blob: 45c68143bd50060d034a2aa5a0db30bcbe0281ae [file] [log] [blame]
Chris Lattnerdf986172009-01-02 07:01:27 +00001//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/ValueSymbolTable.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
Chris Lattnerdf986172009-01-02 07:01:27 +000028namespace llvm {
Chris Lattner3ed88ef2009-01-02 08:05:26 +000029 /// ValID - Represents a reference of a definition of some sort with no type.
30 /// There are several cases where we have to parse the value but where the
31 /// type can depend on later context. This may either be a numeric reference
32 /// or a symbolic (%var) reference. This is just a discriminated union.
Chris Lattnerdf986172009-01-02 07:01:27 +000033 struct ValID {
34 enum {
35 t_LocalID, t_GlobalID, // ID in UIntVal.
36 t_LocalName, t_GlobalName, // Name in StrVal.
37 t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
38 t_Null, t_Undef, t_Zero, // No value.
39 t_Constant, // Value in ConstantVal.
40 t_InlineAsm // Value in StrVal/StrVal2/UIntVal.
41 } Kind;
42
43 LLParser::LocTy Loc;
44 unsigned UIntVal;
45 std::string StrVal, StrVal2;
46 APSInt APSIntVal;
47 APFloat APFloatVal;
48 Constant *ConstantVal;
49 ValID() : APFloatVal(0.0) {}
50 };
51}
52
Chris Lattner3ed88ef2009-01-02 08:05:26 +000053/// Run: module ::= toplevelentity*
Chris Lattnerdf986172009-01-02 07:01:27 +000054Module *LLParser::Run() {
55 M = new Module(Lex.getFilename());
Chris Lattner3ed88ef2009-01-02 08:05:26 +000056
57 // Prime the lexer.
58 Lex.Lex();
59
Chris Lattnerdf986172009-01-02 07:01:27 +000060 if (ParseTopLevelEntities() ||
61 ValidateEndOfModule()) {
62 delete M;
63 return 0;
64 }
65
66 return M;
67}
68
69/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
70/// module.
71bool LLParser::ValidateEndOfModule() {
72 if (!ForwardRefTypes.empty())
73 return Error(ForwardRefTypes.begin()->second.second,
74 "use of undefined type named '" +
75 ForwardRefTypes.begin()->first + "'");
76 if (!ForwardRefTypeIDs.empty())
77 return Error(ForwardRefTypeIDs.begin()->second.second,
78 "use of undefined type '%" +
79 utostr(ForwardRefTypeIDs.begin()->first) + "'");
80
81 if (!ForwardRefVals.empty())
82 return Error(ForwardRefVals.begin()->second.second,
83 "use of undefined value '@" + ForwardRefVals.begin()->first +
84 "'");
85
86 if (!ForwardRefValIDs.empty())
87 return Error(ForwardRefValIDs.begin()->second.second,
88 "use of undefined value '@" +
89 utostr(ForwardRefValIDs.begin()->first) + "'");
90
91 // Look for intrinsic functions and CallInst that need to be upgraded
92 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
93 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
94
95 return false;
96}
97
98//===----------------------------------------------------------------------===//
99// Top-Level Entities
100//===----------------------------------------------------------------------===//
101
102bool LLParser::ParseTopLevelEntities() {
Chris Lattnerdf986172009-01-02 07:01:27 +0000103 while (1) {
104 switch (Lex.getKind()) {
105 default: return TokError("expected top-level entity");
106 case lltok::Eof: return false;
107 //case lltok::kw_define:
108 case lltok::kw_declare: if (ParseDeclare()) return true; break;
109 case lltok::kw_define: if (ParseDefine()) return true; break;
110 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
111 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
112 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
113 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
114 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
115 case lltok::LocalVar: if (ParseNamedType()) return true; break;
116 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
117
118 // The Global variable production with no name can have many different
119 // optional leading prefixes, the production is:
120 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
121 // OptionalAddrSpace ('constant'|'global') ...
122 case lltok::kw_internal: // OptionalLinkage
123 case lltok::kw_weak: // OptionalLinkage
124 case lltok::kw_linkonce: // OptionalLinkage
125 case lltok::kw_appending: // OptionalLinkage
126 case lltok::kw_dllexport: // OptionalLinkage
127 case lltok::kw_common: // OptionalLinkage
128 case lltok::kw_dllimport: // OptionalLinkage
129 case lltok::kw_extern_weak: // OptionalLinkage
130 case lltok::kw_external: { // OptionalLinkage
131 unsigned Linkage, Visibility;
132 if (ParseOptionalLinkage(Linkage) ||
133 ParseOptionalVisibility(Visibility) ||
134 ParseGlobal("", 0, Linkage, true, Visibility))
135 return true;
136 break;
137 }
138 case lltok::kw_default: // OptionalVisibility
139 case lltok::kw_hidden: // OptionalVisibility
140 case lltok::kw_protected: { // OptionalVisibility
141 unsigned Visibility;
142 if (ParseOptionalVisibility(Visibility) ||
143 ParseGlobal("", 0, 0, false, Visibility))
144 return true;
145 break;
146 }
147
148 case lltok::kw_thread_local: // OptionalThreadLocal
149 case lltok::kw_addrspace: // OptionalAddrSpace
150 case lltok::kw_constant: // GlobalType
151 case lltok::kw_global: // GlobalType
152 if (ParseGlobal("", 0, 0, false, 0)) return true;
153 break;
154 }
155 }
156}
157
158
159/// toplevelentity
160/// ::= 'module' 'asm' STRINGCONSTANT
161bool LLParser::ParseModuleAsm() {
162 assert(Lex.getKind() == lltok::kw_module);
163 Lex.Lex();
164
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000165 std::string AsmStr;
166 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
167 ParseStringConstant(AsmStr)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000168
169 const std::string &AsmSoFar = M->getModuleInlineAsm();
170 if (AsmSoFar.empty())
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000171 M->setModuleInlineAsm(AsmStr);
Chris Lattnerdf986172009-01-02 07:01:27 +0000172 else
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000173 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
Chris Lattnerdf986172009-01-02 07:01:27 +0000174 return false;
175}
176
177/// toplevelentity
178/// ::= 'target' 'triple' '=' STRINGCONSTANT
179/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
180bool LLParser::ParseTargetDefinition() {
181 assert(Lex.getKind() == lltok::kw_target);
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000182 std::string Str;
Chris Lattnerdf986172009-01-02 07:01:27 +0000183 switch (Lex.Lex()) {
184 default: return TokError("unknown target property");
185 case lltok::kw_triple:
186 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000187 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
188 ParseStringConstant(Str))
Chris Lattnerdf986172009-01-02 07:01:27 +0000189 return true;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000190 M->setTargetTriple(Str);
Chris Lattnerdf986172009-01-02 07:01:27 +0000191 return false;
192 case lltok::kw_datalayout:
193 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000194 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
195 ParseStringConstant(Str))
Chris Lattnerdf986172009-01-02 07:01:27 +0000196 return true;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000197 M->setDataLayout(Str);
Chris Lattnerdf986172009-01-02 07:01:27 +0000198 return false;
199 }
200}
201
202/// toplevelentity
203/// ::= 'deplibs' '=' '[' ']'
204/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
205bool LLParser::ParseDepLibs() {
206 assert(Lex.getKind() == lltok::kw_deplibs);
Chris Lattnerdf986172009-01-02 07:01:27 +0000207 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000208 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
209 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
210 return true;
211
212 if (EatIfPresent(lltok::rsquare))
213 return false;
214
215 std::string Str;
216 if (ParseStringConstant(Str)) return true;
217 M->addLibrary(Str);
218
219 while (EatIfPresent(lltok::comma)) {
220 if (ParseStringConstant(Str)) return true;
221 M->addLibrary(Str);
222 }
223
224 return ParseToken(lltok::rsquare, "expected ']' at end of list");
Chris Lattnerdf986172009-01-02 07:01:27 +0000225}
226
227/// toplevelentity
228/// ::= 'type' type
229bool LLParser::ParseUnnamedType() {
230 assert(Lex.getKind() == lltok::kw_type);
231 LocTy TypeLoc = Lex.getLoc();
232 Lex.Lex(); // eat kw_type
233
234 PATypeHolder Ty(Type::VoidTy);
235 if (ParseType(Ty)) return true;
236
237 unsigned TypeID = NumberedTypes.size();
238
239 // We don't allow assigning names to void type
240 if (Ty == Type::VoidTy)
241 return Error(TypeLoc, "can't assign name to the void type");
242
243 // See if this type was previously referenced.
244 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
245 FI = ForwardRefTypeIDs.find(TypeID);
246 if (FI != ForwardRefTypeIDs.end()) {
247 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
248 Ty = FI->second.first.get();
249 ForwardRefTypeIDs.erase(FI);
250 }
251
252 NumberedTypes.push_back(Ty);
253
254 return false;
255}
256
257/// toplevelentity
258/// ::= LocalVar '=' 'type' type
259bool LLParser::ParseNamedType() {
260 std::string Name = Lex.getStrVal();
261 LocTy NameLoc = Lex.getLoc();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000262 Lex.Lex(); // eat LocalVar.
Chris Lattnerdf986172009-01-02 07:01:27 +0000263
264 PATypeHolder Ty(Type::VoidTy);
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000265
266 if (ParseToken(lltok::equal, "expected '=' after name") ||
267 ParseToken(lltok::kw_type, "expected 'type' after name") ||
268 ParseType(Ty))
269 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000270
271 // We don't allow assigning names to void type
272 if (Ty == Type::VoidTy)
273 return Error(NameLoc, "can't assign name '" + Name + "' to the void type");
274
275 // Set the type name, checking for conflicts as we do so.
276 bool AlreadyExists = M->addTypeName(Name, Ty);
277 if (!AlreadyExists) return false;
278
279 // See if this type is a forward reference. We need to eagerly resolve
280 // types to allow recursive type redefinitions below.
281 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
282 FI = ForwardRefTypes.find(Name);
283 if (FI != ForwardRefTypes.end()) {
284 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
285 Ty = FI->second.first.get();
286 ForwardRefTypes.erase(FI);
287 }
288
289 // Inserting a name that is already defined, get the existing name.
290 const Type *Existing = M->getTypeByName(Name);
291 assert(Existing && "Conflict but no matching type?!");
292
293 // Otherwise, this is an attempt to redefine a type. That's okay if
294 // the redefinition is identical to the original.
295 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
296 if (Existing == Ty) return false;
297
298 // Any other kind of (non-equivalent) redefinition is an error.
299 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
300 Ty->getDescription() + "'");
301}
302
303
304/// toplevelentity
305/// ::= 'declare' FunctionHeader
306bool LLParser::ParseDeclare() {
307 assert(Lex.getKind() == lltok::kw_declare);
308 Lex.Lex();
309
310 Function *F;
311 return ParseFunctionHeader(F, false);
312}
313
314/// toplevelentity
315/// ::= 'define' FunctionHeader '{' ...
316bool LLParser::ParseDefine() {
317 assert(Lex.getKind() == lltok::kw_define);
318 Lex.Lex();
319
320 Function *F;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000321 return ParseFunctionHeader(F, true) ||
322 ParseFunctionBody(*F);
Chris Lattnerdf986172009-01-02 07:01:27 +0000323}
324
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000325/// ParseGlobalType
326/// ::= 'constant'
327/// ::= 'global'
Chris Lattnerdf986172009-01-02 07:01:27 +0000328bool LLParser::ParseGlobalType(bool &IsConstant) {
329 if (Lex.getKind() == lltok::kw_constant)
330 IsConstant = true;
331 else if (Lex.getKind() == lltok::kw_global)
332 IsConstant = false;
333 else
334 return TokError("expected 'global' or 'constant'");
335 Lex.Lex();
336 return false;
337}
338
339/// ParseNamedGlobal:
340/// GlobalVar '=' OptionalVisibility ALIAS ...
341/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
342bool LLParser::ParseNamedGlobal() {
343 assert(Lex.getKind() == lltok::GlobalVar);
344 LocTy NameLoc = Lex.getLoc();
345 std::string Name = Lex.getStrVal();
346 Lex.Lex();
347
348 bool HasLinkage;
349 unsigned Linkage, Visibility;
350 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
351 ParseOptionalLinkage(Linkage, HasLinkage) ||
352 ParseOptionalVisibility(Visibility))
353 return true;
354
355 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
356 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
357 return ParseAlias(Name, NameLoc, Visibility);
358}
359
360/// ParseAlias:
361/// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
362/// Aliasee
363/// ::= TypeAndValue | 'bitcast' '(' TypeAndValue 'to' Type ')'
364///
365/// Everything through visibility has already been parsed.
366///
367bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
368 unsigned Visibility) {
369 assert(Lex.getKind() == lltok::kw_alias);
370 Lex.Lex();
371 unsigned Linkage;
372 LocTy LinkageLoc = Lex.getLoc();
373 if (ParseOptionalLinkage(Linkage))
374 return true;
375
376 if (Linkage != GlobalValue::ExternalLinkage &&
377 Linkage != GlobalValue::WeakLinkage &&
378 Linkage != GlobalValue::InternalLinkage)
379 return Error(LinkageLoc, "invalid linkage type for alias");
380
381 Constant *Aliasee;
382 LocTy AliaseeLoc = Lex.getLoc();
383 if (Lex.getKind() != lltok::kw_bitcast) {
384 if (ParseGlobalTypeAndValue(Aliasee)) return true;
385 } else {
386 // The bitcast dest type is not present, it is implied by the dest type.
387 ValID ID;
388 if (ParseValID(ID)) return true;
389 if (ID.Kind != ValID::t_Constant)
390 return Error(AliaseeLoc, "invalid aliasee");
391 Aliasee = ID.ConstantVal;
392 }
393
394 if (!isa<PointerType>(Aliasee->getType()))
395 return Error(AliaseeLoc, "alias must have pointer type");
396
397 // Okay, create the alias but do not insert it into the module yet.
398 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
399 (GlobalValue::LinkageTypes)Linkage, Name,
400 Aliasee);
401 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
402
403 // See if this value already exists in the symbol table. If so, it is either
404 // a redefinition or a definition of a forward reference.
405 if (GlobalValue *Val =
406 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
407 // See if this was a redefinition. If so, there is no entry in
408 // ForwardRefVals.
409 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
410 I = ForwardRefVals.find(Name);
411 if (I == ForwardRefVals.end())
412 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
413
414 // Otherwise, this was a definition of forward ref. Verify that types
415 // agree.
416 if (Val->getType() != GA->getType())
417 return Error(NameLoc,
418 "forward reference and definition of alias have different types");
419
420 // If they agree, just RAUW the old value with the alias and remove the
421 // forward ref info.
422 Val->replaceAllUsesWith(GA);
423 Val->eraseFromParent();
424 ForwardRefVals.erase(I);
425 }
426
427 // Insert into the module, we know its name won't collide now.
428 M->getAliasList().push_back(GA);
429 assert(GA->getNameStr() == Name && "Should not be a name conflict!");
430
431 return false;
432}
433
434/// ParseGlobal
435/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
436/// OptionalAddrSpace GlobalType Type Const
437/// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
438/// OptionalAddrSpace GlobalType Type Const
439///
440/// Everything through visibility has been parsed already.
441///
442bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
443 unsigned Linkage, bool HasLinkage,
444 unsigned Visibility) {
445 unsigned AddrSpace;
446 bool ThreadLocal, IsConstant;
447 LocTy TyLoc;
448
449 PATypeHolder Ty(Type::VoidTy);
450 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
451 ParseOptionalAddrSpace(AddrSpace) ||
452 ParseGlobalType(IsConstant) ||
453 ParseType(Ty, TyLoc))
454 return true;
455
456 // If the linkage is specified and is external, then no initializer is
457 // present.
458 Constant *Init = 0;
459 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
460 Linkage != GlobalValue::ExternalWeakLinkage &&
461 Linkage != GlobalValue::ExternalLinkage)) {
462 if (ParseGlobalValue(Ty, Init))
463 return true;
464 }
465
466 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
467 return Error(TyLoc, "invald type for global variable");
468
469 GlobalVariable *GV = 0;
470
471 // See if the global was forward referenced, if so, use the global.
472 if (!Name.empty() && (GV = M->getGlobalVariable(Name, true))) {
473 if (!ForwardRefVals.erase(Name))
474 return Error(NameLoc, "redefinition of global '@" + Name + "'");
475 } else {
476 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
477 I = ForwardRefValIDs.find(NumberedVals.size());
478 if (I != ForwardRefValIDs.end()) {
479 GV = cast<GlobalVariable>(I->second.first);
480 ForwardRefValIDs.erase(I);
481 }
482 }
483
484 if (GV == 0) {
485 GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
486 M, false, AddrSpace);
487 } else {
488 if (GV->getType()->getElementType() != Ty)
489 return Error(TyLoc,
490 "forward reference and definition of global have different types");
491
492 // Move the forward-reference to the correct spot in the module.
493 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
494 }
495
496 if (Name.empty())
497 NumberedVals.push_back(GV);
498
499 // Set the parsed properties on the global.
500 if (Init)
501 GV->setInitializer(Init);
502 GV->setConstant(IsConstant);
503 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
504 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
505 GV->setThreadLocal(ThreadLocal);
506
507 // Parse attributes on the global.
508 while (Lex.getKind() == lltok::comma) {
509 Lex.Lex();
510
511 if (Lex.getKind() == lltok::kw_section) {
512 Lex.Lex();
513 GV->setSection(Lex.getStrVal());
514 if (ParseToken(lltok::StringConstant, "expected global section string"))
515 return true;
516 } else if (Lex.getKind() == lltok::kw_align) {
517 unsigned Alignment;
518 if (ParseOptionalAlignment(Alignment)) return true;
519 GV->setAlignment(Alignment);
520 } else {
521 TokError("unknown global variable property!");
522 }
523 }
524
525 return false;
526}
527
528
529//===----------------------------------------------------------------------===//
530// GlobalValue Reference/Resolution Routines.
531//===----------------------------------------------------------------------===//
532
533/// GetGlobalVal - Get a value with the specified name or ID, creating a
534/// forward reference record if needed. This can return null if the value
535/// exists but does not have the right type.
536GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
537 LocTy Loc) {
538 const PointerType *PTy = dyn_cast<PointerType>(Ty);
539 if (PTy == 0) {
540 Error(Loc, "global variable reference must have pointer type");
541 return 0;
542 }
543
544 // Look this name up in the normal function symbol table.
545 GlobalValue *Val =
546 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
547
548 // If this is a forward reference for the value, see if we already created a
549 // forward ref record.
550 if (Val == 0) {
551 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
552 I = ForwardRefVals.find(Name);
553 if (I != ForwardRefVals.end())
554 Val = I->second.first;
555 }
556
557 // If we have the value in the symbol table or fwd-ref table, return it.
558 if (Val) {
559 if (Val->getType() == Ty) return Val;
560 Error(Loc, "'@" + Name + "' defined with type '" +
561 Val->getType()->getDescription() + "'");
562 return 0;
563 }
564
565 // Otherwise, create a new forward reference for this value and remember it.
566 GlobalValue *FwdVal;
567 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
568 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
569 else
570 FwdVal = new GlobalVariable(PTy->getElementType(), false,
571 GlobalValue::ExternalWeakLinkage, 0, Name, M);
572
573 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
574 return FwdVal;
575}
576
577GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
578 const PointerType *PTy = dyn_cast<PointerType>(Ty);
579 if (PTy == 0) {
580 Error(Loc, "global variable reference must have pointer type");
581 return 0;
582 }
583
584 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
585
586 // If this is a forward reference for the value, see if we already created a
587 // forward ref record.
588 if (Val == 0) {
589 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
590 I = ForwardRefValIDs.find(ID);
591 if (I != ForwardRefValIDs.end())
592 Val = I->second.first;
593 }
594
595 // If we have the value in the symbol table or fwd-ref table, return it.
596 if (Val) {
597 if (Val->getType() == Ty) return Val;
598 Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
599 Val->getType()->getDescription() + "'");
600 return 0;
601 }
602
603 // Otherwise, create a new forward reference for this value and remember it.
604 GlobalValue *FwdVal;
605 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
606 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
607 else
608 FwdVal = new GlobalVariable(PTy->getElementType(), false,
609 GlobalValue::ExternalWeakLinkage, 0, "", M);
610
611 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
612 return FwdVal;
613}
614
615
616//===----------------------------------------------------------------------===//
617// Helper Routines.
618//===----------------------------------------------------------------------===//
619
620/// ParseToken - If the current token has the specified kind, eat it and return
621/// success. Otherwise, emit the specified error and return failure.
622bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
623 if (Lex.getKind() != T)
624 return TokError(ErrMsg);
625 Lex.Lex();
626 return false;
627}
628
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000629/// ParseStringConstant
630/// ::= StringConstant
631bool LLParser::ParseStringConstant(std::string &Result) {
632 if (Lex.getKind() != lltok::StringConstant)
633 return TokError("expected string constant");
634 Result = Lex.getStrVal();
635 Lex.Lex();
636 return false;
637}
638
639/// ParseUInt32
640/// ::= uint32
641bool LLParser::ParseUInt32(unsigned &Val) {
Chris Lattnerdf986172009-01-02 07:01:27 +0000642 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
643 return TokError("expected integer");
644 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
645 if (Val64 != unsigned(Val64))
646 return TokError("expected 32-bit integer (too large)");
647 Val = Val64;
648 Lex.Lex();
649 return false;
650}
651
652
653/// ParseOptionalAddrSpace
654/// := /*empty*/
655/// := 'addrspace' '(' uint32 ')'
656bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
657 AddrSpace = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000658 if (!EatIfPresent(lltok::kw_addrspace))
Chris Lattnerdf986172009-01-02 07:01:27 +0000659 return false;
Chris Lattnerdf986172009-01-02 07:01:27 +0000660 return ParseToken(lltok::lparen, "expected '(' in address space") ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000661 ParseUInt32(AddrSpace) ||
Chris Lattnerdf986172009-01-02 07:01:27 +0000662 ParseToken(lltok::rparen, "expected ')' in address space");
663}
664
665/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
666/// indicates what kind of attribute list this is: 0: function arg, 1: result,
667/// 2: function attr.
668bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
669 Attrs = Attribute::None;
670 LocTy AttrLoc = Lex.getLoc();
671
672 while (1) {
673 switch (Lex.getKind()) {
674 case lltok::kw_sext:
675 case lltok::kw_zext:
676 // Treat these as signext/zeroext unless they are function attrs.
677 // FIXME: REMOVE THIS IN LLVM 3.0
678 if (AttrKind != 2) {
679 if (Lex.getKind() == lltok::kw_sext)
680 Attrs |= Attribute::SExt;
681 else
682 Attrs |= Attribute::ZExt;
683 break;
684 }
685 // FALL THROUGH.
686 default: // End of attributes.
687 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
688 return Error(AttrLoc, "invalid use of function-only attribute");
689
690 if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
691 return Error(AttrLoc, "invalid use of parameter-only attribute");
692
693 return false;
694 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
695 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
696 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
697 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
698 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
699 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
700 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
701 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
702
703 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
704 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
705 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
706 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
707 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
708 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
709 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
710 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
711 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
712
713
714 case lltok::kw_align: {
715 unsigned Alignment;
716 if (ParseOptionalAlignment(Alignment))
717 return true;
718 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
719 continue;
720 }
721 }
722 Lex.Lex();
723 }
724}
725
726/// ParseOptionalLinkage
727/// ::= /*empty*/
728/// ::= 'internal'
729/// ::= 'weak'
730/// ::= 'linkonce'
731/// ::= 'appending'
732/// ::= 'dllexport'
733/// ::= 'common'
734/// ::= 'dllimport'
735/// ::= 'extern_weak'
736/// ::= 'external'
737bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
738 HasLinkage = false;
739 switch (Lex.getKind()) {
740 default: Res = GlobalValue::ExternalLinkage; return false;
741 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
742 case lltok::kw_weak: Res = GlobalValue::WeakLinkage; break;
743 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceLinkage; break;
744 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
745 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
746 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
747 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
748 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
749 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
750 }
751 Lex.Lex();
752 HasLinkage = true;
753 return false;
754}
755
756/// ParseOptionalVisibility
757/// ::= /*empty*/
758/// ::= 'default'
759/// ::= 'hidden'
760/// ::= 'protected'
761///
762bool LLParser::ParseOptionalVisibility(unsigned &Res) {
763 switch (Lex.getKind()) {
764 default: Res = GlobalValue::DefaultVisibility; return false;
765 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
766 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
767 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
768 }
769 Lex.Lex();
770 return false;
771}
772
773/// ParseOptionalCallingConv
774/// ::= /*empty*/
775/// ::= 'ccc'
776/// ::= 'fastcc'
777/// ::= 'coldcc'
778/// ::= 'x86_stdcallcc'
779/// ::= 'x86_fastcallcc'
780/// ::= 'cc' UINT
781///
782bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
783 switch (Lex.getKind()) {
784 default: CC = CallingConv::C; return false;
785 case lltok::kw_ccc: CC = CallingConv::C; break;
786 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
787 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
788 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
789 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000790 case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC);
Chris Lattnerdf986172009-01-02 07:01:27 +0000791 }
792 Lex.Lex();
793 return false;
794}
795
796/// ParseOptionalAlignment
797/// ::= /* empty */
798/// ::= 'align' 4
799bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
800 Alignment = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000801 if (!EatIfPresent(lltok::kw_align))
802 return false;
803 return ParseUInt32(Alignment);
Chris Lattnerdf986172009-01-02 07:01:27 +0000804}
805
806/// ParseOptionalCommaAlignment
807/// ::= /* empty */
808/// ::= ',' 'align' 4
809bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
810 Alignment = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000811 if (!EatIfPresent(lltok::comma))
Chris Lattnerdf986172009-01-02 07:01:27 +0000812 return false;
Chris Lattnerdf986172009-01-02 07:01:27 +0000813 return ParseToken(lltok::kw_align, "expected 'align'") ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000814 ParseUInt32(Alignment);
Chris Lattnerdf986172009-01-02 07:01:27 +0000815}
816
817/// ParseIndexList
818/// ::= (',' uint32)+
819bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
820 if (Lex.getKind() != lltok::comma)
821 return TokError("expected ',' as start of index list");
822
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000823 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +0000824 unsigned Idx;
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000825 if (ParseUInt32(Idx)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000826 Indices.push_back(Idx);
827 }
828
829 return false;
830}
831
832//===----------------------------------------------------------------------===//
833// Type Parsing.
834//===----------------------------------------------------------------------===//
835
836/// ParseType - Parse and resolve a full type.
837bool LLParser::ParseType(PATypeHolder &Result) {
838 if (ParseTypeRec(Result)) return true;
839
840 // Verify no unresolved uprefs.
841 if (!UpRefs.empty())
842 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
Chris Lattnerdf986172009-01-02 07:01:27 +0000843
844 return false;
845}
846
847/// HandleUpRefs - Every time we finish a new layer of types, this function is
848/// called. It loops through the UpRefs vector, which is a list of the
849/// currently active types. For each type, if the up-reference is contained in
850/// the newly completed type, we decrement the level count. When the level
851/// count reaches zero, the up-referenced type is the type that is passed in:
852/// thus we can complete the cycle.
853///
854PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
855 // If Ty isn't abstract, or if there are no up-references in it, then there is
856 // nothing to resolve here.
857 if (!ty->isAbstract() || UpRefs.empty()) return ty;
858
859 PATypeHolder Ty(ty);
860#if 0
861 errs() << "Type '" << Ty->getDescription()
862 << "' newly formed. Resolving upreferences.\n"
863 << UpRefs.size() << " upreferences active!\n";
864#endif
865
866 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
867 // to zero), we resolve them all together before we resolve them to Ty. At
868 // the end of the loop, if there is anything to resolve to Ty, it will be in
869 // this variable.
870 OpaqueType *TypeToResolve = 0;
871
872 for (unsigned i = 0; i != UpRefs.size(); ++i) {
873 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
874 bool ContainsType =
875 std::find(Ty->subtype_begin(), Ty->subtype_end(),
876 UpRefs[i].LastContainedTy) != Ty->subtype_end();
877
878#if 0
879 errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
880 << UpRefs[i].LastContainedTy->getDescription() << ") = "
881 << (ContainsType ? "true" : "false")
882 << " level=" << UpRefs[i].NestingLevel << "\n";
883#endif
884 if (!ContainsType)
885 continue;
886
887 // Decrement level of upreference
888 unsigned Level = --UpRefs[i].NestingLevel;
889 UpRefs[i].LastContainedTy = Ty;
890
891 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
892 if (Level != 0)
893 continue;
894
895#if 0
896 errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
897#endif
898 if (!TypeToResolve)
899 TypeToResolve = UpRefs[i].UpRefTy;
900 else
901 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
902 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
903 --i; // Do not skip the next element.
904 }
905
906 if (TypeToResolve)
907 TypeToResolve->refineAbstractTypeTo(Ty);
908
909 return Ty;
910}
911
912
913/// ParseTypeRec - The recursive function used to process the internal
914/// implementation details of types.
915bool LLParser::ParseTypeRec(PATypeHolder &Result) {
916 switch (Lex.getKind()) {
917 default:
918 return TokError("expected type");
919 case lltok::Type:
920 // TypeRec ::= 'float' | 'void' (etc)
921 Result = Lex.getTyVal();
922 Lex.Lex();
923 break;
924 case lltok::kw_opaque:
925 // TypeRec ::= 'opaque'
926 Result = OpaqueType::get();
927 Lex.Lex();
928 break;
929 case lltok::lbrace:
930 // TypeRec ::= '{' ... '}'
931 if (ParseStructType(Result, false))
932 return true;
933 break;
934 case lltok::lsquare:
935 // TypeRec ::= '[' ... ']'
936 Lex.Lex(); // eat the lsquare.
937 if (ParseArrayVectorType(Result, false))
938 return true;
939 break;
940 case lltok::less: // Either vector or packed struct.
941 // TypeRec ::= '<' ... '>'
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000942 Lex.Lex();
943 if (Lex.getKind() == lltok::lbrace) {
944 if (ParseStructType(Result, true) ||
945 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
Chris Lattnerdf986172009-01-02 07:01:27 +0000946 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000947 } else if (ParseArrayVectorType(Result, true))
948 return true;
949 break;
950 case lltok::LocalVar:
951 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
952 // TypeRec ::= %foo
953 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
954 Result = T;
955 } else {
956 Result = OpaqueType::get();
957 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
958 std::make_pair(Result,
959 Lex.getLoc())));
960 M->addTypeName(Lex.getStrVal(), Result.get());
961 }
962 Lex.Lex();
963 break;
964
965 case lltok::LocalVarID:
966 // TypeRec ::= %4
967 if (Lex.getUIntVal() < NumberedTypes.size())
968 Result = NumberedTypes[Lex.getUIntVal()];
969 else {
970 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
971 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
972 if (I != ForwardRefTypeIDs.end())
973 Result = I->second.first;
974 else {
975 Result = OpaqueType::get();
976 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
977 std::make_pair(Result,
978 Lex.getLoc())));
979 }
980 }
981 Lex.Lex();
982 break;
983 case lltok::backslash: {
984 // TypeRec ::= '\' 4
Chris Lattnerdf986172009-01-02 07:01:27 +0000985 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +0000986 unsigned Val;
987 if (ParseUInt32(Val)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +0000988 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder.
989 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
990 Result = OT;
991 break;
992 }
993 }
994
995 // Parse the type suffixes.
996 while (1) {
997 switch (Lex.getKind()) {
998 // End of type.
999 default: return false;
1000
1001 // TypeRec ::= TypeRec '*'
1002 case lltok::star:
1003 if (Result.get() == Type::LabelTy)
1004 return TokError("basic block pointers are invalid");
1005 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1006 Lex.Lex();
1007 break;
1008
1009 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1010 case lltok::kw_addrspace: {
1011 if (Result.get() == Type::LabelTy)
1012 return TokError("basic block pointers are invalid");
1013 unsigned AddrSpace;
1014 if (ParseOptionalAddrSpace(AddrSpace) ||
1015 ParseToken(lltok::star, "expected '*' in address space"))
1016 return true;
1017
1018 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1019 break;
1020 }
1021
1022 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1023 case lltok::lparen:
1024 if (ParseFunctionType(Result))
1025 return true;
1026 break;
1027 }
1028 }
1029}
1030
1031/// ParseParameterList
1032/// ::= '(' ')'
1033/// ::= '(' Arg (',' Arg)* ')'
1034/// Arg
1035/// ::= Type OptionalAttributes Value OptionalAttributes
1036bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1037 PerFunctionState &PFS) {
1038 if (ParseToken(lltok::lparen, "expected '(' in call"))
1039 return true;
1040
1041 while (Lex.getKind() != lltok::rparen) {
1042 // If this isn't the first argument, we need a comma.
1043 if (!ArgList.empty() &&
1044 ParseToken(lltok::comma, "expected ',' in argument list"))
1045 return true;
1046
1047 // Parse the argument.
1048 LocTy ArgLoc;
1049 PATypeHolder ArgTy(Type::VoidTy);
1050 unsigned ArgAttrs1, ArgAttrs2;
1051 Value *V;
1052 if (ParseType(ArgTy, ArgLoc) ||
1053 ParseOptionalAttrs(ArgAttrs1, 0) ||
1054 ParseValue(ArgTy, V, PFS) ||
1055 // FIXME: Should not allow attributes after the argument, remove this in
1056 // LLVM 3.0.
1057 ParseOptionalAttrs(ArgAttrs2, 0))
1058 return true;
1059 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1060 }
1061
1062 Lex.Lex(); // Lex the ')'.
1063 return false;
1064}
1065
1066
1067
1068/// ParseArgumentList
1069/// ::= '(' ArgTypeListI ')'
1070/// ArgTypeListI
1071/// ::= /*empty*/
1072/// ::= '...'
1073/// ::= ArgTypeList ',' '...'
1074/// ::= ArgType (',' ArgType)*
1075bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1076 bool &isVarArg) {
1077 isVarArg = false;
1078 assert(Lex.getKind() == lltok::lparen);
1079 Lex.Lex(); // eat the (.
1080
1081 if (Lex.getKind() == lltok::rparen) {
1082 // empty
1083 } else if (Lex.getKind() == lltok::dotdotdot) {
1084 isVarArg = true;
1085 Lex.Lex();
1086 } else {
1087 LocTy TypeLoc = Lex.getLoc();
1088 PATypeHolder ArgTy(Type::VoidTy);
Chris Lattnerdf986172009-01-02 07:01:27 +00001089 unsigned Attrs;
Chris Lattnerdf986172009-01-02 07:01:27 +00001090 std::string Name;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001091
1092 if (ParseTypeRec(ArgTy) ||
1093 ParseOptionalAttrs(Attrs, 0)) return true;
1094
Chris Lattnerdf986172009-01-02 07:01:27 +00001095 if (Lex.getKind() == lltok::LocalVar ||
1096 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1097 Name = Lex.getStrVal();
1098 Lex.Lex();
1099 }
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001100
1101 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1102 return Error(TypeLoc, "invalid type for function argument");
Chris Lattnerdf986172009-01-02 07:01:27 +00001103
1104 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1105
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001106 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001107 // Handle ... at end of arg list.
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001108 if (EatIfPresent(lltok::dotdotdot)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001109 isVarArg = true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001110 break;
1111 }
1112
1113 // Otherwise must be an argument type.
1114 TypeLoc = Lex.getLoc();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001115 if (ParseTypeRec(ArgTy) ||
1116 ParseOptionalAttrs(Attrs, 0)) return true;
1117
Chris Lattnerdf986172009-01-02 07:01:27 +00001118 if (Lex.getKind() == lltok::LocalVar ||
1119 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1120 Name = Lex.getStrVal();
1121 Lex.Lex();
1122 } else {
1123 Name = "";
1124 }
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001125
1126 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1127 return Error(TypeLoc, "invalid type for function argument");
Chris Lattnerdf986172009-01-02 07:01:27 +00001128
1129 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1130 }
1131 }
1132
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001133 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
Chris Lattnerdf986172009-01-02 07:01:27 +00001134}
1135
1136/// ParseFunctionType
1137/// ::= Type ArgumentList OptionalAttrs
1138bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1139 assert(Lex.getKind() == lltok::lparen);
1140
1141 std::vector<ArgInfo> ArgList;
1142 bool isVarArg;
1143 unsigned Attrs;
1144 if (ParseArgumentList(ArgList, isVarArg) ||
1145 // FIXME: Allow, but ignore attributes on function types!
1146 // FIXME: Remove in LLVM 3.0
1147 ParseOptionalAttrs(Attrs, 2))
1148 return true;
1149
1150 // Reject names on the arguments lists.
1151 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1152 if (!ArgList[i].Name.empty())
1153 return Error(ArgList[i].Loc, "argument name invalid in function type");
1154 if (!ArgList[i].Attrs != 0) {
1155 // Allow but ignore attributes on function types; this permits
1156 // auto-upgrade.
1157 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1158 }
1159 }
1160
1161 std::vector<const Type*> ArgListTy;
1162 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1163 ArgListTy.push_back(ArgList[i].Type);
1164
1165 Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1166 return false;
1167}
1168
1169/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1170/// TypeRec
1171/// ::= '{' '}'
1172/// ::= '{' TypeRec (',' TypeRec)* '}'
1173/// ::= '<' '{' '}' '>'
1174/// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1175bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1176 assert(Lex.getKind() == lltok::lbrace);
1177 Lex.Lex(); // Consume the '{'
1178
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001179 if (EatIfPresent(lltok::rbrace)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001180 Result = StructType::get(std::vector<const Type*>(), Packed);
Chris Lattnerdf986172009-01-02 07:01:27 +00001181 return false;
1182 }
1183
1184 std::vector<PATypeHolder> ParamsList;
1185 if (ParseTypeRec(Result)) return true;
1186 ParamsList.push_back(Result);
1187
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001188 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001189 if (ParseTypeRec(Result)) return true;
1190 ParamsList.push_back(Result);
1191 }
1192
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001193 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1194 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001195
1196 std::vector<const Type*> ParamsListTy;
1197 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1198 ParamsListTy.push_back(ParamsList[i].get());
1199 Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1200 return false;
1201}
1202
1203/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1204/// token has already been consumed.
1205/// TypeRec
1206/// ::= '[' APSINTVAL 'x' Types ']'
1207/// ::= '<' APSINTVAL 'x' Types '>'
1208bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1209 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1210 Lex.getAPSIntVal().getBitWidth() > 64)
1211 return TokError("expected number in address space");
1212
1213 LocTy SizeLoc = Lex.getLoc();
1214 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001215 Lex.Lex();
1216
1217 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1218 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001219
1220 LocTy TypeLoc = Lex.getLoc();
1221 PATypeHolder EltTy(Type::VoidTy);
1222 if (ParseTypeRec(EltTy)) return true;
1223
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001224 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1225 "expected end of sequential type"))
1226 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00001227
1228 if (isVector) {
1229 if ((unsigned)Size != Size)
1230 return Error(SizeLoc, "size too large for vector");
1231 if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1232 return Error(TypeLoc, "vector element type must be fp or integer");
1233 Result = VectorType::get(EltTy, unsigned(Size));
1234 } else {
1235 if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1236 return Error(TypeLoc, "invalid array element type");
1237 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1238 }
1239 return false;
1240}
1241
1242//===----------------------------------------------------------------------===//
1243// Function Semantic Analysis.
1244//===----------------------------------------------------------------------===//
1245
1246LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1247 : P(p), F(f) {
1248
1249 // Insert unnamed arguments into the NumberedVals list.
1250 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1251 AI != E; ++AI)
1252 if (!AI->hasName())
1253 NumberedVals.push_back(AI);
1254}
1255
1256LLParser::PerFunctionState::~PerFunctionState() {
1257 // If there were any forward referenced non-basicblock values, delete them.
1258 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1259 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1260 if (!isa<BasicBlock>(I->second.first)) {
1261 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1262 ->getType()));
1263 delete I->second.first;
1264 I->second.first = 0;
1265 }
1266
1267 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1268 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1269 if (!isa<BasicBlock>(I->second.first)) {
1270 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1271 ->getType()));
1272 delete I->second.first;
1273 I->second.first = 0;
1274 }
1275}
1276
1277bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1278 if (!ForwardRefVals.empty())
1279 return P.Error(ForwardRefVals.begin()->second.second,
1280 "use of undefined value '%" + ForwardRefVals.begin()->first +
1281 "'");
1282 if (!ForwardRefValIDs.empty())
1283 return P.Error(ForwardRefValIDs.begin()->second.second,
1284 "use of undefined value '%" +
1285 utostr(ForwardRefValIDs.begin()->first) + "'");
1286 return false;
1287}
1288
1289
1290/// GetVal - Get a value with the specified name or ID, creating a
1291/// forward reference record if needed. This can return null if the value
1292/// exists but does not have the right type.
1293Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1294 const Type *Ty, LocTy Loc) {
1295 // Look this name up in the normal function symbol table.
1296 Value *Val = F.getValueSymbolTable().lookup(Name);
1297
1298 // If this is a forward reference for the value, see if we already created a
1299 // forward ref record.
1300 if (Val == 0) {
1301 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1302 I = ForwardRefVals.find(Name);
1303 if (I != ForwardRefVals.end())
1304 Val = I->second.first;
1305 }
1306
1307 // If we have the value in the symbol table or fwd-ref table, return it.
1308 if (Val) {
1309 if (Val->getType() == Ty) return Val;
1310 if (Ty == Type::LabelTy)
1311 P.Error(Loc, "'%" + Name + "' is not a basic block");
1312 else
1313 P.Error(Loc, "'%" + Name + "' defined with type '" +
1314 Val->getType()->getDescription() + "'");
1315 return 0;
1316 }
1317
1318 // Don't make placeholders with invalid type.
1319 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1320 P.Error(Loc, "invalid use of a non-first-class type");
1321 return 0;
1322 }
1323
1324 // Otherwise, create a new forward reference for this value and remember it.
1325 Value *FwdVal;
1326 if (Ty == Type::LabelTy)
1327 FwdVal = BasicBlock::Create(Name, &F);
1328 else
1329 FwdVal = new Argument(Ty, Name);
1330
1331 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1332 return FwdVal;
1333}
1334
1335Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1336 LocTy Loc) {
1337 // Look this name up in the normal function symbol table.
1338 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1339
1340 // If this is a forward reference for the value, see if we already created a
1341 // forward ref record.
1342 if (Val == 0) {
1343 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1344 I = ForwardRefValIDs.find(ID);
1345 if (I != ForwardRefValIDs.end())
1346 Val = I->second.first;
1347 }
1348
1349 // If we have the value in the symbol table or fwd-ref table, return it.
1350 if (Val) {
1351 if (Val->getType() == Ty) return Val;
1352 if (Ty == Type::LabelTy)
1353 P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1354 else
1355 P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1356 Val->getType()->getDescription() + "'");
1357 return 0;
1358 }
1359
1360 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1361 P.Error(Loc, "invalid use of a non-first-class type");
1362 return 0;
1363 }
1364
1365 // Otherwise, create a new forward reference for this value and remember it.
1366 Value *FwdVal;
1367 if (Ty == Type::LabelTy)
1368 FwdVal = BasicBlock::Create("", &F);
1369 else
1370 FwdVal = new Argument(Ty);
1371
1372 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1373 return FwdVal;
1374}
1375
1376/// SetInstName - After an instruction is parsed and inserted into its
1377/// basic block, this installs its name.
1378bool LLParser::PerFunctionState::SetInstName(int NameID,
1379 const std::string &NameStr,
1380 LocTy NameLoc, Instruction *Inst) {
1381 // If this instruction has void type, it cannot have a name or ID specified.
1382 if (Inst->getType() == Type::VoidTy) {
1383 if (NameID != -1 || !NameStr.empty())
1384 return P.Error(NameLoc, "instructions returning void cannot have a name");
1385 return false;
1386 }
1387
1388 // If this was a numbered instruction, verify that the instruction is the
1389 // expected value and resolve any forward references.
1390 if (NameStr.empty()) {
1391 // If neither a name nor an ID was specified, just use the next ID.
1392 if (NameID == -1)
1393 NameID = NumberedVals.size();
1394
1395 if (unsigned(NameID) != NumberedVals.size())
1396 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1397 utostr(NumberedVals.size()) + "'");
1398
1399 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1400 ForwardRefValIDs.find(NameID);
1401 if (FI != ForwardRefValIDs.end()) {
1402 if (FI->second.first->getType() != Inst->getType())
1403 return P.Error(NameLoc, "instruction forward referenced with type '" +
1404 FI->second.first->getType()->getDescription() + "'");
1405 FI->second.first->replaceAllUsesWith(Inst);
1406 ForwardRefValIDs.erase(FI);
1407 }
1408
1409 NumberedVals.push_back(Inst);
1410 return false;
1411 }
1412
1413 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1414 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1415 FI = ForwardRefVals.find(NameStr);
1416 if (FI != ForwardRefVals.end()) {
1417 if (FI->second.first->getType() != Inst->getType())
1418 return P.Error(NameLoc, "instruction forward referenced with type '" +
1419 FI->second.first->getType()->getDescription() + "'");
1420 FI->second.first->replaceAllUsesWith(Inst);
1421 ForwardRefVals.erase(FI);
1422 }
1423
1424 // Set the name on the instruction.
1425 Inst->setName(NameStr);
1426
1427 if (Inst->getNameStr() != NameStr)
1428 return P.Error(NameLoc, "multiple definition of local value named '" +
1429 NameStr + "'");
1430 return false;
1431}
1432
1433/// GetBB - Get a basic block with the specified name or ID, creating a
1434/// forward reference record if needed.
1435BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1436 LocTy Loc) {
1437 return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1438}
1439
1440BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1441 return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1442}
1443
1444/// DefineBB - Define the specified basic block, which is either named or
1445/// unnamed. If there is an error, this returns null otherwise it returns
1446/// the block being defined.
1447BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1448 LocTy Loc) {
1449 BasicBlock *BB;
1450 if (Name.empty())
1451 BB = GetBB(NumberedVals.size(), Loc);
1452 else
1453 BB = GetBB(Name, Loc);
1454 if (BB == 0) return 0; // Already diagnosed error.
1455
1456 // Move the block to the end of the function. Forward ref'd blocks are
1457 // inserted wherever they happen to be referenced.
1458 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1459
1460 // Remove the block from forward ref sets.
1461 if (Name.empty()) {
1462 ForwardRefValIDs.erase(NumberedVals.size());
1463 NumberedVals.push_back(BB);
1464 } else {
1465 // BB forward references are already in the function symbol table.
1466 ForwardRefVals.erase(Name);
1467 }
1468
1469 return BB;
1470}
1471
1472//===----------------------------------------------------------------------===//
1473// Constants.
1474//===----------------------------------------------------------------------===//
1475
1476/// ParseValID - Parse an abstract value that doesn't necessarily have a
1477/// type implied. For example, if we parse "4" we don't know what integer type
1478/// it has. The value will later be combined with its type and checked for
1479/// sanity.
1480bool LLParser::ParseValID(ValID &ID) {
1481 ID.Loc = Lex.getLoc();
1482 switch (Lex.getKind()) {
1483 default: return TokError("expected value token");
1484 case lltok::GlobalID: // @42
1485 ID.UIntVal = Lex.getUIntVal();
1486 ID.Kind = ValID::t_GlobalID;
1487 break;
1488 case lltok::GlobalVar: // @foo
1489 ID.StrVal = Lex.getStrVal();
1490 ID.Kind = ValID::t_GlobalName;
1491 break;
1492 case lltok::LocalVarID: // %42
1493 ID.UIntVal = Lex.getUIntVal();
1494 ID.Kind = ValID::t_LocalID;
1495 break;
1496 case lltok::LocalVar: // %foo
1497 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
1498 ID.StrVal = Lex.getStrVal();
1499 ID.Kind = ValID::t_LocalName;
1500 break;
1501 case lltok::APSInt:
1502 ID.APSIntVal = Lex.getAPSIntVal();
1503 ID.Kind = ValID::t_APSInt;
1504 break;
1505 case lltok::APFloat:
1506 ID.APFloatVal = Lex.getAPFloatVal();
1507 ID.Kind = ValID::t_APFloat;
1508 break;
1509 case lltok::kw_true:
1510 ID.ConstantVal = ConstantInt::getTrue();
1511 ID.Kind = ValID::t_Constant;
1512 break;
1513 case lltok::kw_false:
1514 ID.ConstantVal = ConstantInt::getFalse();
1515 ID.Kind = ValID::t_Constant;
1516 break;
1517 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1518 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1519 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1520
1521 case lltok::lbrace: {
1522 // ValID ::= '{' ConstVector '}'
1523 Lex.Lex();
1524 SmallVector<Constant*, 16> Elts;
1525 if (ParseGlobalValueVector(Elts) ||
1526 ParseToken(lltok::rbrace, "expected end of struct constant"))
1527 return true;
1528
1529 ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false);
1530 ID.Kind = ValID::t_Constant;
1531 return false;
1532 }
1533 case lltok::less: {
1534 // ValID ::= '<' ConstVector '>' --> Vector.
1535 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1536 Lex.Lex();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001537 bool isPackedStruct = EatIfPresent(lltok::lbrace);
Chris Lattnerdf986172009-01-02 07:01:27 +00001538
1539 SmallVector<Constant*, 16> Elts;
1540 LocTy FirstEltLoc = Lex.getLoc();
1541 if (ParseGlobalValueVector(Elts) ||
1542 (isPackedStruct &&
1543 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1544 ParseToken(lltok::greater, "expected end of constant"))
1545 return true;
1546
1547 if (isPackedStruct) {
1548 ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true);
1549 ID.Kind = ValID::t_Constant;
1550 return false;
1551 }
1552
1553 if (Elts.empty())
1554 return Error(ID.Loc, "constant vector must not be empty");
1555
1556 if (!Elts[0]->getType()->isInteger() &&
1557 !Elts[0]->getType()->isFloatingPoint())
1558 return Error(FirstEltLoc,
1559 "vector elements must have integer or floating point type");
1560
1561 // Verify that all the vector elements have the same type.
1562 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1563 if (Elts[i]->getType() != Elts[0]->getType())
1564 return Error(FirstEltLoc,
1565 "vector element #" + utostr(i) +
1566 " is not of type '" + Elts[0]->getType()->getDescription());
1567
1568 ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size());
1569 ID.Kind = ValID::t_Constant;
1570 return false;
1571 }
1572 case lltok::lsquare: { // Array Constant
1573 Lex.Lex();
1574 SmallVector<Constant*, 16> Elts;
1575 LocTy FirstEltLoc = Lex.getLoc();
1576 if (ParseGlobalValueVector(Elts) ||
1577 ParseToken(lltok::rsquare, "expected end of array constant"))
1578 return true;
1579
1580 // Handle empty element.
1581 if (Elts.empty()) {
1582 // Use undef instead of an array because it's inconvenient to determine
1583 // the element type at this point, there being no elements to examine.
1584 ID.Kind = ValID::t_Undef;
1585 return false;
1586 }
1587
1588 if (!Elts[0]->getType()->isFirstClassType())
1589 return Error(FirstEltLoc, "invalid array element type: " +
1590 Elts[0]->getType()->getDescription());
1591
1592 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1593
1594 // Verify all elements are correct type!
1595 for (unsigned i = i, e = Elts.size() ; i != e; ++i) {
1596 if (Elts[i]->getType() != Elts[0]->getType())
1597 return Error(FirstEltLoc,
1598 "array element #" + utostr(i) +
1599 " is not of type '" +Elts[0]->getType()->getDescription());
1600 }
1601
1602 ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size());
1603 ID.Kind = ValID::t_Constant;
1604 return false;
1605 }
1606 case lltok::kw_c: // c "foo"
1607 Lex.Lex();
1608 ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1609 if (ParseToken(lltok::StringConstant, "expected string")) return true;
1610 ID.Kind = ValID::t_Constant;
1611 return false;
1612
1613 case lltok::kw_asm: {
1614 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1615 bool HasSideEffect;
1616 Lex.Lex();
1617 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001618 ParseStringConstant(ID.StrVal) ||
1619 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
Chris Lattnerdf986172009-01-02 07:01:27 +00001620 ParseToken(lltok::StringConstant, "expected constraint string"))
1621 return true;
1622 ID.StrVal2 = Lex.getStrVal();
1623 ID.UIntVal = HasSideEffect;
1624 ID.Kind = ValID::t_InlineAsm;
1625 return false;
1626 }
1627
1628 case lltok::kw_trunc:
1629 case lltok::kw_zext:
1630 case lltok::kw_sext:
1631 case lltok::kw_fptrunc:
1632 case lltok::kw_fpext:
1633 case lltok::kw_bitcast:
1634 case lltok::kw_uitofp:
1635 case lltok::kw_sitofp:
1636 case lltok::kw_fptoui:
1637 case lltok::kw_fptosi:
1638 case lltok::kw_inttoptr:
1639 case lltok::kw_ptrtoint: {
1640 unsigned Opc = Lex.getUIntVal();
1641 PATypeHolder DestTy(Type::VoidTy);
1642 Constant *SrcVal;
1643 Lex.Lex();
1644 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1645 ParseGlobalTypeAndValue(SrcVal) ||
1646 ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1647 ParseType(DestTy) ||
1648 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1649 return true;
1650 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1651 return Error(ID.Loc, "invalid cast opcode for cast from '" +
1652 SrcVal->getType()->getDescription() + "' to '" +
1653 DestTy->getDescription() + "'");
1654 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1655 DestTy);
1656 ID.Kind = ValID::t_Constant;
1657 return false;
1658 }
1659 case lltok::kw_extractvalue: {
1660 Lex.Lex();
1661 Constant *Val;
1662 SmallVector<unsigned, 4> Indices;
1663 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1664 ParseGlobalTypeAndValue(Val) ||
1665 ParseIndexList(Indices) ||
1666 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1667 return true;
1668 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1669 return Error(ID.Loc, "extractvalue operand must be array or struct");
1670 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1671 Indices.end()))
1672 return Error(ID.Loc, "invalid indices for extractvalue");
1673 ID.ConstantVal = ConstantExpr::getExtractValue(Val,
1674 &Indices[0], Indices.size());
1675 ID.Kind = ValID::t_Constant;
1676 return false;
1677 }
1678 case lltok::kw_insertvalue: {
1679 Lex.Lex();
1680 Constant *Val0, *Val1;
1681 SmallVector<unsigned, 4> Indices;
1682 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1683 ParseGlobalTypeAndValue(Val0) ||
1684 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1685 ParseGlobalTypeAndValue(Val1) ||
1686 ParseIndexList(Indices) ||
1687 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1688 return true;
1689 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1690 return Error(ID.Loc, "extractvalue operand must be array or struct");
1691 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1692 Indices.end()))
1693 return Error(ID.Loc, "invalid indices for insertvalue");
1694 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1695 &Indices[0], Indices.size());
1696 ID.Kind = ValID::t_Constant;
1697 return false;
1698 }
1699 case lltok::kw_icmp:
1700 case lltok::kw_fcmp:
1701 case lltok::kw_vicmp:
1702 case lltok::kw_vfcmp: {
1703 unsigned PredVal, Opc = Lex.getUIntVal();
1704 Constant *Val0, *Val1;
1705 Lex.Lex();
1706 if (ParseCmpPredicate(PredVal, Opc) ||
1707 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1708 ParseGlobalTypeAndValue(Val0) ||
1709 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1710 ParseGlobalTypeAndValue(Val1) ||
1711 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1712 return true;
1713
1714 if (Val0->getType() != Val1->getType())
1715 return Error(ID.Loc, "compare operands must have the same type");
1716
1717 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1718
1719 if (Opc == Instruction::FCmp) {
1720 if (!Val0->getType()->isFPOrFPVector())
1721 return Error(ID.Loc, "fcmp requires floating point operands");
1722 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1723 } else if (Opc == Instruction::ICmp) {
1724 if (!Val0->getType()->isIntOrIntVector() &&
1725 !isa<PointerType>(Val0->getType()))
1726 return Error(ID.Loc, "icmp requires pointer or integer operands");
1727 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1728 } else if (Opc == Instruction::VFCmp) {
1729 // FIXME: REMOVE VFCMP Support
1730 ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1731 } else if (Opc == Instruction::VICmp) {
1732 // FIXME: REMOVE VFCMP Support
1733 ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1734 }
1735 ID.Kind = ValID::t_Constant;
1736 return false;
1737 }
1738
1739 // Binary Operators.
1740 case lltok::kw_add:
1741 case lltok::kw_sub:
1742 case lltok::kw_mul:
1743 case lltok::kw_udiv:
1744 case lltok::kw_sdiv:
1745 case lltok::kw_fdiv:
1746 case lltok::kw_urem:
1747 case lltok::kw_srem:
1748 case lltok::kw_frem: {
1749 unsigned Opc = Lex.getUIntVal();
1750 Constant *Val0, *Val1;
1751 Lex.Lex();
1752 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1753 ParseGlobalTypeAndValue(Val0) ||
1754 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1755 ParseGlobalTypeAndValue(Val1) ||
1756 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1757 return true;
1758 if (Val0->getType() != Val1->getType())
1759 return Error(ID.Loc, "operands of constexpr must have same type");
1760 if (!Val0->getType()->isIntOrIntVector() &&
1761 !Val0->getType()->isFPOrFPVector())
1762 return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1763 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1764 ID.Kind = ValID::t_Constant;
1765 return false;
1766 }
1767
1768 // Logical Operations
1769 case lltok::kw_shl:
1770 case lltok::kw_lshr:
1771 case lltok::kw_ashr:
1772 case lltok::kw_and:
1773 case lltok::kw_or:
1774 case lltok::kw_xor: {
1775 unsigned Opc = Lex.getUIntVal();
1776 Constant *Val0, *Val1;
1777 Lex.Lex();
1778 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1779 ParseGlobalTypeAndValue(Val0) ||
1780 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1781 ParseGlobalTypeAndValue(Val1) ||
1782 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1783 return true;
1784 if (Val0->getType() != Val1->getType())
1785 return Error(ID.Loc, "operands of constexpr must have same type");
1786 if (!Val0->getType()->isIntOrIntVector())
1787 return Error(ID.Loc,
1788 "constexpr requires integer or integer vector operands");
1789 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1790 ID.Kind = ValID::t_Constant;
1791 return false;
1792 }
1793
1794 case lltok::kw_getelementptr:
1795 case lltok::kw_shufflevector:
1796 case lltok::kw_insertelement:
1797 case lltok::kw_extractelement:
1798 case lltok::kw_select: {
1799 unsigned Opc = Lex.getUIntVal();
1800 SmallVector<Constant*, 16> Elts;
1801 Lex.Lex();
1802 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1803 ParseGlobalValueVector(Elts) ||
1804 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1805 return true;
1806
1807 if (Opc == Instruction::GetElementPtr) {
1808 if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1809 return Error(ID.Loc, "getelementptr requires pointer operand");
1810
1811 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1812 (Value**)&Elts[1], Elts.size()-1))
1813 return Error(ID.Loc, "invalid indices for getelementptr");
1814 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1815 &Elts[1], Elts.size()-1);
1816 } else if (Opc == Instruction::Select) {
1817 if (Elts.size() != 3)
1818 return Error(ID.Loc, "expected three operands to select");
1819 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1820 Elts[2]))
1821 return Error(ID.Loc, Reason);
1822 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1823 } else if (Opc == Instruction::ShuffleVector) {
1824 if (Elts.size() != 3)
1825 return Error(ID.Loc, "expected three operands to shufflevector");
1826 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1827 return Error(ID.Loc, "invalid operands to shufflevector");
1828 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1829 } else if (Opc == Instruction::ExtractElement) {
1830 if (Elts.size() != 2)
1831 return Error(ID.Loc, "expected two operands to extractelement");
1832 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1833 return Error(ID.Loc, "invalid extractelement operands");
1834 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1835 } else {
1836 assert(Opc == Instruction::InsertElement && "Unknown opcode");
1837 if (Elts.size() != 3)
1838 return Error(ID.Loc, "expected three operands to insertelement");
1839 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1840 return Error(ID.Loc, "invalid insertelement operands");
1841 ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1842 }
1843
1844 ID.Kind = ValID::t_Constant;
1845 return false;
1846 }
1847 }
1848
1849 Lex.Lex();
1850 return false;
1851}
1852
1853/// ParseGlobalValue - Parse a global value with the specified type.
1854bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1855 V = 0;
1856 ValID ID;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001857 return ParseValID(ID) ||
1858 ConvertGlobalValIDToValue(Ty, ID, V);
Chris Lattnerdf986172009-01-02 07:01:27 +00001859}
1860
1861/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1862/// constant.
1863bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1864 Constant *&V) {
1865 if (isa<FunctionType>(Ty))
1866 return Error(ID.Loc, "functions are not values, refer to them as pointers");
1867
1868 switch (ID.Kind) {
1869 default: assert(0 && "Unknown ValID!");
1870 case ValID::t_LocalID:
1871 case ValID::t_LocalName:
1872 return Error(ID.Loc, "invalid use of function-local name");
1873 case ValID::t_InlineAsm:
1874 return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1875 case ValID::t_GlobalName:
1876 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1877 return V == 0;
1878 case ValID::t_GlobalID:
1879 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1880 return V == 0;
1881 case ValID::t_APSInt:
1882 if (!isa<IntegerType>(Ty))
1883 return Error(ID.Loc, "integer constant must have integer type");
1884 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1885 V = ConstantInt::get(ID.APSIntVal);
1886 return false;
1887 case ValID::t_APFloat:
1888 if (!Ty->isFloatingPoint() ||
1889 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1890 return Error(ID.Loc, "floating point constant invalid for type");
1891
1892 // The lexer has no type info, so builds all float and double FP constants
1893 // as double. Fix this here. Long double does not need this.
1894 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1895 Ty == Type::FloatTy) {
1896 bool Ignored;
1897 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1898 &Ignored);
1899 }
1900 V = ConstantFP::get(ID.APFloatVal);
1901 return false;
1902 case ValID::t_Null:
1903 if (!isa<PointerType>(Ty))
1904 return Error(ID.Loc, "null must be a pointer type");
1905 V = ConstantPointerNull::get(cast<PointerType>(Ty));
1906 return false;
1907 case ValID::t_Undef:
1908 V = UndefValue::get(Ty);
1909 return false;
1910 case ValID::t_Zero:
1911 if (!Ty->isFirstClassType())
1912 return Error(ID.Loc, "invalid type for null constant");
1913 V = Constant::getNullValue(Ty);
1914 return false;
1915 case ValID::t_Constant:
1916 if (ID.ConstantVal->getType() != Ty)
1917 return Error(ID.Loc, "constant expression type mismatch");
1918 V = ID.ConstantVal;
1919 return false;
1920 }
1921}
1922
1923bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
1924 PATypeHolder Type(Type::VoidTy);
1925 return ParseType(Type) ||
1926 ParseGlobalValue(Type, V);
1927}
1928
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001929/// ParseGlobalValueVector
1930/// ::= /*empty*/
1931/// ::= TypeAndValue (',' TypeAndValue)*
Chris Lattnerdf986172009-01-02 07:01:27 +00001932bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
1933 // Empty list.
1934 if (Lex.getKind() == lltok::rbrace ||
1935 Lex.getKind() == lltok::rsquare ||
1936 Lex.getKind() == lltok::greater ||
1937 Lex.getKind() == lltok::rparen)
1938 return false;
1939
1940 Constant *C;
1941 if (ParseGlobalTypeAndValue(C)) return true;
1942 Elts.push_back(C);
1943
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001944 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00001945 if (ParseGlobalTypeAndValue(C)) return true;
1946 Elts.push_back(C);
1947 }
1948
1949 return false;
1950}
1951
1952
1953//===----------------------------------------------------------------------===//
1954// Function Parsing.
1955//===----------------------------------------------------------------------===//
1956
1957bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
1958 PerFunctionState &PFS) {
1959 if (ID.Kind == ValID::t_LocalID)
1960 V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
1961 else if (ID.Kind == ValID::t_LocalName)
1962 V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
1963 else if (ID.Kind == ValID::ValID::t_InlineAsm) {
1964 const PointerType *PTy = dyn_cast<PointerType>(Ty);
1965 const FunctionType *FTy =
1966 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
1967 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
1968 return Error(ID.Loc, "invalid type for inline asm constraint string");
1969 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
1970 return false;
1971 } else {
1972 Constant *C;
1973 if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
1974 V = C;
1975 return false;
1976 }
1977
1978 return V == 0;
1979}
1980
1981bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
1982 V = 0;
1983 ValID ID;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001984 return ParseValID(ID) ||
1985 ConvertValIDToValue(Ty, ID, V, PFS);
Chris Lattnerdf986172009-01-02 07:01:27 +00001986}
1987
1988bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
1989 PATypeHolder T(Type::VoidTy);
Chris Lattner3ed88ef2009-01-02 08:05:26 +00001990 return ParseType(T) ||
1991 ParseValue(T, V, PFS);
Chris Lattnerdf986172009-01-02 07:01:27 +00001992}
1993
1994/// FunctionHeader
1995/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
1996/// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
1997/// OptionalAlign OptGC
1998bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
1999 // Parse the linkage.
2000 LocTy LinkageLoc = Lex.getLoc();
2001 unsigned Linkage;
2002
2003 unsigned Visibility, CC, RetAttrs;
2004 PATypeHolder RetType(Type::VoidTy);
2005 LocTy RetTypeLoc = Lex.getLoc();
2006 if (ParseOptionalLinkage(Linkage) ||
2007 ParseOptionalVisibility(Visibility) ||
2008 ParseOptionalCallingConv(CC) ||
2009 ParseOptionalAttrs(RetAttrs, 1) ||
2010 ParseType(RetType, RetTypeLoc))
2011 return true;
2012
2013 // Verify that the linkage is ok.
2014 switch ((GlobalValue::LinkageTypes)Linkage) {
2015 case GlobalValue::ExternalLinkage:
2016 break; // always ok.
2017 case GlobalValue::DLLImportLinkage:
2018 case GlobalValue::ExternalWeakLinkage:
2019 if (isDefine)
2020 return Error(LinkageLoc, "invalid linkage for function definition");
2021 break;
2022 case GlobalValue::InternalLinkage:
2023 case GlobalValue::LinkOnceLinkage:
2024 case GlobalValue::WeakLinkage:
2025 case GlobalValue::DLLExportLinkage:
2026 if (!isDefine)
2027 return Error(LinkageLoc, "invalid linkage for function declaration");
2028 break;
2029 case GlobalValue::AppendingLinkage:
2030 case GlobalValue::GhostLinkage:
2031 case GlobalValue::CommonLinkage:
2032 return Error(LinkageLoc, "invalid function linkage type");
2033 }
2034
2035 if (!FunctionType::isValidReturnType(RetType))
2036 return Error(RetTypeLoc, "invalid function return type");
2037
2038 if (Lex.getKind() != lltok::GlobalVar)
2039 return TokError("expected function name");
2040
2041 LocTy NameLoc = Lex.getLoc();
2042 std::string FunctionName = Lex.getStrVal();
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002043 Lex.Lex();
Chris Lattnerdf986172009-01-02 07:01:27 +00002044
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002045 if (Lex.getKind() != lltok::lparen)
Chris Lattnerdf986172009-01-02 07:01:27 +00002046 return TokError("expected '(' in function argument list");
2047
2048 std::vector<ArgInfo> ArgList;
2049 bool isVarArg;
Chris Lattnerdf986172009-01-02 07:01:27 +00002050 unsigned FuncAttrs;
Chris Lattnerdf986172009-01-02 07:01:27 +00002051 std::string Section;
Chris Lattnerdf986172009-01-02 07:01:27 +00002052 unsigned Alignment;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002053 std::string GC;
2054
2055 if (ParseArgumentList(ArgList, isVarArg) ||
2056 ParseOptionalAttrs(FuncAttrs, 2) ||
2057 (EatIfPresent(lltok::kw_section) &&
2058 ParseStringConstant(Section)) ||
2059 ParseOptionalAlignment(Alignment) ||
2060 (EatIfPresent(lltok::kw_gc) &&
2061 ParseStringConstant(GC)))
2062 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00002063
2064 // If the alignment was parsed as an attribute, move to the alignment field.
2065 if (FuncAttrs & Attribute::Alignment) {
2066 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2067 FuncAttrs &= ~Attribute::Alignment;
2068 }
2069
Chris Lattnerdf986172009-01-02 07:01:27 +00002070 // Okay, if we got here, the function is syntactically valid. Convert types
2071 // and do semantic checks.
2072 std::vector<const Type*> ParamTypeList;
2073 SmallVector<AttributeWithIndex, 8> Attrs;
2074 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2075 // attributes.
2076 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2077 if (FuncAttrs & ObsoleteFuncAttrs) {
2078 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2079 FuncAttrs &= ~ObsoleteFuncAttrs;
2080 }
2081
2082 if (RetAttrs != Attribute::None)
2083 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2084
2085 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2086 ParamTypeList.push_back(ArgList[i].Type);
2087 if (ArgList[i].Attrs != Attribute::None)
2088 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2089 }
2090
2091 if (FuncAttrs != Attribute::None)
2092 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2093
2094 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2095
2096 const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2097 const PointerType *PFT = PointerType::getUnqual(FT);
2098
2099 Fn = 0;
2100 if (!FunctionName.empty()) {
2101 // If this was a definition of a forward reference, remove the definition
2102 // from the forward reference table and fill in the forward ref.
2103 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2104 ForwardRefVals.find(FunctionName);
2105 if (FRVI != ForwardRefVals.end()) {
2106 Fn = M->getFunction(FunctionName);
2107 ForwardRefVals.erase(FRVI);
2108 } else if ((Fn = M->getFunction(FunctionName))) {
2109 // If this function already exists in the symbol table, then it is
2110 // multiply defined. We accept a few cases for old backwards compat.
2111 // FIXME: Remove this stuff for LLVM 3.0.
2112 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2113 (!Fn->isDeclaration() && isDefine)) {
2114 // If the redefinition has different type or different attributes,
2115 // reject it. If both have bodies, reject it.
2116 return Error(NameLoc, "invalid redefinition of function '" +
2117 FunctionName + "'");
2118 } else if (Fn->isDeclaration()) {
2119 // Make sure to strip off any argument names so we can't get conflicts.
2120 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2121 AI != AE; ++AI)
2122 AI->setName("");
2123 }
2124 }
2125
2126 } else if (FunctionName.empty()) {
2127 // If this is a definition of a forward referenced function, make sure the
2128 // types agree.
2129 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2130 = ForwardRefValIDs.find(NumberedVals.size());
2131 if (I != ForwardRefValIDs.end()) {
2132 Fn = cast<Function>(I->second.first);
2133 if (Fn->getType() != PFT)
2134 return Error(NameLoc, "type of definition and forward reference of '@" +
2135 utostr(NumberedVals.size()) +"' disagree");
2136 ForwardRefValIDs.erase(I);
2137 }
2138 }
2139
2140 if (Fn == 0)
2141 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2142 else // Move the forward-reference to the correct spot in the module.
2143 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2144
2145 if (FunctionName.empty())
2146 NumberedVals.push_back(Fn);
2147
2148 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2149 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2150 Fn->setCallingConv(CC);
2151 Fn->setAttributes(PAL);
2152 Fn->setAlignment(Alignment);
2153 Fn->setSection(Section);
2154 if (!GC.empty()) Fn->setGC(GC.c_str());
2155
2156 // Add all of the arguments we parsed to the function.
2157 Function::arg_iterator ArgIt = Fn->arg_begin();
2158 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2159 // If the argument has a name, insert it into the argument symbol table.
2160 if (ArgList[i].Name.empty()) continue;
2161
2162 // Set the name, if it conflicted, it will be auto-renamed.
2163 ArgIt->setName(ArgList[i].Name);
2164
2165 if (ArgIt->getNameStr() != ArgList[i].Name)
2166 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2167 ArgList[i].Name + "'");
2168 }
2169
2170 return false;
2171}
2172
2173
2174/// ParseFunctionBody
2175/// ::= '{' BasicBlock+ '}'
2176/// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2177///
2178bool LLParser::ParseFunctionBody(Function &Fn) {
2179 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2180 return TokError("expected '{' in function body");
2181 Lex.Lex(); // eat the {.
2182
2183 PerFunctionState PFS(*this, Fn);
2184
2185 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2186 if (ParseBasicBlock(PFS)) return true;
2187
2188 // Eat the }.
2189 Lex.Lex();
2190
2191 // Verify function is ok.
2192 return PFS.VerifyFunctionComplete();
2193}
2194
2195/// ParseBasicBlock
2196/// ::= LabelStr? Instruction*
2197bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2198 // If this basic block starts out with a name, remember it.
2199 std::string Name;
2200 LocTy NameLoc = Lex.getLoc();
2201 if (Lex.getKind() == lltok::LabelStr) {
2202 Name = Lex.getStrVal();
2203 Lex.Lex();
2204 }
2205
2206 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2207 if (BB == 0) return true;
2208
2209 std::string NameStr;
2210
2211 // Parse the instructions in this block until we get a terminator.
2212 Instruction *Inst;
2213 do {
2214 // This instruction may have three possibilities for a name: a) none
2215 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2216 LocTy NameLoc = Lex.getLoc();
2217 int NameID = -1;
2218 NameStr = "";
2219
2220 if (Lex.getKind() == lltok::LocalVarID) {
2221 NameID = Lex.getUIntVal();
2222 Lex.Lex();
2223 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2224 return true;
2225 } else if (Lex.getKind() == lltok::LocalVar ||
2226 // FIXME: REMOVE IN LLVM 3.0
2227 Lex.getKind() == lltok::StringConstant) {
2228 NameStr = Lex.getStrVal();
2229 Lex.Lex();
2230 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2231 return true;
2232 }
2233
2234 if (ParseInstruction(Inst, BB, PFS)) return true;
2235
2236 BB->getInstList().push_back(Inst);
2237
2238 // Set the name on the instruction.
2239 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2240 } while (!isa<TerminatorInst>(Inst));
2241
2242 return false;
2243}
2244
2245//===----------------------------------------------------------------------===//
2246// Instruction Parsing.
2247//===----------------------------------------------------------------------===//
2248
2249/// ParseInstruction - Parse one of the many different instructions.
2250///
2251bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2252 PerFunctionState &PFS) {
2253 lltok::Kind Token = Lex.getKind();
2254 if (Token == lltok::Eof)
2255 return TokError("found end of file when expecting more instructions");
2256 LocTy Loc = Lex.getLoc();
2257 Lex.Lex(); // Eat the keyword.
2258
2259 switch (Token) {
2260 default: return Error(Loc, "expected instruction opcode");
2261 // Terminator Instructions.
2262 case lltok::kw_unwind: Inst = new UnwindInst(); return false;
2263 case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2264 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2265 case lltok::kw_br: return ParseBr(Inst, PFS);
2266 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2267 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2268 // Binary Operators.
2269 case lltok::kw_add:
2270 case lltok::kw_sub:
2271 case lltok::kw_mul:
2272 case lltok::kw_udiv:
2273 case lltok::kw_sdiv:
2274 case lltok::kw_fdiv:
2275 case lltok::kw_urem:
2276 case lltok::kw_srem:
2277 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, Lex.getUIntVal());
2278 case lltok::kw_shl:
2279 case lltok::kw_lshr:
2280 case lltok::kw_ashr:
2281 case lltok::kw_and:
2282 case lltok::kw_or:
2283 case lltok::kw_xor: return ParseLogical(Inst, PFS, Lex.getUIntVal());
2284 case lltok::kw_icmp:
2285 case lltok::kw_fcmp:
2286 case lltok::kw_vicmp:
2287 case lltok::kw_vfcmp: return ParseCompare(Inst, PFS, Lex.getUIntVal());
2288 // Casts.
2289 case lltok::kw_trunc:
2290 case lltok::kw_zext:
2291 case lltok::kw_sext:
2292 case lltok::kw_fptrunc:
2293 case lltok::kw_fpext:
2294 case lltok::kw_bitcast:
2295 case lltok::kw_uitofp:
2296 case lltok::kw_sitofp:
2297 case lltok::kw_fptoui:
2298 case lltok::kw_fptosi:
2299 case lltok::kw_inttoptr:
2300 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, Lex.getUIntVal());
2301 // Other.
2302 case lltok::kw_select: return ParseSelect(Inst, PFS);
2303 case lltok::kw_va_arg: return ParseVAArg(Inst, PFS);
2304 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2305 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2306 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2307 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2308 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2309 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2310 // Memory.
2311 case lltok::kw_alloca:
2312 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, Lex.getUIntVal());
2313 case lltok::kw_free: return ParseFree(Inst, PFS);
2314 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
2315 case lltok::kw_store: return ParseStore(Inst, PFS, false);
2316 case lltok::kw_volatile:
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002317 if (EatIfPresent(lltok::kw_load))
Chris Lattnerdf986172009-01-02 07:01:27 +00002318 return ParseLoad(Inst, PFS, true);
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002319 else if (EatIfPresent(lltok::kw_store))
Chris Lattnerdf986172009-01-02 07:01:27 +00002320 return ParseStore(Inst, PFS, true);
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002321 else
Chris Lattnerdf986172009-01-02 07:01:27 +00002322 return TokError("expected 'load' or 'store'");
Chris Lattnerdf986172009-01-02 07:01:27 +00002323 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
2324 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2325 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2326 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2327 }
2328}
2329
2330/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2331bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2332 // FIXME: REMOVE vicmp/vfcmp!
2333 if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2334 switch (Lex.getKind()) {
2335 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2336 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2337 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2338 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2339 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2340 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2341 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2342 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2343 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2344 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2345 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2346 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2347 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2348 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2349 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2350 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2351 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2352 }
2353 } else {
2354 switch (Lex.getKind()) {
2355 default: TokError("expected icmp predicate (e.g. 'eq')");
2356 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2357 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2358 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2359 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2360 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2361 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2362 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2363 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2364 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2365 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2366 }
2367 }
2368 Lex.Lex();
2369 return false;
2370}
2371
2372//===----------------------------------------------------------------------===//
2373// Terminator Instructions.
2374//===----------------------------------------------------------------------===//
2375
2376/// ParseRet - Parse a return instruction.
2377/// ::= 'ret' void
2378/// ::= 'ret' TypeAndValue
2379/// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2380bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2381 PerFunctionState &PFS) {
2382 PATypeHolder Ty(Type::VoidTy);
2383 if (ParseType(Ty)) return true;
2384
2385 if (Ty == Type::VoidTy) {
2386 Inst = ReturnInst::Create();
2387 return false;
2388 }
2389
2390 Value *RV;
2391 if (ParseValue(Ty, RV, PFS)) return true;
2392
2393 // The normal case is one return value.
2394 if (Lex.getKind() == lltok::comma) {
2395 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2396 // of 'ret {i32,i32} {i32 1, i32 2}'
2397 SmallVector<Value*, 8> RVs;
2398 RVs.push_back(RV);
2399
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002400 while (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00002401 if (ParseTypeAndValue(RV, PFS)) return true;
2402 RVs.push_back(RV);
2403 }
2404
2405 RV = UndefValue::get(PFS.getFunction().getReturnType());
2406 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2407 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2408 BB->getInstList().push_back(I);
2409 RV = I;
2410 }
2411 }
2412 Inst = ReturnInst::Create(RV);
2413 return false;
2414}
2415
2416
2417/// ParseBr
2418/// ::= 'br' TypeAndValue
2419/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2420bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2421 LocTy Loc, Loc2;
2422 Value *Op0, *Op1, *Op2;
2423 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2424
2425 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2426 Inst = BranchInst::Create(BB);
2427 return false;
2428 }
2429
2430 if (Op0->getType() != Type::Int1Ty)
2431 return Error(Loc, "branch condition must have 'i1' type");
2432
2433 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2434 ParseTypeAndValue(Op1, Loc, PFS) ||
2435 ParseToken(lltok::comma, "expected ',' after true destination") ||
2436 ParseTypeAndValue(Op2, Loc2, PFS))
2437 return true;
2438
2439 if (!isa<BasicBlock>(Op1))
2440 return Error(Loc, "true destination of branch must be a basic block");
Chris Lattnerdf986172009-01-02 07:01:27 +00002441 if (!isa<BasicBlock>(Op2))
2442 return Error(Loc2, "true destination of branch must be a basic block");
2443
2444 Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2445 return false;
2446}
2447
2448/// ParseSwitch
2449/// Instruction
2450/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2451/// JumpTable
2452/// ::= (TypeAndValue ',' TypeAndValue)*
2453bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2454 LocTy CondLoc, BBLoc;
2455 Value *Cond, *DefaultBB;
2456 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2457 ParseToken(lltok::comma, "expected ',' after switch condition") ||
2458 ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2459 ParseToken(lltok::lsquare, "expected '[' with switch table"))
2460 return true;
2461
2462 if (!isa<IntegerType>(Cond->getType()))
2463 return Error(CondLoc, "switch condition must have integer type");
2464 if (!isa<BasicBlock>(DefaultBB))
2465 return Error(BBLoc, "default destination must be a basic block");
2466
2467 // Parse the jump table pairs.
2468 SmallPtrSet<Value*, 32> SeenCases;
2469 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2470 while (Lex.getKind() != lltok::rsquare) {
2471 Value *Constant, *DestBB;
2472
2473 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2474 ParseToken(lltok::comma, "expected ',' after case value") ||
2475 ParseTypeAndValue(DestBB, BBLoc, PFS))
2476 return true;
2477
2478 if (!SeenCases.insert(Constant))
2479 return Error(CondLoc, "duplicate case value in switch");
2480 if (!isa<ConstantInt>(Constant))
2481 return Error(CondLoc, "case value is not a constant integer");
2482 if (!isa<BasicBlock>(DestBB))
2483 return Error(BBLoc, "case destination is not a basic block");
2484
2485 Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2486 cast<BasicBlock>(DestBB)));
2487 }
2488
2489 Lex.Lex(); // Eat the ']'.
2490
2491 SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2492 Table.size());
2493 for (unsigned i = 0, e = Table.size(); i != e; ++i)
2494 SI->addCase(Table[i].first, Table[i].second);
2495 Inst = SI;
2496 return false;
2497}
2498
2499/// ParseInvoke
2500/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2501/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2502bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2503 LocTy CallLoc = Lex.getLoc();
2504 unsigned CC, RetAttrs, FnAttrs;
2505 PATypeHolder RetType(Type::VoidTy);
2506 LocTy RetTypeLoc;
2507 ValID CalleeID;
2508 SmallVector<ParamInfo, 16> ArgList;
2509
2510 Value *NormalBB, *UnwindBB;
2511 if (ParseOptionalCallingConv(CC) ||
2512 ParseOptionalAttrs(RetAttrs, 1) ||
2513 ParseType(RetType, RetTypeLoc) ||
2514 ParseValID(CalleeID) ||
2515 ParseParameterList(ArgList, PFS) ||
2516 ParseOptionalAttrs(FnAttrs, 2) ||
2517 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2518 ParseTypeAndValue(NormalBB, PFS) ||
2519 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2520 ParseTypeAndValue(UnwindBB, PFS))
2521 return true;
2522
2523 if (!isa<BasicBlock>(NormalBB))
2524 return Error(CallLoc, "normal destination is not a basic block");
2525 if (!isa<BasicBlock>(UnwindBB))
2526 return Error(CallLoc, "unwind destination is not a basic block");
2527
2528 // If RetType is a non-function pointer type, then this is the short syntax
2529 // for the call, which means that RetType is just the return type. Infer the
2530 // rest of the function argument types from the arguments that are present.
2531 const PointerType *PFTy = 0;
2532 const FunctionType *Ty = 0;
2533 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2534 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2535 // Pull out the types of all of the arguments...
2536 std::vector<const Type*> ParamTypes;
2537 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2538 ParamTypes.push_back(ArgList[i].V->getType());
2539
2540 if (!FunctionType::isValidReturnType(RetType))
2541 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2542
2543 Ty = FunctionType::get(RetType, ParamTypes, false);
2544 PFTy = PointerType::getUnqual(Ty);
2545 }
2546
2547 // Look up the callee.
2548 Value *Callee;
2549 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2550
2551 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2552 // function attributes.
2553 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2554 if (FnAttrs & ObsoleteFuncAttrs) {
2555 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2556 FnAttrs &= ~ObsoleteFuncAttrs;
2557 }
2558
2559 // Set up the Attributes for the function.
2560 SmallVector<AttributeWithIndex, 8> Attrs;
2561 if (RetAttrs != Attribute::None)
2562 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2563
2564 SmallVector<Value*, 8> Args;
2565
2566 // Loop through FunctionType's arguments and ensure they are specified
2567 // correctly. Also, gather any parameter attributes.
2568 FunctionType::param_iterator I = Ty->param_begin();
2569 FunctionType::param_iterator E = Ty->param_end();
2570 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2571 const Type *ExpectedTy = 0;
2572 if (I != E) {
2573 ExpectedTy = *I++;
2574 } else if (!Ty->isVarArg()) {
2575 return Error(ArgList[i].Loc, "too many arguments specified");
2576 }
2577
2578 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2579 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2580 ExpectedTy->getDescription() + "'");
2581 Args.push_back(ArgList[i].V);
2582 if (ArgList[i].Attrs != Attribute::None)
2583 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2584 }
2585
2586 if (I != E)
2587 return Error(CallLoc, "not enough parameters specified for call");
2588
2589 if (FnAttrs != Attribute::None)
2590 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2591
2592 // Finish off the Attributes and check them
2593 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2594
2595 InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2596 cast<BasicBlock>(UnwindBB),
2597 Args.begin(), Args.end());
2598 II->setCallingConv(CC);
2599 II->setAttributes(PAL);
2600 Inst = II;
2601 return false;
2602}
2603
2604
2605
2606//===----------------------------------------------------------------------===//
2607// Binary Operators.
2608//===----------------------------------------------------------------------===//
2609
2610/// ParseArithmetic
2611/// ::= ArithmeticOps TypeAndValue ',' Value {
2612bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2613 unsigned Opc) {
2614 LocTy Loc; Value *LHS, *RHS;
2615 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2616 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2617 ParseValue(LHS->getType(), RHS, PFS))
2618 return true;
2619
2620 if (!isa<IntegerType>(LHS->getType()) && !LHS->getType()->isFloatingPoint() &&
2621 !isa<VectorType>(LHS->getType()))
2622 return Error(Loc, "instruction requires integer, fp, or vector operands");
2623
2624 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2625 return false;
2626}
2627
2628/// ParseLogical
2629/// ::= ArithmeticOps TypeAndValue ',' Value {
2630bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2631 unsigned Opc) {
2632 LocTy Loc; Value *LHS, *RHS;
2633 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2634 ParseToken(lltok::comma, "expected ',' in logical operation") ||
2635 ParseValue(LHS->getType(), RHS, PFS))
2636 return true;
2637
2638 if (!LHS->getType()->isIntOrIntVector())
2639 return Error(Loc,"instruction requires integer or integer vector operands");
2640
2641 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2642 return false;
2643}
2644
2645
2646/// ParseCompare
2647/// ::= 'icmp' IPredicates TypeAndValue ',' Value
2648/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
2649/// ::= 'vicmp' IPredicates TypeAndValue ',' Value
2650/// ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2651bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2652 unsigned Opc) {
2653 // Parse the integer/fp comparison predicate.
2654 LocTy Loc;
2655 unsigned Pred;
2656 Value *LHS, *RHS;
2657 if (ParseCmpPredicate(Pred, Opc) ||
2658 ParseTypeAndValue(LHS, Loc, PFS) ||
2659 ParseToken(lltok::comma, "expected ',' after compare value") ||
2660 ParseValue(LHS->getType(), RHS, PFS))
2661 return true;
2662
2663 if (Opc == Instruction::FCmp) {
2664 if (!LHS->getType()->isFPOrFPVector())
2665 return Error(Loc, "fcmp requires floating point operands");
2666 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2667 } else if (Opc == Instruction::ICmp) {
2668 if (!LHS->getType()->isIntOrIntVector() &&
2669 !isa<PointerType>(LHS->getType()))
2670 return Error(Loc, "icmp requires integer operands");
2671 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2672 } else if (Opc == Instruction::VFCmp) {
2673 Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2674 } else if (Opc == Instruction::VICmp) {
2675 Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2676 }
2677 return false;
2678}
2679
2680//===----------------------------------------------------------------------===//
2681// Other Instructions.
2682//===----------------------------------------------------------------------===//
2683
2684
2685/// ParseCast
2686/// ::= CastOpc TypeAndValue 'to' Type
2687bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2688 unsigned Opc) {
2689 LocTy Loc; Value *Op;
2690 PATypeHolder DestTy(Type::VoidTy);
2691 if (ParseTypeAndValue(Op, Loc, PFS) ||
2692 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2693 ParseType(DestTy))
2694 return true;
2695
2696 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy))
2697 return Error(Loc, "invalid cast opcode for cast from '" +
2698 Op->getType()->getDescription() + "' to '" +
2699 DestTy->getDescription() + "'");
2700 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2701 return false;
2702}
2703
2704/// ParseSelect
2705/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2706bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2707 LocTy Loc;
2708 Value *Op0, *Op1, *Op2;
2709 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2710 ParseToken(lltok::comma, "expected ',' after select condition") ||
2711 ParseTypeAndValue(Op1, PFS) ||
2712 ParseToken(lltok::comma, "expected ',' after select value") ||
2713 ParseTypeAndValue(Op2, PFS))
2714 return true;
2715
2716 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2717 return Error(Loc, Reason);
2718
2719 Inst = SelectInst::Create(Op0, Op1, Op2);
2720 return false;
2721}
2722
2723/// ParseVAArg
2724/// ::= 'vaarg' TypeAndValue ',' Type
2725bool LLParser::ParseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
2726 Value *Op;
2727 PATypeHolder EltTy(Type::VoidTy);
2728 if (ParseTypeAndValue(Op, PFS) ||
2729 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2730 ParseType(EltTy))
2731 return true;
2732
2733 Inst = new VAArgInst(Op, EltTy);
2734 return false;
2735}
2736
2737/// ParseExtractElement
2738/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
2739bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2740 LocTy Loc;
2741 Value *Op0, *Op1;
2742 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2743 ParseToken(lltok::comma, "expected ',' after extract value") ||
2744 ParseTypeAndValue(Op1, PFS))
2745 return true;
2746
2747 if (!ExtractElementInst::isValidOperands(Op0, Op1))
2748 return Error(Loc, "invalid extractelement operands");
2749
2750 Inst = new ExtractElementInst(Op0, Op1);
2751 return false;
2752}
2753
2754/// ParseInsertElement
2755/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2756bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2757 LocTy Loc;
2758 Value *Op0, *Op1, *Op2;
2759 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2760 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2761 ParseTypeAndValue(Op1, PFS) ||
2762 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2763 ParseTypeAndValue(Op2, PFS))
2764 return true;
2765
2766 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2767 return Error(Loc, "invalid extractelement operands");
2768
2769 Inst = InsertElementInst::Create(Op0, Op1, Op2);
2770 return false;
2771}
2772
2773/// ParseShuffleVector
2774/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2775bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2776 LocTy Loc;
2777 Value *Op0, *Op1, *Op2;
2778 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2779 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2780 ParseTypeAndValue(Op1, PFS) ||
2781 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2782 ParseTypeAndValue(Op2, PFS))
2783 return true;
2784
2785 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2786 return Error(Loc, "invalid extractelement operands");
2787
2788 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2789 return false;
2790}
2791
2792/// ParsePHI
2793/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2794bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2795 PATypeHolder Ty(Type::VoidTy);
2796 Value *Op0, *Op1;
2797 LocTy TypeLoc = Lex.getLoc();
2798
2799 if (ParseType(Ty) ||
2800 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2801 ParseValue(Ty, Op0, PFS) ||
2802 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2803 ParseValue(Type::LabelTy, Op1, PFS) ||
2804 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2805 return true;
2806
2807 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2808 while (1) {
2809 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2810
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002811 if (!EatIfPresent(lltok::comma))
Chris Lattnerdf986172009-01-02 07:01:27 +00002812 break;
2813
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002814 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
Chris Lattnerdf986172009-01-02 07:01:27 +00002815 ParseValue(Ty, Op0, PFS) ||
2816 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2817 ParseValue(Type::LabelTy, Op1, PFS) ||
2818 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2819 return true;
2820 }
2821
2822 if (!Ty->isFirstClassType())
2823 return Error(TypeLoc, "phi node must have first class type");
2824
2825 PHINode *PN = PHINode::Create(Ty);
2826 PN->reserveOperandSpace(PHIVals.size());
2827 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2828 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2829 Inst = PN;
2830 return false;
2831}
2832
2833/// ParseCall
2834/// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2835/// ParameterList OptionalAttrs
2836bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2837 bool isTail) {
2838 unsigned CC, RetAttrs, FnAttrs;
2839 PATypeHolder RetType(Type::VoidTy);
2840 LocTy RetTypeLoc;
2841 ValID CalleeID;
2842 SmallVector<ParamInfo, 16> ArgList;
2843 LocTy CallLoc = Lex.getLoc();
2844
2845 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
2846 ParseOptionalCallingConv(CC) ||
2847 ParseOptionalAttrs(RetAttrs, 1) ||
2848 ParseType(RetType, RetTypeLoc) ||
2849 ParseValID(CalleeID) ||
2850 ParseParameterList(ArgList, PFS) ||
2851 ParseOptionalAttrs(FnAttrs, 2))
2852 return true;
2853
2854 // If RetType is a non-function pointer type, then this is the short syntax
2855 // for the call, which means that RetType is just the return type. Infer the
2856 // rest of the function argument types from the arguments that are present.
2857 const PointerType *PFTy = 0;
2858 const FunctionType *Ty = 0;
2859 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2860 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2861 // Pull out the types of all of the arguments...
2862 std::vector<const Type*> ParamTypes;
2863 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2864 ParamTypes.push_back(ArgList[i].V->getType());
2865
2866 if (!FunctionType::isValidReturnType(RetType))
2867 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2868
2869 Ty = FunctionType::get(RetType, ParamTypes, false);
2870 PFTy = PointerType::getUnqual(Ty);
2871 }
2872
2873 // Look up the callee.
2874 Value *Callee;
2875 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2876
2877 // Check for call to invalid intrinsic to avoid crashing later.
2878 if (Function *F = dyn_cast<Function>(Callee)) {
2879 if (F->hasName() && F->getNameLen() >= 5 &&
2880 !strncmp(F->getValueName()->getKeyData(), "llvm.", 5) &&
2881 !F->getIntrinsicID(true))
2882 return Error(CallLoc, "Call to invalid LLVM intrinsic function '" +
2883 F->getNameStr() + "'");
2884 }
2885
2886 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2887 // function attributes.
2888 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2889 if (FnAttrs & ObsoleteFuncAttrs) {
2890 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2891 FnAttrs &= ~ObsoleteFuncAttrs;
2892 }
2893
2894 // Set up the Attributes for the function.
2895 SmallVector<AttributeWithIndex, 8> Attrs;
2896 if (RetAttrs != Attribute::None)
2897 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2898
2899 SmallVector<Value*, 8> Args;
2900
2901 // Loop through FunctionType's arguments and ensure they are specified
2902 // correctly. Also, gather any parameter attributes.
2903 FunctionType::param_iterator I = Ty->param_begin();
2904 FunctionType::param_iterator E = Ty->param_end();
2905 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2906 const Type *ExpectedTy = 0;
2907 if (I != E) {
2908 ExpectedTy = *I++;
2909 } else if (!Ty->isVarArg()) {
2910 return Error(ArgList[i].Loc, "too many arguments specified");
2911 }
2912
2913 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2914 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2915 ExpectedTy->getDescription() + "'");
2916 Args.push_back(ArgList[i].V);
2917 if (ArgList[i].Attrs != Attribute::None)
2918 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2919 }
2920
2921 if (I != E)
2922 return Error(CallLoc, "not enough parameters specified for call");
2923
2924 if (FnAttrs != Attribute::None)
2925 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2926
2927 // Finish off the Attributes and check them
2928 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2929
2930 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
2931 CI->setTailCall(isTail);
2932 CI->setCallingConv(CC);
2933 CI->setAttributes(PAL);
2934 Inst = CI;
2935 return false;
2936}
2937
2938//===----------------------------------------------------------------------===//
2939// Memory Instructions.
2940//===----------------------------------------------------------------------===//
2941
2942/// ParseAlloc
2943/// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
2944/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
2945bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
2946 unsigned Opc) {
2947 PATypeHolder Ty(Type::VoidTy);
2948 Value *Size = 0;
2949 LocTy SizeLoc = 0;
2950 unsigned Alignment = 0;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002951 if (ParseType(Ty)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00002952
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002953 if (EatIfPresent(lltok::comma)) {
Chris Lattnerdf986172009-01-02 07:01:27 +00002954 if (Lex.getKind() == lltok::kw_align) {
2955 if (ParseOptionalAlignment(Alignment)) return true;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00002956 } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
2957 ParseOptionalCommaAlignment(Alignment)) {
2958 return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00002959 }
2960 }
2961
2962 if (Size && Size->getType() != Type::Int32Ty)
2963 return Error(SizeLoc, "element count must be i32");
2964
2965 if (Opc == Instruction::Malloc)
2966 Inst = new MallocInst(Ty, Size, Alignment);
2967 else
2968 Inst = new AllocaInst(Ty, Size, Alignment);
2969 return false;
2970}
2971
2972/// ParseFree
2973/// ::= 'free' TypeAndValue
2974bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
2975 Value *Val; LocTy Loc;
2976 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
2977 if (!isa<PointerType>(Val->getType()))
2978 return Error(Loc, "operand to free must be a pointer");
2979 Inst = new FreeInst(Val);
2980 return false;
2981}
2982
2983/// ParseLoad
2984/// ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
2985bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
2986 bool isVolatile) {
2987 Value *Val; LocTy Loc;
2988 unsigned Alignment;
2989 if (ParseTypeAndValue(Val, Loc, PFS) ||
2990 ParseOptionalCommaAlignment(Alignment))
2991 return true;
2992
2993 if (!isa<PointerType>(Val->getType()) ||
2994 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
2995 return Error(Loc, "load operand must be a pointer to a first class type");
2996
2997 Inst = new LoadInst(Val, "", isVolatile, Alignment);
2998 return false;
2999}
3000
3001/// ParseStore
3002/// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3003bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3004 bool isVolatile) {
3005 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3006 unsigned Alignment;
3007 if (ParseTypeAndValue(Val, Loc, PFS) ||
3008 ParseToken(lltok::comma, "expected ',' after store operand") ||
3009 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3010 ParseOptionalCommaAlignment(Alignment))
3011 return true;
3012
3013 if (!isa<PointerType>(Ptr->getType()))
3014 return Error(PtrLoc, "store operand must be a pointer");
3015 if (!Val->getType()->isFirstClassType())
3016 return Error(Loc, "store operand must be a first class value");
3017 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3018 return Error(Loc, "stored value and pointer type do not match");
3019
3020 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3021 return false;
3022}
3023
3024/// ParseGetResult
3025/// ::= 'getresult' TypeAndValue ',' uint
3026/// FIXME: Remove support for getresult in LLVM 3.0
3027bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3028 Value *Val; LocTy ValLoc, EltLoc;
3029 unsigned Element;
3030 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3031 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
Chris Lattner3ed88ef2009-01-02 08:05:26 +00003032 ParseUInt32(Element, EltLoc))
Chris Lattnerdf986172009-01-02 07:01:27 +00003033 return true;
3034
3035 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3036 return Error(ValLoc, "getresult inst requires an aggregate operand");
3037 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3038 return Error(EltLoc, "invalid getresult index for value");
3039 Inst = ExtractValueInst::Create(Val, Element);
3040 return false;
3041}
3042
3043/// ParseGetElementPtr
3044/// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3045bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3046 Value *Ptr, *Val; LocTy Loc, EltLoc;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00003047 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00003048
3049 if (!isa<PointerType>(Ptr->getType()))
3050 return Error(Loc, "base of getelementptr must be a pointer");
3051
3052 SmallVector<Value*, 16> Indices;
Chris Lattner3ed88ef2009-01-02 08:05:26 +00003053 while (EatIfPresent(lltok::comma)) {
3054 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
Chris Lattnerdf986172009-01-02 07:01:27 +00003055 if (!isa<IntegerType>(Val->getType()))
3056 return Error(EltLoc, "getelementptr index must be an integer");
3057 Indices.push_back(Val);
3058 }
3059
3060 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3061 Indices.begin(), Indices.end()))
3062 return Error(Loc, "invalid getelementptr indices");
3063 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3064 return false;
3065}
3066
3067/// ParseExtractValue
3068/// ::= 'extractvalue' TypeAndValue (',' uint32)+
3069bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3070 Value *Val; LocTy Loc;
3071 SmallVector<unsigned, 4> Indices;
3072 if (ParseTypeAndValue(Val, Loc, PFS) ||
3073 ParseIndexList(Indices))
3074 return true;
3075
3076 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3077 return Error(Loc, "extractvalue operand must be array or struct");
3078
3079 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3080 Indices.end()))
3081 return Error(Loc, "invalid indices for extractvalue");
3082 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3083 return false;
3084}
3085
3086/// ParseInsertValue
3087/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3088bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3089 Value *Val0, *Val1; LocTy Loc0, Loc1;
3090 SmallVector<unsigned, 4> Indices;
3091 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3092 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3093 ParseTypeAndValue(Val1, Loc1, PFS) ||
3094 ParseIndexList(Indices))
3095 return true;
3096
3097 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3098 return Error(Loc0, "extractvalue operand must be array or struct");
3099
3100 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3101 Indices.end()))
3102 return Error(Loc0, "invalid indices for insertvalue");
3103 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3104 return false;
3105}