hasOneUse()) {
Chris Lattner150f12a2005-09-18 06:30:59 +00004163 Instruction *YS = new ShiftInst(Instruction::Shl,
Chris Lattner4d5542c2006-01-06 07:12:35 +00004164 Op0BO->getOperand(1), Op1,
Chris Lattner150f12a2005-09-18 06:30:59 +00004165 Op0BO->getName());
4166 InsertNewInstBefore(YS, I); // (Y << C)
4167 Instruction *XM =
Chris Lattner4d5542c2006-01-06 07:12:35 +00004168 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
Chris Lattner150f12a2005-09-18 06:30:59 +00004169 V1->getName()+".mask");
4170 InsertNewInstBefore(XM, I); // X & (CC << C)
4171
4172 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
4173 }
Chris Lattner4d5542c2006-01-06 07:12:35 +00004174
Chris Lattner11021cb2005-09-18 05:12:10 +00004175 break;
Chris Lattner4d5542c2006-01-06 07:12:35 +00004176 }
4177
4178
4179 // If the operand is an bitwise operator with a constant RHS, and the
4180 // shift is the only use, we can pull it out of the shift.
4181 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
4182 bool isValid = true; // Valid only for And, Or, Xor
4183 bool highBitSet = false; // Transform if high bit of constant set?
4184
4185 switch (Op0BO->getOpcode()) {
Chris Lattnerdf17af12003-08-12 21:53:41 +00004186 default: isValid = false; break; // Do not perform transform!
Chris Lattner1f7e1602004-10-08 03:46:20 +00004187 case Instruction::Add:
4188 isValid = isLeftShift;
4189 break;
Chris Lattnerdf17af12003-08-12 21:53:41 +00004190 case Instruction::Or:
4191 case Instruction::Xor:
4192 highBitSet = false;
4193 break;
4194 case Instruction::And:
4195 highBitSet = true;
4196 break;
Chris Lattner4d5542c2006-01-06 07:12:35 +00004197 }
4198
4199 // If this is a signed shift right, and the high bit is modified
4200 // by the logical operation, do not perform the transformation.
4201 // The highBitSet boolean indicates the value of the high bit of
4202 // the constant which would cause it to be modified for this
4203 // operation.
4204 //
Chris Lattner830ed032006-01-06 07:22:22 +00004205 if (isValid && !isLeftShift && isSignedShift) {
Chris Lattner4d5542c2006-01-06 07:12:35 +00004206 uint64_t Val = Op0C->getRawValue();
4207 isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
4208 }
4209
4210 if (isValid) {
4211 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
4212
4213 Instruction *NewShift =
4214 new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), Op1,
4215 Op0BO->getName());
4216 Op0BO->setName("");
4217 InsertNewInstBefore(NewShift, I);
4218
4219 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
4220 NewRHS);
4221 }
4222 }
4223 }
4224 }
4225
Chris Lattnerad0124c2006-01-06 07:52:12 +00004226 // Find out if this is a shift of a shift by a constant.
4227 ShiftInst *ShiftOp = 0;
Chris Lattner4d5542c2006-01-06 07:12:35 +00004228 if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
Chris Lattnerad0124c2006-01-06 07:52:12 +00004229 ShiftOp = Op0SI;
4230 else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
4231 // If this is a noop-integer case of a shift instruction, use the shift.
4232 if (CI->getOperand(0)->getType()->isInteger() &&
4233 CI->getOperand(0)->getType()->getPrimitiveSizeInBits() ==
4234 CI->getType()->getPrimitiveSizeInBits() &&
4235 isa<ShiftInst>(CI->getOperand(0))) {
4236 ShiftOp = cast<ShiftInst>(CI->getOperand(0));
4237 }
4238 }
4239
4240 if (ShiftOp && isa<ConstantUInt>(ShiftOp->getOperand(1))) {
4241 // Find the operands and properties of the input shift. Note that the
4242 // signedness of the input shift may differ from the current shift if there
4243 // is a noop cast between the two.
4244 bool isShiftOfLeftShift = ShiftOp->getOpcode() == Instruction::Shl;
4245 bool isShiftOfSignedShift = ShiftOp->getType()->isSigned();
Chris Lattnere8d56c52006-01-07 01:32:28 +00004246 bool isShiftOfUnsignedShift = !isShiftOfSignedShift;
Chris Lattnerad0124c2006-01-06 07:52:12 +00004247
4248 ConstantUInt *ShiftAmt1C = cast<ConstantUInt>(ShiftOp->getOperand(1));
4249
4250 unsigned ShiftAmt1 = (unsigned)ShiftAmt1C->getValue();
4251 unsigned ShiftAmt2 = (unsigned)Op1->getValue();
4252
4253 // Check for (A << c1) << c2 and (A >> c1) >> c2.
4254 if (isLeftShift == isShiftOfLeftShift) {
4255 // Do not fold these shifts if the first one is signed and the second one
4256 // is unsigned and this is a right shift. Further, don't do any folding
4257 // on them.
4258 if (isShiftOfSignedShift && isUnsignedShift && !isLeftShift)
4259 return 0;
Chris Lattner4d5542c2006-01-06 07:12:35 +00004260
Chris Lattnerad0124c2006-01-06 07:52:12 +00004261 unsigned Amt = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
4262 if (Amt > Op0->getType()->getPrimitiveSizeInBits())
4263 Amt = Op0->getType()->getPrimitiveSizeInBits();
Chris Lattner4d5542c2006-01-06 07:12:35 +00004264
Chris Lattnerad0124c2006-01-06 07:52:12 +00004265 Value *Op = ShiftOp->getOperand(0);
4266 if (isShiftOfSignedShift != isSignedShift)
4267 Op = InsertNewInstBefore(new CastInst(Op, I.getType(), "tmp"), I);
4268 return new ShiftInst(I.getOpcode(), Op,
4269 ConstantUInt::get(Type::UByteTy, Amt));
4270 }
4271
4272 // Check for (A << c1) >> c2 or (A >> c1) << c2. If we are dealing with
4273 // signed types, we can only support the (A >> c1) << c2 configuration,
4274 // because it can not turn an arbitrary bit of A into a sign bit.
4275 if (isUnsignedShift || isLeftShift) {
4276 // Calculate bitmask for what gets shifted off the edge.
4277 Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
4278 if (isLeftShift)
4279 C = ConstantExpr::getShl(C, ShiftAmt1C);
4280 else
Chris Lattnere8d56c52006-01-07 01:32:28 +00004281 C = ConstantExpr::getUShr(C, ShiftAmt1C);
Chris Lattnerad0124c2006-01-06 07:52:12 +00004282
4283 Value *Op = ShiftOp->getOperand(0);
4284 if (isShiftOfSignedShift != isSignedShift)
4285 Op = InsertNewInstBefore(new CastInst(Op, I.getType(),Op->getName()),I);
4286
4287 Instruction *Mask =
4288 BinaryOperator::createAnd(Op, C, Op->getName()+".mask");
4289 InsertNewInstBefore(Mask, I);
4290
4291 // Figure out what flavor of shift we should use...
Chris Lattnere8d56c52006-01-07 01:32:28 +00004292 if (ShiftAmt1 == ShiftAmt2) {
Chris Lattnerad0124c2006-01-06 07:52:12 +00004293 return ReplaceInstUsesWith(I, Mask); // (A << c) >> c === A & c2
Chris Lattnere8d56c52006-01-07 01:32:28 +00004294 } else if (ShiftAmt1 < ShiftAmt2) {
Chris Lattnerad0124c2006-01-06 07:52:12 +00004295 return new ShiftInst(I.getOpcode(), Mask,
4296 ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
Chris Lattnere8d56c52006-01-07 01:32:28 +00004297 } else if (isShiftOfUnsignedShift || isShiftOfLeftShift) {
4298 if (isShiftOfUnsignedShift && !isShiftOfLeftShift && isSignedShift) {
4299 // Make sure to emit an unsigned shift right, not a signed one.
4300 Mask = InsertNewInstBefore(new CastInst(Mask,
4301 Mask->getType()->getUnsignedVersion(),
4302 Op->getName()), I);
4303 Mask = new ShiftInst(Instruction::Shr, Mask,
Chris Lattnerad0124c2006-01-06 07:52:12 +00004304 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
Chris Lattnere8d56c52006-01-07 01:32:28 +00004305 InsertNewInstBefore(Mask, I);
4306 return new CastInst(Mask, I.getType());
4307 } else {
4308 return new ShiftInst(ShiftOp->getOpcode(), Mask,
4309 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
4310 }
4311 } else {
4312 // (X >>s C1) << C2 where C1 > C2 === (X >>s (C1-C2)) & mask
4313 Op = InsertNewInstBefore(new CastInst(Mask,
4314 I.getType()->getSignedVersion(),
4315 Mask->getName()), I);
4316 Instruction *Shift =
4317 new ShiftInst(ShiftOp->getOpcode(), Op,
4318 ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
4319 InsertNewInstBefore(Shift, I);
4320
4321 C = ConstantIntegral::getAllOnesValue(Shift->getType());
4322 C = ConstantExpr::getShl(C, Op1);
4323 Mask = BinaryOperator::createAnd(Shift, C, Op->getName()+".mask");
4324 InsertNewInstBefore(Mask, I);
4325 return new CastInst(Mask, I.getType());
Chris Lattnerad0124c2006-01-06 07:52:12 +00004326 }
4327 } else {
Chris Lattnere8d56c52006-01-07 01:32:28 +00004328 // We can handle signed (X << C1) >>s C2 if it's a sign extend. In
Chris Lattnerad0124c2006-01-06 07:52:12 +00004329 // this case, C1 == C2 and C1 is 8, 16, or 32.
4330 if (ShiftAmt1 == ShiftAmt2) {
4331 const Type *SExtType = 0;
4332 switch (ShiftAmt1) {
4333 case 8 : SExtType = Type::SByteTy; break;
4334 case 16: SExtType = Type::ShortTy; break;
4335 case 32: SExtType = Type::IntTy; break;
4336 }
4337
4338 if (SExtType) {
4339 Instruction *NewTrunc = new CastInst(ShiftOp->getOperand(0),
4340 SExtType, "sext");
4341 InsertNewInstBefore(NewTrunc, I);
4342 return new CastInst(NewTrunc, I.getType());
Chris Lattnerdf17af12003-08-12 21:53:41 +00004343 }
Chris Lattner11021cb2005-09-18 05:12:10 +00004344 }
Chris Lattner6e7ba452005-01-01 16:22:27 +00004345 }
Chris Lattnerad0124c2006-01-06 07:52:12 +00004346 }
Chris Lattner3f5b8772002-05-06 16:14:14 +00004347 return 0;
4348}
4349
Chris Lattnerbee7e762004-07-20 00:59:32 +00004350enum CastType {
4351 Noop = 0,
4352 Truncate = 1,
4353 Signext = 2,
4354 Zeroext = 3
4355};
4356
4357/// getCastType - In the future, we will split the cast instruction into these
4358/// various types. Until then, we have to do the analysis here.
4359static CastType getCastType(const Type *Src, const Type *Dest) {
4360 assert(Src->isIntegral() && Dest->isIntegral() &&
4361 "Only works on integral types!");
Chris Lattner484d3cf2005-04-24 06:59:08 +00004362 unsigned SrcSize = Src->getPrimitiveSizeInBits();
4363 unsigned DestSize = Dest->getPrimitiveSizeInBits();
Chris Lattnerbee7e762004-07-20 00:59:32 +00004364
4365 if (SrcSize == DestSize) return Noop;
4366 if (SrcSize > DestSize) return Truncate;
4367 if (Src->isSigned()) return Signext;
4368 return Zeroext;
4369}
4370
Chris Lattner3f5b8772002-05-06 16:14:14 +00004371
Chris Lattnera1be5662002-05-02 17:06:02 +00004372// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
4373// instruction.
4374//
Chris Lattnerbc528ef2006-01-19 07:40:22 +00004375static bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
4376 const Type *DstTy, TargetData *TD) {
Chris Lattnera1be5662002-05-02 17:06:02 +00004377
Chris Lattner8fd217c2002-08-02 20:00:25 +00004378 // It is legal to eliminate the instruction if casting A->B->A if the sizes
Misha Brukmanfd939082005-04-21 23:48:37 +00004379 // are identical and the bits don't get reinterpreted (for example
Chris Lattner5eb91942004-07-21 19:50:44 +00004380 // int->float->int would not be allowed).
Misha Brukmanf117cc92003-05-20 18:45:36 +00004381 if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
Chris Lattner8fd217c2002-08-02 20:00:25 +00004382 return true;
Chris Lattnera1be5662002-05-02 17:06:02 +00004383
Chris Lattnere8a7e592004-07-21 04:27:24 +00004384 // If we are casting between pointer and integer types, treat pointers as
4385 // integers of the appropriate size for the code below.
4386 if (isa<PointerType>(SrcTy)) SrcTy = TD->getIntPtrType();
4387 if (isa<PointerType>(MidTy)) MidTy = TD->getIntPtrType();
4388 if (isa<PointerType>(DstTy)) DstTy = TD->getIntPtrType();
Chris Lattner59a20772004-07-20 05:21:00 +00004389
Chris Lattnera1be5662002-05-02 17:06:02 +00004390 // Allow free casting and conversion of sizes as long as the sign doesn't
4391 // change...
Chris Lattner0c4e8862002-09-03 01:08:28 +00004392 if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
Chris Lattnerbee7e762004-07-20 00:59:32 +00004393 CastType FirstCast = getCastType(SrcTy, MidTy);
4394 CastType SecondCast = getCastType(MidTy, DstTy);
Chris Lattner8fd217c2002-08-02 20:00:25 +00004395
Chris Lattnerbee7e762004-07-20 00:59:32 +00004396 // Capture the effect of these two casts. If the result is a legal cast,
4397 // the CastType is stored here, otherwise a special code is used.
4398 static const unsigned CastResult[] = {
4399 // First cast is noop
4400 0, 1, 2, 3,
4401 // First cast is a truncate
4402 1, 1, 4, 4, // trunc->extend is not safe to eliminate
4403 // First cast is a sign ext
Chris Lattner5eb91942004-07-21 19:50:44 +00004404 2, 5, 2, 4, // signext->zeroext never ok
Chris Lattnerbee7e762004-07-20 00:59:32 +00004405 // First cast is a zero ext
Chris Lattner5eb91942004-07-21 19:50:44 +00004406 3, 5, 3, 3,
Chris Lattnerbee7e762004-07-20 00:59:32 +00004407 };
4408
4409 unsigned Result = CastResult[FirstCast*4+SecondCast];
4410 switch (Result) {
4411 default: assert(0 && "Illegal table value!");
4412 case 0:
4413 case 1:
4414 case 2:
4415 case 3:
4416 // FIXME: in the future, when LLVM has explicit sign/zeroextends and
4417 // truncates, we could eliminate more casts.
4418 return (unsigned)getCastType(SrcTy, DstTy) == Result;
4419 case 4:
4420 return false; // Not possible to eliminate this here.
4421 case 5:
Chris Lattner5eb91942004-07-21 19:50:44 +00004422 // Sign or zero extend followed by truncate is always ok if the result
4423 // is a truncate or noop.
4424 CastType ResultCast = getCastType(SrcTy, DstTy);
4425 if (ResultCast == Noop || ResultCast == Truncate)
4426 return true;
Misha Brukmanfd939082005-04-21 23:48:37 +00004427 // Otherwise we are still growing the value, we are only safe if the
Chris Lattner5eb91942004-07-21 19:50:44 +00004428 // result will match the sign/zeroextendness of the result.
4429 return ResultCast == FirstCast;
Chris Lattner3ecce662002-08-15 16:15:25 +00004430 }
Chris Lattner8fd217c2002-08-02 20:00:25 +00004431 }
Chris Lattnerbc528ef2006-01-19 07:40:22 +00004432
4433 // If this is a cast from 'float -> double -> integer', cast from
4434 // 'float -> integer' directly, as the value isn't changed by the
4435 // float->double conversion.
4436 if (SrcTy->isFloatingPoint() && MidTy->isFloatingPoint() &&
4437 DstTy->isIntegral() &&
4438 SrcTy->getPrimitiveSize() < MidTy->getPrimitiveSize())
4439 return true;
4440
Chris Lattnera1be5662002-05-02 17:06:02 +00004441 return false;
4442}
4443
Chris Lattner59a20772004-07-20 05:21:00 +00004444static bool ValueRequiresCast(const Value *V, const Type *Ty, TargetData *TD) {
Chris Lattner24c8e382003-07-24 17:35:25 +00004445 if (V->getType() == Ty || isa<Constant>(V)) return false;
4446 if (const CastInst *CI = dyn_cast<CastInst>(V))
Chris Lattner59a20772004-07-20 05:21:00 +00004447 if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty,
4448 TD))
Chris Lattner24c8e382003-07-24 17:35:25 +00004449 return false;
4450 return true;
4451}
4452
4453/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
4454/// InsertBefore instruction. This is specialized a bit to avoid inserting
4455/// casts that are known to not do anything...
4456///
4457Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
4458 Instruction *InsertBefore) {
4459 if (V->getType() == DestTy) return V;
4460 if (Constant *C = dyn_cast<Constant>(V))
4461 return ConstantExpr::getCast(C, DestTy);
4462
4463 CastInst *CI = new CastInst(V, DestTy, V->getName());
4464 InsertNewInstBefore(CI, *InsertBefore);
4465 return CI;
4466}
Chris Lattnera1be5662002-05-02 17:06:02 +00004467
Chris Lattnercfd65102005-10-29 04:36:15 +00004468/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
4469/// expression. If so, decompose it, returning some value X, such that Val is
4470/// X*Scale+Offset.
4471///
4472static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
4473 unsigned &Offset) {
4474 assert(Val->getType() == Type::UIntTy && "Unexpected allocation size type!");
4475 if (ConstantUInt *CI = dyn_cast<ConstantUInt>(Val)) {
4476 Offset = CI->getValue();
4477 Scale = 1;
4478 return ConstantUInt::get(Type::UIntTy, 0);
4479 } else if (Instruction *I = dyn_cast<Instruction>(Val)) {
4480 if (I->getNumOperands() == 2) {
4481 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I->getOperand(1))) {
4482 if (I->getOpcode() == Instruction::Shl) {
4483 // This is a value scaled by '1 << the shift amt'.
4484 Scale = 1U << CUI->getValue();
4485 Offset = 0;
4486 return I->getOperand(0);
4487 } else if (I->getOpcode() == Instruction::Mul) {
4488 // This value is scaled by 'CUI'.
4489 Scale = CUI->getValue();
4490 Offset = 0;
4491 return I->getOperand(0);
4492 } else if (I->getOpcode() == Instruction::Add) {
4493 // We have X+C. Check to see if we really have (X*C2)+C1, where C1 is
4494 // divisible by C2.
4495 unsigned SubScale;
4496 Value *SubVal = DecomposeSimpleLinearExpr(I->getOperand(0), SubScale,
4497 Offset);
4498 Offset += CUI->getValue();
4499 if (SubScale > 1 && (Offset % SubScale == 0)) {
4500 Scale = SubScale;
4501 return SubVal;
4502 }
4503 }
4504 }
4505 }
4506 }
4507
4508 // Otherwise, we can't look past this.
4509 Scale = 1;
4510 Offset = 0;
4511 return Val;
4512}
4513
4514
Chris Lattnerb3f83972005-10-24 06:03:58 +00004515/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
4516/// try to eliminate the cast by moving the type information into the alloc.
4517Instruction *InstCombiner::PromoteCastOfAllocation(CastInst &CI,
4518 AllocationInst &AI) {
4519 const PointerType *PTy = dyn_cast<PointerType>(CI.getType());
Chris Lattner0ddac2a2005-10-27 05:53:56 +00004520 if (!PTy) return 0; // Not casting the allocation to a pointer type.
Chris Lattnerb3f83972005-10-24 06:03:58 +00004521
Chris Lattnerb53c2382005-10-24 06:22:12 +00004522 // Remove any uses of AI that are dead.
4523 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
4524 std::vector<Instruction*> DeadUsers;
4525 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
4526 Instruction *User = cast<Instruction>(*UI++);
4527 if (isInstructionTriviallyDead(User)) {
4528 while (UI != E && *UI == User)
4529 ++UI; // If this instruction uses AI more than once, don't break UI.
4530
4531 // Add operands to the worklist.
4532 AddUsesToWorkList(*User);
4533 ++NumDeadInst;
4534 DEBUG(std::cerr << "IC: DCE: " << *User);
4535
4536 User->eraseFromParent();
4537 removeFromWorkList(User);
4538 }
4539 }
4540
Chris Lattnerb3f83972005-10-24 06:03:58 +00004541 // Get the type really allocated and the type casted to.
4542 const Type *AllocElTy = AI.getAllocatedType();
4543 const Type *CastElTy = PTy->getElementType();
4544 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
Chris Lattner18e78bb2005-10-24 06:26:18 +00004545
4546 unsigned AllocElTyAlign = TD->getTypeSize(AllocElTy);
4547 unsigned CastElTyAlign = TD->getTypeSize(CastElTy);
4548 if (CastElTyAlign < AllocElTyAlign) return 0;
4549
Chris Lattner39387a52005-10-24 06:35:18 +00004550 // If the allocation has multiple uses, only promote it if we are strictly
4551 // increasing the alignment of the resultant allocation. If we keep it the
4552 // same, we open the door to infinite loops of various kinds.
4553 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
4554
Chris Lattnerb3f83972005-10-24 06:03:58 +00004555 uint64_t AllocElTySize = TD->getTypeSize(AllocElTy);
4556 uint64_t CastElTySize = TD->getTypeSize(CastElTy);
Chris Lattner0ddac2a2005-10-27 05:53:56 +00004557 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
Chris Lattner18e78bb2005-10-24 06:26:18 +00004558
Chris Lattner455fcc82005-10-29 03:19:53 +00004559 // See if we can satisfy the modulus by pulling a scale out of the array
4560 // size argument.
Chris Lattnercfd65102005-10-29 04:36:15 +00004561 unsigned ArraySizeScale, ArrayOffset;
4562 Value *NumElements = // See if the array size is a decomposable linear expr.
4563 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
4564
Chris Lattner455fcc82005-10-29 03:19:53 +00004565 // If we can now satisfy the modulus, by using a non-1 scale, we really can
4566 // do the xform.
Chris Lattnercfd65102005-10-29 04:36:15 +00004567 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
4568 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
Chris Lattner8142b0a2005-10-27 06:12:00 +00004569
Chris Lattner455fcc82005-10-29 03:19:53 +00004570 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
4571 Value *Amt = 0;
4572 if (Scale == 1) {
4573 Amt = NumElements;
4574 } else {
4575 Amt = ConstantUInt::get(Type::UIntTy, Scale);
4576 if (ConstantUInt *CI = dyn_cast<ConstantUInt>(NumElements))
4577 Amt = ConstantExpr::getMul(CI, cast<ConstantUInt>(Amt));
4578 else if (Scale != 1) {
4579 Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
4580 Amt = InsertNewInstBefore(Tmp, AI);
Chris Lattner8142b0a2005-10-27 06:12:00 +00004581 }
Chris Lattner0ddac2a2005-10-27 05:53:56 +00004582 }
4583
Chris Lattnercfd65102005-10-29 04:36:15 +00004584 if (unsigned Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
4585 Value *Off = ConstantUInt::get(Type::UIntTy, Offset);
4586 Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
4587 Amt = InsertNewInstBefore(Tmp, AI);
4588 }
4589
Chris Lattnerb3f83972005-10-24 06:03:58 +00004590 std::string Name = AI.getName(); AI.setName("");
4591 AllocationInst *New;
4592 if (isa<MallocInst>(AI))
Nate Begeman14b05292005-11-05 09:21:28 +00004593 New = new MallocInst(CastElTy, Amt, AI.getAlignment(), Name);
Chris Lattnerb3f83972005-10-24 06:03:58 +00004594 else
Nate Begeman14b05292005-11-05 09:21:28 +00004595 New = new AllocaInst(CastElTy, Amt, AI.getAlignment(), Name);
Chris Lattnerb3f83972005-10-24 06:03:58 +00004596 InsertNewInstBefore(New, AI);
Chris Lattner39387a52005-10-24 06:35:18 +00004597
4598 // If the allocation has multiple uses, insert a cast and change all things
4599 // that used it to use the new cast. This will also hack on CI, but it will
4600 // die soon.
4601 if (!AI.hasOneUse()) {
4602 AddUsesToWorkList(AI);
4603 CastInst *NewCast = new CastInst(New, AI.getType(), "tmpcast");
4604 InsertNewInstBefore(NewCast, AI);
4605 AI.replaceAllUsesWith(NewCast);
4606 }
Chris Lattnerb3f83972005-10-24 06:03:58 +00004607 return ReplaceInstUsesWith(CI, New);
4608}
4609
4610
Chris Lattnera1be5662002-05-02 17:06:02 +00004611// CastInst simplification
Chris Lattnerdd841ae2002-04-18 17:39:14 +00004612//
Chris Lattner7e708292002-06-25 16:13:24 +00004613Instruction *InstCombiner::visitCastInst(CastInst &CI) {
Chris Lattner79d35b32003-06-23 21:59:52 +00004614 Value *Src = CI.getOperand(0);
4615
Chris Lattnera1be5662002-05-02 17:06:02 +00004616 // If the user is casting a value to the same type, eliminate this cast
4617 // instruction...
Chris Lattner79d35b32003-06-23 21:59:52 +00004618 if (CI.getType() == Src->getType())
4619 return ReplaceInstUsesWith(CI, Src);
Chris Lattnera1be5662002-05-02 17:06:02 +00004620
Chris Lattnere87597f2004-10-16 18:11:37 +00004621 if (isa<UndefValue>(Src)) // cast undef -> undef
4622 return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType()));
4623
Chris Lattnera1be5662002-05-02 17:06:02 +00004624 // If casting the result of another cast instruction, try to eliminate this
4625 // one!
4626 //
Chris Lattner6e7ba452005-01-01 16:22:27 +00004627 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
4628 Value *A = CSrc->getOperand(0);
4629 if (isEliminableCastOfCast(A->getType(), CSrc->getType(),
4630 CI.getType(), TD)) {
Chris Lattnera1be5662002-05-02 17:06:02 +00004631 // This instruction now refers directly to the cast's src operand. This
4632 // has a good chance of making CSrc dead.
Chris Lattner7e708292002-06-25 16:13:24 +00004633 CI.setOperand(0, CSrc->getOperand(0));
4634 return &CI;
Chris Lattnera1be5662002-05-02 17:06:02 +00004635 }
4636
Chris Lattner8fd217c2002-08-02 20:00:25 +00004637 // If this is an A->B->A cast, and we are dealing with integral types, try
4638 // to convert this into a logical 'and' instruction.
4639 //
Misha Brukmanfd939082005-04-21 23:48:37 +00004640 if (A->getType()->isInteger() &&
Chris Lattner0c4e8862002-09-03 01:08:28 +00004641 CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
Chris Lattner6e7ba452005-01-01 16:22:27 +00004642 CSrc->getType()->isUnsigned() && // B->A cast must zero extend
Chris Lattner484d3cf2005-04-24 06:59:08 +00004643 CSrc->getType()->getPrimitiveSizeInBits() <
4644 CI.getType()->getPrimitiveSizeInBits()&&
4645 A->getType()->getPrimitiveSizeInBits() ==
4646 CI.getType()->getPrimitiveSizeInBits()) {
Chris Lattner8fd217c2002-08-02 20:00:25 +00004647 assert(CSrc->getType() != Type::ULongTy &&
4648 "Cannot have type bigger than ulong!");
Chris Lattner1a074fc2006-02-07 07:00:41 +00004649 uint64_t AndValue = CSrc->getType()->getIntegralTypeMask();
Chris Lattner6e7ba452005-01-01 16:22:27 +00004650 Constant *AndOp = ConstantUInt::get(A->getType()->getUnsignedVersion(),
4651 AndValue);
4652 AndOp = ConstantExpr::getCast(AndOp, A->getType());
4653 Instruction *And = BinaryOperator::createAnd(CSrc->getOperand(0), AndOp);
4654 if (And->getType() != CI.getType()) {
4655 And->setName(CSrc->getName()+".mask");
4656 InsertNewInstBefore(And, CI);
4657 And = new CastInst(And, CI.getType());
4658 }
4659 return And;
Chris Lattner8fd217c2002-08-02 20:00:25 +00004660 }
4661 }
Chris Lattner6dce1a72006-02-07 06:56:34 +00004662
Chris Lattnera710ddc2004-05-25 04:29:21 +00004663 // If this is a cast to bool, turn it into the appropriate setne instruction.
4664 if (CI.getType() == Type::BoolTy)
Chris Lattner48595f12004-06-10 02:07:29 +00004665 return BinaryOperator::createSetNE(CI.getOperand(0),
Chris Lattnera710ddc2004-05-25 04:29:21 +00004666 Constant::getNullValue(CI.getOperand(0)->getType()));
4667
Chris Lattner6dce1a72006-02-07 06:56:34 +00004668 // See if we can simplify any instructions used by the LHS whose sole
4669 // purpose is to compute bits we don't care about.
Chris Lattner255d8912006-02-11 09:31:47 +00004670 if (CI.getType()->isInteger() && CI.getOperand(0)->getType()->isIntegral()) {
4671 uint64_t KnownZero, KnownOne;
4672 if (SimplifyDemandedBits(&CI, CI.getType()->getIntegralTypeMask(),
4673 KnownZero, KnownOne))
4674 return &CI;
4675 }
Chris Lattner6dce1a72006-02-07 06:56:34 +00004676
Chris Lattner797249b2003-06-21 23:12:02 +00004677 // If casting the result of a getelementptr instruction with no offset, turn
4678 // this into a cast of the original pointer!
4679 //
Chris Lattner79d35b32003-06-23 21:59:52 +00004680 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
Chris Lattner797249b2003-06-21 23:12:02 +00004681 bool AllZeroOperands = true;
4682 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
4683 if (!isa<Constant>(GEP->getOperand(i)) ||
4684 !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
4685 AllZeroOperands = false;
4686 break;
4687 }
4688 if (AllZeroOperands) {
4689 CI.setOperand(0, GEP->getOperand(0));
4690 return &CI;
4691 }
4692 }
4693
Chris Lattnerbc61e662003-11-02 05:57:39 +00004694 // If we are casting a malloc or alloca to a pointer to a type of the same
4695 // size, rewrite the allocation instruction to allocate the "right" type.
4696 //
4697 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
Chris Lattnerb3f83972005-10-24 06:03:58 +00004698 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
4699 return V;
Chris Lattnerbc61e662003-11-02 05:57:39 +00004700
Chris Lattner6e7ba452005-01-01 16:22:27 +00004701 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
4702 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
4703 return NV;
Chris Lattner4e998b22004-09-29 05:07:12 +00004704 if (isa<PHINode>(Src))
4705 if (Instruction *NV = FoldOpIntoPhi(CI))
4706 return NV;
4707
Chris Lattner24c8e382003-07-24 17:35:25 +00004708 // If the source value is an instruction with only this use, we can attempt to
4709 // propagate the cast into the instruction. Also, only handle integral types
4710 // for now.
4711 if (Instruction *SrcI = dyn_cast<Instruction>(Src))
Chris Lattnerfd059242003-10-15 16:48:29 +00004712 if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
Chris Lattner24c8e382003-07-24 17:35:25 +00004713 CI.getType()->isInteger()) { // Don't mess with casts to bool here
4714 const Type *DestTy = CI.getType();
Chris Lattner484d3cf2005-04-24 06:59:08 +00004715 unsigned SrcBitSize = Src->getType()->getPrimitiveSizeInBits();
4716 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Chris Lattner24c8e382003-07-24 17:35:25 +00004717
4718 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
4719 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
4720
4721 switch (SrcI->getOpcode()) {
4722 case Instruction::Add:
4723 case Instruction::Mul:
4724 case Instruction::And:
4725 case Instruction::Or:
4726 case Instruction::Xor:
4727 // If we are discarding information, or just changing the sign, rewrite.
4728 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
4729 // Don't insert two casts if they cannot be eliminated. We allow two
4730 // casts to be inserted if the sizes are the same. This could only be
4731 // converting signedness, which is a noop.
Chris Lattner59a20772004-07-20 05:21:00 +00004732 if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy,TD) ||
4733 !ValueRequiresCast(Op0, DestTy, TD)) {
Chris Lattner24c8e382003-07-24 17:35:25 +00004734 Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
4735 Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
4736 return BinaryOperator::create(cast<BinaryOperator>(SrcI)
4737 ->getOpcode(), Op0c, Op1c);
4738 }
4739 }
Chris Lattner7aed7ac2005-05-06 02:07:39 +00004740
4741 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
4742 if (SrcBitSize == 1 && SrcI->getOpcode() == Instruction::Xor &&
4743 Op1 == ConstantBool::True &&
4744 (!Op0->hasOneUse() || !isa<SetCondInst>(Op0))) {
4745 Value *New = InsertOperandCastBefore(Op0, DestTy, &CI);
4746 return BinaryOperator::createXor(New,
4747 ConstantInt::get(CI.getType(), 1));
4748 }
Chris Lattner24c8e382003-07-24 17:35:25 +00004749 break;
4750 case Instruction::Shl:
4751 // Allow changing the sign of the source operand. Do not allow changing
4752 // the size of the shift, UNLESS the shift amount is a constant. We
4753 // mush not change variable sized shifts to a smaller size, because it
4754 // is undefined to shift more bits out than exist in the value.
4755 if (DestBitSize == SrcBitSize ||
4756 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
4757 Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
4758 return new ShiftInst(Instruction::Shl, Op0c, Op1);
4759 }
4760 break;
Chris Lattnerd7115b02005-05-06 04:18:52 +00004761 case Instruction::Shr:
4762 // If this is a signed shr, and if all bits shifted in are about to be
4763 // truncated off, turn it into an unsigned shr to allow greater
4764 // simplifications.
4765 if (DestBitSize < SrcBitSize && Src->getType()->isSigned() &&
4766 isa<ConstantInt>(Op1)) {
4767 unsigned ShiftAmt = cast<ConstantUInt>(Op1)->getValue();
4768 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
4769 // Convert to unsigned.
4770 Value *N1 = InsertOperandCastBefore(Op0,
4771 Op0->getType()->getUnsignedVersion(), &CI);
4772 // Insert the new shift, which is now unsigned.
4773 N1 = InsertNewInstBefore(new ShiftInst(Instruction::Shr, N1,
4774 Op1, Src->getName()), CI);
4775 return new CastInst(N1, CI.getType());
4776 }
4777 }
4778 break;
4779
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004780 case Instruction::SetEQ:
Chris Lattner693787a2005-05-04 19:10:26 +00004781 case Instruction::SetNE:
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004782 // We if we are just checking for a seteq of a single bit and casting it
4783 // to an integer. If so, shift the bit to the appropriate place then
4784 // cast to integer to avoid the comparison.
Chris Lattner693787a2005-05-04 19:10:26 +00004785 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004786 uint64_t Op1CV = Op1C->getZExtValue();
4787 // cast (X == 0) to int --> X^1 iff X has only the low bit set.
4788 // cast (X == 0) to int --> (X>>1)^1 iff X has only the 2nd bit set.
4789 // cast (X == 1) to int --> X iff X has only the low bit set.
4790 // cast (X == 2) to int --> X>>1 iff X has only the 2nd bit set.
4791 // cast (X != 0) to int --> X iff X has only the low bit set.
4792 // cast (X != 0) to int --> X>>1 iff X has only the 2nd bit set.
4793 // cast (X != 1) to int --> X^1 iff X has only the low bit set.
4794 // cast (X != 2) to int --> (X>>1)^1 iff X has only the 2nd bit set.
4795 if (Op1CV == 0 || isPowerOf2_64(Op1CV)) {
4796 // If Op1C some other power of two, convert:
4797 uint64_t KnownZero, KnownOne;
4798 uint64_t TypeMask = Op1->getType()->getIntegralTypeMask();
4799 ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne);
4800
4801 if (isPowerOf2_64(KnownZero^TypeMask)) { // Exactly one possible 1?
4802 bool isSetNE = SrcI->getOpcode() == Instruction::SetNE;
4803 if (Op1CV && (Op1CV != (KnownZero^TypeMask))) {
4804 // (X&4) == 2 --> false
4805 // (X&4) != 2 --> true
4806 return ReplaceInstUsesWith(CI, ConstantBool::get(isSetNE));
4807 }
4808
4809 unsigned ShiftAmt = Log2_64(KnownZero^TypeMask);
4810 Value *In = Op0;
4811 if (ShiftAmt) {
Chris Lattnerd1523802005-05-06 01:53:19 +00004812 // Perform an unsigned shr by shiftamt. Convert input to
4813 // unsigned if it is signed.
Chris Lattnerd1523802005-05-06 01:53:19 +00004814 if (In->getType()->isSigned())
4815 In = InsertNewInstBefore(new CastInst(In,
4816 In->getType()->getUnsignedVersion(), In->getName()),CI);
4817 // Insert the shift to put the result in the low bit.
4818 In = InsertNewInstBefore(new ShiftInst(Instruction::Shr, In,
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004819 ConstantInt::get(Type::UByteTy, ShiftAmt),
4820 In->getName()+".lobit"), CI);
Chris Lattnerd1523802005-05-06 01:53:19 +00004821 }
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004822
4823 if ((Op1CV != 0) == isSetNE) { // Toggle the low bit.
4824 Constant *One = ConstantInt::get(In->getType(), 1);
4825 In = BinaryOperator::createXor(In, One, "tmp");
4826 InsertNewInstBefore(cast<Instruction>(In), CI);
Chris Lattnerd1523802005-05-06 01:53:19 +00004827 }
Chris Lattner3e88a4d2006-02-27 02:38:23 +00004828
4829 if (CI.getType() == In->getType())
4830 return ReplaceInstUsesWith(CI, In);
4831 else
4832 return new CastInst(In, CI.getType());
Chris Lattnerd1523802005-05-06 01:53:19 +00004833 }
Chris Lattner693787a2005-05-04 19:10:26 +00004834 }
4835 }
4836 break;
Chris Lattner24c8e382003-07-24 17:35:25 +00004837 }
4838 }
Chris Lattner0ddac2a2005-10-27 05:53:56 +00004839
Chris Lattnerdd841ae2002-04-18 17:39:14 +00004840 return 0;
Chris Lattner8a2a3112001-12-14 16:52:21 +00004841}
4842
Chris Lattnere576b912004-04-09 23:46:01 +00004843/// GetSelectFoldableOperands - We want to turn code that looks like this:
4844/// %C = or %A, %B
4845/// %D = select %cond, %C, %A
4846/// into:
4847/// %C = select %cond, %B, 0
4848/// %D = or %A, %C
4849///
4850/// Assuming that the specified instruction is an operand to the select, return
4851/// a bitmask indicating which operands of this instruction are foldable if they
4852/// equal the other incoming value of the select.
4853///
4854static unsigned GetSelectFoldableOperands(Instruction *I) {
4855 switch (I->getOpcode()) {
4856 case Instruction::Add:
4857 case Instruction::Mul:
4858 case Instruction::And:
4859 case Instruction::Or:
4860 case Instruction::Xor:
4861 return 3; // Can fold through either operand.
4862 case Instruction::Sub: // Can only fold on the amount subtracted.
4863 case Instruction::Shl: // Can only fold on the shift amount.
4864 case Instruction::Shr:
Misha Brukmanfd939082005-04-21 23:48:37 +00004865 return 1;
Chris Lattnere576b912004-04-09 23:46:01 +00004866 default:
4867 return 0; // Cannot fold
4868 }
4869}
4870
4871/// GetSelectFoldableConstant - For the same transformation as the previous
4872/// function, return the identity constant that goes into the select.
4873static Constant *GetSelectFoldableConstant(Instruction *I) {
4874 switch (I->getOpcode()) {
4875 default: assert(0 && "This cannot happen!"); abort();
4876 case Instruction::Add:
4877 case Instruction::Sub:
4878 case Instruction::Or:
4879 case Instruction::Xor:
4880 return Constant::getNullValue(I->getType());
4881 case Instruction::Shl:
4882 case Instruction::Shr:
4883 return Constant::getNullValue(Type::UByteTy);
4884 case Instruction::And:
4885 return ConstantInt::getAllOnesValue(I->getType());
4886 case Instruction::Mul:
4887 return ConstantInt::get(I->getType(), 1);
4888 }
4889}
4890
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00004891/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
4892/// have the same opcode and only one use each. Try to simplify this.
4893Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
4894 Instruction *FI) {
4895 if (TI->getNumOperands() == 1) {
4896 // If this is a non-volatile load or a cast from the same type,
4897 // merge.
4898 if (TI->getOpcode() == Instruction::Cast) {
4899 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
4900 return 0;
4901 } else {
4902 return 0; // unknown unary op.
4903 }
Misha Brukmanfd939082005-04-21 23:48:37 +00004904
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00004905 // Fold this by inserting a select from the input values.
4906 SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
4907 FI->getOperand(0), SI.getName()+".v");
4908 InsertNewInstBefore(NewSI, SI);
4909 return new CastInst(NewSI, TI->getType());
4910 }
4911
4912 // Only handle binary operators here.
4913 if (!isa<ShiftInst>(TI) && !isa<BinaryOperator>(TI))
4914 return 0;
4915
4916 // Figure out if the operations have any operands in common.
4917 Value *MatchOp, *OtherOpT, *OtherOpF;
4918 bool MatchIsOpZero;
4919 if (TI->getOperand(0) == FI->getOperand(0)) {
4920 MatchOp = TI->getOperand(0);
4921 OtherOpT = TI->getOperand(1);
4922 OtherOpF = FI->getOperand(1);
4923 MatchIsOpZero = true;
4924 } else if (TI->getOperand(1) == FI->getOperand(1)) {
4925 MatchOp = TI->getOperand(1);
4926 OtherOpT = TI->getOperand(0);
4927 OtherOpF = FI->getOperand(0);
4928 MatchIsOpZero = false;
4929 } else if (!TI->isCommutative()) {
4930 return 0;
4931 } else if (TI->getOperand(0) == FI->getOperand(1)) {
4932 MatchOp = TI->getOperand(0);
4933 OtherOpT = TI->getOperand(1);
4934 OtherOpF = FI->getOperand(0);
4935 MatchIsOpZero = true;
4936 } else if (TI->getOperand(1) == FI->getOperand(0)) {
4937 MatchOp = TI->getOperand(1);
4938 OtherOpT = TI->getOperand(0);
4939 OtherOpF = FI->getOperand(1);
4940 MatchIsOpZero = true;
4941 } else {
4942 return 0;
4943 }
4944
4945 // If we reach here, they do have operations in common.
4946 SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
4947 OtherOpF, SI.getName()+".v");
4948 InsertNewInstBefore(NewSI, SI);
4949
4950 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
4951 if (MatchIsOpZero)
4952 return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
4953 else
4954 return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
4955 } else {
4956 if (MatchIsOpZero)
4957 return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), MatchOp, NewSI);
4958 else
4959 return new ShiftInst(cast<ShiftInst>(TI)->getOpcode(), NewSI, MatchOp);
4960 }
4961}
4962
Chris Lattner3d69f462004-03-12 05:52:32 +00004963Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Chris Lattnerc32b30a2004-03-30 19:37:13 +00004964 Value *CondVal = SI.getCondition();
4965 Value *TrueVal = SI.getTrueValue();
4966 Value *FalseVal = SI.getFalseValue();
4967
4968 // select true, X, Y -> X
4969 // select false, X, Y -> Y
4970 if (ConstantBool *C = dyn_cast<ConstantBool>(CondVal))
Chris Lattner3d69f462004-03-12 05:52:32 +00004971 if (C == ConstantBool::True)
Chris Lattnerc32b30a2004-03-30 19:37:13 +00004972 return ReplaceInstUsesWith(SI, TrueVal);
Chris Lattner3d69f462004-03-12 05:52:32 +00004973 else {
4974 assert(C == ConstantBool::False);
Chris Lattnerc32b30a2004-03-30 19:37:13 +00004975 return ReplaceInstUsesWith(SI, FalseVal);
Chris Lattner3d69f462004-03-12 05:52:32 +00004976 }
Chris Lattnerc32b30a2004-03-30 19:37:13 +00004977
4978 // select C, X, X -> X
4979 if (TrueVal == FalseVal)
4980 return ReplaceInstUsesWith(SI, TrueVal);
4981
Chris Lattnere87597f2004-10-16 18:11:37 +00004982 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
4983 return ReplaceInstUsesWith(SI, FalseVal);
4984 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
4985 return ReplaceInstUsesWith(SI, TrueVal);
4986 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
4987 if (isa<Constant>(TrueVal))
4988 return ReplaceInstUsesWith(SI, TrueVal);
4989 else
4990 return ReplaceInstUsesWith(SI, FalseVal);
4991 }
4992
Chris Lattner0c199a72004-04-08 04:43:23 +00004993 if (SI.getType() == Type::BoolTy)
4994 if (ConstantBool *C = dyn_cast<ConstantBool>(TrueVal)) {
4995 if (C == ConstantBool::True) {
4996 // Change: A = select B, true, C --> A = or B, C
Chris Lattner48595f12004-06-10 02:07:29 +00004997 return BinaryOperator::createOr(CondVal, FalseVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00004998 } else {
4999 // Change: A = select B, false, C --> A = and !B, C
5000 Value *NotCond =
5001 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
5002 "not."+CondVal->getName()), SI);
Chris Lattner48595f12004-06-10 02:07:29 +00005003 return BinaryOperator::createAnd(NotCond, FalseVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00005004 }
5005 } else if (ConstantBool *C = dyn_cast<ConstantBool>(FalseVal)) {
5006 if (C == ConstantBool::False) {
5007 // Change: A = select B, C, false --> A = and B, C
Chris Lattner48595f12004-06-10 02:07:29 +00005008 return BinaryOperator::createAnd(CondVal, TrueVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00005009 } else {
5010 // Change: A = select B, C, true --> A = or !B, C
5011 Value *NotCond =
5012 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
5013 "not."+CondVal->getName()), SI);
Chris Lattner48595f12004-06-10 02:07:29 +00005014 return BinaryOperator::createOr(NotCond, TrueVal);
Chris Lattner0c199a72004-04-08 04:43:23 +00005015 }
5016 }
5017
Chris Lattner2eefe512004-04-09 19:05:30 +00005018 // Selecting between two integer constants?
5019 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
5020 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
5021 // select C, 1, 0 -> cast C to int
5022 if (FalseValC->isNullValue() && TrueValC->getRawValue() == 1) {
5023 return new CastInst(CondVal, SI.getType());
5024 } else if (TrueValC->isNullValue() && FalseValC->getRawValue() == 1) {
5025 // select C, 0, 1 -> cast !C to int
5026 Value *NotCond =
5027 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
Chris Lattner82e14fe2004-04-09 18:19:44 +00005028 "not."+CondVal->getName()), SI);
Chris Lattner2eefe512004-04-09 19:05:30 +00005029 return new CastInst(NotCond, SI.getType());
Chris Lattner82e14fe2004-04-09 18:19:44 +00005030 }
Chris Lattner457dd822004-06-09 07:59:58 +00005031
5032 // If one of the constants is zero (we know they can't both be) and we
5033 // have a setcc instruction with zero, and we have an 'and' with the
5034 // non-constant value, eliminate this whole mess. This corresponds to
5035 // cases like this: ((X & 27) ? 27 : 0)
5036 if (TrueValC->isNullValue() || FalseValC->isNullValue())
5037 if (Instruction *IC = dyn_cast<Instruction>(SI.getCondition()))
5038 if ((IC->getOpcode() == Instruction::SetEQ ||
5039 IC->getOpcode() == Instruction::SetNE) &&
5040 isa<ConstantInt>(IC->getOperand(1)) &&
5041 cast<Constant>(IC->getOperand(1))->isNullValue())
5042 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
5043 if (ICA->getOpcode() == Instruction::And &&
Misha Brukmanfd939082005-04-21 23:48:37 +00005044 isa<ConstantInt>(ICA->getOperand(1)) &&
5045 (ICA->getOperand(1) == TrueValC ||
5046 ICA->getOperand(1) == FalseValC) &&
Chris Lattner457dd822004-06-09 07:59:58 +00005047 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
5048 // Okay, now we know that everything is set up, we just don't
5049 // know whether we have a setne or seteq and whether the true or
5050 // false val is the zero.
5051 bool ShouldNotVal = !TrueValC->isNullValue();
5052 ShouldNotVal ^= IC->getOpcode() == Instruction::SetNE;
5053 Value *V = ICA;
5054 if (ShouldNotVal)
5055 V = InsertNewInstBefore(BinaryOperator::create(
5056 Instruction::Xor, V, ICA->getOperand(1)), SI);
5057 return ReplaceInstUsesWith(SI, V);
5058 }
Chris Lattnerc32b30a2004-03-30 19:37:13 +00005059 }
Chris Lattnerd76956d2004-04-10 22:21:27 +00005060
5061 // See if we are selecting two values based on a comparison of the two values.
5062 if (SetCondInst *SCI = dyn_cast<SetCondInst>(CondVal)) {
5063 if (SCI->getOperand(0) == TrueVal && SCI->getOperand(1) == FalseVal) {
5064 // Transform (X == Y) ? X : Y -> Y
5065 if (SCI->getOpcode() == Instruction::SetEQ)
5066 return ReplaceInstUsesWith(SI, FalseVal);
5067 // Transform (X != Y) ? X : Y -> X
5068 if (SCI->getOpcode() == Instruction::SetNE)
5069 return ReplaceInstUsesWith(SI, TrueVal);
5070 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
5071
5072 } else if (SCI->getOperand(0) == FalseVal && SCI->getOperand(1) == TrueVal){
5073 // Transform (X == Y) ? Y : X -> X
5074 if (SCI->getOpcode() == Instruction::SetEQ)
Chris Lattnerfbede522004-04-11 01:39:19 +00005075 return ReplaceInstUsesWith(SI, FalseVal);
Chris Lattnerd76956d2004-04-10 22:21:27 +00005076 // Transform (X != Y) ? Y : X -> Y
5077 if (SCI->getOpcode() == Instruction::SetNE)
Chris Lattnerfbede522004-04-11 01:39:19 +00005078 return ReplaceInstUsesWith(SI, TrueVal);
Chris Lattnerd76956d2004-04-10 22:21:27 +00005079 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
5080 }
5081 }
Misha Brukmanfd939082005-04-21 23:48:37 +00005082
Chris Lattner87875da2005-01-13 22:52:24 +00005083 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
5084 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
5085 if (TI->hasOneUse() && FI->hasOneUse()) {
5086 bool isInverse = false;
5087 Instruction *AddOp = 0, *SubOp = 0;
5088
Chris Lattner6fb5a4a2005-01-19 21:50:18 +00005089 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
5090 if (TI->getOpcode() == FI->getOpcode())
5091 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
5092 return IV;
5093
5094 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
5095 // even legal for FP.
Chris Lattner87875da2005-01-13 22:52:24 +00005096 if (TI->getOpcode() == Instruction::Sub &&
5097 FI->getOpcode() == Instruction::Add) {
5098 AddOp = FI; SubOp = TI;
5099 } else if (FI->getOpcode() == Instruction::Sub &&
5100 TI->getOpcode() == Instruction::Add) {
5101 AddOp = TI; SubOp = FI;
5102 }
5103
5104 if (AddOp) {
5105 Value *OtherAddOp = 0;
5106 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
5107 OtherAddOp = AddOp->getOperand(1);
5108 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
5109 OtherAddOp = AddOp->getOperand(0);
5110 }
5111
5112 if (OtherAddOp) {
Chris Lattner97f37a42006-02-24 18:05:58 +00005113 // So at this point we know we have (Y -> OtherAddOp):
5114 // select C, (add X, Y), (sub X, Z)
5115 Value *NegVal; // Compute -Z
5116 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
5117 NegVal = ConstantExpr::getNeg(C);
5118 } else {
5119 NegVal = InsertNewInstBefore(
5120 BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
Chris Lattner87875da2005-01-13 22:52:24 +00005121 }
Chris Lattner97f37a42006-02-24 18:05:58 +00005122
5123 Value *NewTrueOp = OtherAddOp;
5124 Value *NewFalseOp = NegVal;
5125 if (AddOp != TI)
5126 std::swap(NewTrueOp, NewFalseOp);
5127 Instruction *NewSel =
5128 new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
5129
5130 NewSel = InsertNewInstBefore(NewSel, SI);
5131 return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
Chris Lattner87875da2005-01-13 22:52:24 +00005132 }
5133 }
5134 }
Misha Brukmanfd939082005-04-21 23:48:37 +00005135
Chris Lattnere576b912004-04-09 23:46:01 +00005136 // See if we can fold the select into one of our operands.
5137 if (SI.getType()->isInteger()) {
5138 // See the comment above GetSelectFoldableOperands for a description of the
5139 // transformation we are doing here.
5140 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
5141 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
5142 !isa<Constant>(FalseVal))
5143 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
5144 unsigned OpToFold = 0;
5145 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
5146 OpToFold = 1;
5147 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
5148 OpToFold = 2;
5149 }
5150
5151 if (OpToFold) {
5152 Constant *C = GetSelectFoldableConstant(TVI);
5153 std::string Name = TVI->getName(); TVI->setName("");
5154 Instruction *NewSel =
5155 new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C,
5156 Name);
5157 InsertNewInstBefore(NewSel, SI);
5158 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
5159 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
5160 else if (ShiftInst *SI = dyn_cast<ShiftInst>(TVI))
5161 return new ShiftInst(SI->getOpcode(), FalseVal, NewSel);
5162 else {
5163 assert(0 && "Unknown instruction!!");
5164 }
5165 }
5166 }
Chris Lattnera96879a2004-09-29 17:40:11 +00005167
Chris Lattnere576b912004-04-09 23:46:01 +00005168 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
5169 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
5170 !isa<Constant>(TrueVal))
5171 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
5172 unsigned OpToFold = 0;
5173 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
5174 OpToFold = 1;
5175 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
5176 OpToFold = 2;
5177 }
5178
5179 if (OpToFold) {
5180 Constant *C = GetSelectFoldableConstant(FVI);
5181 std::string Name = FVI->getName(); FVI->setName("");
5182 Instruction *NewSel =
5183 new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold),
5184 Name);
5185 InsertNewInstBefore(NewSel, SI);
5186 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
5187 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
5188 else if (ShiftInst *SI = dyn_cast<ShiftInst>(FVI))
5189 return new ShiftInst(SI->getOpcode(), TrueVal, NewSel);
5190 else {
5191 assert(0 && "Unknown instruction!!");
5192 }
5193 }
5194 }
5195 }
Chris Lattnera1df33c2005-04-24 07:30:14 +00005196
5197 if (BinaryOperator::isNot(CondVal)) {
5198 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
5199 SI.setOperand(1, FalseVal);
5200 SI.setOperand(2, TrueVal);
5201 return &SI;
5202 }
5203
Chris Lattner3d69f462004-03-12 05:52:32 +00005204 return 0;
5205}
5206
5207
Chris Lattner8b0ea312006-01-13 20:11:04 +00005208/// visitCallInst - CallInst simplification. This mostly only handles folding
5209/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
5210/// the heavy lifting.
5211///
Chris Lattner9fe38862003-06-19 17:00:31 +00005212Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Chris Lattner8b0ea312006-01-13 20:11:04 +00005213 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
5214 if (!II) return visitCallSite(&CI);
5215
Chris Lattner7bcc0e72004-02-28 05:22:00 +00005216 // Intrinsics cannot occur in an invoke, so handle them here instead of in
5217 // visitCallSite.
Chris Lattner8b0ea312006-01-13 20:11:04 +00005218 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
Chris Lattner35b9e482004-10-12 04:52:52 +00005219 bool Changed = false;
5220
5221 // memmove/cpy/set of zero bytes is a noop.
5222 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
5223 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
5224
5225 // FIXME: Increase alignment here.
Misha Brukmanfd939082005-04-21 23:48:37 +00005226
Chris Lattner35b9e482004-10-12 04:52:52 +00005227 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
5228 if (CI->getRawValue() == 1) {
5229 // Replace the instruction with just byte operations. We would
5230 // transform other cases to loads/stores, but we don't know if
5231 // alignment is sufficient.
5232 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +00005233 }
5234
Chris Lattner35b9e482004-10-12 04:52:52 +00005235 // If we have a memmove and the source operation is a constant global,
5236 // then the source and dest pointers can't alias, so we can change this
5237 // into a call to memcpy.
Chris Lattner8b0ea312006-01-13 20:11:04 +00005238 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II))
Chris Lattner35b9e482004-10-12 04:52:52 +00005239 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
5240 if (GVSrc->isConstant()) {
5241 Module *M = CI.getParent()->getParent()->getParent();
5242 Function *MemCpy = M->getOrInsertFunction("llvm.memcpy",
5243 CI.getCalledFunction()->getFunctionType());
5244 CI.setOperand(0, MemCpy);
5245 Changed = true;
5246 }
5247
Chris Lattner8b0ea312006-01-13 20:11:04 +00005248 if (Changed) return II;
5249 } else if (DbgStopPointInst *SPI = dyn_cast<DbgStopPointInst>(II)) {
Chris Lattner954f66a2004-11-18 21:41:39 +00005250 // If this stoppoint is at the same source location as the previous
5251 // stoppoint in the chain, it is not needed.
5252 if (DbgStopPointInst *PrevSPI =
5253 dyn_cast<DbgStopPointInst>(SPI->getChain()))
5254 if (SPI->getLineNo() == PrevSPI->getLineNo() &&
5255 SPI->getColNo() == PrevSPI->getColNo()) {
5256 SPI->replaceAllUsesWith(PrevSPI);
5257 return EraseInstFromFunction(CI);
5258 }
Chris Lattnera728ddc2006-01-13 21:28:09 +00005259 } else {
5260 switch (II->getIntrinsicID()) {
5261 default: break;
5262 case Intrinsic::stackrestore: {
5263 // If the save is right next to the restore, remove the restore. This can
5264 // happen when variable allocas are DCE'd.
5265 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
5266 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
5267 BasicBlock::iterator BI = SS;
5268 if (&*++BI == II)
5269 return EraseInstFromFunction(CI);
5270 }
5271 }
5272
5273 // If the stack restore is in a return/unwind block and if there are no
5274 // allocas or calls between the restore and the return, nuke the restore.
5275 TerminatorInst *TI = II->getParent()->getTerminator();
5276 if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) {
5277 BasicBlock::iterator BI = II;
5278 bool CannotRemove = false;
5279 for (++BI; &*BI != TI; ++BI) {
5280 if (isa<AllocaInst>(BI) ||
5281 (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) {
5282 CannotRemove = true;
5283 break;
5284 }
5285 }
5286 if (!CannotRemove)
5287 return EraseInstFromFunction(CI);
5288 }
5289 break;
5290 }
5291 }
Chris Lattner35b9e482004-10-12 04:52:52 +00005292 }
5293
Chris Lattner8b0ea312006-01-13 20:11:04 +00005294 return visitCallSite(II);
Chris Lattner9fe38862003-06-19 17:00:31 +00005295}
5296
5297// InvokeInst simplification
5298//
5299Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
Chris Lattnera44d8a22003-10-07 22:32:43 +00005300 return visitCallSite(&II);
Chris Lattner9fe38862003-06-19 17:00:31 +00005301}
5302
Chris Lattnera44d8a22003-10-07 22:32:43 +00005303// visitCallSite - Improvements for call and invoke instructions.
5304//
5305Instruction *InstCombiner::visitCallSite(CallSite CS) {
Chris Lattner6c266db2003-10-07 22:54:13 +00005306 bool Changed = false;
5307
5308 // If the callee is a constexpr cast of a function, attempt to move the cast
5309 // to the arguments of the call/invoke.
Chris Lattnera44d8a22003-10-07 22:32:43 +00005310 if (transformConstExprCastCall(CS)) return 0;
5311
Chris Lattner6c266db2003-10-07 22:54:13 +00005312 Value *Callee = CS.getCalledValue();
Chris Lattnere87597f2004-10-16 18:11:37 +00005313
Chris Lattner08b22ec2005-05-13 07:09:09 +00005314 if (Function *CalleeF = dyn_cast<Function>(Callee))
5315 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
5316 Instruction *OldCall = CS.getInstruction();
5317 // If the call and callee calling conventions don't match, this call must
5318 // be unreachable, as the call is undefined.
5319 new StoreInst(ConstantBool::True,
5320 UndefValue::get(PointerType::get(Type::BoolTy)), OldCall);
5321 if (!OldCall->use_empty())
5322 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
5323 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
5324 return EraseInstFromFunction(*OldCall);
5325 return 0;
5326 }
5327
Chris Lattner17be6352004-10-18 02:59:09 +00005328 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
5329 // This instruction is not reachable, just remove it. We insert a store to
5330 // undef so that we know that this code is not reachable, despite the fact
5331 // that we can't modify the CFG here.
5332 new StoreInst(ConstantBool::True,
5333 UndefValue::get(PointerType::get(Type::BoolTy)),
5334 CS.getInstruction());
5335
5336 if (!CS.getInstruction()->use_empty())
5337 CS.getInstruction()->
5338 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
5339
5340 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
5341 // Don't break the CFG, insert a dummy cond branch.
5342 new BranchInst(II->getNormalDest(), II->getUnwindDest(),
5343 ConstantBool::True, II);
Chris Lattnere87597f2004-10-16 18:11:37 +00005344 }
Chris Lattner17be6352004-10-18 02:59:09 +00005345 return EraseInstFromFunction(*CS.getInstruction());
5346 }
Chris Lattnere87597f2004-10-16 18:11:37 +00005347
Chris Lattner6c266db2003-10-07 22:54:13 +00005348 const PointerType *PTy = cast<PointerType>(Callee->getType());
5349 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
5350 if (FTy->isVarArg()) {
5351 // See if we can optimize any arguments passed through the varargs area of
5352 // the call.
5353 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
5354 E = CS.arg_end(); I != E; ++I)
5355 if (CastInst *CI = dyn_cast<CastInst>(*I)) {
5356 // If this cast does not effect the value passed through the varargs
5357 // area, we can eliminate the use of the cast.
5358 Value *Op = CI->getOperand(0);
5359 if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) {
5360 *I = Op;
5361 Changed = true;
5362 }
5363 }
5364 }
Misha Brukmanfd939082005-04-21 23:48:37 +00005365
Chris Lattner6c266db2003-10-07 22:54:13 +00005366 return Changed ? CS.getInstruction() : 0;
Chris Lattnera44d8a22003-10-07 22:32:43 +00005367}
5368
Chris Lattner9fe38862003-06-19 17:00:31 +00005369// transformConstExprCastCall - If the callee is a constexpr cast of a function,
5370// attempt to move the cast to the arguments of the call/invoke.
5371//
5372bool InstCombiner::transformConstExprCastCall(CallSite CS) {
5373 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
5374 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Chris Lattner9db07b92004-07-18 18:59:44 +00005375 if (CE->getOpcode() != Instruction::Cast || !isa<Function>(CE->getOperand(0)))
Chris Lattner9fe38862003-06-19 17:00:31 +00005376 return false;
Reid Spencer8863f182004-07-18 00:38:32 +00005377 Function *Callee = cast<Function>(CE->getOperand(0));
Chris Lattner9fe38862003-06-19 17:00:31 +00005378 Instruction *Caller = CS.getInstruction();
5379
5380 // Okay, this is a cast from a function to a different type. Unless doing so
5381 // would cause a type conversion of one of our arguments, change this call to
5382 // be a direct call with arguments casted to the appropriate types.
5383 //
5384 const FunctionType *FT = Callee->getFunctionType();
5385 const Type *OldRetTy = Caller->getType();
5386
Chris Lattnerf78616b2004-01-14 06:06:08 +00005387 // Check to see if we are changing the return type...
5388 if (OldRetTy != FT->getReturnType()) {
5389 if (Callee->isExternal() &&
5390 !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) &&
5391 !Caller->use_empty())
5392 return false; // Cannot transform this return value...
5393
5394 // If the callsite is an invoke instruction, and the return value is used by
5395 // a PHI node in a successor, we cannot change the return type of the call
5396 // because there is no place to put the cast instruction (without breaking
5397 // the critical edge). Bail out in this case.
5398 if (!Caller->use_empty())
5399 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
5400 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
5401 UI != E; ++UI)
5402 if (PHINode *PN = dyn_cast<PHINode>(*UI))
5403 if (PN->getParent() == II->getNormalDest() ||
Chris Lattneraeb2a1d2004-02-08 21:44:31 +00005404 PN->getParent() == II->getUnwindDest())
Chris Lattnerf78616b2004-01-14 06:06:08 +00005405 return false;
5406 }
Chris Lattner9fe38862003-06-19 17:00:31 +00005407
5408 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
5409 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
Misha Brukmanfd939082005-04-21 23:48:37 +00005410
Chris Lattner9fe38862003-06-19 17:00:31 +00005411 CallSite::arg_iterator AI = CS.arg_begin();
5412 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
5413 const Type *ParamTy = FT->getParamType(i);
5414 bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy);
Misha Brukmanfd939082005-04-21 23:48:37 +00005415 if (Callee->isExternal() && !isConvertible) return false;
Chris Lattner9fe38862003-06-19 17:00:31 +00005416 }
5417
5418 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
5419 Callee->isExternal())
5420 return false; // Do not delete arguments unless we have a function body...
5421
5422 // Okay, we decided that this is a safe thing to do: go ahead and start
5423 // inserting cast instructions as necessary...
5424 std::vector<Value*> Args;
5425 Args.reserve(NumActualArgs);
5426
5427 AI = CS.arg_begin();
5428 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
5429 const Type *ParamTy = FT->getParamType(i);
5430 if ((*AI)->getType() == ParamTy) {
5431 Args.push_back(*AI);
5432 } else {
Chris Lattner0c199a72004-04-08 04:43:23 +00005433 Args.push_back(InsertNewInstBefore(new CastInst(*AI, ParamTy, "tmp"),
5434 *Caller));
Chris Lattner9fe38862003-06-19 17:00:31 +00005435 }
5436 }
5437
5438 // If the function takes more arguments than the call was taking, add them
5439 // now...
5440 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
5441 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
5442
5443 // If we are removing arguments to the function, emit an obnoxious warning...
5444 if (FT->getNumParams() < NumActualArgs)
5445 if (!FT->isVarArg()) {
5446 std::cerr << "WARNING: While resolving call to function '"
5447 << Callee->getName() << "' arguments were dropped!\n";
5448 } else {
5449 // Add all of the arguments in their promoted form to the arg list...
5450 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
5451 const Type *PTy = getPromotedType((*AI)->getType());
5452 if (PTy != (*AI)->getType()) {
5453 // Must promote to pass through va_arg area!
5454 Instruction *Cast = new CastInst(*AI, PTy, "tmp");
5455 InsertNewInstBefore(Cast, *Caller);
5456 Args.push_back(Cast);
5457 } else {
5458 Args.push_back(*AI);
5459 }
5460 }
5461 }
5462
5463 if (FT->getReturnType() == Type::VoidTy)
5464 Caller->setName(""); // Void type should not have a name...
5465
5466 Instruction *NC;
5467 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
Chris Lattneraeb2a1d2004-02-08 21:44:31 +00005468 NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
Chris Lattner9fe38862003-06-19 17:00:31 +00005469 Args, Caller->getName(), Caller);
Chris Lattnere4370262005-05-14 12:25:32 +00005470 cast<InvokeInst>(II)->setCallingConv(II->getCallingConv());
Chris Lattner9fe38862003-06-19 17:00:31 +00005471 } else {
5472 NC = new CallInst(Callee, Args, Caller->getName(), Caller);
Chris Lattnera9e92112005-05-06 06:48:21 +00005473 if (cast<CallInst>(Caller)->isTailCall())
5474 cast<CallInst>(NC)->setTailCall();
Chris Lattnere4370262005-05-14 12:25:32 +00005475 cast<CallInst>(NC)->setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Chris Lattner9fe38862003-06-19 17:00:31 +00005476 }
5477
5478 // Insert a cast of the return type as necessary...
5479 Value *NV = NC;
5480 if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
5481 if (NV->getType() != Type::VoidTy) {
5482 NV = NC = new CastInst(NC, Caller->getType(), "tmp");
Chris Lattnerbb609042003-10-30 00:46:41 +00005483
5484 // If this is an invoke instruction, we should insert it after the first
5485 // non-phi, instruction in the normal successor block.
5486 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
5487 BasicBlock::iterator I = II->getNormalDest()->begin();
5488 while (isa<PHINode>(I)) ++I;
5489 InsertNewInstBefore(NC, *I);
5490 } else {
5491 // Otherwise, it's a call, just insert cast right after the call instr
5492 InsertNewInstBefore(NC, *Caller);
5493 }
Chris Lattner7bcc0e72004-02-28 05:22:00 +00005494 AddUsersToWorkList(*Caller);
Chris Lattner9fe38862003-06-19 17:00:31 +00005495 } else {
Chris Lattnerc30bda72004-10-17 21:22:38 +00005496 NV = UndefValue::get(Caller->getType());
Chris Lattner9fe38862003-06-19 17:00:31 +00005497 }
5498 }
5499
5500 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
5501 Caller->replaceAllUsesWith(NV);
5502 Caller->getParent()->getInstList().erase(Caller);
5503 removeFromWorkList(Caller);
5504 return true;
5505}
5506
5507
Chris Lattnerbac32862004-11-14 19:13:23 +00005508// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
5509// operator and they all are only used by the PHI, PHI together their
5510// inputs, and do the operation once, to the result of the PHI.
5511Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
5512 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
5513
5514 // Scan the instruction, looking for input operations that can be folded away.
5515 // If all input operands to the phi are the same instruction (e.g. a cast from
5516 // the same type or "+42") we can pull the operation through the PHI, reducing
5517 // code size and simplifying code.
5518 Constant *ConstantOp = 0;
5519 const Type *CastSrcTy = 0;
5520 if (isa<CastInst>(FirstInst)) {
5521 CastSrcTy = FirstInst->getOperand(0)->getType();
5522 } else if (isa<BinaryOperator>(FirstInst) || isa<ShiftInst>(FirstInst)) {
5523 // Can fold binop or shift if the RHS is a constant.
5524 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
5525 if (ConstantOp == 0) return 0;
5526 } else {
5527 return 0; // Cannot fold this operation.
5528 }
5529
5530 // Check to see if all arguments are the same operation.
5531 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
5532 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
5533 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
5534 if (!I->hasOneUse() || I->getOpcode() != FirstInst->getOpcode())
5535 return 0;
5536 if (CastSrcTy) {
5537 if (I->getOperand(0)->getType() != CastSrcTy)
5538 return 0; // Cast operation must match.
5539 } else if (I->getOperand(1) != ConstantOp) {
5540 return 0;
5541 }
5542 }
5543
5544 // Okay, they are all the same operation. Create a new PHI node of the
5545 // correct type, and PHI together all of the LHS's of the instructions.
5546 PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
5547 PN.getName()+".in");
Chris Lattner55517062005-01-29 00:39:08 +00005548 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
Chris Lattnerb5893442004-11-14 19:29:34 +00005549
5550 Value *InVal = FirstInst->getOperand(0);
5551 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
Chris Lattnerbac32862004-11-14 19:13:23 +00005552
5553 // Add all operands to the new PHI.
Chris Lattnerb5893442004-11-14 19:29:34 +00005554 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
5555 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
5556 if (NewInVal != InVal)
5557 InVal = 0;
5558 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
5559 }
5560
5561 Value *PhiVal;
5562 if (InVal) {
5563 // The new PHI unions all of the same values together. This is really
5564 // common, so we handle it intelligently here for compile-time speed.
5565 PhiVal = InVal;
5566 delete NewPN;
5567 } else {
5568 InsertNewInstBefore(NewPN, PN);
5569 PhiVal = NewPN;
5570 }
Misha Brukmanfd939082005-04-21 23:48:37 +00005571
Chris Lattnerbac32862004-11-14 19:13:23 +00005572 // Insert and return the new operation.
5573 if (isa<CastInst>(FirstInst))
Chris Lattnerb5893442004-11-14 19:29:34 +00005574 return new CastInst(PhiVal, PN.getType());
Chris Lattnerbac32862004-11-14 19:13:23 +00005575 else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
Chris Lattnerb5893442004-11-14 19:29:34 +00005576 return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
Chris Lattnerbac32862004-11-14 19:13:23 +00005577 else
5578 return new ShiftInst(cast<ShiftInst>(FirstInst)->getOpcode(),
Chris Lattnerb5893442004-11-14 19:29:34 +00005579 PhiVal, ConstantOp);
Chris Lattnerbac32862004-11-14 19:13:23 +00005580}
Chris Lattnera1be5662002-05-02 17:06:02 +00005581
Chris Lattnera3fd1c52005-01-17 05:10:15 +00005582/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
5583/// that is dead.
5584static bool DeadPHICycle(PHINode *PN, std::set<PHINode*> &PotentiallyDeadPHIs) {
5585 if (PN->use_empty()) return true;
5586 if (!PN->hasOneUse()) return false;
5587
5588 // Remember this node, and if we find the cycle, return.
5589 if (!PotentiallyDeadPHIs.insert(PN).second)
5590 return true;
5591
5592 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
5593 return DeadPHICycle(PU, PotentiallyDeadPHIs);
Misha Brukmanfd939082005-04-21 23:48:37 +00005594
Chris Lattnera3fd1c52005-01-17 05:10:15 +00005595 return false;
5596}
5597
Chris Lattner473945d2002-05-06 18:06:38 +00005598// PHINode simplification
5599//
Chris Lattner7e708292002-06-25 16:13:24 +00005600Instruction *InstCombiner::visitPHINode(PHINode &PN) {
Chris Lattner68ee7362005-08-05 01:04:30 +00005601 if (Value *V = PN.hasConstantValue())
5602 return ReplaceInstUsesWith(PN, V);
Chris Lattner7059f2e2004-02-16 05:07:08 +00005603
5604 // If the only user of this instruction is a cast instruction, and all of the
5605 // incoming values are constants, change this PHI to merge together the casted
5606 // constants.
5607 if (PN.hasOneUse())
5608 if (CastInst *CI = dyn_cast<CastInst>(PN.use_back()))
5609 if (CI->getType() != PN.getType()) { // noop casts will be folded
5610 bool AllConstant = true;
5611 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
5612 if (!isa<Constant>(PN.getIncomingValue(i))) {
5613 AllConstant = false;
5614 break;
5615 }
5616 if (AllConstant) {
5617 // Make a new PHI with all casted values.
5618 PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN);
5619 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
5620 Constant *OldArg = cast<Constant>(PN.getIncomingValue(i));
5621 New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()),
5622 PN.getIncomingBlock(i));
5623 }
5624
5625 // Update the cast instruction.
5626 CI->setOperand(0, New);
5627 WorkList.push_back(CI); // revisit the cast instruction to fold.
5628 WorkList.push_back(New); // Make sure to revisit the new Phi
5629 return &PN; // PN is now dead!
5630 }
5631 }
Chris Lattnerbac32862004-11-14 19:13:23 +00005632
5633 // If all PHI operands are the same operation, pull them through the PHI,
5634 // reducing code size.
5635 if (isa<Instruction>(PN.getIncomingValue(0)) &&
5636 PN.getIncomingValue(0)->hasOneUse())
5637 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
5638 return Result;
5639
Chris Lattnera3fd1c52005-01-17 05:10:15 +00005640 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
5641 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
5642 // PHI)... break the cycle.
5643 if (PN.hasOneUse())
5644 if (PHINode *PU = dyn_cast<PHINode>(PN.use_back())) {
5645 std::set<PHINode*> PotentiallyDeadPHIs;
5646 PotentiallyDeadPHIs.insert(&PN);
5647 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
5648 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
5649 }
Misha Brukmanfd939082005-04-21 23:48:37 +00005650
Chris Lattner60921c92003-12-19 05:58:40 +00005651 return 0;
Chris Lattner473945d2002-05-06 18:06:38 +00005652}
5653
Chris Lattner28977af2004-04-05 01:30:19 +00005654static Value *InsertSignExtendToPtrTy(Value *V, const Type *DTy,
5655 Instruction *InsertPoint,
5656 InstCombiner *IC) {
5657 unsigned PS = IC->getTargetData().getPointerSize();
5658 const Type *VTy = V->getType();
Chris Lattner28977af2004-04-05 01:30:19 +00005659 if (!VTy->isSigned() && VTy->getPrimitiveSize() < PS)
5660 // We must insert a cast to ensure we sign-extend.
5661 V = IC->InsertNewInstBefore(new CastInst(V, VTy->getSignedVersion(),
5662 V->getName()), *InsertPoint);
5663 return IC->InsertNewInstBefore(new CastInst(V, DTy, V->getName()),
5664 *InsertPoint);
5665}
5666
Chris Lattnera1be5662002-05-02 17:06:02 +00005667
Chris Lattner7e708292002-06-25 16:13:24 +00005668Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattner620ce142004-05-07 22:09:22 +00005669 Value *PtrOp = GEP.getOperand(0);
Chris Lattnerc54e2b82003-05-22 19:07:21 +00005670 // Is it 'getelementptr %P, long 0' or 'getelementptr %P'
Chris Lattner7e708292002-06-25 16:13:24 +00005671 // If so, eliminate the noop.
Chris Lattnerc6bd1952004-02-22 05:25:17 +00005672 if (GEP.getNumOperands() == 1)
Chris Lattner620ce142004-05-07 22:09:22 +00005673 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattnerc6bd1952004-02-22 05:25:17 +00005674
Chris Lattnere87597f2004-10-16 18:11:37 +00005675 if (isa<UndefValue>(GEP.getOperand(0)))
5676 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
5677
Chris Lattnerc6bd1952004-02-22 05:25:17 +00005678 bool HasZeroPointerIndex = false;
5679 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
5680 HasZeroPointerIndex = C->isNullValue();
5681
5682 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
Chris Lattner620ce142004-05-07 22:09:22 +00005683 return ReplaceInstUsesWith(GEP, PtrOp);
Chris Lattnera1be5662002-05-02 17:06:02 +00005684
Chris Lattner28977af2004-04-05 01:30:19 +00005685 // Eliminate unneeded casts for indices.
5686 bool MadeChange = false;
Chris Lattnercb69a4e2004-04-07 18:38:20 +00005687 gep_type_iterator GTI = gep_type_begin(GEP);
5688 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI)
5689 if (isa<SequentialType>(*GTI)) {
5690 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
5691 Value *Src = CI->getOperand(0);
5692 const Type *SrcTy = Src->getType();
5693 const Type *DestTy = CI->getType();
5694 if (Src->getType()->isInteger()) {
Chris Lattner484d3cf2005-04-24 06:59:08 +00005695 if (SrcTy->getPrimitiveSizeInBits() ==
5696 DestTy->getPrimitiveSizeInBits()) {
Chris Lattnercb69a4e2004-04-07 18:38:20 +00005697 // We can always eliminate a cast from ulong or long to the other.
5698 // We can always eliminate a cast from uint to int or the other on
5699 // 32-bit pointer platforms.
Chris Lattner484d3cf2005-04-24 06:59:08 +00005700 if (DestTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()){
Chris Lattnercb69a4e2004-04-07 18:38:20 +00005701 MadeChange = true;
5702 GEP.setOperand(i, Src);
5703 }
5704 } else if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
5705 SrcTy->getPrimitiveSize() == 4) {
5706 // We can always eliminate a cast from int to [u]long. We can
5707 // eliminate a cast from uint to [u]long iff the target is a 32-bit
5708 // pointer target.
Misha Brukmanfd939082005-04-21 23:48:37 +00005709 if (SrcTy->isSigned() ||
Chris Lattner484d3cf2005-04-24 06:59:08 +00005710 SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
Chris Lattnercb69a4e2004-04-07 18:38:20 +00005711 MadeChange = true;
5712 GEP.setOperand(i, Src);
5713 }
Chris Lattner28977af2004-04-05 01:30:19 +00005714 }
5715 }
5716 }
Chris Lattnercb69a4e2004-04-07 18:38:20 +00005717 // If we are using a wider index than needed for this platform, shrink it
5718 // to what we need. If the incoming value needs a cast instruction,
5719 // insert it. This explicit cast can make subsequent optimizations more
5720 // obvious.
5721 Value *Op = GEP.getOperand(i);
5722 if (Op->getType()->getPrimitiveSize() > TD->getPointerSize())
Chris Lattner4f1134e2004-04-17 18:16:10 +00005723 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattner67769e52004-07-20 01:48:15 +00005724 GEP.setOperand(i, ConstantExpr::getCast(C,
5725 TD->getIntPtrType()->getSignedVersion()));
Chris Lattner4f1134e2004-04-17 18:16:10 +00005726 MadeChange = true;
5727 } else {
Chris Lattnercb69a4e2004-04-07 18:38:20 +00005728 Op = InsertNewInstBefore(new CastInst(Op, TD->getIntPtrType(),
5729 Op->getName()), GEP);
5730 GEP.setOperand(i, Op);
5731 MadeChange = true;
5732 }
Chris Lattner67769e52004-07-20 01:48:15 +00005733
5734 // If this is a constant idx, make sure to canonicalize it to be a signed
5735 // operand, otherwise CSE and other optimizations are pessimized.
5736 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op)) {
5737 GEP.setOperand(i, ConstantExpr::getCast(CUI,
5738 CUI->getType()->getSignedVersion()));
5739 MadeChange = true;
5740 }
Chris Lattner28977af2004-04-05 01:30:19 +00005741 }
5742 if (MadeChange) return &GEP;
5743
Chris Lattner90ac28c2002-08-02 19:29:35 +00005744 // Combine Indices - If the source pointer to this getelementptr instruction
5745 // is a getelementptr instruction, combine the indices of the two
5746 // getelementptr instructions into a single instruction.
5747 //
Chris Lattnerebd985c2004-03-25 22:59:29 +00005748 std::vector<Value*> SrcGEPOperands;
Chris Lattner574da9b2005-01-13 20:14:25 +00005749 if (User *Src = dyn_castGetElementPtr(PtrOp))
Chris Lattnerebd985c2004-03-25 22:59:29 +00005750 SrcGEPOperands.assign(Src->op_begin(), Src->op_end());
Chris Lattnerebd985c2004-03-25 22:59:29 +00005751
5752 if (!SrcGEPOperands.empty()) {
Chris Lattner620ce142004-05-07 22:09:22 +00005753 // Note that if our source is a gep chain itself that we wait for that
5754 // chain to be resolved before we perform this transformation. This
5755 // avoids us creating a TON of code in some cases.
5756 //
5757 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
5758 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
5759 return 0; // Wait until our source is folded to completion.
5760
Chris Lattner90ac28c2002-08-02 19:29:35 +00005761 std::vector<Value *> Indices;
Chris Lattner620ce142004-05-07 22:09:22 +00005762
5763 // Find out whether the last index in the source GEP is a sequential idx.
5764 bool EndsWithSequential = false;
5765 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
5766 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
Chris Lattnerbe97b4e2004-05-08 22:41:42 +00005767 EndsWithSequential = !isa<StructType>(*I);
Misha Brukmanfd939082005-04-21 23:48:37 +00005768
Chris Lattner90ac28c2002-08-02 19:29:35 +00005769 // Can we combine the two pointer arithmetics offsets?
Chris Lattner620ce142004-05-07 22:09:22 +00005770 if (EndsWithSequential) {
Chris Lattnerdecd0812003-03-05 22:33:14 +00005771 // Replace: gep (gep %P, long B), long A, ...
5772 // With: T = long A+B; gep %P, T, ...
5773 //
Chris Lattner620ce142004-05-07 22:09:22 +00005774 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
Chris Lattner28977af2004-04-05 01:30:19 +00005775 if (SO1 == Constant::getNullValue(SO1->getType())) {
5776 Sum = GO1;
5777 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
5778 Sum = SO1;
5779 } else {
5780 // If they aren't the same type, convert both to an integer of the
5781 // target's pointer size.
5782 if (SO1->getType() != GO1->getType()) {
5783 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
5784 SO1 = ConstantExpr::getCast(SO1C, GO1->getType());
5785 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
5786 GO1 = ConstantExpr::getCast(GO1C, SO1->getType());
5787 } else {
5788 unsigned PS = TD->getPointerSize();
Chris Lattner28977af2004-04-05 01:30:19 +00005789 if (SO1->getType()->getPrimitiveSize() == PS) {
5790 // Convert GO1 to SO1's type.
5791 GO1 = InsertSignExtendToPtrTy(GO1, SO1->getType(), &GEP, this);
5792
5793 } else if (GO1->getType()->getPrimitiveSize() == PS) {
5794 // Convert SO1 to GO1's type.
5795 SO1 = InsertSignExtendToPtrTy(SO1, GO1->getType(), &GEP, this);
5796 } else {
5797 const Type *PT = TD->getIntPtrType();
5798 SO1 = InsertSignExtendToPtrTy(SO1, PT, &GEP, this);
5799 GO1 = InsertSignExtendToPtrTy(GO1, PT, &GEP, this);
5800 }
5801 }
5802 }
Chris Lattner620ce142004-05-07 22:09:22 +00005803 if (isa<Constant>(SO1) && isa<Constant>(GO1))
5804 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
5805 else {
Chris Lattner48595f12004-06-10 02:07:29 +00005806 Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
5807 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
Chris Lattner620ce142004-05-07 22:09:22 +00005808 }
Chris Lattner28977af2004-04-05 01:30:19 +00005809 }
Chris Lattner620ce142004-05-07 22:09:22 +00005810
5811 // Recycle the GEP we already have if possible.
5812 if (SrcGEPOperands.size() == 2) {
5813 GEP.setOperand(0, SrcGEPOperands[0]);
5814 GEP.setOperand(1, Sum);
5815 return &GEP;
5816 } else {
5817 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
5818 SrcGEPOperands.end()-1);
5819 Indices.push_back(Sum);
5820 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
5821 }
Misha Brukmanfd939082005-04-21 23:48:37 +00005822 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner28977af2004-04-05 01:30:19 +00005823 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Misha Brukmanfd939082005-04-21 23:48:37 +00005824 SrcGEPOperands.size() != 1) {
Chris Lattner90ac28c2002-08-02 19:29:35 +00005825 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerebd985c2004-03-25 22:59:29 +00005826 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
5827 SrcGEPOperands.end());
Chris Lattner90ac28c2002-08-02 19:29:35 +00005828 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
5829 }
5830
5831 if (!Indices.empty())
Chris Lattnerebd985c2004-03-25 22:59:29 +00005832 return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName());
Chris Lattner9b761232002-08-17 22:21:59 +00005833
Chris Lattner620ce142004-05-07 22:09:22 +00005834 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
Chris Lattner9b761232002-08-17 22:21:59 +00005835 // GEP of global variable. If all of the indices for this GEP are
5836 // constants, we can promote this to a constexpr instead of an instruction.
5837
5838 // Scan for nonconstants...
5839 std::vector<Constant*> Indices;
5840 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
5841 for (; I != E && isa<Constant>(*I); ++I)
5842 Indices.push_back(cast<Constant>(*I));
5843
5844 if (I == E) { // If they are all constants...
Chris Lattner9db07b92004-07-18 18:59:44 +00005845 Constant *CE = ConstantExpr::getGetElementPtr(GV, Indices);
Chris Lattner9b761232002-08-17 22:21:59 +00005846
5847 // Replace all uses of the GEP with the new constexpr...
5848 return ReplaceInstUsesWith(GEP, CE);
5849 }
Chris Lattnereed48272005-09-13 00:40:14 +00005850 } else if (Value *X = isCast(PtrOp)) { // Is the operand a cast?
5851 if (!isa<PointerType>(X->getType())) {
5852 // Not interesting. Source pointer must be a cast from pointer.
5853 } else if (HasZeroPointerIndex) {
5854 // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
5855 // into : GEP [10 x ubyte]* X, long 0, ...
5856 //
5857 // This occurs when the program declares an array extern like "int X[];"
5858 //
5859 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
5860 const PointerType *XTy = cast<PointerType>(X->getType());
5861 if (const ArrayType *XATy =
5862 dyn_cast<ArrayType>(XTy->getElementType()))
5863 if (const ArrayType *CATy =
5864 dyn_cast<ArrayType>(CPTy->getElementType()))
5865 if (CATy->getElementType() == XATy->getElementType()) {
5866 // At this point, we know that the cast source type is a pointer
5867 // to an array of the same type as the destination pointer
5868 // array. Because the array type is never stepped over (there
5869 // is a leading zero) we can fold the cast into this GEP.
5870 GEP.setOperand(0, X);
5871 return &GEP;
5872 }
5873 } else if (GEP.getNumOperands() == 2) {
5874 // Transform things like:
Chris Lattner7835cdd2005-09-13 18:36:04 +00005875 // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V
5876 // into: %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast
Chris Lattnereed48272005-09-13 00:40:14 +00005877 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
5878 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
5879 if (isa<ArrayType>(SrcElTy) &&
5880 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
5881 TD->getTypeSize(ResElTy)) {
5882 Value *V = InsertNewInstBefore(
5883 new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy),
5884 GEP.getOperand(1), GEP.getName()), GEP);
5885 return new CastInst(V, GEP.getType());
Chris Lattnerc6bd1952004-02-22 05:25:17 +00005886 }
Chris Lattner7835cdd2005-09-13 18:36:04 +00005887
5888 // Transform things like:
5889 // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp
5890 // (where tmp = 8*tmp2) into:
5891 // getelementptr [100 x double]* %arr, int 0, int %tmp.2
5892
5893 if (isa<ArrayType>(SrcElTy) &&
5894 (ResElTy == Type::SByteTy || ResElTy == Type::UByteTy)) {
5895 uint64_t ArrayEltSize =
5896 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType());
5897
5898 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
5899 // allow either a mul, shift, or constant here.
5900 Value *NewIdx = 0;
5901 ConstantInt *Scale = 0;
5902 if (ArrayEltSize == 1) {
5903 NewIdx = GEP.getOperand(1);
5904 Scale = ConstantInt::get(NewIdx->getType(), 1);
5905 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
Chris Lattner6e2f8432005-09-14 17:32:56 +00005906 NewIdx = ConstantInt::get(CI->getType(), 1);
Chris Lattner7835cdd2005-09-13 18:36:04 +00005907 Scale = CI;
5908 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
5909 if (Inst->getOpcode() == Instruction::Shl &&
5910 isa<ConstantInt>(Inst->getOperand(1))) {
5911 unsigned ShAmt =cast<ConstantUInt>(Inst->getOperand(1))->getValue();
5912 if (Inst->getType()->isSigned())
5913 Scale = ConstantSInt::get(Inst->getType(), 1ULL << ShAmt);
5914 else
5915 Scale = ConstantUInt::get(Inst->getType(), 1ULL << ShAmt);
5916 NewIdx = Inst->getOperand(0);
5917 } else if (Inst->getOpcode() == Instruction::Mul &&
5918 isa<ConstantInt>(Inst->getOperand(1))) {
5919 Scale = cast<ConstantInt>(Inst->getOperand(1));
5920 NewIdx = Inst->getOperand(0);
5921 }
5922 }
5923
5924 // If the index will be to exactly the right offset with the scale taken
5925 // out, perform the transformation.
5926 if (Scale && Scale->getRawValue() % ArrayEltSize == 0) {
5927 if (ConstantSInt *C = dyn_cast<ConstantSInt>(Scale))
5928 Scale = ConstantSInt::get(C->getType(),
Chris Lattner6e2f8432005-09-14 17:32:56 +00005929 (int64_t)C->getRawValue() /
5930 (int64_t)ArrayEltSize);
Chris Lattner7835cdd2005-09-13 18:36:04 +00005931 else
5932 Scale = ConstantUInt::get(Scale->getType(),
5933 Scale->getRawValue() / ArrayEltSize);
5934 if (Scale->getRawValue() != 1) {
5935 Constant *C = ConstantExpr::getCast(Scale, NewIdx->getType());
5936 Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
5937 NewIdx = InsertNewInstBefore(Sc, GEP);
5938 }
5939
5940 // Insert the new GEP instruction.
5941 Instruction *Idx =
5942 new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy),
5943 NewIdx, GEP.getName());
5944 Idx = InsertNewInstBefore(Idx, GEP);
5945 return new CastInst(Idx, GEP.getType());
5946 }
5947 }
Chris Lattnerc6bd1952004-02-22 05:25:17 +00005948 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00005949 }
5950
Chris Lattner8a2a3112001-12-14 16:52:21 +00005951 return 0;
5952}
5953
Chris Lattner0864acf2002-11-04 16:18:53 +00005954Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
5955 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
5956 if (AI.isArrayAllocation()) // Check C != 1
5957 if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
5958 const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
Chris Lattner0006bd72002-11-09 00:49:43 +00005959 AllocationInst *New = 0;
Chris Lattner0864acf2002-11-04 16:18:53 +00005960
5961 // Create and insert the replacement instruction...
5962 if (isa<MallocInst>(AI))
Nate Begeman14b05292005-11-05 09:21:28 +00005963 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattner0006bd72002-11-09 00:49:43 +00005964 else {
5965 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
Nate Begeman14b05292005-11-05 09:21:28 +00005966 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
Chris Lattner0006bd72002-11-09 00:49:43 +00005967 }
Chris Lattner7c881df2004-03-19 06:08:10 +00005968
5969 InsertNewInstBefore(New, AI);
Misha Brukmanfd939082005-04-21 23:48:37 +00005970
Chris Lattner0864acf2002-11-04 16:18:53 +00005971 // Scan to the end of the allocation instructions, to skip over a block of
5972 // allocas if possible...
5973 //
5974 BasicBlock::iterator It = New;
5975 while (isa<AllocationInst>(*It)) ++It;
5976
5977 // Now that I is pointing to the first non-allocation-inst in the block,
5978 // insert our getelementptr instruction...
5979 //
Chris Lattner693787a2005-05-04 19:10:26 +00005980 Value *NullIdx = Constant::getNullValue(Type::IntTy);
5981 Value *V = new GetElementPtrInst(New, NullIdx, NullIdx,
5982 New->getName()+".sub", It);
Chris Lattner0864acf2002-11-04 16:18:53 +00005983
5984 // Now make everything use the getelementptr instead of the original
5985 // allocation.
Chris Lattner7c881df2004-03-19 06:08:10 +00005986 return ReplaceInstUsesWith(AI, V);
Chris Lattnere87597f2004-10-16 18:11:37 +00005987 } else if (isa<UndefValue>(AI.getArraySize())) {
5988 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
Chris Lattner0864acf2002-11-04 16:18:53 +00005989 }
Chris Lattner7c881df2004-03-19 06:08:10 +00005990
5991 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
5992 // Note that we only do this for alloca's, because malloc should allocate and
5993 // return a unique pointer, even for a zero byte allocation.
Misha Brukmanfd939082005-04-21 23:48:37 +00005994 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Chris Lattnercf27afb2004-07-02 22:55:47 +00005995 TD->getTypeSize(AI.getAllocatedType()) == 0)
Chris Lattner7c881df2004-03-19 06:08:10 +00005996 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
5997
Chris Lattner0864acf2002-11-04 16:18:53 +00005998 return 0;
5999}
6000
Chris Lattner67b1e1b2003-12-07 01:24:23 +00006001Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
6002 Value *Op = FI.getOperand(0);
6003
6004 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
6005 if (CastInst *CI = dyn_cast<CastInst>(Op))
6006 if (isa<PointerType>(CI->getOperand(0)->getType())) {
6007 FI.setOperand(0, CI->getOperand(0));
6008 return &FI;
6009 }
6010
Chris Lattner17be6352004-10-18 02:59:09 +00006011 // free undef -> unreachable.
6012 if (isa<UndefValue>(Op)) {
6013 // Insert a new store to null because we cannot modify the CFG here.
6014 new StoreInst(ConstantBool::True,
6015 UndefValue::get(PointerType::get(Type::BoolTy)), &FI);
6016 return EraseInstFromFunction(FI);
6017 }
6018
Chris Lattner6160e852004-02-28 04:57:37 +00006019 // If we have 'free null' delete the instruction. This can happen in stl code
6020 // when lots of inlining happens.
Chris Lattner17be6352004-10-18 02:59:09 +00006021 if (isa<ConstantPointerNull>(Op))
Chris Lattner7bcc0e72004-02-28 05:22:00 +00006022 return EraseInstFromFunction(FI);
Chris Lattner6160e852004-02-28 04:57:37 +00006023
Chris Lattner67b1e1b2003-12-07 01:24:23 +00006024 return 0;
6025}
6026
6027
Chris Lattnerfcfe33a2005-01-31 05:51:45 +00006028/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Chris Lattnerb89e0712004-07-13 01:49:43 +00006029static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) {
6030 User *CI = cast<User>(LI.getOperand(0));
Chris Lattnerf9527852005-01-31 04:50:46 +00006031 Value *CastOp = CI->getOperand(0);
Chris Lattnerb89e0712004-07-13 01:49:43 +00006032
6033 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
Chris Lattnerf9527852005-01-31 04:50:46 +00006034 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
Chris Lattnerb89e0712004-07-13 01:49:43 +00006035 const Type *SrcPTy = SrcTy->getElementType();
Chris Lattnerf9527852005-01-31 04:50:46 +00006036
6037 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
6038 // If the source is an array, the code below will not succeed. Check to
6039 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
6040 // constants.
6041 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
6042 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
6043 if (ASrcTy->getNumElements() != 0) {
6044 std::vector<Value*> Idxs(2, Constant::getNullValue(Type::IntTy));
6045 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
6046 SrcTy = cast<PointerType>(CastOp->getType());
6047 SrcPTy = SrcTy->getElementType();
6048 }
6049
6050 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
Chris Lattnerb1515fe2005-03-29 06:37:47 +00006051 // Do not allow turning this into a load of an integer, which is then
6052 // casted to a pointer, this pessimizes pointer analysis a lot.
6053 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
Misha Brukmanfd939082005-04-21 23:48:37 +00006054 IC.getTargetData().getTypeSize(SrcPTy) ==
Chris Lattnerf9527852005-01-31 04:50:46 +00006055 IC.getTargetData().getTypeSize(DestPTy)) {
Misha Brukmanfd939082005-04-21 23:48:37 +00006056
Chris Lattnerf9527852005-01-31 04:50:46 +00006057 // Okay, we are casting from one integer or pointer type to another of
6058 // the same size. Instead of casting the pointer before the load, cast
6059 // the result of the loaded value.
6060 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
6061 CI->getName(),
6062 LI.isVolatile()),LI);
6063 // Now cast the result of the load.
6064 return new CastInst(NewLoad, LI.getType());
6065 }
Chris Lattnerb89e0712004-07-13 01:49:43 +00006066 }
6067 }
6068 return 0;
6069}
6070
Chris Lattnerc10aced2004-09-19 18:43:46 +00006071/// isSafeToLoadUnconditionally - Return true if we know that executing a load
Chris Lattner8a375202004-09-19 19:18:10 +00006072/// from this value cannot trap. If it is not obviously safe to load from the
6073/// specified pointer, we do a quick local scan of the basic block containing
6074/// ScanFrom, to determine if the address is already accessed.
6075static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
6076 // If it is an alloca or global variable, it is always safe to load from.
6077 if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
6078
6079 // Otherwise, be a little bit agressive by scanning the local block where we
6080 // want to check to see if the pointer is already being loaded or stored
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +00006081 // from/to. If so, the previous load or store would have already trapped,
6082 // so there is no harm doing an extra load (also, CSE will later eliminate
6083 // the load entirely).
Chris Lattner8a375202004-09-19 19:18:10 +00006084 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
6085
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +00006086 while (BBI != E) {
Chris Lattner8a375202004-09-19 19:18:10 +00006087 --BBI;
6088
6089 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
6090 if (LI->getOperand(0) == V) return true;
6091 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
6092 if (SI->getOperand(1) == V) return true;
Misha Brukmanfd939082005-04-21 23:48:37 +00006093
Alkis Evlogimenos7b6ec602004-09-20 06:42:58 +00006094 }
Chris Lattner8a375202004-09-19 19:18:10 +00006095 return false;
Chris Lattnerc10aced2004-09-19 18:43:46 +00006096}
6097
Chris Lattner833b8a42003-06-26 05:06:25 +00006098Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
6099 Value *Op = LI.getOperand(0);
Chris Lattner5f16a132004-01-12 04:13:56 +00006100
Chris Lattner37366c12005-05-01 04:24:53 +00006101 // load (cast X) --> cast (load X) iff safe
6102 if (CastInst *CI = dyn_cast<CastInst>(Op))
6103 if (Instruction *Res = InstCombineLoadCast(*this, LI))
6104 return Res;
6105
6106 // None of the following transforms are legal for volatile loads.
6107 if (LI.isVolatile()) return 0;
Chris Lattner62f254d2005-09-12 22:00:15 +00006108
Chris Lattner62f254d2005-09-12 22:00:15 +00006109 if (&LI.getParent()->front() != &LI) {
6110 BasicBlock::iterator BBI = &LI; --BBI;
Chris Lattner9c1f0fd2005-09-12 22:21:03 +00006111 // If the instruction immediately before this is a store to the same
6112 // address, do a simple form of store->load forwarding.
Chris Lattner62f254d2005-09-12 22:00:15 +00006113 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
6114 if (SI->getOperand(1) == LI.getOperand(0))
6115 return ReplaceInstUsesWith(LI, SI->getOperand(0));
Chris Lattner9c1f0fd2005-09-12 22:21:03 +00006116 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
6117 if (LIB->getOperand(0) == LI.getOperand(0))
6118 return ReplaceInstUsesWith(LI, LIB);
Chris Lattner62f254d2005-09-12 22:00:15 +00006119 }
Chris Lattner37366c12005-05-01 04:24:53 +00006120
6121 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op))
6122 if (isa<ConstantPointerNull>(GEPI->getOperand(0)) ||
6123 isa<UndefValue>(GEPI->getOperand(0))) {
6124 // Insert a new store to null instruction before the load to indicate
6125 // that this code is not reachable. We do this instead of inserting
6126 // an unreachable instruction directly because we cannot modify the
6127 // CFG.
6128 new StoreInst(UndefValue::get(LI.getType()),
6129 Constant::getNullValue(Op->getType()), &LI);
6130 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
6131 }
6132
Chris Lattnere87597f2004-10-16 18:11:37 +00006133 if (Constant *C = dyn_cast<Constant>(Op)) {
Chris Lattner37366c12005-05-01 04:24:53 +00006134 // load null/undef -> undef
6135 if ((C->isNullValue() || isa<UndefValue>(C))) {
Chris Lattner17be6352004-10-18 02:59:09 +00006136 // Insert a new store to null instruction before the load to indicate that
6137 // this code is not reachable. We do this instead of inserting an
6138 // unreachable instruction directly because we cannot modify the CFG.
Chris Lattner37366c12005-05-01 04:24:53 +00006139 new StoreInst(UndefValue::get(LI.getType()),
6140 Constant::getNullValue(Op->getType()), &LI);
Chris Lattnere87597f2004-10-16 18:11:37 +00006141 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
Chris Lattner17be6352004-10-18 02:59:09 +00006142 }
Chris Lattner833b8a42003-06-26 05:06:25 +00006143
Chris Lattnere87597f2004-10-16 18:11:37 +00006144 // Instcombine load (constant global) into the value loaded.
6145 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
6146 if (GV->isConstant() && !GV->isExternal())
6147 return ReplaceInstUsesWith(LI, GV->getInitializer());
Misha Brukmanfd939082005-04-21 23:48:37 +00006148
Chris Lattnere87597f2004-10-16 18:11:37 +00006149 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
6150 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
6151 if (CE->getOpcode() == Instruction::GetElementPtr) {
6152 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
6153 if (GV->isConstant() && !GV->isExternal())
Chris Lattner363f2a22005-09-26 05:28:06 +00006154 if (Constant *V =
6155 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
Chris Lattnere87597f2004-10-16 18:11:37 +00006156 return ReplaceInstUsesWith(LI, V);
Chris Lattner37366c12005-05-01 04:24:53 +00006157 if (CE->getOperand(0)->isNullValue()) {
6158 // Insert a new store to null instruction before the load to indicate
6159 // that this code is not reachable. We do this instead of inserting
6160 // an unreachable instruction directly because we cannot modify the
6161 // CFG.
6162 new StoreInst(UndefValue::get(LI.getType()),
6163 Constant::getNullValue(Op->getType()), &LI);
6164 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
6165 }
6166
Chris Lattnere87597f2004-10-16 18:11:37 +00006167 } else if (CE->getOpcode() == Instruction::Cast) {
6168 if (Instruction *Res = InstCombineLoadCast(*this, LI))
6169 return Res;
6170 }
6171 }
Chris Lattnerf499eac2004-04-08 20:39:49 +00006172
Chris Lattner37366c12005-05-01 04:24:53 +00006173 if (Op->hasOneUse()) {
Chris Lattnerc10aced2004-09-19 18:43:46 +00006174 // Change select and PHI nodes to select values instead of addresses: this
6175 // helps alias analysis out a lot, allows many others simplifications, and
6176 // exposes redundancy in the code.
6177 //
6178 // Note that we cannot do the transformation unless we know that the
6179 // introduced loads cannot trap! Something like this is valid as long as
6180 // the condition is always false: load (select bool %C, int* null, int* %G),
6181 // but it would not be valid if we transformed it to load from null
6182 // unconditionally.
6183 //
6184 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
6185 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
Chris Lattner8a375202004-09-19 19:18:10 +00006186 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
6187 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
Chris Lattnerc10aced2004-09-19 18:43:46 +00006188 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
Chris Lattner79f0c8e2004-09-20 10:15:10 +00006189 SI->getOperand(1)->getName()+".val"), LI);
Chris Lattnerc10aced2004-09-19 18:43:46 +00006190 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
Chris Lattner79f0c8e2004-09-20 10:15:10 +00006191 SI->getOperand(2)->getName()+".val"), LI);
Chris Lattnerc10aced2004-09-19 18:43:46 +00006192 return new SelectInst(SI->getCondition(), V1, V2);
6193 }
6194
Chris Lattner684fe212004-09-23 15:46:00 +00006195 // load (select (cond, null, P)) -> load P
6196 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
6197 if (C->isNullValue()) {
6198 LI.setOperand(0, SI->getOperand(2));
6199 return &LI;
6200 }
6201
6202 // load (select (cond, P, null)) -> load P
6203 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
6204 if (C->isNullValue()) {
6205 LI.setOperand(0, SI->getOperand(1));
6206 return &LI;
6207 }
6208
Chris Lattnerc10aced2004-09-19 18:43:46 +00006209 } else if (PHINode *PN = dyn_cast<PHINode>(Op)) {
6210 // load (phi (&V1, &V2, &V3)) --> phi(load &V1, load &V2, load &V3)
Chris Lattner79f0c8e2004-09-20 10:15:10 +00006211 bool Safe = PN->getParent() == LI.getParent();
6212
6213 // Scan all of the instructions between the PHI and the load to make
6214 // sure there are no instructions that might possibly alter the value
6215 // loaded from the PHI.
6216 if (Safe) {
6217 BasicBlock::iterator I = &LI;
6218 for (--I; !isa<PHINode>(I); --I)
6219 if (isa<StoreInst>(I) || isa<CallInst>(I)) {
6220 Safe = false;
6221 break;
6222 }
6223 }
6224
6225 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e && Safe; ++i)
Chris Lattner8a375202004-09-19 19:18:10 +00006226 if (!isSafeToLoadUnconditionally(PN->getIncomingValue(i),
Chris Lattner79f0c8e2004-09-20 10:15:10 +00006227 PN->getIncomingBlock(i)->getTerminator()))
Chris Lattnerc10aced2004-09-19 18:43:46 +00006228 Safe = false;
Chris Lattner79f0c8e2004-09-20 10:15:10 +00006229
Chris Lattnerc10aced2004-09-19 18:43:46 +00006230 if (Safe) {
6231 // Create the PHI.
6232 PHINode *NewPN = new PHINode(LI.getType(), PN->getName());
6233 InsertNewInstBefore(NewPN, *PN);
6234 std::map<BasicBlock*,Value*> LoadMap; // Don't insert duplicate loads
6235
6236 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6237 BasicBlock *BB = PN->getIncomingBlock(i);
6238 Value *&TheLoad = LoadMap[BB];
6239 if (TheLoad == 0) {
6240 Value *InVal = PN->getIncomingValue(i);
6241 TheLoad = InsertNewInstBefore(new LoadInst(InVal,
6242 InVal->getName()+".val"),
6243 *BB->getTerminator());
6244 }
6245 NewPN->addIncoming(TheLoad, BB);
6246 }
6247 return ReplaceInstUsesWith(LI, NewPN);
6248 }
6249 }
6250 }
Chris Lattner833b8a42003-06-26 05:06:25 +00006251 return 0;
6252}
6253
Chris Lattnerfcfe33a2005-01-31 05:51:45 +00006254/// InstCombineStoreToCast - Fold 'store V, (cast P)' -> store (cast V), P'
6255/// when possible.
6256static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
6257 User *CI = cast<User>(SI.getOperand(1));
6258 Value *CastOp = CI->getOperand(0);
6259
6260 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
6261 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
6262 const Type *SrcPTy = SrcTy->getElementType();
6263
6264 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
6265 // If the source is an array, the code below will not succeed. Check to
6266 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
6267 // constants.
6268 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
6269 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
6270 if (ASrcTy->getNumElements() != 0) {
6271 std::vector<Value*> Idxs(2, Constant::getNullValue(Type::IntTy));
6272 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
6273 SrcTy = cast<PointerType>(CastOp->getType());
6274 SrcPTy = SrcTy->getElementType();
6275 }
6276
6277 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
Misha Brukmanfd939082005-04-21 23:48:37 +00006278 IC.getTargetData().getTypeSize(SrcPTy) ==
Chris Lattnerfcfe33a2005-01-31 05:51:45 +00006279 IC.getTargetData().getTypeSize(DestPTy)) {
6280
6281 // Okay, we are casting from one integer or pointer type to another of
6282 // the same size. Instead of casting the pointer before the store, cast
6283 // the value to be stored.
6284 Value *NewCast;
6285 if (Constant *C = dyn_cast<Constant>(SI.getOperand(0)))
6286 NewCast = ConstantExpr::getCast(C, SrcPTy);
6287 else
6288 NewCast = IC.InsertNewInstBefore(new CastInst(SI.getOperand(0),
6289 SrcPTy,
6290 SI.getOperand(0)->getName()+".c"), SI);
6291
6292 return new StoreInst(NewCast, CastOp);
6293 }
6294 }
6295 }
6296 return 0;
6297}
6298
Chris Lattner2f503e62005-01-31 05:36:43 +00006299Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
6300 Value *Val = SI.getOperand(0);
6301 Value *Ptr = SI.getOperand(1);
6302
6303 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
Chris Lattner9ca96412006-02-08 03:25:32 +00006304 EraseInstFromFunction(SI);
Chris Lattner2f503e62005-01-31 05:36:43 +00006305 ++NumCombined;
6306 return 0;
6307 }
6308
Chris Lattner9ca96412006-02-08 03:25:32 +00006309 // Do really simple DSE, to catch cases where there are several consequtive
6310 // stores to the same location, separated by a few arithmetic operations. This
6311 // situation often occurs with bitfield accesses.
6312 BasicBlock::iterator BBI = &SI;
6313 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
6314 --ScanInsts) {
6315 --BBI;
6316
6317 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
6318 // Prev store isn't volatile, and stores to the same location?
6319 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
6320 ++NumDeadStore;
6321 ++BBI;
6322 EraseInstFromFunction(*PrevSI);
6323 continue;
6324 }
6325 break;
6326 }
6327
6328 // Don't skip over loads or things that can modify memory.
6329 if (BBI->mayWriteToMemory() || isa<LoadInst>(BBI))
6330 break;
6331 }
6332
6333
6334 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
Chris Lattner2f503e62005-01-31 05:36:43 +00006335
6336 // store X, null -> turns into 'unreachable' in SimplifyCFG
6337 if (isa<ConstantPointerNull>(Ptr)) {
6338 if (!isa<UndefValue>(Val)) {
6339 SI.setOperand(0, UndefValue::get(Val->getType()));
6340 if (Instruction *U = dyn_cast<Instruction>(Val))
6341 WorkList.push_back(U); // Dropped a use.
6342 ++NumCombined;
6343 }
6344 return 0; // Do not modify these!
6345 }
6346
6347 // store undef, Ptr -> noop
6348 if (isa<UndefValue>(Val)) {
Chris Lattner9ca96412006-02-08 03:25:32 +00006349 EraseInstFromFunction(SI);
Chris Lattner2f503e62005-01-31 05:36:43 +00006350 ++NumCombined;
6351 return 0;
6352 }
6353
Chris Lattnerfcfe33a2005-01-31 05:51:45 +00006354 // If the pointer destination is a cast, see if we can fold the cast into the
6355 // source instead.
6356 if (CastInst *CI = dyn_cast<CastInst>(Ptr))
6357 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
6358 return Res;
6359 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
6360 if (CE->getOpcode() == Instruction::Cast)
6361 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
6362 return Res;
6363
Chris Lattner408902b2005-09-12 23:23:25 +00006364
6365 // If this store is the last instruction in the basic block, and if the block
6366 // ends with an unconditional branch, try to move it to the successor block.
Chris Lattner9ca96412006-02-08 03:25:32 +00006367 BBI = &SI; ++BBI;
Chris Lattner408902b2005-09-12 23:23:25 +00006368 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
6369 if (BI->isUnconditional()) {
6370 // Check to see if the successor block has exactly two incoming edges. If
6371 // so, see if the other predecessor contains a store to the same location.
6372 // if so, insert a PHI node (if needed) and move the stores down.
6373 BasicBlock *Dest = BI->getSuccessor(0);
6374
6375 pred_iterator PI = pred_begin(Dest);
6376 BasicBlock *Other = 0;
6377 if (*PI != BI->getParent())
6378 Other = *PI;
6379 ++PI;
6380 if (PI != pred_end(Dest)) {
6381 if (*PI != BI->getParent())
6382 if (Other)
6383 Other = 0;
6384 else
6385 Other = *PI;
6386 if (++PI != pred_end(Dest))
6387 Other = 0;
6388 }
6389 if (Other) { // If only one other pred...
6390 BBI = Other->getTerminator();
6391 // Make sure this other block ends in an unconditional branch and that
6392 // there is an instruction before the branch.
6393 if (isa<BranchInst>(BBI) && cast<BranchInst>(BBI)->isUnconditional() &&
6394 BBI != Other->begin()) {
6395 --BBI;
6396 StoreInst *OtherStore = dyn_cast<StoreInst>(BBI);
6397
6398 // If this instruction is a store to the same location.
6399 if (OtherStore && OtherStore->getOperand(1) == SI.getOperand(1)) {
6400 // Okay, we know we can perform this transformation. Insert a PHI
6401 // node now if we need it.
6402 Value *MergedVal = OtherStore->getOperand(0);
6403 if (MergedVal != SI.getOperand(0)) {
6404 PHINode *PN = new PHINode(MergedVal->getType(), "storemerge");
6405 PN->reserveOperandSpace(2);
6406 PN->addIncoming(SI.getOperand(0), SI.getParent());
6407 PN->addIncoming(OtherStore->getOperand(0), Other);
6408 MergedVal = InsertNewInstBefore(PN, Dest->front());
6409 }
6410
6411 // Advance to a place where it is safe to insert the new store and
6412 // insert it.
6413 BBI = Dest->begin();
6414 while (isa<PHINode>(BBI)) ++BBI;
6415 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
6416 OtherStore->isVolatile()), *BBI);
6417
6418 // Nuke the old stores.
Chris Lattner9ca96412006-02-08 03:25:32 +00006419 EraseInstFromFunction(SI);
6420 EraseInstFromFunction(*OtherStore);
Chris Lattner408902b2005-09-12 23:23:25 +00006421 ++NumCombined;
6422 return 0;
6423 }
6424 }
6425 }
6426 }
6427
Chris Lattner2f503e62005-01-31 05:36:43 +00006428 return 0;
6429}
6430
6431
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00006432Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
6433 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4b828e62005-06-18 17:37:34 +00006434 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00006435 BasicBlock *TrueDest;
6436 BasicBlock *FalseDest;
6437 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
6438 !isa<Constant>(X)) {
6439 // Swap Destinations and condition...
6440 BI.setCondition(X);
6441 BI.setSuccessor(0, FalseDest);
6442 BI.setSuccessor(1, TrueDest);
6443 return &BI;
6444 }
6445
6446 // Cannonicalize setne -> seteq
6447 Instruction::BinaryOps Op; Value *Y;
6448 if (match(&BI, m_Br(m_SetCond(Op, m_Value(X), m_Value(Y)),
6449 TrueDest, FalseDest)))
6450 if ((Op == Instruction::SetNE || Op == Instruction::SetLE ||
6451 Op == Instruction::SetGE) && BI.getCondition()->hasOneUse()) {
6452 SetCondInst *I = cast<SetCondInst>(BI.getCondition());
6453 std::string Name = I->getName(); I->setName("");
6454 Instruction::BinaryOps NewOpcode = SetCondInst::getInverseCondition(Op);
6455 Value *NewSCC = BinaryOperator::create(NewOpcode, X, Y, Name, I);
Chris Lattner40f5d702003-06-04 05:10:11 +00006456 // Swap Destinations and condition...
Chris Lattneracd1f0f2004-07-30 07:50:03 +00006457 BI.setCondition(NewSCC);
Chris Lattner40f5d702003-06-04 05:10:11 +00006458 BI.setSuccessor(0, FalseDest);
6459 BI.setSuccessor(1, TrueDest);
Chris Lattneracd1f0f2004-07-30 07:50:03 +00006460 removeFromWorkList(I);
6461 I->getParent()->getInstList().erase(I);
6462 WorkList.push_back(cast<Instruction>(NewSCC));
Chris Lattner40f5d702003-06-04 05:10:11 +00006463 return &BI;
6464 }
Misha Brukmanfd939082005-04-21 23:48:37 +00006465
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00006466 return 0;
6467}
Chris Lattner0864acf2002-11-04 16:18:53 +00006468
Chris Lattner46238a62004-07-03 00:26:11 +00006469Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
6470 Value *Cond = SI.getCondition();
6471 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
6472 if (I->getOpcode() == Instruction::Add)
6473 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
6474 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
6475 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
Chris Lattnere87597f2004-10-16 18:11:37 +00006476 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
Chris Lattner46238a62004-07-03 00:26:11 +00006477 AddRHS));
6478 SI.setOperand(0, I->getOperand(0));
6479 WorkList.push_back(I);
6480 return &SI;
6481 }
6482 }
6483 return 0;
6484}
6485
Robert Bocchino1d7456d2006-01-13 22:48:06 +00006486Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
6487 if (ConstantAggregateZero *C =
6488 dyn_cast<ConstantAggregateZero>(EI.getOperand(0))) {
6489 // If packed val is constant 0, replace extract with scalar 0
6490 const Type *Ty = cast<PackedType>(C->getType())->getElementType();
6491 EI.replaceAllUsesWith(Constant::getNullValue(Ty));
6492 return ReplaceInstUsesWith(EI, Constant::getNullValue(Ty));
6493 }
6494 if (ConstantPacked *C = dyn_cast<ConstantPacked>(EI.getOperand(0))) {
6495 // If packed val is constant with uniform operands, replace EI
6496 // with that operand
6497 Constant *op0 = cast<Constant>(C->getOperand(0));
6498 for (unsigned i = 1; i < C->getNumOperands(); ++i)
6499 if (C->getOperand(i) != op0) return 0;
6500 return ReplaceInstUsesWith(EI, op0);
6501 }
6502 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0)))
6503 if (I->hasOneUse()) {
6504 // Push extractelement into predecessor operation if legal and
6505 // profitable to do so
6506 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
6507 if (!isa<Constant>(BO->getOperand(0)) &&
6508 !isa<Constant>(BO->getOperand(1)))
6509 return 0;
6510 ExtractElementInst *newEI0 =
6511 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
6512 EI.getName());
6513 ExtractElementInst *newEI1 =
6514 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
6515 EI.getName());
6516 InsertNewInstBefore(newEI0, EI);
6517 InsertNewInstBefore(newEI1, EI);
6518 return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
6519 }
6520 switch(I->getOpcode()) {
6521 case Instruction::Load: {
6522 Value *Ptr = InsertCastBefore(I->getOperand(0),
6523 PointerType::get(EI.getType()), EI);
6524 GetElementPtrInst *GEP =
6525 new GetElementPtrInst(Ptr, EI.getOperand(1),
6526 I->getName() + ".gep");
6527 InsertNewInstBefore(GEP, EI);
6528 return new LoadInst(GEP);
6529 }
6530 default:
6531 return 0;
6532 }
6533 }
6534 return 0;
6535}
6536
6537
Chris Lattner62b14df2002-09-02 04:59:56 +00006538void InstCombiner::removeFromWorkList(Instruction *I) {
6539 WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
6540 WorkList.end());
6541}
6542
Chris Lattnerea1c4542004-12-08 23:43:58 +00006543
6544/// TryToSinkInstruction - Try to move the specified instruction from its
6545/// current block into the beginning of DestBlock, which can only happen if it's
6546/// safe to move the instruction past all of the instructions between it and the
6547/// end of its block.
6548static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
6549 assert(I->hasOneUse() && "Invariants didn't hold!");
6550
Chris Lattner108e9022005-10-27 17:13:11 +00006551 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
6552 if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
Misha Brukmanfd939082005-04-21 23:48:37 +00006553
Chris Lattnerea1c4542004-12-08 23:43:58 +00006554 // Do not sink alloca instructions out of the entry block.
6555 if (isa<AllocaInst>(I) && I->getParent() == &DestBlock->getParent()->front())
6556 return false;
6557
Chris Lattner96a52a62004-12-09 07:14:34 +00006558 // We can only sink load instructions if there is nothing between the load and
6559 // the end of block that could change the value.
6560 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Chris Lattner96a52a62004-12-09 07:14:34 +00006561 for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
6562 Scan != E; ++Scan)
6563 if (Scan->mayWriteToMemory())
6564 return false;
Chris Lattner96a52a62004-12-09 07:14:34 +00006565 }
Chris Lattnerea1c4542004-12-08 23:43:58 +00006566
6567 BasicBlock::iterator InsertPos = DestBlock->begin();
6568 while (isa<PHINode>(InsertPos)) ++InsertPos;
6569
Chris Lattner4bc5f802005-08-08 19:11:57 +00006570 I->moveBefore(InsertPos);
Chris Lattnerea1c4542004-12-08 23:43:58 +00006571 ++NumSunkInst;
6572 return true;
6573}
6574
Chris Lattner7e708292002-06-25 16:13:24 +00006575bool InstCombiner::runOnFunction(Function &F) {
Chris Lattnerdd841ae2002-04-18 17:39:14 +00006576 bool Changed = false;
Chris Lattnerbc61e662003-11-02 05:57:39 +00006577 TD = &getAnalysis<TargetData>();
Chris Lattner8a2a3112001-12-14 16:52:21 +00006578
Chris Lattnerb3d59702005-07-07 20:40:38 +00006579 {
6580 // Populate the worklist with the reachable instructions.
6581 std::set<BasicBlock*> Visited;
6582 for (df_ext_iterator<BasicBlock*> BB = df_ext_begin(&F.front(), Visited),
6583 E = df_ext_end(&F.front(), Visited); BB != E; ++BB)
6584 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
6585 WorkList.push_back(I);
Jeff Cohen00b168892005-07-27 06:12:32 +00006586
Chris Lattnerb3d59702005-07-07 20:40:38 +00006587 // Do a quick scan over the function. If we find any blocks that are
6588 // unreachable, remove any instructions inside of them. This prevents
6589 // the instcombine code from having to deal with some bad special cases.
6590 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
6591 if (!Visited.count(BB)) {
6592 Instruction *Term = BB->getTerminator();
6593 while (Term != BB->begin()) { // Remove instrs bottom-up
6594 BasicBlock::iterator I = Term; --I;
Chris Lattner6ffe5512004-04-27 15:13:33 +00006595
Chris Lattnerb3d59702005-07-07 20:40:38 +00006596 DEBUG(std::cerr << "IC: DCE: " << *I);
6597 ++NumDeadInst;
6598
6599 if (!I->use_empty())
6600 I->replaceAllUsesWith(UndefValue::get(I->getType()));
6601 I->eraseFromParent();
6602 }
6603 }
6604 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00006605
6606 while (!WorkList.empty()) {
6607 Instruction *I = WorkList.back(); // Get an instruction from the worklist
6608 WorkList.pop_back();
6609
Misha Brukmana3bbcb52002-10-29 23:06:16 +00006610 // Check to see if we can DCE or ConstantPropagate the instruction...
Chris Lattner62b14df2002-09-02 04:59:56 +00006611 // Check to see if we can DIE the instruction...
6612 if (isInstructionTriviallyDead(I)) {
6613 // Add operands to the worklist...
Chris Lattner4bb7c022003-10-06 17:11:01 +00006614 if (I->getNumOperands() < 4)
Chris Lattner7bcc0e72004-02-28 05:22:00 +00006615 AddUsesToWorkList(*I);
Chris Lattner62b14df2002-09-02 04:59:56 +00006616 ++NumDeadInst;
Chris Lattner4bb7c022003-10-06 17:11:01 +00006617
Chris Lattnerad5fec12005-01-28 19:32:01 +00006618 DEBUG(std::cerr << "IC: DCE: " << *I);
6619
6620 I->eraseFromParent();
Chris Lattner4bb7c022003-10-06 17:11:01 +00006621 removeFromWorkList(I);
6622 continue;
6623 }
Chris Lattner62b14df2002-09-02 04:59:56 +00006624
Misha Brukmana3bbcb52002-10-29 23:06:16 +00006625 // Instruction isn't dead, see if we can constant propagate it...
Chris Lattner62b14df2002-09-02 04:59:56 +00006626 if (Constant *C = ConstantFoldInstruction(I)) {
Alkis Evlogimenos54a96a22004-12-08 23:10:30 +00006627 Value* Ptr = I->getOperand(0);
Chris Lattner061718c2004-10-16 19:44:59 +00006628 if (isa<GetElementPtrInst>(I) &&
Alkis Evlogimenos54a96a22004-12-08 23:10:30 +00006629 cast<Constant>(Ptr)->isNullValue() &&
6630 !isa<ConstantPointerNull>(C) &&
6631 cast<PointerType>(Ptr->getType())->getElementType()->isSized()) {
Chris Lattner061718c2004-10-16 19:44:59 +00006632 // If this is a constant expr gep that is effectively computing an
6633 // "offsetof", fold it into 'cast int X to T*' instead of 'gep 0, 0, 12'
6634 bool isFoldableGEP = true;
6635 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
6636 if (!isa<ConstantInt>(I->getOperand(i)))
6637 isFoldableGEP = false;
6638 if (isFoldableGEP) {
Alkis Evlogimenos54a96a22004-12-08 23:10:30 +00006639 uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
Chris Lattner061718c2004-10-16 19:44:59 +00006640 std::vector<Value*>(I->op_begin()+1, I->op_end()));
6641 C = ConstantUInt::get(Type::ULongTy, Offset);
Chris Lattner6e758ae2004-10-16 19:46:33 +00006642 C = ConstantExpr::getCast(C, TD->getIntPtrType());
Chris Lattner061718c2004-10-16 19:44:59 +00006643 C = ConstantExpr::getCast(C, I->getType());
6644 }
6645 }
6646
Chris Lattnerad5fec12005-01-28 19:32:01 +00006647 DEBUG(std::cerr << "IC: ConstFold to: " << *C << " from: " << *I);
6648
Chris Lattner62b14df2002-09-02 04:59:56 +00006649 // Add operands to the worklist...
Chris Lattner7bcc0e72004-02-28 05:22:00 +00006650 AddUsesToWorkList(*I);
Chris Lattnerc736d562002-12-05 22:41:53 +00006651 ReplaceInstUsesWith(*I, C);
6652
Chris Lattner62b14df2002-09-02 04:59:56 +00006653 ++NumConstProp;
Chris Lattner4bb7c022003-10-06 17:11:01 +00006654 I->getParent()->getInstList().erase(I);
Chris Lattner60610002003-10-07 15:17:02 +00006655 removeFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +00006656 continue;
Chris Lattner62b14df2002-09-02 04:59:56 +00006657 }
Chris Lattner4bb7c022003-10-06 17:11:01 +00006658
Chris Lattnerea1c4542004-12-08 23:43:58 +00006659 // See if we can trivially sink this instruction to a successor basic block.
6660 if (I->hasOneUse()) {
6661 BasicBlock *BB = I->getParent();
6662 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
6663 if (UserParent != BB) {
6664 bool UserIsSuccessor = false;
6665 // See if the user is one of our successors.
6666 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
6667 if (*SI == UserParent) {
6668 UserIsSuccessor = true;
6669 break;
6670 }
6671
6672 // If the user is one of our immediate successors, and if that successor
6673 // only has us as a predecessors (we'd have to split the critical edge
6674 // otherwise), we can keep going.
6675 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
6676 next(pred_begin(UserParent)) == pred_end(UserParent))
6677 // Okay, the CFG is simple enough, try to sink this instruction.
6678 Changed |= TryToSinkInstruction(I, UserParent);
6679 }
6680 }
6681
Chris Lattner8a2a3112001-12-14 16:52:21 +00006682 // Now that we have an instruction, try combining it to simplify it...
Chris Lattner90ac28c2002-08-02 19:29:35 +00006683 if (Instruction *Result = visit(*I)) {
Chris Lattner3dec1f22002-05-10 15:38:35 +00006684 ++NumCombined;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00006685 // Should we replace the old instruction with a new one?
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00006686 if (Result != I) {
Chris Lattner0cea42a2004-03-13 23:54:27 +00006687 DEBUG(std::cerr << "IC: Old = " << *I
6688 << " New = " << *Result);
6689
Chris Lattnerf523d062004-06-09 05:08:07 +00006690 // Everything uses the new instruction now.
6691 I->replaceAllUsesWith(Result);
6692
6693 // Push the new instruction and any users onto the worklist.
6694 WorkList.push_back(Result);
6695 AddUsersToWorkList(*Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +00006696
6697 // Move the name to the new instruction first...
6698 std::string OldName = I->getName(); I->setName("");
Chris Lattnerd558dc32003-10-07 22:58:41 +00006699 Result->setName(OldName);
Chris Lattner4bb7c022003-10-06 17:11:01 +00006700
6701 // Insert the new instruction into the basic block...
6702 BasicBlock *InstParent = I->getParent();
Chris Lattnerbac32862004-11-14 19:13:23 +00006703 BasicBlock::iterator InsertPos = I;
6704
6705 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
6706 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
6707 ++InsertPos;
6708
6709 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +00006710
Chris Lattner00d51312004-05-01 23:27:23 +00006711 // Make sure that we reprocess all operands now that we reduced their
6712 // use counts.
Chris Lattner216d4d82004-05-01 23:19:52 +00006713 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
6714 if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
6715 WorkList.push_back(OpI);
6716
Chris Lattnerf523d062004-06-09 05:08:07 +00006717 // Instructions can end up on the worklist more than once. Make sure
6718 // we do not process an instruction that has been deleted.
6719 removeFromWorkList(I);
Chris Lattner4bb7c022003-10-06 17:11:01 +00006720
6721 // Erase the old instruction.
6722 InstParent->getInstList().erase(I);
Chris Lattner7e708292002-06-25 16:13:24 +00006723 } else {
Chris Lattner0cea42a2004-03-13 23:54:27 +00006724 DEBUG(std::cerr << "IC: MOD = " << *I);
6725
Chris Lattner90ac28c2002-08-02 19:29:35 +00006726 // If the instruction was modified, it's possible that it is now dead.
6727 // if so, remove it.
Chris Lattner00d51312004-05-01 23:27:23 +00006728 if (isInstructionTriviallyDead(I)) {
6729 // Make sure we process all operands now that we are reducing their
6730 // use counts.
6731 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
6732 if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
6733 WorkList.push_back(OpI);
Misha Brukmanfd939082005-04-21 23:48:37 +00006734
Chris Lattner00d51312004-05-01 23:27:23 +00006735 // Instructions may end up in the worklist more than once. Erase all
Robert Bocchino1d7456d2006-01-13 22:48:06 +00006736 // occurrences of this instruction.
Chris Lattner62b14df2002-09-02 04:59:56 +00006737 removeFromWorkList(I);
Chris Lattner2f503e62005-01-31 05:36:43 +00006738 I->eraseFromParent();
Chris Lattnerf523d062004-06-09 05:08:07 +00006739 } else {
6740 WorkList.push_back(Result);
6741 AddUsersToWorkList(*Result);
Chris Lattner90ac28c2002-08-02 19:29:35 +00006742 }
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00006743 }
Chris Lattnerdd841ae2002-04-18 17:39:14 +00006744 Changed = true;
Chris Lattner8a2a3112001-12-14 16:52:21 +00006745 }
6746 }
6747
Chris Lattnerdd841ae2002-04-18 17:39:14 +00006748 return Changed;
Chris Lattnerbd0ef772002-02-26 21:46:54 +00006749}
6750
Brian Gaeke96d4bf72004-07-27 17:43:21 +00006751FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattnerdd841ae2002-04-18 17:39:14 +00006752 return new InstCombiner();
Chris Lattnerbd0ef772002-02-26 21:46:54 +00006753}
Brian Gaeked0fde302003-11-11 22:41:34 +00006754